gmc_v8_0.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include "drmP.h"
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  37. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  38. static int gmc_v8_0_wait_for_idle(void *handle);
  39. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  40. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  43. static const u32 golden_settings_tonga_a11[] =
  44. {
  45. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  46. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  47. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  48. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  49. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. };
  53. static const u32 tonga_mgcg_cgcg_init[] =
  54. {
  55. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  56. };
  57. static const u32 golden_settings_fiji_a10[] =
  58. {
  59. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  60. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. };
  64. static const u32 fiji_mgcg_cgcg_init[] =
  65. {
  66. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  67. };
  68. static const u32 golden_settings_polaris11_a11[] =
  69. {
  70. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  71. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  74. };
  75. static const u32 golden_settings_polaris10_a11[] =
  76. {
  77. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  78. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  79. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  82. };
  83. static const u32 cz_mgcg_cgcg_init[] =
  84. {
  85. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  86. };
  87. static const u32 stoney_mgcg_cgcg_init[] =
  88. {
  89. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  90. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  91. };
  92. static const u32 golden_settings_stoney_common[] =
  93. {
  94. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  95. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  96. };
  97. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  98. {
  99. switch (adev->asic_type) {
  100. case CHIP_FIJI:
  101. amdgpu_program_register_sequence(adev,
  102. fiji_mgcg_cgcg_init,
  103. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  104. amdgpu_program_register_sequence(adev,
  105. golden_settings_fiji_a10,
  106. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  107. break;
  108. case CHIP_TONGA:
  109. amdgpu_program_register_sequence(adev,
  110. tonga_mgcg_cgcg_init,
  111. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  112. amdgpu_program_register_sequence(adev,
  113. golden_settings_tonga_a11,
  114. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  115. break;
  116. case CHIP_POLARIS11:
  117. case CHIP_POLARIS12:
  118. amdgpu_program_register_sequence(adev,
  119. golden_settings_polaris11_a11,
  120. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  121. break;
  122. case CHIP_POLARIS10:
  123. amdgpu_program_register_sequence(adev,
  124. golden_settings_polaris10_a11,
  125. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  126. break;
  127. case CHIP_CARRIZO:
  128. amdgpu_program_register_sequence(adev,
  129. cz_mgcg_cgcg_init,
  130. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  131. break;
  132. case CHIP_STONEY:
  133. amdgpu_program_register_sequence(adev,
  134. stoney_mgcg_cgcg_init,
  135. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  136. amdgpu_program_register_sequence(adev,
  137. golden_settings_stoney_common,
  138. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  139. break;
  140. default:
  141. break;
  142. }
  143. }
  144. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
  145. struct amdgpu_mode_mc_save *save)
  146. {
  147. u32 blackout;
  148. if (adev->mode_info.num_crtc)
  149. amdgpu_display_stop_mc_access(adev, save);
  150. gmc_v8_0_wait_for_idle(adev);
  151. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  152. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  153. /* Block CPU access */
  154. WREG32(mmBIF_FB_EN, 0);
  155. /* blackout the MC */
  156. blackout = REG_SET_FIELD(blackout,
  157. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  158. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  159. }
  160. /* wait for the MC to settle */
  161. udelay(100);
  162. }
  163. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
  164. struct amdgpu_mode_mc_save *save)
  165. {
  166. u32 tmp;
  167. /* unblackout the MC */
  168. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  169. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  170. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  171. /* allow CPU access */
  172. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  173. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  174. WREG32(mmBIF_FB_EN, tmp);
  175. if (adev->mode_info.num_crtc)
  176. amdgpu_display_resume_mc_access(adev, save);
  177. }
  178. /**
  179. * gmc_v8_0_init_microcode - load ucode images from disk
  180. *
  181. * @adev: amdgpu_device pointer
  182. *
  183. * Use the firmware interface to load the ucode images into
  184. * the driver (not loaded into hw).
  185. * Returns 0 on success, error on failure.
  186. */
  187. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  188. {
  189. const char *chip_name;
  190. char fw_name[30];
  191. int err;
  192. DRM_DEBUG("\n");
  193. switch (adev->asic_type) {
  194. case CHIP_TONGA:
  195. chip_name = "tonga";
  196. break;
  197. case CHIP_POLARIS11:
  198. chip_name = "polaris11";
  199. break;
  200. case CHIP_POLARIS10:
  201. chip_name = "polaris10";
  202. break;
  203. case CHIP_POLARIS12:
  204. chip_name = "polaris12";
  205. break;
  206. case CHIP_FIJI:
  207. case CHIP_CARRIZO:
  208. case CHIP_STONEY:
  209. return 0;
  210. default: BUG();
  211. }
  212. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  213. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  214. if (err)
  215. goto out;
  216. err = amdgpu_ucode_validate(adev->mc.fw);
  217. out:
  218. if (err) {
  219. printk(KERN_ERR
  220. "mc: Failed to load firmware \"%s\"\n",
  221. fw_name);
  222. release_firmware(adev->mc.fw);
  223. adev->mc.fw = NULL;
  224. }
  225. return err;
  226. }
  227. /**
  228. * gmc_v8_0_mc_load_microcode - load MC ucode into the hw
  229. *
  230. * @adev: amdgpu_device pointer
  231. *
  232. * Load the GDDR MC ucode into the hw (CIK).
  233. * Returns 0 on success, error on failure.
  234. */
  235. static int gmc_v8_0_mc_load_microcode(struct amdgpu_device *adev)
  236. {
  237. const struct mc_firmware_header_v1_0 *hdr;
  238. const __le32 *fw_data = NULL;
  239. const __le32 *io_mc_regs = NULL;
  240. u32 running;
  241. int i, ucode_size, regs_size;
  242. if (!adev->mc.fw)
  243. return -EINVAL;
  244. /* Skip MC ucode loading on SR-IOV capable boards.
  245. * vbios does this for us in asic_init in that case.
  246. * Skip MC ucode loading on VF, because hypervisor will do that
  247. * for this adaptor.
  248. */
  249. if (amdgpu_sriov_bios(adev))
  250. return 0;
  251. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  252. amdgpu_ucode_print_mc_hdr(&hdr->header);
  253. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  254. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  255. io_mc_regs = (const __le32 *)
  256. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  257. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  258. fw_data = (const __le32 *)
  259. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  260. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  261. if (running == 0) {
  262. /* reset the engine and set to writable */
  263. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  264. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  265. /* load mc io regs */
  266. for (i = 0; i < regs_size; i++) {
  267. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  268. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  269. }
  270. /* load the MC ucode */
  271. for (i = 0; i < ucode_size; i++)
  272. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  273. /* put the engine back into the active state */
  274. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  275. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  276. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  277. /* wait for training to complete */
  278. for (i = 0; i < adev->usec_timeout; i++) {
  279. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  280. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  281. break;
  282. udelay(1);
  283. }
  284. for (i = 0; i < adev->usec_timeout; i++) {
  285. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  286. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  287. break;
  288. udelay(1);
  289. }
  290. }
  291. return 0;
  292. }
  293. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  294. struct amdgpu_mc *mc)
  295. {
  296. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  297. /* leave room for at least 1024M GTT */
  298. dev_warn(adev->dev, "limiting VRAM\n");
  299. mc->real_vram_size = 0xFFC0000000ULL;
  300. mc->mc_vram_size = 0xFFC0000000ULL;
  301. }
  302. amdgpu_vram_location(adev, &adev->mc, 0);
  303. adev->mc.gtt_base_align = 0;
  304. amdgpu_gtt_location(adev, mc);
  305. }
  306. /**
  307. * gmc_v8_0_mc_program - program the GPU memory controller
  308. *
  309. * @adev: amdgpu_device pointer
  310. *
  311. * Set the location of vram, gart, and AGP in the GPU's
  312. * physical address space (CIK).
  313. */
  314. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  315. {
  316. struct amdgpu_mode_mc_save save;
  317. u32 tmp;
  318. int i, j;
  319. /* Initialize HDP */
  320. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  321. WREG32((0xb05 + j), 0x00000000);
  322. WREG32((0xb06 + j), 0x00000000);
  323. WREG32((0xb07 + j), 0x00000000);
  324. WREG32((0xb08 + j), 0x00000000);
  325. WREG32((0xb09 + j), 0x00000000);
  326. }
  327. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  328. if (adev->mode_info.num_crtc)
  329. amdgpu_display_set_vga_render_state(adev, false);
  330. gmc_v8_0_mc_stop(adev, &save);
  331. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  332. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  333. }
  334. /* Update configuration */
  335. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  336. adev->mc.vram_start >> 12);
  337. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  338. adev->mc.vram_end >> 12);
  339. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  340. adev->vram_scratch.gpu_addr >> 12);
  341. tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
  342. tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
  343. WREG32(mmMC_VM_FB_LOCATION, tmp);
  344. /* XXX double check these! */
  345. WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
  346. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  347. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  348. WREG32(mmMC_VM_AGP_BASE, 0);
  349. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  350. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  351. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  352. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  353. }
  354. gmc_v8_0_mc_resume(adev, &save);
  355. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  356. tmp = RREG32(mmHDP_MISC_CNTL);
  357. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  358. WREG32(mmHDP_MISC_CNTL, tmp);
  359. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  360. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  361. }
  362. /**
  363. * gmc_v8_0_mc_init - initialize the memory controller driver params
  364. *
  365. * @adev: amdgpu_device pointer
  366. *
  367. * Look up the amount of vram, vram width, and decide how to place
  368. * vram and gart within the GPU's physical address space (CIK).
  369. * Returns 0 for success.
  370. */
  371. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  372. {
  373. u32 tmp;
  374. int chansize, numchan;
  375. /* Get VRAM informations */
  376. tmp = RREG32(mmMC_ARB_RAMCFG);
  377. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  378. chansize = 64;
  379. } else {
  380. chansize = 32;
  381. }
  382. tmp = RREG32(mmMC_SHARED_CHMAP);
  383. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  384. case 0:
  385. default:
  386. numchan = 1;
  387. break;
  388. case 1:
  389. numchan = 2;
  390. break;
  391. case 2:
  392. numchan = 4;
  393. break;
  394. case 3:
  395. numchan = 8;
  396. break;
  397. case 4:
  398. numchan = 3;
  399. break;
  400. case 5:
  401. numchan = 6;
  402. break;
  403. case 6:
  404. numchan = 10;
  405. break;
  406. case 7:
  407. numchan = 12;
  408. break;
  409. case 8:
  410. numchan = 16;
  411. break;
  412. }
  413. adev->mc.vram_width = numchan * chansize;
  414. /* Could aper size report 0 ? */
  415. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  416. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  417. /* size in MB on si */
  418. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  419. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  420. #ifdef CONFIG_X86_64
  421. if (adev->flags & AMD_IS_APU) {
  422. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  423. adev->mc.aper_size = adev->mc.real_vram_size;
  424. }
  425. #endif
  426. /* In case the PCI BAR is larger than the actual amount of vram */
  427. adev->mc.visible_vram_size = adev->mc.aper_size;
  428. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  429. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  430. /* unless the user had overridden it, set the gart
  431. * size equal to the 1024 or vram, whichever is larger.
  432. */
  433. if (amdgpu_gart_size == -1)
  434. adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size);
  435. else
  436. adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
  437. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  438. return 0;
  439. }
  440. /*
  441. * GART
  442. * VMID 0 is the physical GPU addresses as used by the kernel.
  443. * VMIDs 1-15 are used for userspace clients and are handled
  444. * by the amdgpu vm/hsa code.
  445. */
  446. /**
  447. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  448. *
  449. * @adev: amdgpu_device pointer
  450. * @vmid: vm instance to flush
  451. *
  452. * Flush the TLB for the requested page table (CIK).
  453. */
  454. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  455. uint32_t vmid)
  456. {
  457. /* flush hdp cache */
  458. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  459. /* bits 0-15 are the VM contexts0-15 */
  460. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  461. }
  462. /**
  463. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  464. *
  465. * @adev: amdgpu_device pointer
  466. * @cpu_pt_addr: cpu address of the page table
  467. * @gpu_page_idx: entry in the page table to update
  468. * @addr: dst addr to write into pte/pde
  469. * @flags: access flags
  470. *
  471. * Update the page tables using the CPU.
  472. */
  473. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  474. void *cpu_pt_addr,
  475. uint32_t gpu_page_idx,
  476. uint64_t addr,
  477. uint32_t flags)
  478. {
  479. void __iomem *ptr = (void *)cpu_pt_addr;
  480. uint64_t value;
  481. /*
  482. * PTE format on VI:
  483. * 63:40 reserved
  484. * 39:12 4k physical page base address
  485. * 11:7 fragment
  486. * 6 write
  487. * 5 read
  488. * 4 exe
  489. * 3 reserved
  490. * 2 snooped
  491. * 1 system
  492. * 0 valid
  493. *
  494. * PDE format on VI:
  495. * 63:59 block fragment size
  496. * 58:40 reserved
  497. * 39:1 physical base address of PTE
  498. * bits 5:1 must be 0.
  499. * 0 valid
  500. */
  501. value = addr & 0x000000FFFFFFF000ULL;
  502. value |= flags;
  503. writeq(value, ptr + (gpu_page_idx * 8));
  504. return 0;
  505. }
  506. /**
  507. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  508. *
  509. * @adev: amdgpu_device pointer
  510. * @value: true redirects VM faults to the default page
  511. */
  512. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  513. bool value)
  514. {
  515. u32 tmp;
  516. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  517. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  518. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  519. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  520. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  521. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  522. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  523. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  524. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  525. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  526. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  527. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  528. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  529. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  530. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  531. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  532. }
  533. /**
  534. * gmc_v8_0_set_prt - set PRT VM fault
  535. *
  536. * @adev: amdgpu_device pointer
  537. * @enable: enable/disable VM fault handling for PRT
  538. */
  539. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  540. {
  541. u32 tmp;
  542. if (enable && !adev->mc.prt_warning) {
  543. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  544. adev->mc.prt_warning = true;
  545. }
  546. tmp = RREG32(mmVM_PRT_CNTL);
  547. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  548. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  549. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  550. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  551. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  552. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  553. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  554. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  555. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  556. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  557. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  558. L1_TLB_STORE_INVALID_ENTRIES, enable);
  559. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  560. MASK_PDE0_FAULT, enable);
  561. WREG32(mmVM_PRT_CNTL, tmp);
  562. if (enable) {
  563. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  564. uint32_t high = adev->vm_manager.max_pfn;
  565. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  566. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  567. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  568. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  569. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  570. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  571. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  572. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  573. } else {
  574. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  575. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  576. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  577. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  578. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  579. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  580. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  581. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  582. }
  583. }
  584. /**
  585. * gmc_v8_0_gart_enable - gart enable
  586. *
  587. * @adev: amdgpu_device pointer
  588. *
  589. * This sets up the TLBs, programs the page tables for VMID0,
  590. * sets up the hw for VMIDs 1-15 which are allocated on
  591. * demand, and sets up the global locations for the LDS, GDS,
  592. * and GPUVM for FSA64 clients (CIK).
  593. * Returns 0 for success, errors for failure.
  594. */
  595. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  596. {
  597. int r, i;
  598. u32 tmp;
  599. if (adev->gart.robj == NULL) {
  600. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  601. return -EINVAL;
  602. }
  603. r = amdgpu_gart_table_vram_pin(adev);
  604. if (r)
  605. return r;
  606. /* Setup TLB control */
  607. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  608. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  609. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  610. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  611. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  612. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  613. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  614. /* Setup L2 cache */
  615. tmp = RREG32(mmVM_L2_CNTL);
  616. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  617. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  618. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  619. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  620. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  621. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  622. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  623. WREG32(mmVM_L2_CNTL, tmp);
  624. tmp = RREG32(mmVM_L2_CNTL2);
  625. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  626. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  627. WREG32(mmVM_L2_CNTL2, tmp);
  628. tmp = RREG32(mmVM_L2_CNTL3);
  629. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  630. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  631. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  632. WREG32(mmVM_L2_CNTL3, tmp);
  633. /* XXX: set to enable PTE/PDE in system memory */
  634. tmp = RREG32(mmVM_L2_CNTL4);
  635. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  636. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  637. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  638. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  639. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  640. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  641. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  642. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  643. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  644. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  645. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  646. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  647. WREG32(mmVM_L2_CNTL4, tmp);
  648. /* setup context0 */
  649. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
  650. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
  651. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  652. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  653. (u32)(adev->dummy_page.addr >> 12));
  654. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  655. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  656. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  657. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  658. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  659. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  660. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  661. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  662. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  663. /* empty context1-15 */
  664. /* FIXME start with 4G, once using 2 level pt switch to full
  665. * vm size space
  666. */
  667. /* set vm size, must be a multiple of 4 */
  668. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  669. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  670. for (i = 1; i < 16; i++) {
  671. if (i < 8)
  672. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  673. adev->gart.table_addr >> 12);
  674. else
  675. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  676. adev->gart.table_addr >> 12);
  677. }
  678. /* enable context1-15 */
  679. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  680. (u32)(adev->dummy_page.addr >> 12));
  681. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  682. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  683. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  684. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  685. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  686. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  687. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  688. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  689. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  690. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  691. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  692. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  693. amdgpu_vm_block_size - 9);
  694. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  695. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  696. gmc_v8_0_set_fault_enable_default(adev, false);
  697. else
  698. gmc_v8_0_set_fault_enable_default(adev, true);
  699. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  700. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  701. (unsigned)(adev->mc.gtt_size >> 20),
  702. (unsigned long long)adev->gart.table_addr);
  703. adev->gart.ready = true;
  704. return 0;
  705. }
  706. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  707. {
  708. int r;
  709. if (adev->gart.robj) {
  710. WARN(1, "R600 PCIE GART already initialized\n");
  711. return 0;
  712. }
  713. /* Initialize common gart structure */
  714. r = amdgpu_gart_init(adev);
  715. if (r)
  716. return r;
  717. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  718. return amdgpu_gart_table_vram_alloc(adev);
  719. }
  720. /**
  721. * gmc_v8_0_gart_disable - gart disable
  722. *
  723. * @adev: amdgpu_device pointer
  724. *
  725. * This disables all VM page table (CIK).
  726. */
  727. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  728. {
  729. u32 tmp;
  730. /* Disable all tables */
  731. WREG32(mmVM_CONTEXT0_CNTL, 0);
  732. WREG32(mmVM_CONTEXT1_CNTL, 0);
  733. /* Setup TLB control */
  734. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  735. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  736. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  737. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  738. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  739. /* Setup L2 cache */
  740. tmp = RREG32(mmVM_L2_CNTL);
  741. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  742. WREG32(mmVM_L2_CNTL, tmp);
  743. WREG32(mmVM_L2_CNTL2, 0);
  744. amdgpu_gart_table_vram_unpin(adev);
  745. }
  746. /**
  747. * gmc_v8_0_gart_fini - vm fini callback
  748. *
  749. * @adev: amdgpu_device pointer
  750. *
  751. * Tears down the driver GART/VM setup (CIK).
  752. */
  753. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  754. {
  755. amdgpu_gart_table_vram_free(adev);
  756. amdgpu_gart_fini(adev);
  757. }
  758. /*
  759. * vm
  760. * VMID 0 is the physical GPU addresses as used by the kernel.
  761. * VMIDs 1-15 are used for userspace clients and are handled
  762. * by the amdgpu vm/hsa code.
  763. */
  764. /**
  765. * gmc_v8_0_vm_init - cik vm init callback
  766. *
  767. * @adev: amdgpu_device pointer
  768. *
  769. * Inits cik specific vm parameters (number of VMs, base of vram for
  770. * VMIDs 1-15) (CIK).
  771. * Returns 0 for success.
  772. */
  773. static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
  774. {
  775. /*
  776. * number of VMs
  777. * VMID 0 is reserved for System
  778. * amdgpu graphics/compute will use VMIDs 1-7
  779. * amdkfd will use VMIDs 8-15
  780. */
  781. adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS;
  782. amdgpu_vm_manager_init(adev);
  783. /* base offset of vram pages */
  784. if (adev->flags & AMD_IS_APU) {
  785. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  786. tmp <<= 22;
  787. adev->vm_manager.vram_base_offset = tmp;
  788. } else
  789. adev->vm_manager.vram_base_offset = 0;
  790. return 0;
  791. }
  792. /**
  793. * gmc_v8_0_vm_fini - cik vm fini callback
  794. *
  795. * @adev: amdgpu_device pointer
  796. *
  797. * Tear down any asic specific VM setup (CIK).
  798. */
  799. static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
  800. {
  801. }
  802. /**
  803. * gmc_v8_0_vm_decode_fault - print human readable fault info
  804. *
  805. * @adev: amdgpu_device pointer
  806. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  807. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  808. *
  809. * Print human readable fault information (CIK).
  810. */
  811. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  812. u32 status, u32 addr, u32 mc_client)
  813. {
  814. u32 mc_id;
  815. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  816. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  817. PROTECTIONS);
  818. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  819. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  820. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  821. MEMORY_CLIENT_ID);
  822. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  823. protections, vmid, addr,
  824. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  825. MEMORY_CLIENT_RW) ?
  826. "write" : "read", block, mc_client, mc_id);
  827. }
  828. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  829. {
  830. switch (mc_seq_vram_type) {
  831. case MC_SEQ_MISC0__MT__GDDR1:
  832. return AMDGPU_VRAM_TYPE_GDDR1;
  833. case MC_SEQ_MISC0__MT__DDR2:
  834. return AMDGPU_VRAM_TYPE_DDR2;
  835. case MC_SEQ_MISC0__MT__GDDR3:
  836. return AMDGPU_VRAM_TYPE_GDDR3;
  837. case MC_SEQ_MISC0__MT__GDDR4:
  838. return AMDGPU_VRAM_TYPE_GDDR4;
  839. case MC_SEQ_MISC0__MT__GDDR5:
  840. return AMDGPU_VRAM_TYPE_GDDR5;
  841. case MC_SEQ_MISC0__MT__HBM:
  842. return AMDGPU_VRAM_TYPE_HBM;
  843. case MC_SEQ_MISC0__MT__DDR3:
  844. return AMDGPU_VRAM_TYPE_DDR3;
  845. default:
  846. return AMDGPU_VRAM_TYPE_UNKNOWN;
  847. }
  848. }
  849. static int gmc_v8_0_early_init(void *handle)
  850. {
  851. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  852. gmc_v8_0_set_gart_funcs(adev);
  853. gmc_v8_0_set_irq_funcs(adev);
  854. return 0;
  855. }
  856. static int gmc_v8_0_late_init(void *handle)
  857. {
  858. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  859. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  860. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  861. else
  862. return 0;
  863. }
  864. #define mmMC_SEQ_MISC0_FIJI 0xA71
  865. static int gmc_v8_0_sw_init(void *handle)
  866. {
  867. int r;
  868. int dma_bits;
  869. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  870. if (adev->flags & AMD_IS_APU) {
  871. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  872. } else {
  873. u32 tmp;
  874. if (adev->asic_type == CHIP_FIJI)
  875. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  876. else
  877. tmp = RREG32(mmMC_SEQ_MISC0);
  878. tmp &= MC_SEQ_MISC0__MT__MASK;
  879. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  880. }
  881. r = amdgpu_irq_add_id(adev, 146, &adev->mc.vm_fault);
  882. if (r)
  883. return r;
  884. r = amdgpu_irq_add_id(adev, 147, &adev->mc.vm_fault);
  885. if (r)
  886. return r;
  887. /* Adjust VM size here.
  888. * Currently set to 4GB ((1 << 20) 4k pages).
  889. * Max GPUVM size for cayman and SI is 40 bits.
  890. */
  891. adev->vm_manager.max_pfn = amdgpu_vm_size << 18;
  892. /* Set the internal MC address mask
  893. * This is the max address of the GPU's
  894. * internal address space.
  895. */
  896. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  897. /* set DMA mask + need_dma32 flags.
  898. * PCIE - can handle 40-bits.
  899. * IGP - can handle 40-bits
  900. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  901. */
  902. adev->need_dma32 = false;
  903. dma_bits = adev->need_dma32 ? 32 : 40;
  904. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  905. if (r) {
  906. adev->need_dma32 = true;
  907. dma_bits = 32;
  908. printk(KERN_WARNING "amdgpu: No suitable DMA available.\n");
  909. }
  910. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  911. if (r) {
  912. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  913. printk(KERN_WARNING "amdgpu: No coherent DMA available.\n");
  914. }
  915. r = gmc_v8_0_init_microcode(adev);
  916. if (r) {
  917. DRM_ERROR("Failed to load mc firmware!\n");
  918. return r;
  919. }
  920. r = gmc_v8_0_mc_init(adev);
  921. if (r)
  922. return r;
  923. /* Memory manager */
  924. r = amdgpu_bo_init(adev);
  925. if (r)
  926. return r;
  927. r = gmc_v8_0_gart_init(adev);
  928. if (r)
  929. return r;
  930. if (!adev->vm_manager.enabled) {
  931. r = gmc_v8_0_vm_init(adev);
  932. if (r) {
  933. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  934. return r;
  935. }
  936. adev->vm_manager.enabled = true;
  937. }
  938. return r;
  939. }
  940. static int gmc_v8_0_sw_fini(void *handle)
  941. {
  942. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  943. if (adev->vm_manager.enabled) {
  944. amdgpu_vm_manager_fini(adev);
  945. gmc_v8_0_vm_fini(adev);
  946. adev->vm_manager.enabled = false;
  947. }
  948. gmc_v8_0_gart_fini(adev);
  949. amdgpu_gem_force_release(adev);
  950. amdgpu_bo_fini(adev);
  951. return 0;
  952. }
  953. static int gmc_v8_0_hw_init(void *handle)
  954. {
  955. int r;
  956. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  957. gmc_v8_0_init_golden_registers(adev);
  958. gmc_v8_0_mc_program(adev);
  959. if (adev->asic_type == CHIP_TONGA) {
  960. r = gmc_v8_0_mc_load_microcode(adev);
  961. if (r) {
  962. DRM_ERROR("Failed to load MC firmware!\n");
  963. return r;
  964. }
  965. }
  966. r = gmc_v8_0_gart_enable(adev);
  967. if (r)
  968. return r;
  969. return r;
  970. }
  971. static int gmc_v8_0_hw_fini(void *handle)
  972. {
  973. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  974. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  975. gmc_v8_0_gart_disable(adev);
  976. return 0;
  977. }
  978. static int gmc_v8_0_suspend(void *handle)
  979. {
  980. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  981. if (adev->vm_manager.enabled) {
  982. gmc_v8_0_vm_fini(adev);
  983. adev->vm_manager.enabled = false;
  984. }
  985. gmc_v8_0_hw_fini(adev);
  986. return 0;
  987. }
  988. static int gmc_v8_0_resume(void *handle)
  989. {
  990. int r;
  991. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  992. r = gmc_v8_0_hw_init(adev);
  993. if (r)
  994. return r;
  995. if (!adev->vm_manager.enabled) {
  996. r = gmc_v8_0_vm_init(adev);
  997. if (r) {
  998. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  999. return r;
  1000. }
  1001. adev->vm_manager.enabled = true;
  1002. }
  1003. return r;
  1004. }
  1005. static bool gmc_v8_0_is_idle(void *handle)
  1006. {
  1007. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1008. u32 tmp = RREG32(mmSRBM_STATUS);
  1009. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1010. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1011. return false;
  1012. return true;
  1013. }
  1014. static int gmc_v8_0_wait_for_idle(void *handle)
  1015. {
  1016. unsigned i;
  1017. u32 tmp;
  1018. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1019. for (i = 0; i < adev->usec_timeout; i++) {
  1020. /* read MC_STATUS */
  1021. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1022. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1023. SRBM_STATUS__MCC_BUSY_MASK |
  1024. SRBM_STATUS__MCD_BUSY_MASK |
  1025. SRBM_STATUS__VMC_BUSY_MASK |
  1026. SRBM_STATUS__VMC1_BUSY_MASK);
  1027. if (!tmp)
  1028. return 0;
  1029. udelay(1);
  1030. }
  1031. return -ETIMEDOUT;
  1032. }
  1033. static bool gmc_v8_0_check_soft_reset(void *handle)
  1034. {
  1035. u32 srbm_soft_reset = 0;
  1036. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1037. u32 tmp = RREG32(mmSRBM_STATUS);
  1038. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1039. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1040. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1041. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1042. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1043. if (!(adev->flags & AMD_IS_APU))
  1044. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1045. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1046. }
  1047. if (srbm_soft_reset) {
  1048. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1049. return true;
  1050. } else {
  1051. adev->mc.srbm_soft_reset = 0;
  1052. return false;
  1053. }
  1054. }
  1055. static int gmc_v8_0_pre_soft_reset(void *handle)
  1056. {
  1057. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1058. if (!adev->mc.srbm_soft_reset)
  1059. return 0;
  1060. gmc_v8_0_mc_stop(adev, &adev->mc.save);
  1061. if (gmc_v8_0_wait_for_idle(adev)) {
  1062. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1063. }
  1064. return 0;
  1065. }
  1066. static int gmc_v8_0_soft_reset(void *handle)
  1067. {
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. u32 srbm_soft_reset;
  1070. if (!adev->mc.srbm_soft_reset)
  1071. return 0;
  1072. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1073. if (srbm_soft_reset) {
  1074. u32 tmp;
  1075. tmp = RREG32(mmSRBM_SOFT_RESET);
  1076. tmp |= srbm_soft_reset;
  1077. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1078. WREG32(mmSRBM_SOFT_RESET, tmp);
  1079. tmp = RREG32(mmSRBM_SOFT_RESET);
  1080. udelay(50);
  1081. tmp &= ~srbm_soft_reset;
  1082. WREG32(mmSRBM_SOFT_RESET, tmp);
  1083. tmp = RREG32(mmSRBM_SOFT_RESET);
  1084. /* Wait a little for things to settle down */
  1085. udelay(50);
  1086. }
  1087. return 0;
  1088. }
  1089. static int gmc_v8_0_post_soft_reset(void *handle)
  1090. {
  1091. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1092. if (!adev->mc.srbm_soft_reset)
  1093. return 0;
  1094. gmc_v8_0_mc_resume(adev, &adev->mc.save);
  1095. return 0;
  1096. }
  1097. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1098. struct amdgpu_irq_src *src,
  1099. unsigned type,
  1100. enum amdgpu_interrupt_state state)
  1101. {
  1102. u32 tmp;
  1103. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1104. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1105. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1106. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1107. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1108. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1109. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1110. switch (state) {
  1111. case AMDGPU_IRQ_STATE_DISABLE:
  1112. /* system context */
  1113. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1114. tmp &= ~bits;
  1115. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1116. /* VMs */
  1117. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1118. tmp &= ~bits;
  1119. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1120. break;
  1121. case AMDGPU_IRQ_STATE_ENABLE:
  1122. /* system context */
  1123. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1124. tmp |= bits;
  1125. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1126. /* VMs */
  1127. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1128. tmp |= bits;
  1129. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1130. break;
  1131. default:
  1132. break;
  1133. }
  1134. return 0;
  1135. }
  1136. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1137. struct amdgpu_irq_src *source,
  1138. struct amdgpu_iv_entry *entry)
  1139. {
  1140. u32 addr, status, mc_client;
  1141. if (amdgpu_sriov_vf(adev)) {
  1142. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1143. entry->src_id, entry->src_data);
  1144. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1145. return 0;
  1146. }
  1147. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1148. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1149. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1150. /* reset addr and status */
  1151. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1152. if (!addr && !status)
  1153. return 0;
  1154. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1155. gmc_v8_0_set_fault_enable_default(adev, false);
  1156. if (printk_ratelimit()) {
  1157. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1158. entry->src_id, entry->src_data);
  1159. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1160. addr);
  1161. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1162. status);
  1163. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1164. }
  1165. return 0;
  1166. }
  1167. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1168. bool enable)
  1169. {
  1170. uint32_t data;
  1171. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1172. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1173. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1174. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1175. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1176. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1177. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1178. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1179. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1180. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1181. data = RREG32(mmMC_XPB_CLK_GAT);
  1182. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1183. WREG32(mmMC_XPB_CLK_GAT, data);
  1184. data = RREG32(mmATC_MISC_CG);
  1185. data |= ATC_MISC_CG__ENABLE_MASK;
  1186. WREG32(mmATC_MISC_CG, data);
  1187. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1188. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1189. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1190. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1191. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1192. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1193. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1194. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1195. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1196. data = RREG32(mmVM_L2_CG);
  1197. data |= VM_L2_CG__ENABLE_MASK;
  1198. WREG32(mmVM_L2_CG, data);
  1199. } else {
  1200. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1201. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1202. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1203. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1204. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1205. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1206. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1207. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1208. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1209. data = RREG32(mmMC_XPB_CLK_GAT);
  1210. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1211. WREG32(mmMC_XPB_CLK_GAT, data);
  1212. data = RREG32(mmATC_MISC_CG);
  1213. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1214. WREG32(mmATC_MISC_CG, data);
  1215. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1216. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1217. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1218. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1219. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1220. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1221. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1222. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1223. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1224. data = RREG32(mmVM_L2_CG);
  1225. data &= ~VM_L2_CG__ENABLE_MASK;
  1226. WREG32(mmVM_L2_CG, data);
  1227. }
  1228. }
  1229. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1230. bool enable)
  1231. {
  1232. uint32_t data;
  1233. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1234. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1235. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1236. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1237. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1238. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1239. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1240. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1241. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1242. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1243. data = RREG32(mmMC_XPB_CLK_GAT);
  1244. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1245. WREG32(mmMC_XPB_CLK_GAT, data);
  1246. data = RREG32(mmATC_MISC_CG);
  1247. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1248. WREG32(mmATC_MISC_CG, data);
  1249. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1250. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1251. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1252. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1253. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1254. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1255. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1256. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1257. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1258. data = RREG32(mmVM_L2_CG);
  1259. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1260. WREG32(mmVM_L2_CG, data);
  1261. } else {
  1262. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1263. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1264. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1265. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1266. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1267. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1268. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1269. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1270. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1271. data = RREG32(mmMC_XPB_CLK_GAT);
  1272. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1273. WREG32(mmMC_XPB_CLK_GAT, data);
  1274. data = RREG32(mmATC_MISC_CG);
  1275. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1276. WREG32(mmATC_MISC_CG, data);
  1277. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1278. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1279. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1280. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1281. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1282. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1283. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1284. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1285. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1286. data = RREG32(mmVM_L2_CG);
  1287. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1288. WREG32(mmVM_L2_CG, data);
  1289. }
  1290. }
  1291. static int gmc_v8_0_set_clockgating_state(void *handle,
  1292. enum amd_clockgating_state state)
  1293. {
  1294. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1295. if (amdgpu_sriov_vf(adev))
  1296. return 0;
  1297. switch (adev->asic_type) {
  1298. case CHIP_FIJI:
  1299. fiji_update_mc_medium_grain_clock_gating(adev,
  1300. state == AMD_CG_STATE_GATE ? true : false);
  1301. fiji_update_mc_light_sleep(adev,
  1302. state == AMD_CG_STATE_GATE ? true : false);
  1303. break;
  1304. default:
  1305. break;
  1306. }
  1307. return 0;
  1308. }
  1309. static int gmc_v8_0_set_powergating_state(void *handle,
  1310. enum amd_powergating_state state)
  1311. {
  1312. return 0;
  1313. }
  1314. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1315. {
  1316. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1317. int data;
  1318. if (amdgpu_sriov_vf(adev))
  1319. *flags = 0;
  1320. /* AMD_CG_SUPPORT_MC_MGCG */
  1321. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1322. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1323. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1324. /* AMD_CG_SUPPORT_MC_LS */
  1325. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1326. *flags |= AMD_CG_SUPPORT_MC_LS;
  1327. }
  1328. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1329. .name = "gmc_v8_0",
  1330. .early_init = gmc_v8_0_early_init,
  1331. .late_init = gmc_v8_0_late_init,
  1332. .sw_init = gmc_v8_0_sw_init,
  1333. .sw_fini = gmc_v8_0_sw_fini,
  1334. .hw_init = gmc_v8_0_hw_init,
  1335. .hw_fini = gmc_v8_0_hw_fini,
  1336. .suspend = gmc_v8_0_suspend,
  1337. .resume = gmc_v8_0_resume,
  1338. .is_idle = gmc_v8_0_is_idle,
  1339. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1340. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1341. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1342. .soft_reset = gmc_v8_0_soft_reset,
  1343. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1344. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1345. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1346. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1347. };
  1348. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1349. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1350. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1351. .set_prt = gmc_v8_0_set_prt,
  1352. };
  1353. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1354. .set = gmc_v8_0_vm_fault_interrupt_state,
  1355. .process = gmc_v8_0_process_interrupt,
  1356. };
  1357. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1358. {
  1359. if (adev->gart.gart_funcs == NULL)
  1360. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1361. }
  1362. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1363. {
  1364. adev->mc.vm_fault.num_types = 1;
  1365. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1366. }
  1367. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1368. {
  1369. .type = AMD_IP_BLOCK_TYPE_GMC,
  1370. .major = 8,
  1371. .minor = 0,
  1372. .rev = 0,
  1373. .funcs = &gmc_v8_0_ip_funcs,
  1374. };
  1375. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1376. {
  1377. .type = AMD_IP_BLOCK_TYPE_GMC,
  1378. .major = 8,
  1379. .minor = 1,
  1380. .rev = 0,
  1381. .funcs = &gmc_v8_0_ip_funcs,
  1382. };
  1383. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1384. {
  1385. .type = AMD_IP_BLOCK_TYPE_GMC,
  1386. .major = 8,
  1387. .minor = 5,
  1388. .rev = 0,
  1389. .funcs = &gmc_v8_0_ip_funcs,
  1390. };