dmaengine.h 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called COPYING.
  16. */
  17. #ifndef LINUX_DMAENGINE_H
  18. #define LINUX_DMAENGINE_H
  19. #include <linux/device.h>
  20. #include <linux/err.h>
  21. #include <linux/uio.h>
  22. #include <linux/bug.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/bitmap.h>
  25. #include <linux/types.h>
  26. #include <asm/page.h>
  27. /**
  28. * typedef dma_cookie_t - an opaque DMA cookie
  29. *
  30. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  31. */
  32. typedef s32 dma_cookie_t;
  33. #define DMA_MIN_COOKIE 1
  34. static inline int dma_submit_error(dma_cookie_t cookie)
  35. {
  36. return cookie < 0 ? cookie : 0;
  37. }
  38. /**
  39. * enum dma_status - DMA transaction status
  40. * @DMA_COMPLETE: transaction completed
  41. * @DMA_IN_PROGRESS: transaction not yet processed
  42. * @DMA_PAUSED: transaction is paused
  43. * @DMA_ERROR: transaction failed
  44. */
  45. enum dma_status {
  46. DMA_COMPLETE,
  47. DMA_IN_PROGRESS,
  48. DMA_PAUSED,
  49. DMA_ERROR,
  50. };
  51. /**
  52. * enum dma_transaction_type - DMA transaction types/indexes
  53. *
  54. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  55. * automatically set as dma devices are registered.
  56. */
  57. enum dma_transaction_type {
  58. DMA_MEMCPY,
  59. DMA_XOR,
  60. DMA_PQ,
  61. DMA_XOR_VAL,
  62. DMA_PQ_VAL,
  63. DMA_INTERRUPT,
  64. DMA_SG,
  65. DMA_PRIVATE,
  66. DMA_ASYNC_TX,
  67. DMA_SLAVE,
  68. DMA_CYCLIC,
  69. DMA_INTERLEAVE,
  70. /* last transaction type for creation of the capabilities mask */
  71. DMA_TX_TYPE_END,
  72. };
  73. /**
  74. * enum dma_transfer_direction - dma transfer mode and direction indicator
  75. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  76. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  77. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  78. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  79. */
  80. enum dma_transfer_direction {
  81. DMA_MEM_TO_MEM,
  82. DMA_MEM_TO_DEV,
  83. DMA_DEV_TO_MEM,
  84. DMA_DEV_TO_DEV,
  85. DMA_TRANS_NONE,
  86. };
  87. /**
  88. * Interleaved Transfer Request
  89. * ----------------------------
  90. * A chunk is collection of contiguous bytes to be transfered.
  91. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  92. * ICGs may or maynot change between chunks.
  93. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  94. * that when repeated an integral number of times, specifies the transfer.
  95. * A transfer template is specification of a Frame, the number of times
  96. * it is to be repeated and other per-transfer attributes.
  97. *
  98. * Practically, a client driver would have ready a template for each
  99. * type of transfer it is going to need during its lifetime and
  100. * set only 'src_start' and 'dst_start' before submitting the requests.
  101. *
  102. *
  103. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  104. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  105. *
  106. * == Chunk size
  107. * ... ICG
  108. */
  109. /**
  110. * struct data_chunk - Element of scatter-gather list that makes a frame.
  111. * @size: Number of bytes to read from source.
  112. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  113. * @icg: Number of bytes to jump after last src/dst address of this
  114. * chunk and before first src/dst address for next chunk.
  115. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  116. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  117. */
  118. struct data_chunk {
  119. size_t size;
  120. size_t icg;
  121. };
  122. /**
  123. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  124. * and attributes.
  125. * @src_start: Bus address of source for the first chunk.
  126. * @dst_start: Bus address of destination for the first chunk.
  127. * @dir: Specifies the type of Source and Destination.
  128. * @src_inc: If the source address increments after reading from it.
  129. * @dst_inc: If the destination address increments after writing to it.
  130. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  131. * Otherwise, source is read contiguously (icg ignored).
  132. * Ignored if src_inc is false.
  133. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  134. * Otherwise, destination is filled contiguously (icg ignored).
  135. * Ignored if dst_inc is false.
  136. * @numf: Number of frames in this template.
  137. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  138. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  139. */
  140. struct dma_interleaved_template {
  141. dma_addr_t src_start;
  142. dma_addr_t dst_start;
  143. enum dma_transfer_direction dir;
  144. bool src_inc;
  145. bool dst_inc;
  146. bool src_sgl;
  147. bool dst_sgl;
  148. size_t numf;
  149. size_t frame_size;
  150. struct data_chunk sgl[0];
  151. };
  152. /**
  153. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  154. * control completion, and communicate status.
  155. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  156. * this transaction
  157. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  158. * acknowledges receipt, i.e. has has a chance to establish any dependency
  159. * chains
  160. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  161. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  162. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  163. * sources that were the result of a previous operation, in the case of a PQ
  164. * operation it continues the calculation with new sources
  165. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  166. * on the result of this operation
  167. */
  168. enum dma_ctrl_flags {
  169. DMA_PREP_INTERRUPT = (1 << 0),
  170. DMA_CTRL_ACK = (1 << 1),
  171. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  172. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  173. DMA_PREP_CONTINUE = (1 << 4),
  174. DMA_PREP_FENCE = (1 << 5),
  175. };
  176. /**
  177. * enum sum_check_bits - bit position of pq_check_flags
  178. */
  179. enum sum_check_bits {
  180. SUM_CHECK_P = 0,
  181. SUM_CHECK_Q = 1,
  182. };
  183. /**
  184. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  185. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  186. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  187. */
  188. enum sum_check_flags {
  189. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  190. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  191. };
  192. /**
  193. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  194. * See linux/cpumask.h
  195. */
  196. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  197. /**
  198. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  199. * @memcpy_count: transaction counter
  200. * @bytes_transferred: byte counter
  201. */
  202. struct dma_chan_percpu {
  203. /* stats */
  204. unsigned long memcpy_count;
  205. unsigned long bytes_transferred;
  206. };
  207. /**
  208. * struct dma_router - DMA router structure
  209. * @dev: pointer to the DMA router device
  210. * @route_free: function to be called when the route can be disconnected
  211. */
  212. struct dma_router {
  213. struct device *dev;
  214. void (*route_free)(struct device *dev, void *route_data);
  215. };
  216. /**
  217. * struct dma_chan - devices supply DMA channels, clients use them
  218. * @device: ptr to the dma device who supplies this channel, always !%NULL
  219. * @cookie: last cookie value returned to client
  220. * @completed_cookie: last completed cookie for this channel
  221. * @chan_id: channel ID for sysfs
  222. * @dev: class device for sysfs
  223. * @device_node: used to add this to the device chan list
  224. * @local: per-cpu pointer to a struct dma_chan_percpu
  225. * @client_count: how many clients are using this channel
  226. * @table_count: number of appearances in the mem-to-mem allocation table
  227. * @router: pointer to the DMA router structure
  228. * @route_data: channel specific data for the router
  229. * @private: private data for certain client-channel associations
  230. */
  231. struct dma_chan {
  232. struct dma_device *device;
  233. dma_cookie_t cookie;
  234. dma_cookie_t completed_cookie;
  235. /* sysfs */
  236. int chan_id;
  237. struct dma_chan_dev *dev;
  238. struct list_head device_node;
  239. struct dma_chan_percpu __percpu *local;
  240. int client_count;
  241. int table_count;
  242. /* DMA router */
  243. struct dma_router *router;
  244. void *route_data;
  245. void *private;
  246. };
  247. /**
  248. * struct dma_chan_dev - relate sysfs device node to backing channel device
  249. * @chan: driver channel device
  250. * @device: sysfs device
  251. * @dev_id: parent dma_device dev_id
  252. * @idr_ref: reference count to gate release of dma_device dev_id
  253. */
  254. struct dma_chan_dev {
  255. struct dma_chan *chan;
  256. struct device device;
  257. int dev_id;
  258. atomic_t *idr_ref;
  259. };
  260. /**
  261. * enum dma_slave_buswidth - defines bus width of the DMA slave
  262. * device, source or target buses
  263. */
  264. enum dma_slave_buswidth {
  265. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  266. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  267. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  268. DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
  269. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  270. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  271. DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
  272. DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
  273. DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
  274. };
  275. /**
  276. * struct dma_slave_config - dma slave channel runtime config
  277. * @direction: whether the data shall go in or out on this slave
  278. * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
  279. * legal values. DEPRECATED, drivers should use the direction argument
  280. * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
  281. * the dir field in the dma_interleaved_template structure.
  282. * @src_addr: this is the physical address where DMA slave data
  283. * should be read (RX), if the source is memory this argument is
  284. * ignored.
  285. * @dst_addr: this is the physical address where DMA slave data
  286. * should be written (TX), if the source is memory this argument
  287. * is ignored.
  288. * @src_addr_width: this is the width in bytes of the source (RX)
  289. * register where DMA data shall be read. If the source
  290. * is memory this may be ignored depending on architecture.
  291. * Legal values: 1, 2, 4, 8.
  292. * @dst_addr_width: same as src_addr_width but for destination
  293. * target (TX) mutatis mutandis.
  294. * @src_maxburst: the maximum number of words (note: words, as in
  295. * units of the src_addr_width member, not bytes) that can be sent
  296. * in one burst to the device. Typically something like half the
  297. * FIFO depth on I/O peripherals so you don't overflow it. This
  298. * may or may not be applicable on memory sources.
  299. * @dst_maxburst: same as src_maxburst but for destination target
  300. * mutatis mutandis.
  301. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  302. * with 'true' if peripheral should be flow controller. Direction will be
  303. * selected at Runtime.
  304. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  305. * slave peripheral will have unique id as dma requester which need to be
  306. * pass as slave config.
  307. *
  308. * This struct is passed in as configuration data to a DMA engine
  309. * in order to set up a certain channel for DMA transport at runtime.
  310. * The DMA device/engine has to provide support for an additional
  311. * callback in the dma_device structure, device_config and this struct
  312. * will then be passed in as an argument to the function.
  313. *
  314. * The rationale for adding configuration information to this struct is as
  315. * follows: if it is likely that more than one DMA slave controllers in
  316. * the world will support the configuration option, then make it generic.
  317. * If not: if it is fixed so that it be sent in static from the platform
  318. * data, then prefer to do that.
  319. */
  320. struct dma_slave_config {
  321. enum dma_transfer_direction direction;
  322. dma_addr_t src_addr;
  323. dma_addr_t dst_addr;
  324. enum dma_slave_buswidth src_addr_width;
  325. enum dma_slave_buswidth dst_addr_width;
  326. u32 src_maxburst;
  327. u32 dst_maxburst;
  328. bool device_fc;
  329. unsigned int slave_id;
  330. };
  331. /**
  332. * enum dma_residue_granularity - Granularity of the reported transfer residue
  333. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  334. * DMA channel is only able to tell whether a descriptor has been completed or
  335. * not, which means residue reporting is not supported by this channel. The
  336. * residue field of the dma_tx_state field will always be 0.
  337. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  338. * completed segment of the transfer (For cyclic transfers this is after each
  339. * period). This is typically implemented by having the hardware generate an
  340. * interrupt after each transferred segment and then the drivers updates the
  341. * outstanding residue by the size of the segment. Another possibility is if
  342. * the hardware supports scatter-gather and the segment descriptor has a field
  343. * which gets set after the segment has been completed. The driver then counts
  344. * the number of segments without the flag set to compute the residue.
  345. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  346. * burst. This is typically only supported if the hardware has a progress
  347. * register of some sort (E.g. a register with the current read/write address
  348. * or a register with the amount of bursts/beats/bytes that have been
  349. * transferred or still need to be transferred).
  350. */
  351. enum dma_residue_granularity {
  352. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  353. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  354. DMA_RESIDUE_GRANULARITY_BURST = 2,
  355. };
  356. /* struct dma_slave_caps - expose capabilities of a slave channel only
  357. *
  358. * @src_addr_widths: bit mask of src addr widths the channel supports
  359. * @dst_addr_widths: bit mask of dstn addr widths the channel supports
  360. * @directions: bit mask of slave direction the channel supported
  361. * since the enum dma_transfer_direction is not defined as bits for each
  362. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  363. * should be checked by controller as well
  364. * @cmd_pause: true, if pause and thereby resume is supported
  365. * @cmd_terminate: true, if terminate cmd is supported
  366. * @residue_granularity: granularity of the reported transfer residue
  367. */
  368. struct dma_slave_caps {
  369. u32 src_addr_widths;
  370. u32 dst_addr_widths;
  371. u32 directions;
  372. bool cmd_pause;
  373. bool cmd_terminate;
  374. enum dma_residue_granularity residue_granularity;
  375. };
  376. static inline const char *dma_chan_name(struct dma_chan *chan)
  377. {
  378. return dev_name(&chan->dev->device);
  379. }
  380. void dma_chan_cleanup(struct kref *kref);
  381. /**
  382. * typedef dma_filter_fn - callback filter for dma_request_channel
  383. * @chan: channel to be reviewed
  384. * @filter_param: opaque parameter passed through dma_request_channel
  385. *
  386. * When this optional parameter is specified in a call to dma_request_channel a
  387. * suitable channel is passed to this routine for further dispositioning before
  388. * being returned. Where 'suitable' indicates a non-busy channel that
  389. * satisfies the given capability mask. It returns 'true' to indicate that the
  390. * channel is suitable.
  391. */
  392. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  393. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  394. struct dmaengine_unmap_data {
  395. u8 map_cnt;
  396. u8 to_cnt;
  397. u8 from_cnt;
  398. u8 bidi_cnt;
  399. struct device *dev;
  400. struct kref kref;
  401. size_t len;
  402. dma_addr_t addr[0];
  403. };
  404. /**
  405. * struct dma_async_tx_descriptor - async transaction descriptor
  406. * ---dma generic offload fields---
  407. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  408. * this tx is sitting on a dependency list
  409. * @flags: flags to augment operation preparation, control completion, and
  410. * communicate status
  411. * @phys: physical address of the descriptor
  412. * @chan: target channel for this operation
  413. * @tx_submit: accept the descriptor, assign ordered cookie and mark the
  414. * descriptor pending. To be pushed on .issue_pending() call
  415. * @callback: routine to call after this operation is complete
  416. * @callback_param: general parameter to pass to the callback routine
  417. * ---async_tx api specific fields---
  418. * @next: at completion submit this descriptor
  419. * @parent: pointer to the next level up in the dependency chain
  420. * @lock: protect the parent and next pointers
  421. */
  422. struct dma_async_tx_descriptor {
  423. dma_cookie_t cookie;
  424. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  425. dma_addr_t phys;
  426. struct dma_chan *chan;
  427. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  428. dma_async_tx_callback callback;
  429. void *callback_param;
  430. struct dmaengine_unmap_data *unmap;
  431. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  432. struct dma_async_tx_descriptor *next;
  433. struct dma_async_tx_descriptor *parent;
  434. spinlock_t lock;
  435. #endif
  436. };
  437. #ifdef CONFIG_DMA_ENGINE
  438. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  439. struct dmaengine_unmap_data *unmap)
  440. {
  441. kref_get(&unmap->kref);
  442. tx->unmap = unmap;
  443. }
  444. struct dmaengine_unmap_data *
  445. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  446. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  447. #else
  448. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  449. struct dmaengine_unmap_data *unmap)
  450. {
  451. }
  452. static inline struct dmaengine_unmap_data *
  453. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  454. {
  455. return NULL;
  456. }
  457. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  458. {
  459. }
  460. #endif
  461. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  462. {
  463. if (tx->unmap) {
  464. dmaengine_unmap_put(tx->unmap);
  465. tx->unmap = NULL;
  466. }
  467. }
  468. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  469. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  470. {
  471. }
  472. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  473. {
  474. }
  475. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  476. {
  477. BUG();
  478. }
  479. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  480. {
  481. }
  482. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  483. {
  484. }
  485. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  486. {
  487. return NULL;
  488. }
  489. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  490. {
  491. return NULL;
  492. }
  493. #else
  494. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  495. {
  496. spin_lock_bh(&txd->lock);
  497. }
  498. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  499. {
  500. spin_unlock_bh(&txd->lock);
  501. }
  502. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  503. {
  504. txd->next = next;
  505. next->parent = txd;
  506. }
  507. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  508. {
  509. txd->parent = NULL;
  510. }
  511. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  512. {
  513. txd->next = NULL;
  514. }
  515. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  516. {
  517. return txd->parent;
  518. }
  519. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  520. {
  521. return txd->next;
  522. }
  523. #endif
  524. /**
  525. * struct dma_tx_state - filled in to report the status of
  526. * a transfer.
  527. * @last: last completed DMA cookie
  528. * @used: last issued DMA cookie (i.e. the one in progress)
  529. * @residue: the remaining number of bytes left to transmit
  530. * on the selected transfer for states DMA_IN_PROGRESS and
  531. * DMA_PAUSED if this is implemented in the driver, else 0
  532. */
  533. struct dma_tx_state {
  534. dma_cookie_t last;
  535. dma_cookie_t used;
  536. u32 residue;
  537. };
  538. /**
  539. * struct dma_device - info on the entity supplying DMA services
  540. * @chancnt: how many DMA channels are supported
  541. * @privatecnt: how many DMA channels are requested by dma_request_channel
  542. * @channels: the list of struct dma_chan
  543. * @global_node: list_head for global dma_device_list
  544. * @cap_mask: one or more dma_capability flags
  545. * @max_xor: maximum number of xor sources, 0 if no capability
  546. * @max_pq: maximum number of PQ sources and PQ-continue capability
  547. * @copy_align: alignment shift for memcpy operations
  548. * @xor_align: alignment shift for xor operations
  549. * @pq_align: alignment shift for pq operations
  550. * @dev_id: unique device ID
  551. * @dev: struct device reference for dma mapping api
  552. * @src_addr_widths: bit mask of src addr widths the device supports
  553. * @dst_addr_widths: bit mask of dst addr widths the device supports
  554. * @directions: bit mask of slave direction the device supports since
  555. * the enum dma_transfer_direction is not defined as bits for
  556. * each type of direction, the dma controller should fill (1 <<
  557. * <TYPE>) and same should be checked by controller as well
  558. * @residue_granularity: granularity of the transfer residue reported
  559. * by tx_status
  560. * @device_alloc_chan_resources: allocate resources and return the
  561. * number of allocated descriptors
  562. * @device_free_chan_resources: release DMA channel's resources
  563. * @device_prep_dma_memcpy: prepares a memcpy operation
  564. * @device_prep_dma_xor: prepares a xor operation
  565. * @device_prep_dma_xor_val: prepares a xor validation operation
  566. * @device_prep_dma_pq: prepares a pq operation
  567. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  568. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  569. * @device_prep_slave_sg: prepares a slave dma operation
  570. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  571. * The function takes a buffer of size buf_len. The callback function will
  572. * be called after period_len bytes have been transferred.
  573. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  574. * @device_config: Pushes a new configuration to a channel, return 0 or an error
  575. * code
  576. * @device_pause: Pauses any transfer happening on a channel. Returns
  577. * 0 or an error code
  578. * @device_resume: Resumes any transfer on a channel previously
  579. * paused. Returns 0 or an error code
  580. * @device_terminate_all: Aborts all transfers on a channel. Returns 0
  581. * or an error code
  582. * @device_tx_status: poll for transaction completion, the optional
  583. * txstate parameter can be supplied with a pointer to get a
  584. * struct with auxiliary transfer status information, otherwise the call
  585. * will just return a simple status code
  586. * @device_issue_pending: push pending transactions to hardware
  587. */
  588. struct dma_device {
  589. unsigned int chancnt;
  590. unsigned int privatecnt;
  591. struct list_head channels;
  592. struct list_head global_node;
  593. dma_cap_mask_t cap_mask;
  594. unsigned short max_xor;
  595. unsigned short max_pq;
  596. u8 copy_align;
  597. u8 xor_align;
  598. u8 pq_align;
  599. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  600. int dev_id;
  601. struct device *dev;
  602. u32 src_addr_widths;
  603. u32 dst_addr_widths;
  604. u32 directions;
  605. enum dma_residue_granularity residue_granularity;
  606. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  607. void (*device_free_chan_resources)(struct dma_chan *chan);
  608. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  609. struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
  610. size_t len, unsigned long flags);
  611. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  612. struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
  613. unsigned int src_cnt, size_t len, unsigned long flags);
  614. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  615. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  616. size_t len, enum sum_check_flags *result, unsigned long flags);
  617. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  618. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  619. unsigned int src_cnt, const unsigned char *scf,
  620. size_t len, unsigned long flags);
  621. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  622. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  623. unsigned int src_cnt, const unsigned char *scf, size_t len,
  624. enum sum_check_flags *pqres, unsigned long flags);
  625. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  626. struct dma_chan *chan, unsigned long flags);
  627. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  628. struct dma_chan *chan,
  629. struct scatterlist *dst_sg, unsigned int dst_nents,
  630. struct scatterlist *src_sg, unsigned int src_nents,
  631. unsigned long flags);
  632. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  633. struct dma_chan *chan, struct scatterlist *sgl,
  634. unsigned int sg_len, enum dma_transfer_direction direction,
  635. unsigned long flags, void *context);
  636. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  637. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  638. size_t period_len, enum dma_transfer_direction direction,
  639. unsigned long flags);
  640. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  641. struct dma_chan *chan, struct dma_interleaved_template *xt,
  642. unsigned long flags);
  643. int (*device_config)(struct dma_chan *chan,
  644. struct dma_slave_config *config);
  645. int (*device_pause)(struct dma_chan *chan);
  646. int (*device_resume)(struct dma_chan *chan);
  647. int (*device_terminate_all)(struct dma_chan *chan);
  648. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  649. dma_cookie_t cookie,
  650. struct dma_tx_state *txstate);
  651. void (*device_issue_pending)(struct dma_chan *chan);
  652. };
  653. static inline int dmaengine_slave_config(struct dma_chan *chan,
  654. struct dma_slave_config *config)
  655. {
  656. if (chan->device->device_config)
  657. return chan->device->device_config(chan, config);
  658. return -ENOSYS;
  659. }
  660. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  661. {
  662. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  663. }
  664. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  665. struct dma_chan *chan, dma_addr_t buf, size_t len,
  666. enum dma_transfer_direction dir, unsigned long flags)
  667. {
  668. struct scatterlist sg;
  669. sg_init_table(&sg, 1);
  670. sg_dma_address(&sg) = buf;
  671. sg_dma_len(&sg) = len;
  672. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  673. dir, flags, NULL);
  674. }
  675. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  676. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  677. enum dma_transfer_direction dir, unsigned long flags)
  678. {
  679. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  680. dir, flags, NULL);
  681. }
  682. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  683. struct rio_dma_ext;
  684. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  685. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  686. enum dma_transfer_direction dir, unsigned long flags,
  687. struct rio_dma_ext *rio_ext)
  688. {
  689. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  690. dir, flags, rio_ext);
  691. }
  692. #endif
  693. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  694. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  695. size_t period_len, enum dma_transfer_direction dir,
  696. unsigned long flags)
  697. {
  698. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  699. period_len, dir, flags);
  700. }
  701. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  702. struct dma_chan *chan, struct dma_interleaved_template *xt,
  703. unsigned long flags)
  704. {
  705. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  706. }
  707. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
  708. struct dma_chan *chan,
  709. struct scatterlist *dst_sg, unsigned int dst_nents,
  710. struct scatterlist *src_sg, unsigned int src_nents,
  711. unsigned long flags)
  712. {
  713. return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
  714. src_sg, src_nents, flags);
  715. }
  716. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  717. {
  718. if (chan->device->device_terminate_all)
  719. return chan->device->device_terminate_all(chan);
  720. return -ENOSYS;
  721. }
  722. static inline int dmaengine_pause(struct dma_chan *chan)
  723. {
  724. if (chan->device->device_pause)
  725. return chan->device->device_pause(chan);
  726. return -ENOSYS;
  727. }
  728. static inline int dmaengine_resume(struct dma_chan *chan)
  729. {
  730. if (chan->device->device_resume)
  731. return chan->device->device_resume(chan);
  732. return -ENOSYS;
  733. }
  734. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  735. dma_cookie_t cookie, struct dma_tx_state *state)
  736. {
  737. return chan->device->device_tx_status(chan, cookie, state);
  738. }
  739. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  740. {
  741. return desc->tx_submit(desc);
  742. }
  743. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  744. {
  745. size_t mask;
  746. if (!align)
  747. return true;
  748. mask = (1 << align) - 1;
  749. if (mask & (off1 | off2 | len))
  750. return false;
  751. return true;
  752. }
  753. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  754. size_t off2, size_t len)
  755. {
  756. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  757. }
  758. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  759. size_t off2, size_t len)
  760. {
  761. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  762. }
  763. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  764. size_t off2, size_t len)
  765. {
  766. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  767. }
  768. static inline void
  769. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  770. {
  771. dma->max_pq = maxpq;
  772. if (has_pq_continue)
  773. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  774. }
  775. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  776. {
  777. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  778. }
  779. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  780. {
  781. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  782. return (flags & mask) == mask;
  783. }
  784. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  785. {
  786. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  787. }
  788. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  789. {
  790. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  791. }
  792. /* dma_maxpq - reduce maxpq in the face of continued operations
  793. * @dma - dma device with PQ capability
  794. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  795. *
  796. * When an engine does not support native continuation we need 3 extra
  797. * source slots to reuse P and Q with the following coefficients:
  798. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  799. * 2/ {01} * Q : use Q to continue Q' calculation
  800. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  801. *
  802. * In the case where P is disabled we only need 1 extra source:
  803. * 1/ {01} * Q : use Q to continue Q' calculation
  804. */
  805. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  806. {
  807. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  808. return dma_dev_to_maxpq(dma);
  809. else if (dmaf_p_disabled_continue(flags))
  810. return dma_dev_to_maxpq(dma) - 1;
  811. else if (dmaf_continue(flags))
  812. return dma_dev_to_maxpq(dma) - 3;
  813. BUG();
  814. }
  815. /* --- public DMA engine API --- */
  816. #ifdef CONFIG_DMA_ENGINE
  817. void dmaengine_get(void);
  818. void dmaengine_put(void);
  819. #else
  820. static inline void dmaengine_get(void)
  821. {
  822. }
  823. static inline void dmaengine_put(void)
  824. {
  825. }
  826. #endif
  827. #ifdef CONFIG_ASYNC_TX_DMA
  828. #define async_dmaengine_get() dmaengine_get()
  829. #define async_dmaengine_put() dmaengine_put()
  830. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  831. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  832. #else
  833. #define async_dma_find_channel(type) dma_find_channel(type)
  834. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  835. #else
  836. static inline void async_dmaengine_get(void)
  837. {
  838. }
  839. static inline void async_dmaengine_put(void)
  840. {
  841. }
  842. static inline struct dma_chan *
  843. async_dma_find_channel(enum dma_transaction_type type)
  844. {
  845. return NULL;
  846. }
  847. #endif /* CONFIG_ASYNC_TX_DMA */
  848. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  849. struct dma_chan *chan);
  850. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  851. {
  852. tx->flags |= DMA_CTRL_ACK;
  853. }
  854. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  855. {
  856. tx->flags &= ~DMA_CTRL_ACK;
  857. }
  858. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  859. {
  860. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  861. }
  862. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  863. static inline void
  864. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  865. {
  866. set_bit(tx_type, dstp->bits);
  867. }
  868. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  869. static inline void
  870. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  871. {
  872. clear_bit(tx_type, dstp->bits);
  873. }
  874. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  875. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  876. {
  877. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  878. }
  879. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  880. static inline int
  881. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  882. {
  883. return test_bit(tx_type, srcp->bits);
  884. }
  885. #define for_each_dma_cap_mask(cap, mask) \
  886. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  887. /**
  888. * dma_async_issue_pending - flush pending transactions to HW
  889. * @chan: target DMA channel
  890. *
  891. * This allows drivers to push copies to HW in batches,
  892. * reducing MMIO writes where possible.
  893. */
  894. static inline void dma_async_issue_pending(struct dma_chan *chan)
  895. {
  896. chan->device->device_issue_pending(chan);
  897. }
  898. /**
  899. * dma_async_is_tx_complete - poll for transaction completion
  900. * @chan: DMA channel
  901. * @cookie: transaction identifier to check status of
  902. * @last: returns last completed cookie, can be NULL
  903. * @used: returns last issued cookie, can be NULL
  904. *
  905. * If @last and @used are passed in, upon return they reflect the driver
  906. * internal state and can be used with dma_async_is_complete() to check
  907. * the status of multiple cookies without re-checking hardware state.
  908. */
  909. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  910. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  911. {
  912. struct dma_tx_state state;
  913. enum dma_status status;
  914. status = chan->device->device_tx_status(chan, cookie, &state);
  915. if (last)
  916. *last = state.last;
  917. if (used)
  918. *used = state.used;
  919. return status;
  920. }
  921. /**
  922. * dma_async_is_complete - test a cookie against chan state
  923. * @cookie: transaction identifier to test status of
  924. * @last_complete: last know completed transaction
  925. * @last_used: last cookie value handed out
  926. *
  927. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  928. * the test logic is separated for lightweight testing of multiple cookies
  929. */
  930. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  931. dma_cookie_t last_complete, dma_cookie_t last_used)
  932. {
  933. if (last_complete <= last_used) {
  934. if ((cookie <= last_complete) || (cookie > last_used))
  935. return DMA_COMPLETE;
  936. } else {
  937. if ((cookie <= last_complete) && (cookie > last_used))
  938. return DMA_COMPLETE;
  939. }
  940. return DMA_IN_PROGRESS;
  941. }
  942. static inline void
  943. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  944. {
  945. if (st) {
  946. st->last = last;
  947. st->used = used;
  948. st->residue = residue;
  949. }
  950. }
  951. #ifdef CONFIG_DMA_ENGINE
  952. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  953. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  954. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  955. void dma_issue_pending_all(void);
  956. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  957. dma_filter_fn fn, void *fn_param);
  958. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  959. const char *name);
  960. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  961. void dma_release_channel(struct dma_chan *chan);
  962. int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
  963. #else
  964. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  965. {
  966. return NULL;
  967. }
  968. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  969. {
  970. return DMA_COMPLETE;
  971. }
  972. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  973. {
  974. return DMA_COMPLETE;
  975. }
  976. static inline void dma_issue_pending_all(void)
  977. {
  978. }
  979. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  980. dma_filter_fn fn, void *fn_param)
  981. {
  982. return NULL;
  983. }
  984. static inline struct dma_chan *dma_request_slave_channel_reason(
  985. struct device *dev, const char *name)
  986. {
  987. return ERR_PTR(-ENODEV);
  988. }
  989. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  990. const char *name)
  991. {
  992. return NULL;
  993. }
  994. static inline void dma_release_channel(struct dma_chan *chan)
  995. {
  996. }
  997. static inline int dma_get_slave_caps(struct dma_chan *chan,
  998. struct dma_slave_caps *caps)
  999. {
  1000. return -ENXIO;
  1001. }
  1002. #endif
  1003. /* --- DMA device --- */
  1004. int dma_async_device_register(struct dma_device *device);
  1005. void dma_async_device_unregister(struct dma_device *device);
  1006. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  1007. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  1008. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
  1009. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1010. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1011. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1012. static inline struct dma_chan
  1013. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1014. dma_filter_fn fn, void *fn_param,
  1015. struct device *dev, char *name)
  1016. {
  1017. struct dma_chan *chan;
  1018. chan = dma_request_slave_channel(dev, name);
  1019. if (chan)
  1020. return chan;
  1021. return __dma_request_channel(mask, fn, fn_param);
  1022. }
  1023. #endif /* DMAENGINE_H */