intel_ringbuffer.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #define I915_CMD_HASH_ORDER 9
  7. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  8. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  9. * to give some inclination as to some of the magic values used in the various
  10. * workarounds!
  11. */
  12. #define CACHELINE_BYTES 64
  13. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  14. /*
  15. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  16. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  17. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  18. *
  19. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  20. * cacheline, the Head Pointer must not be greater than the Tail
  21. * Pointer."
  22. */
  23. #define I915_RING_FREE_SPACE 64
  24. struct intel_hw_status_page {
  25. struct i915_vma *vma;
  26. u32 *page_addr;
  27. u32 ggtt_offset;
  28. };
  29. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  30. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  31. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  32. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  33. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  34. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  35. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  36. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  37. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  38. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  39. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  40. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  41. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  42. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  43. */
  44. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  45. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  46. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  47. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  48. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  49. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  50. #define GEN8_WAIT_OFFSET(__ring, from) \
  51. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  52. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  53. enum intel_engine_hangcheck_action {
  54. HANGCHECK_IDLE = 0,
  55. HANGCHECK_WAIT,
  56. HANGCHECK_ACTIVE,
  57. HANGCHECK_KICK,
  58. HANGCHECK_HUNG,
  59. };
  60. #define HANGCHECK_SCORE_RING_HUNG 31
  61. struct intel_engine_hangcheck {
  62. u64 acthd;
  63. u32 seqno;
  64. int score;
  65. enum intel_engine_hangcheck_action action;
  66. int deadlock;
  67. u32 instdone[I915_NUM_INSTDONE_REG];
  68. };
  69. struct intel_ring {
  70. struct i915_vma *vma;
  71. void *vaddr;
  72. struct intel_engine_cs *engine;
  73. struct list_head link;
  74. struct list_head request_list;
  75. u32 head;
  76. u32 tail;
  77. int space;
  78. int size;
  79. int effective_size;
  80. bool needs_iomap;
  81. /** We track the position of the requests in the ring buffer, and
  82. * when each is retired we increment last_retired_head as the GPU
  83. * must have finished processing the request and so we know we
  84. * can advance the ringbuffer up to that position.
  85. *
  86. * last_retired_head is set to -1 after the value is consumed so
  87. * we can detect new retirements.
  88. */
  89. u32 last_retired_head;
  90. };
  91. struct i915_gem_context;
  92. struct drm_i915_reg_table;
  93. /*
  94. * we use a single page to load ctx workarounds so all of these
  95. * values are referred in terms of dwords
  96. *
  97. * struct i915_wa_ctx_bb:
  98. * offset: specifies batch starting position, also helpful in case
  99. * if we want to have multiple batches at different offsets based on
  100. * some criteria. It is not a requirement at the moment but provides
  101. * an option for future use.
  102. * size: size of the batch in DWORDS
  103. */
  104. struct i915_ctx_workarounds {
  105. struct i915_wa_ctx_bb {
  106. u32 offset;
  107. u32 size;
  108. } indirect_ctx, per_ctx;
  109. struct drm_i915_gem_object *obj;
  110. };
  111. struct drm_i915_gem_request;
  112. struct intel_engine_cs {
  113. struct drm_i915_private *i915;
  114. const char *name;
  115. enum intel_engine_id {
  116. RCS = 0,
  117. BCS,
  118. VCS,
  119. VCS2, /* Keep instances of the same type engine together. */
  120. VECS
  121. } id;
  122. #define I915_NUM_ENGINES 5
  123. #define _VCS(n) (VCS + (n))
  124. unsigned int exec_id;
  125. unsigned int hw_id;
  126. unsigned int guc_id; /* XXX same as hw_id? */
  127. u64 fence_context;
  128. u32 mmio_base;
  129. unsigned int irq_shift;
  130. struct intel_ring *buffer;
  131. struct list_head buffers;
  132. /* Rather than have every client wait upon all user interrupts,
  133. * with the herd waking after every interrupt and each doing the
  134. * heavyweight seqno dance, we delegate the task (of being the
  135. * bottom-half of the user interrupt) to the first client. After
  136. * every interrupt, we wake up one client, who does the heavyweight
  137. * coherent seqno read and either goes back to sleep (if incomplete),
  138. * or wakes up all the completed clients in parallel, before then
  139. * transferring the bottom-half status to the next client in the queue.
  140. *
  141. * Compared to walking the entire list of waiters in a single dedicated
  142. * bottom-half, we reduce the latency of the first waiter by avoiding
  143. * a context switch, but incur additional coherent seqno reads when
  144. * following the chain of request breadcrumbs. Since it is most likely
  145. * that we have a single client waiting on each seqno, then reducing
  146. * the overhead of waking that client is much preferred.
  147. */
  148. struct intel_breadcrumbs {
  149. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  150. bool irq_posted;
  151. spinlock_t lock; /* protects the lists of requests */
  152. struct rb_root waiters; /* sorted by retirement, priority */
  153. struct rb_root signals; /* sorted by retirement */
  154. struct intel_wait *first_wait; /* oldest waiter by retirement */
  155. struct task_struct *signaler; /* used for fence signalling */
  156. struct drm_i915_gem_request *first_signal;
  157. struct timer_list fake_irq; /* used after a missed interrupt */
  158. struct timer_list hangcheck; /* detect missed interrupts */
  159. unsigned long timeout;
  160. bool irq_enabled : 1;
  161. bool rpm_wakelock : 1;
  162. } breadcrumbs;
  163. /*
  164. * A pool of objects to use as shadow copies of client batch buffers
  165. * when the command parser is enabled. Prevents the client from
  166. * modifying the batch contents after software parsing.
  167. */
  168. struct i915_gem_batch_pool batch_pool;
  169. struct intel_hw_status_page status_page;
  170. struct i915_ctx_workarounds wa_ctx;
  171. struct i915_vma *scratch;
  172. u32 irq_keep_mask; /* always keep these interrupts */
  173. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  174. void (*irq_enable)(struct intel_engine_cs *engine);
  175. void (*irq_disable)(struct intel_engine_cs *engine);
  176. int (*init_hw)(struct intel_engine_cs *engine);
  177. int (*init_context)(struct drm_i915_gem_request *req);
  178. int (*emit_flush)(struct drm_i915_gem_request *request,
  179. u32 mode);
  180. #define EMIT_INVALIDATE BIT(0)
  181. #define EMIT_FLUSH BIT(1)
  182. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  183. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  184. u64 offset, u32 length,
  185. unsigned int dispatch_flags);
  186. #define I915_DISPATCH_SECURE BIT(0)
  187. #define I915_DISPATCH_PINNED BIT(1)
  188. #define I915_DISPATCH_RS BIT(2)
  189. int (*emit_request)(struct drm_i915_gem_request *req);
  190. void (*submit_request)(struct drm_i915_gem_request *req);
  191. /* Some chipsets are not quite as coherent as advertised and need
  192. * an expensive kick to force a true read of the up-to-date seqno.
  193. * However, the up-to-date seqno is not always required and the last
  194. * seen value is good enough. Note that the seqno will always be
  195. * monotonic, even if not coherent.
  196. */
  197. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  198. void (*cleanup)(struct intel_engine_cs *engine);
  199. /* GEN8 signal/wait table - never trust comments!
  200. * signal to signal to signal to signal to signal to
  201. * RCS VCS BCS VECS VCS2
  202. * --------------------------------------------------------------------
  203. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  204. * |-------------------------------------------------------------------
  205. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  206. * |-------------------------------------------------------------------
  207. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  208. * |-------------------------------------------------------------------
  209. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  210. * |-------------------------------------------------------------------
  211. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  212. * |-------------------------------------------------------------------
  213. *
  214. * Generalization:
  215. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  216. * ie. transpose of g(x, y)
  217. *
  218. * sync from sync from sync from sync from sync from
  219. * RCS VCS BCS VECS VCS2
  220. * --------------------------------------------------------------------
  221. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  222. * |-------------------------------------------------------------------
  223. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  224. * |-------------------------------------------------------------------
  225. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  226. * |-------------------------------------------------------------------
  227. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  228. * |-------------------------------------------------------------------
  229. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  230. * |-------------------------------------------------------------------
  231. *
  232. * Generalization:
  233. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  234. * ie. transpose of f(x, y)
  235. */
  236. struct {
  237. u32 sync_seqno[I915_NUM_ENGINES-1];
  238. union {
  239. struct {
  240. /* our mbox written by others */
  241. u32 wait[I915_NUM_ENGINES];
  242. /* mboxes this ring signals to */
  243. i915_reg_t signal[I915_NUM_ENGINES];
  244. } mbox;
  245. u64 signal_ggtt[I915_NUM_ENGINES];
  246. };
  247. /* AKA wait() */
  248. int (*sync_to)(struct drm_i915_gem_request *req,
  249. struct drm_i915_gem_request *signal);
  250. int (*signal)(struct drm_i915_gem_request *req);
  251. } semaphore;
  252. /* Execlists */
  253. struct tasklet_struct irq_tasklet;
  254. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  255. struct list_head execlist_queue;
  256. unsigned int fw_domains;
  257. unsigned int next_context_status_buffer;
  258. unsigned int idle_lite_restore_wa;
  259. bool disable_lite_restore_wa;
  260. u32 ctx_desc_template;
  261. /**
  262. * List of breadcrumbs associated with GPU requests currently
  263. * outstanding.
  264. */
  265. struct list_head request_list;
  266. /**
  267. * Seqno of request most recently submitted to request_list.
  268. * Used exclusively by hang checker to avoid grabbing lock while
  269. * inspecting request list.
  270. */
  271. u32 last_submitted_seqno;
  272. /* An RCU guarded pointer to the last request. No reference is
  273. * held to the request, users must carefully acquire a reference to
  274. * the request using i915_gem_active_get_rcu(), or hold the
  275. * struct_mutex.
  276. */
  277. struct i915_gem_active last_request;
  278. struct i915_gem_context *last_context;
  279. struct intel_engine_hangcheck hangcheck;
  280. bool needs_cmd_parser;
  281. /*
  282. * Table of commands the command parser needs to know about
  283. * for this engine.
  284. */
  285. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  286. /*
  287. * Table of registers allowed in commands that read/write registers.
  288. */
  289. const struct drm_i915_reg_table *reg_tables;
  290. int reg_table_count;
  291. /*
  292. * Returns the bitmask for the length field of the specified command.
  293. * Return 0 for an unrecognized/invalid command.
  294. *
  295. * If the command parser finds an entry for a command in the engine's
  296. * cmd_tables, it gets the command's length based on the table entry.
  297. * If not, it calls this function to determine the per-engine length
  298. * field encoding for the command (i.e. different opcode ranges use
  299. * certain bits to encode the command length in the header).
  300. */
  301. u32 (*get_cmd_length_mask)(u32 cmd_header);
  302. };
  303. static inline bool
  304. intel_engine_initialized(const struct intel_engine_cs *engine)
  305. {
  306. return engine->i915 != NULL;
  307. }
  308. static inline unsigned
  309. intel_engine_flag(const struct intel_engine_cs *engine)
  310. {
  311. return 1 << engine->id;
  312. }
  313. static inline u32
  314. intel_engine_sync_index(struct intel_engine_cs *engine,
  315. struct intel_engine_cs *other)
  316. {
  317. int idx;
  318. /*
  319. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  320. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  321. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  322. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  323. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  324. */
  325. idx = (other - engine) - 1;
  326. if (idx < 0)
  327. idx += I915_NUM_ENGINES;
  328. return idx;
  329. }
  330. static inline void
  331. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  332. {
  333. mb();
  334. clflush(&engine->status_page.page_addr[reg]);
  335. mb();
  336. }
  337. static inline u32
  338. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  339. {
  340. /* Ensure that the compiler doesn't optimize away the load. */
  341. return READ_ONCE(engine->status_page.page_addr[reg]);
  342. }
  343. static inline void
  344. intel_write_status_page(struct intel_engine_cs *engine,
  345. int reg, u32 value)
  346. {
  347. engine->status_page.page_addr[reg] = value;
  348. }
  349. /*
  350. * Reads a dword out of the status page, which is written to from the command
  351. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  352. * MI_STORE_DATA_IMM.
  353. *
  354. * The following dwords have a reserved meaning:
  355. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  356. * 0x04: ring 0 head pointer
  357. * 0x05: ring 1 head pointer (915-class)
  358. * 0x06: ring 2 head pointer (915-class)
  359. * 0x10-0x1b: Context status DWords (GM45)
  360. * 0x1f: Last written status offset. (GM45)
  361. * 0x20-0x2f: Reserved (Gen6+)
  362. *
  363. * The area from dword 0x30 to 0x3ff is available for driver usage.
  364. */
  365. #define I915_GEM_HWS_INDEX 0x30
  366. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  367. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  368. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  369. struct intel_ring *
  370. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  371. int intel_ring_pin(struct intel_ring *ring);
  372. void intel_ring_unpin(struct intel_ring *ring);
  373. void intel_ring_free(struct intel_ring *ring);
  374. void intel_engine_stop(struct intel_engine_cs *engine);
  375. void intel_engine_cleanup(struct intel_engine_cs *engine);
  376. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  377. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  378. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  379. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  380. {
  381. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  382. ring->tail += 4;
  383. }
  384. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  385. {
  386. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  387. }
  388. static inline void intel_ring_advance(struct intel_ring *ring)
  389. {
  390. /* Dummy function.
  391. *
  392. * This serves as a placeholder in the code so that the reader
  393. * can compare against the preceding intel_ring_begin() and
  394. * check that the number of dwords emitted matches the space
  395. * reserved for the command packet (i.e. the value passed to
  396. * intel_ring_begin()).
  397. */
  398. }
  399. static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
  400. {
  401. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  402. return value & (ring->size - 1);
  403. }
  404. int __intel_ring_space(int head, int tail, int size);
  405. void intel_ring_update_space(struct intel_ring *ring);
  406. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  407. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  408. void intel_engine_cleanup_scratch(struct intel_engine_cs *engine);
  409. void intel_engine_setup_common(struct intel_engine_cs *engine);
  410. int intel_engine_init_common(struct intel_engine_cs *engine);
  411. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  412. static inline int intel_engine_idle(struct intel_engine_cs *engine,
  413. bool interruptible)
  414. {
  415. /* Wait upon the last request to be completed */
  416. return i915_gem_active_wait_unlocked(&engine->last_request,
  417. interruptible, NULL, NULL);
  418. }
  419. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  420. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  421. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  422. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  423. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  424. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  425. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  426. {
  427. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  428. }
  429. int init_workarounds_ring(struct intel_engine_cs *engine);
  430. /*
  431. * Arbitrary size for largest possible 'add request' sequence. The code paths
  432. * are complex and variable. Empirical measurement shows that the worst case
  433. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  434. * we need to allocate double the largest single packet within that emission
  435. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  436. */
  437. #define MIN_SPACE_FOR_ADD_REQUEST 336
  438. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  439. {
  440. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  441. }
  442. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  443. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  444. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  445. {
  446. wait->tsk = current;
  447. wait->seqno = seqno;
  448. }
  449. static inline bool intel_wait_complete(const struct intel_wait *wait)
  450. {
  451. return RB_EMPTY_NODE(&wait->node);
  452. }
  453. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  454. struct intel_wait *wait);
  455. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  456. struct intel_wait *wait);
  457. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  458. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  459. {
  460. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  461. }
  462. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  463. {
  464. bool wakeup = false;
  465. /* Note that for this not to dangerously chase a dangling pointer,
  466. * we must hold the rcu_read_lock here.
  467. *
  468. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  469. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  470. * is unlikely to be beneficial.
  471. */
  472. if (intel_engine_has_waiter(engine)) {
  473. struct task_struct *tsk;
  474. rcu_read_lock();
  475. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  476. if (tsk)
  477. wakeup = wake_up_process(tsk);
  478. rcu_read_unlock();
  479. }
  480. return wakeup;
  481. }
  482. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  483. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  484. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  485. static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
  486. {
  487. return i915_gem_active_isset(&engine->last_request);
  488. }
  489. #endif /* _INTEL_RINGBUFFER_H_ */