xhci-ring.c 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. /*
  23. * Ring initialization rules:
  24. * 1. Each segment is initialized to zero, except for link TRBs.
  25. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  26. * Consumer Cycle State (CCS), depending on ring function.
  27. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  28. *
  29. * Ring behavior rules:
  30. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  31. * least one free TRB in the ring. This is useful if you want to turn that
  32. * into a link TRB and expand the ring.
  33. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  34. * link TRB, then load the pointer with the address in the link TRB. If the
  35. * link TRB had its toggle bit set, you may need to update the ring cycle
  36. * state (see cycle bit rules). You may have to do this multiple times
  37. * until you reach a non-link TRB.
  38. * 3. A ring is full if enqueue++ (for the definition of increment above)
  39. * equals the dequeue pointer.
  40. *
  41. * Cycle bit rules:
  42. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  43. * in a link TRB, it must toggle the ring cycle state.
  44. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  45. * in a link TRB, it must toggle the ring cycle state.
  46. *
  47. * Producer rules:
  48. * 1. Check if ring is full before you enqueue.
  49. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  50. * Update enqueue pointer between each write (which may update the ring
  51. * cycle state).
  52. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  53. * and endpoint rings. If HC is the producer for the event ring,
  54. * and it generates an interrupt according to interrupt modulation rules.
  55. *
  56. * Consumer rules:
  57. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  58. * the TRB is owned by the consumer.
  59. * 2. Update dequeue pointer (which may update the ring cycle state) and
  60. * continue processing TRBs until you reach a TRB which is not owned by you.
  61. * 3. Notify the producer. SW is the consumer for the event ring, and it
  62. * updates event ring dequeue pointer. HC is the consumer for the command and
  63. * endpoint rings; it generates events on the event ring for these.
  64. */
  65. #include <linux/scatterlist.h>
  66. #include <linux/slab.h>
  67. #include <linux/dma-mapping.h>
  68. #include "xhci.h"
  69. #include "xhci-trace.h"
  70. #include "xhci-mtk.h"
  71. /*
  72. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  73. * address of the TRB.
  74. */
  75. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  76. union xhci_trb *trb)
  77. {
  78. unsigned long segment_offset;
  79. if (!seg || !trb || trb < seg->trbs)
  80. return 0;
  81. /* offset in TRBs */
  82. segment_offset = trb - seg->trbs;
  83. if (segment_offset >= TRBS_PER_SEGMENT)
  84. return 0;
  85. return seg->dma + (segment_offset * sizeof(*trb));
  86. }
  87. static bool trb_is_noop(union xhci_trb *trb)
  88. {
  89. return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
  90. }
  91. static bool trb_is_link(union xhci_trb *trb)
  92. {
  93. return TRB_TYPE_LINK_LE32(trb->link.control);
  94. }
  95. static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
  96. {
  97. return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
  98. }
  99. static bool last_trb_on_ring(struct xhci_ring *ring,
  100. struct xhci_segment *seg, union xhci_trb *trb)
  101. {
  102. return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
  103. }
  104. static bool link_trb_toggles_cycle(union xhci_trb *trb)
  105. {
  106. return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
  107. }
  108. static bool last_td_in_urb(struct xhci_td *td)
  109. {
  110. struct urb_priv *urb_priv = td->urb->hcpriv;
  111. return urb_priv->td_cnt == urb_priv->length;
  112. }
  113. static void inc_td_cnt(struct urb *urb)
  114. {
  115. struct urb_priv *urb_priv = urb->hcpriv;
  116. urb_priv->td_cnt++;
  117. }
  118. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  119. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  120. * effect the ring dequeue or enqueue pointers.
  121. */
  122. static void next_trb(struct xhci_hcd *xhci,
  123. struct xhci_ring *ring,
  124. struct xhci_segment **seg,
  125. union xhci_trb **trb)
  126. {
  127. if (trb_is_link(*trb)) {
  128. *seg = (*seg)->next;
  129. *trb = ((*seg)->trbs);
  130. } else {
  131. (*trb)++;
  132. }
  133. }
  134. /*
  135. * See Cycle bit rules. SW is the consumer for the event ring only.
  136. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  137. */
  138. static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
  139. {
  140. ring->deq_updates++;
  141. /* event ring doesn't have link trbs, check for last trb */
  142. if (ring->type == TYPE_EVENT) {
  143. if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
  144. ring->dequeue++;
  145. return;
  146. }
  147. if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
  148. ring->cycle_state ^= 1;
  149. ring->deq_seg = ring->deq_seg->next;
  150. ring->dequeue = ring->deq_seg->trbs;
  151. return;
  152. }
  153. /* All other rings have link trbs */
  154. if (!trb_is_link(ring->dequeue)) {
  155. ring->dequeue++;
  156. ring->num_trbs_free++;
  157. }
  158. while (trb_is_link(ring->dequeue)) {
  159. ring->deq_seg = ring->deq_seg->next;
  160. ring->dequeue = ring->deq_seg->trbs;
  161. }
  162. return;
  163. }
  164. /*
  165. * See Cycle bit rules. SW is the consumer for the event ring only.
  166. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  167. *
  168. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  169. * chain bit is set), then set the chain bit in all the following link TRBs.
  170. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  171. * have their chain bit cleared (so that each Link TRB is a separate TD).
  172. *
  173. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  174. * set, but other sections talk about dealing with the chain bit set. This was
  175. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  176. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  177. *
  178. * @more_trbs_coming: Will you enqueue more TRBs before calling
  179. * prepare_transfer()?
  180. */
  181. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
  182. bool more_trbs_coming)
  183. {
  184. u32 chain;
  185. union xhci_trb *next;
  186. chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
  187. /* If this is not event ring, there is one less usable TRB */
  188. if (!trb_is_link(ring->enqueue))
  189. ring->num_trbs_free--;
  190. next = ++(ring->enqueue);
  191. ring->enq_updates++;
  192. /* Update the dequeue pointer further if that was a link TRB */
  193. while (trb_is_link(next)) {
  194. /*
  195. * If the caller doesn't plan on enqueueing more TDs before
  196. * ringing the doorbell, then we don't want to give the link TRB
  197. * to the hardware just yet. We'll give the link TRB back in
  198. * prepare_ring() just before we enqueue the TD at the top of
  199. * the ring.
  200. */
  201. if (!chain && !more_trbs_coming)
  202. break;
  203. /* If we're not dealing with 0.95 hardware or isoc rings on
  204. * AMD 0.96 host, carry over the chain bit of the previous TRB
  205. * (which may mean the chain bit is cleared).
  206. */
  207. if (!(ring->type == TYPE_ISOC &&
  208. (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
  209. !xhci_link_trb_quirk(xhci)) {
  210. next->link.control &= cpu_to_le32(~TRB_CHAIN);
  211. next->link.control |= cpu_to_le32(chain);
  212. }
  213. /* Give this link TRB to the hardware */
  214. wmb();
  215. next->link.control ^= cpu_to_le32(TRB_CYCLE);
  216. /* Toggle the cycle bit after the last ring segment. */
  217. if (link_trb_toggles_cycle(next))
  218. ring->cycle_state ^= 1;
  219. ring->enq_seg = ring->enq_seg->next;
  220. ring->enqueue = ring->enq_seg->trbs;
  221. next = ring->enqueue;
  222. }
  223. }
  224. /*
  225. * Check to see if there's room to enqueue num_trbs on the ring and make sure
  226. * enqueue pointer will not advance into dequeue segment. See rules above.
  227. */
  228. static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  229. unsigned int num_trbs)
  230. {
  231. int num_trbs_in_deq_seg;
  232. if (ring->num_trbs_free < num_trbs)
  233. return 0;
  234. if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
  235. num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
  236. if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
  237. return 0;
  238. }
  239. return 1;
  240. }
  241. /* Ring the host controller doorbell after placing a command on the ring */
  242. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  243. {
  244. if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
  245. return;
  246. xhci_dbg(xhci, "// Ding dong!\n");
  247. writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
  248. /* Flush PCI posted writes */
  249. readl(&xhci->dba->doorbell[0]);
  250. }
  251. static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
  252. {
  253. return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
  254. }
  255. static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
  256. {
  257. return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
  258. cmd_list);
  259. }
  260. /*
  261. * Turn all commands on command ring with status set to "aborted" to no-op trbs.
  262. * If there are other commands waiting then restart the ring and kick the timer.
  263. * This must be called with command ring stopped and xhci->lock held.
  264. */
  265. static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
  266. struct xhci_command *cur_cmd)
  267. {
  268. struct xhci_command *i_cmd;
  269. u32 cycle_state;
  270. /* Turn all aborted commands in list to no-ops, then restart */
  271. list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
  272. if (i_cmd->status != COMP_COMMAND_ABORTED)
  273. continue;
  274. i_cmd->status = COMP_STOPPED;
  275. xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
  276. i_cmd->command_trb);
  277. /* get cycle state from the original cmd trb */
  278. cycle_state = le32_to_cpu(
  279. i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
  280. /* modify the command trb to no-op command */
  281. i_cmd->command_trb->generic.field[0] = 0;
  282. i_cmd->command_trb->generic.field[1] = 0;
  283. i_cmd->command_trb->generic.field[2] = 0;
  284. i_cmd->command_trb->generic.field[3] = cpu_to_le32(
  285. TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
  286. /*
  287. * caller waiting for completion is called when command
  288. * completion event is received for these no-op commands
  289. */
  290. }
  291. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  292. /* ring command ring doorbell to restart the command ring */
  293. if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
  294. !(xhci->xhc_state & XHCI_STATE_DYING)) {
  295. xhci->current_cmd = cur_cmd;
  296. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  297. xhci_ring_cmd_db(xhci);
  298. }
  299. }
  300. /* Must be called with xhci->lock held, releases and aquires lock back */
  301. static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
  302. {
  303. u64 temp_64;
  304. int ret;
  305. xhci_dbg(xhci, "Abort command ring\n");
  306. reinit_completion(&xhci->cmd_ring_stop_completion);
  307. temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  308. xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
  309. &xhci->op_regs->cmd_ring);
  310. /* Section 4.6.1.2 of xHCI 1.0 spec says software should
  311. * time the completion od all xHCI commands, including
  312. * the Command Abort operation. If software doesn't see
  313. * CRR negated in a timely manner (e.g. longer than 5
  314. * seconds), then it should assume that the there are
  315. * larger problems with the xHC and assert HCRST.
  316. */
  317. ret = xhci_handshake(&xhci->op_regs->cmd_ring,
  318. CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
  319. if (ret < 0) {
  320. xhci_err(xhci,
  321. "Stop command ring failed, maybe the host is dead\n");
  322. xhci->xhc_state |= XHCI_STATE_DYING;
  323. xhci_halt(xhci);
  324. return -ESHUTDOWN;
  325. }
  326. /*
  327. * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
  328. * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
  329. * but the completion event in never sent. Wait 2 secs (arbitrary
  330. * number) to handle those cases after negation of CMD_RING_RUNNING.
  331. */
  332. spin_unlock_irqrestore(&xhci->lock, flags);
  333. ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
  334. msecs_to_jiffies(2000));
  335. spin_lock_irqsave(&xhci->lock, flags);
  336. if (!ret) {
  337. xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
  338. xhci_cleanup_command_queue(xhci);
  339. } else {
  340. xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
  341. }
  342. return 0;
  343. }
  344. void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
  345. unsigned int slot_id,
  346. unsigned int ep_index,
  347. unsigned int stream_id)
  348. {
  349. __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  350. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  351. unsigned int ep_state = ep->ep_state;
  352. /* Don't ring the doorbell for this endpoint if there are pending
  353. * cancellations because we don't want to interrupt processing.
  354. * We don't want to restart any stream rings if there's a set dequeue
  355. * pointer command pending because the device can choose to start any
  356. * stream once the endpoint is on the HW schedule.
  357. */
  358. if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
  359. (ep_state & EP_HALTED))
  360. return;
  361. writel(DB_VALUE(ep_index, stream_id), db_addr);
  362. /* The CPU has better things to do at this point than wait for a
  363. * write-posting flush. It'll get there soon enough.
  364. */
  365. }
  366. /* Ring the doorbell for any rings with pending URBs */
  367. static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
  368. unsigned int slot_id,
  369. unsigned int ep_index)
  370. {
  371. unsigned int stream_id;
  372. struct xhci_virt_ep *ep;
  373. ep = &xhci->devs[slot_id]->eps[ep_index];
  374. /* A ring has pending URBs if its TD list is not empty */
  375. if (!(ep->ep_state & EP_HAS_STREAMS)) {
  376. if (ep->ring && !(list_empty(&ep->ring->td_list)))
  377. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
  378. return;
  379. }
  380. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  381. stream_id++) {
  382. struct xhci_stream_info *stream_info = ep->stream_info;
  383. if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
  384. xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
  385. stream_id);
  386. }
  387. }
  388. /* Get the right ring for the given slot_id, ep_index and stream_id.
  389. * If the endpoint supports streams, boundary check the URB's stream ID.
  390. * If the endpoint doesn't support streams, return the singular endpoint ring.
  391. */
  392. struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
  393. unsigned int slot_id, unsigned int ep_index,
  394. unsigned int stream_id)
  395. {
  396. struct xhci_virt_ep *ep;
  397. ep = &xhci->devs[slot_id]->eps[ep_index];
  398. /* Common case: no streams */
  399. if (!(ep->ep_state & EP_HAS_STREAMS))
  400. return ep->ring;
  401. if (stream_id == 0) {
  402. xhci_warn(xhci,
  403. "WARN: Slot ID %u, ep index %u has streams, "
  404. "but URB has no stream ID.\n",
  405. slot_id, ep_index);
  406. return NULL;
  407. }
  408. if (stream_id < ep->stream_info->num_streams)
  409. return ep->stream_info->stream_rings[stream_id];
  410. xhci_warn(xhci,
  411. "WARN: Slot ID %u, ep index %u has "
  412. "stream IDs 1 to %u allocated, "
  413. "but stream ID %u is requested.\n",
  414. slot_id, ep_index,
  415. ep->stream_info->num_streams - 1,
  416. stream_id);
  417. return NULL;
  418. }
  419. /*
  420. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  421. * Record the new state of the xHC's endpoint ring dequeue segment,
  422. * dequeue pointer, and new consumer cycle state in state.
  423. * Update our internal representation of the ring's dequeue pointer.
  424. *
  425. * We do this in three jumps:
  426. * - First we update our new ring state to be the same as when the xHC stopped.
  427. * - Then we traverse the ring to find the segment that contains
  428. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  429. * any link TRBs with the toggle cycle bit set.
  430. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  431. * if we've moved it past a link TRB with the toggle cycle bit set.
  432. *
  433. * Some of the uses of xhci_generic_trb are grotty, but if they're done
  434. * with correct __le32 accesses they should work fine. Only users of this are
  435. * in here.
  436. */
  437. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  438. unsigned int slot_id, unsigned int ep_index,
  439. unsigned int stream_id, struct xhci_td *cur_td,
  440. struct xhci_dequeue_state *state)
  441. {
  442. struct xhci_virt_device *dev = xhci->devs[slot_id];
  443. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  444. struct xhci_ring *ep_ring;
  445. struct xhci_segment *new_seg;
  446. union xhci_trb *new_deq;
  447. dma_addr_t addr;
  448. u64 hw_dequeue;
  449. bool cycle_found = false;
  450. bool td_last_trb_found = false;
  451. ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
  452. ep_index, stream_id);
  453. if (!ep_ring) {
  454. xhci_warn(xhci, "WARN can't find new dequeue state "
  455. "for invalid stream ID %u.\n",
  456. stream_id);
  457. return;
  458. }
  459. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  460. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  461. "Finding endpoint context");
  462. /* 4.6.9 the css flag is written to the stream context for streams */
  463. if (ep->ep_state & EP_HAS_STREAMS) {
  464. struct xhci_stream_ctx *ctx =
  465. &ep->stream_info->stream_ctx_array[stream_id];
  466. hw_dequeue = le64_to_cpu(ctx->stream_ring);
  467. } else {
  468. struct xhci_ep_ctx *ep_ctx
  469. = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  470. hw_dequeue = le64_to_cpu(ep_ctx->deq);
  471. }
  472. new_seg = ep_ring->deq_seg;
  473. new_deq = ep_ring->dequeue;
  474. state->new_cycle_state = hw_dequeue & 0x1;
  475. /*
  476. * We want to find the pointer, segment and cycle state of the new trb
  477. * (the one after current TD's last_trb). We know the cycle state at
  478. * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
  479. * found.
  480. */
  481. do {
  482. if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
  483. == (dma_addr_t)(hw_dequeue & ~0xf)) {
  484. cycle_found = true;
  485. if (td_last_trb_found)
  486. break;
  487. }
  488. if (new_deq == cur_td->last_trb)
  489. td_last_trb_found = true;
  490. if (cycle_found && trb_is_link(new_deq) &&
  491. link_trb_toggles_cycle(new_deq))
  492. state->new_cycle_state ^= 0x1;
  493. next_trb(xhci, ep_ring, &new_seg, &new_deq);
  494. /* Search wrapped around, bail out */
  495. if (new_deq == ep->ring->dequeue) {
  496. xhci_err(xhci, "Error: Failed finding new dequeue state\n");
  497. state->new_deq_seg = NULL;
  498. state->new_deq_ptr = NULL;
  499. return;
  500. }
  501. } while (!cycle_found || !td_last_trb_found);
  502. state->new_deq_seg = new_seg;
  503. state->new_deq_ptr = new_deq;
  504. /* Don't update the ring cycle state for the producer (us). */
  505. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  506. "Cycle state = 0x%x", state->new_cycle_state);
  507. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  508. "New dequeue segment = %p (virtual)",
  509. state->new_deq_seg);
  510. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  511. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  512. "New dequeue pointer = 0x%llx (DMA)",
  513. (unsigned long long) addr);
  514. }
  515. /* flip_cycle means flip the cycle bit of all but the first and last TRB.
  516. * (The last TRB actually points to the ring enqueue pointer, which is not part
  517. * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
  518. */
  519. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  520. struct xhci_td *td, bool flip_cycle)
  521. {
  522. struct xhci_segment *seg = td->start_seg;
  523. union xhci_trb *trb = td->first_trb;
  524. while (1) {
  525. if (trb_is_link(trb)) {
  526. /* unchain chained link TRBs */
  527. trb->link.control &= cpu_to_le32(~TRB_CHAIN);
  528. } else {
  529. trb->generic.field[0] = 0;
  530. trb->generic.field[1] = 0;
  531. trb->generic.field[2] = 0;
  532. /* Preserve only the cycle bit of this TRB */
  533. trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
  534. trb->generic.field[3] |= cpu_to_le32(
  535. TRB_TYPE(TRB_TR_NOOP));
  536. }
  537. /* flip cycle if asked to */
  538. if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
  539. trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
  540. if (trb == td->last_trb)
  541. break;
  542. next_trb(xhci, ep_ring, &seg, &trb);
  543. }
  544. }
  545. static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
  546. struct xhci_virt_ep *ep)
  547. {
  548. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  549. /* Can't del_timer_sync in interrupt */
  550. del_timer(&ep->stop_cmd_timer);
  551. }
  552. /*
  553. * Must be called with xhci->lock held in interrupt context,
  554. * releases and re-acquires xhci->lock
  555. */
  556. static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
  557. struct xhci_td *cur_td, int status)
  558. {
  559. struct urb *urb = cur_td->urb;
  560. struct urb_priv *urb_priv = urb->hcpriv;
  561. struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
  562. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
  563. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
  564. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  565. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  566. usb_amd_quirk_pll_enable();
  567. }
  568. }
  569. xhci_urb_free_priv(urb_priv);
  570. usb_hcd_unlink_urb_from_ep(hcd, urb);
  571. spin_unlock(&xhci->lock);
  572. usb_hcd_giveback_urb(hcd, urb, status);
  573. spin_lock(&xhci->lock);
  574. }
  575. static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
  576. struct xhci_ring *ring, struct xhci_td *td)
  577. {
  578. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  579. struct xhci_segment *seg = td->bounce_seg;
  580. struct urb *urb = td->urb;
  581. if (!seg || !urb)
  582. return;
  583. if (usb_urb_dir_out(urb)) {
  584. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  585. DMA_TO_DEVICE);
  586. return;
  587. }
  588. /* for in tranfers we need to copy the data from bounce to sg */
  589. sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
  590. seg->bounce_len, seg->bounce_offs);
  591. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  592. DMA_FROM_DEVICE);
  593. seg->bounce_len = 0;
  594. seg->bounce_offs = 0;
  595. }
  596. /*
  597. * When we get a command completion for a Stop Endpoint Command, we need to
  598. * unlink any cancelled TDs from the ring. There are two ways to do that:
  599. *
  600. * 1. If the HW was in the middle of processing the TD that needs to be
  601. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  602. * in the TD with a Set Dequeue Pointer Command.
  603. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  604. * bit cleared) so that the HW will skip over them.
  605. */
  606. static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
  607. union xhci_trb *trb, struct xhci_event_cmd *event)
  608. {
  609. unsigned int ep_index;
  610. struct xhci_ring *ep_ring;
  611. struct xhci_virt_ep *ep;
  612. struct xhci_td *cur_td = NULL;
  613. struct xhci_td *last_unlinked_td;
  614. struct xhci_dequeue_state deq_state;
  615. if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
  616. if (!xhci->devs[slot_id])
  617. xhci_warn(xhci, "Stop endpoint command "
  618. "completion for disabled slot %u\n",
  619. slot_id);
  620. return;
  621. }
  622. memset(&deq_state, 0, sizeof(deq_state));
  623. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  624. ep = &xhci->devs[slot_id]->eps[ep_index];
  625. last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
  626. struct xhci_td, cancelled_td_list);
  627. if (list_empty(&ep->cancelled_td_list)) {
  628. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  629. ep->stopped_td = NULL;
  630. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  631. return;
  632. }
  633. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  634. * We have the xHCI lock, so nothing can modify this list until we drop
  635. * it. We're also in the event handler, so we can't get re-interrupted
  636. * if another Stop Endpoint command completes
  637. */
  638. list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
  639. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  640. "Removing canceled TD starting at 0x%llx (dma).",
  641. (unsigned long long)xhci_trb_virt_to_dma(
  642. cur_td->start_seg, cur_td->first_trb));
  643. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  644. if (!ep_ring) {
  645. /* This shouldn't happen unless a driver is mucking
  646. * with the stream ID after submission. This will
  647. * leave the TD on the hardware ring, and the hardware
  648. * will try to execute it, and may access a buffer
  649. * that has already been freed. In the best case, the
  650. * hardware will execute it, and the event handler will
  651. * ignore the completion event for that TD, since it was
  652. * removed from the td_list for that endpoint. In
  653. * short, don't muck with the stream ID after
  654. * submission.
  655. */
  656. xhci_warn(xhci, "WARN Cancelled URB %p "
  657. "has invalid stream ID %u.\n",
  658. cur_td->urb,
  659. cur_td->urb->stream_id);
  660. goto remove_finished_td;
  661. }
  662. /*
  663. * If we stopped on the TD we need to cancel, then we have to
  664. * move the xHC endpoint ring dequeue pointer past this TD.
  665. */
  666. if (cur_td == ep->stopped_td)
  667. xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
  668. cur_td->urb->stream_id,
  669. cur_td, &deq_state);
  670. else
  671. td_to_noop(xhci, ep_ring, cur_td, false);
  672. remove_finished_td:
  673. /*
  674. * The event handler won't see a completion for this TD anymore,
  675. * so remove it from the endpoint ring's TD list. Keep it in
  676. * the cancelled TD list for URB completion later.
  677. */
  678. list_del_init(&cur_td->td_list);
  679. }
  680. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  681. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  682. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  683. xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
  684. ep->stopped_td->urb->stream_id, &deq_state);
  685. xhci_ring_cmd_db(xhci);
  686. } else {
  687. /* Otherwise ring the doorbell(s) to restart queued transfers */
  688. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  689. }
  690. ep->stopped_td = NULL;
  691. /*
  692. * Drop the lock and complete the URBs in the cancelled TD list.
  693. * New TDs to be cancelled might be added to the end of the list before
  694. * we can complete all the URBs for the TDs we already unlinked.
  695. * So stop when we've completed the URB for the last TD we unlinked.
  696. */
  697. do {
  698. cur_td = list_first_entry(&ep->cancelled_td_list,
  699. struct xhci_td, cancelled_td_list);
  700. list_del_init(&cur_td->cancelled_td_list);
  701. /* Clean up the cancelled URB */
  702. /* Doesn't matter what we pass for status, since the core will
  703. * just overwrite it (because the URB has been unlinked).
  704. */
  705. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  706. if (ep_ring && cur_td->bounce_seg)
  707. xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
  708. inc_td_cnt(cur_td->urb);
  709. if (last_td_in_urb(cur_td))
  710. xhci_giveback_urb_in_irq(xhci, cur_td, 0);
  711. /* Stop processing the cancelled list if the watchdog timer is
  712. * running.
  713. */
  714. if (xhci->xhc_state & XHCI_STATE_DYING)
  715. return;
  716. } while (cur_td != last_unlinked_td);
  717. /* Return to the event handler with xhci->lock re-acquired */
  718. }
  719. static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
  720. {
  721. struct xhci_td *cur_td;
  722. while (!list_empty(&ring->td_list)) {
  723. cur_td = list_first_entry(&ring->td_list,
  724. struct xhci_td, td_list);
  725. list_del_init(&cur_td->td_list);
  726. if (!list_empty(&cur_td->cancelled_td_list))
  727. list_del_init(&cur_td->cancelled_td_list);
  728. if (cur_td->bounce_seg)
  729. xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
  730. inc_td_cnt(cur_td->urb);
  731. if (last_td_in_urb(cur_td))
  732. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  733. }
  734. }
  735. static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
  736. int slot_id, int ep_index)
  737. {
  738. struct xhci_td *cur_td;
  739. struct xhci_virt_ep *ep;
  740. struct xhci_ring *ring;
  741. ep = &xhci->devs[slot_id]->eps[ep_index];
  742. if ((ep->ep_state & EP_HAS_STREAMS) ||
  743. (ep->ep_state & EP_GETTING_NO_STREAMS)) {
  744. int stream_id;
  745. for (stream_id = 0; stream_id < ep->stream_info->num_streams;
  746. stream_id++) {
  747. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  748. "Killing URBs for slot ID %u, ep index %u, stream %u",
  749. slot_id, ep_index, stream_id + 1);
  750. xhci_kill_ring_urbs(xhci,
  751. ep->stream_info->stream_rings[stream_id]);
  752. }
  753. } else {
  754. ring = ep->ring;
  755. if (!ring)
  756. return;
  757. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  758. "Killing URBs for slot ID %u, ep index %u",
  759. slot_id, ep_index);
  760. xhci_kill_ring_urbs(xhci, ring);
  761. }
  762. while (!list_empty(&ep->cancelled_td_list)) {
  763. cur_td = list_first_entry(&ep->cancelled_td_list,
  764. struct xhci_td, cancelled_td_list);
  765. list_del_init(&cur_td->cancelled_td_list);
  766. inc_td_cnt(cur_td->urb);
  767. if (last_td_in_urb(cur_td))
  768. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  769. }
  770. }
  771. /* Watchdog timer function for when a stop endpoint command fails to complete.
  772. * In this case, we assume the host controller is broken or dying or dead. The
  773. * host may still be completing some other events, so we have to be careful to
  774. * let the event ring handler and the URB dequeueing/enqueueing functions know
  775. * through xhci->state.
  776. *
  777. * The timer may also fire if the host takes a very long time to respond to the
  778. * command, and the stop endpoint command completion handler cannot delete the
  779. * timer before the timer function is called. Another endpoint cancellation may
  780. * sneak in before the timer function can grab the lock, and that may queue
  781. * another stop endpoint command and add the timer back. So we cannot use a
  782. * simple flag to say whether there is a pending stop endpoint command for a
  783. * particular endpoint.
  784. *
  785. * Instead we use a combination of that flag and checking if a new timer is
  786. * pending.
  787. */
  788. void xhci_stop_endpoint_command_watchdog(unsigned long arg)
  789. {
  790. struct xhci_hcd *xhci;
  791. struct xhci_virt_ep *ep;
  792. int ret, i, j;
  793. unsigned long flags;
  794. ep = (struct xhci_virt_ep *) arg;
  795. xhci = ep->xhci;
  796. spin_lock_irqsave(&xhci->lock, flags);
  797. /* bail out if cmd completed but raced with stop ep watchdog timer.*/
  798. if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
  799. timer_pending(&ep->stop_cmd_timer)) {
  800. spin_unlock_irqrestore(&xhci->lock, flags);
  801. xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
  802. return;
  803. }
  804. xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
  805. xhci_warn(xhci, "Assuming host is dying, halting host.\n");
  806. /* Oops, HC is dead or dying or at least not responding to the stop
  807. * endpoint command.
  808. */
  809. xhci->xhc_state |= XHCI_STATE_DYING;
  810. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  811. /* Disable interrupts from the host controller and start halting it */
  812. xhci_quiesce(xhci);
  813. spin_unlock_irqrestore(&xhci->lock, flags);
  814. ret = xhci_halt(xhci);
  815. spin_lock_irqsave(&xhci->lock, flags);
  816. if (ret < 0) {
  817. /* This is bad; the host is not responding to commands and it's
  818. * not allowing itself to be halted. At least interrupts are
  819. * disabled. If we call usb_hc_died(), it will attempt to
  820. * disconnect all device drivers under this host. Those
  821. * disconnect() methods will wait for all URBs to be unlinked,
  822. * so we must complete them.
  823. */
  824. xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
  825. xhci_warn(xhci, "Completing active URBs anyway.\n");
  826. /* We could turn all TDs on the rings to no-ops. This won't
  827. * help if the host has cached part of the ring, and is slow if
  828. * we want to preserve the cycle bit. Skip it and hope the host
  829. * doesn't touch the memory.
  830. */
  831. }
  832. for (i = 0; i < MAX_HC_SLOTS; i++) {
  833. if (!xhci->devs[i])
  834. continue;
  835. for (j = 0; j < 31; j++)
  836. xhci_kill_endpoint_urbs(xhci, i, j);
  837. }
  838. spin_unlock_irqrestore(&xhci->lock, flags);
  839. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  840. "Calling usb_hc_died()");
  841. usb_hc_died(xhci_to_hcd(xhci));
  842. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  843. "xHCI host controller is dead.");
  844. }
  845. static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
  846. struct xhci_virt_device *dev,
  847. struct xhci_ring *ep_ring,
  848. unsigned int ep_index)
  849. {
  850. union xhci_trb *dequeue_temp;
  851. int num_trbs_free_temp;
  852. bool revert = false;
  853. num_trbs_free_temp = ep_ring->num_trbs_free;
  854. dequeue_temp = ep_ring->dequeue;
  855. /* If we get two back-to-back stalls, and the first stalled transfer
  856. * ends just before a link TRB, the dequeue pointer will be left on
  857. * the link TRB by the code in the while loop. So we have to update
  858. * the dequeue pointer one segment further, or we'll jump off
  859. * the segment into la-la-land.
  860. */
  861. if (trb_is_link(ep_ring->dequeue)) {
  862. ep_ring->deq_seg = ep_ring->deq_seg->next;
  863. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  864. }
  865. while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
  866. /* We have more usable TRBs */
  867. ep_ring->num_trbs_free++;
  868. ep_ring->dequeue++;
  869. if (trb_is_link(ep_ring->dequeue)) {
  870. if (ep_ring->dequeue ==
  871. dev->eps[ep_index].queued_deq_ptr)
  872. break;
  873. ep_ring->deq_seg = ep_ring->deq_seg->next;
  874. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  875. }
  876. if (ep_ring->dequeue == dequeue_temp) {
  877. revert = true;
  878. break;
  879. }
  880. }
  881. if (revert) {
  882. xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
  883. ep_ring->num_trbs_free = num_trbs_free_temp;
  884. }
  885. }
  886. /*
  887. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  888. * we need to clear the set deq pending flag in the endpoint ring state, so that
  889. * the TD queueing code can ring the doorbell again. We also need to ring the
  890. * endpoint doorbell to restart the ring, but only if there aren't more
  891. * cancellations pending.
  892. */
  893. static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
  894. union xhci_trb *trb, u32 cmd_comp_code)
  895. {
  896. unsigned int ep_index;
  897. unsigned int stream_id;
  898. struct xhci_ring *ep_ring;
  899. struct xhci_virt_device *dev;
  900. struct xhci_virt_ep *ep;
  901. struct xhci_ep_ctx *ep_ctx;
  902. struct xhci_slot_ctx *slot_ctx;
  903. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  904. stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
  905. dev = xhci->devs[slot_id];
  906. ep = &dev->eps[ep_index];
  907. ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
  908. if (!ep_ring) {
  909. xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
  910. stream_id);
  911. /* XXX: Harmless??? */
  912. goto cleanup;
  913. }
  914. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  915. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  916. if (cmd_comp_code != COMP_SUCCESS) {
  917. unsigned int ep_state;
  918. unsigned int slot_state;
  919. switch (cmd_comp_code) {
  920. case COMP_TRB_ERROR:
  921. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
  922. break;
  923. case COMP_CONTEXT_STATE_ERROR:
  924. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
  925. ep_state = GET_EP_CTX_STATE(ep_ctx);
  926. slot_state = le32_to_cpu(slot_ctx->dev_state);
  927. slot_state = GET_SLOT_STATE(slot_state);
  928. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  929. "Slot state = %u, EP state = %u",
  930. slot_state, ep_state);
  931. break;
  932. case COMP_SLOT_NOT_ENABLED_ERROR:
  933. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
  934. slot_id);
  935. break;
  936. default:
  937. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
  938. cmd_comp_code);
  939. break;
  940. }
  941. /* OK what do we do now? The endpoint state is hosed, and we
  942. * should never get to this point if the synchronization between
  943. * queueing, and endpoint state are correct. This might happen
  944. * if the device gets disconnected after we've finished
  945. * cancelling URBs, which might not be an error...
  946. */
  947. } else {
  948. u64 deq;
  949. /* 4.6.10 deq ptr is written to the stream ctx for streams */
  950. if (ep->ep_state & EP_HAS_STREAMS) {
  951. struct xhci_stream_ctx *ctx =
  952. &ep->stream_info->stream_ctx_array[stream_id];
  953. deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
  954. } else {
  955. deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
  956. }
  957. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  958. "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
  959. if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
  960. ep->queued_deq_ptr) == deq) {
  961. /* Update the ring's dequeue segment and dequeue pointer
  962. * to reflect the new position.
  963. */
  964. update_ring_for_set_deq_completion(xhci, dev,
  965. ep_ring, ep_index);
  966. } else {
  967. xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
  968. xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
  969. ep->queued_deq_seg, ep->queued_deq_ptr);
  970. }
  971. }
  972. cleanup:
  973. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  974. dev->eps[ep_index].queued_deq_seg = NULL;
  975. dev->eps[ep_index].queued_deq_ptr = NULL;
  976. /* Restart any rings with pending URBs */
  977. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  978. }
  979. static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
  980. union xhci_trb *trb, u32 cmd_comp_code)
  981. {
  982. unsigned int ep_index;
  983. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  984. /* This command will only fail if the endpoint wasn't halted,
  985. * but we don't care.
  986. */
  987. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  988. "Ignoring reset ep completion code of %u", cmd_comp_code);
  989. /* HW with the reset endpoint quirk needs to have a configure endpoint
  990. * command complete before the endpoint can be used. Queue that here
  991. * because the HW can't handle two commands being queued in a row.
  992. */
  993. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  994. struct xhci_command *command;
  995. command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  996. if (!command) {
  997. xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
  998. return;
  999. }
  1000. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1001. "Queueing configure endpoint command");
  1002. xhci_queue_configure_endpoint(xhci, command,
  1003. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  1004. false);
  1005. xhci_ring_cmd_db(xhci);
  1006. } else {
  1007. /* Clear our internal halted state */
  1008. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  1009. }
  1010. }
  1011. static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
  1012. struct xhci_command *command, u32 cmd_comp_code)
  1013. {
  1014. if (cmd_comp_code == COMP_SUCCESS)
  1015. command->slot_id = slot_id;
  1016. else
  1017. command->slot_id = 0;
  1018. }
  1019. static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
  1020. {
  1021. struct xhci_virt_device *virt_dev;
  1022. virt_dev = xhci->devs[slot_id];
  1023. if (!virt_dev)
  1024. return;
  1025. if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
  1026. /* Delete default control endpoint resources */
  1027. xhci_free_device_endpoint_resources(xhci, virt_dev, true);
  1028. xhci_free_virt_device(xhci, slot_id);
  1029. }
  1030. static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
  1031. struct xhci_event_cmd *event, u32 cmd_comp_code)
  1032. {
  1033. struct xhci_virt_device *virt_dev;
  1034. struct xhci_input_control_ctx *ctrl_ctx;
  1035. unsigned int ep_index;
  1036. unsigned int ep_state;
  1037. u32 add_flags, drop_flags;
  1038. /*
  1039. * Configure endpoint commands can come from the USB core
  1040. * configuration or alt setting changes, or because the HW
  1041. * needed an extra configure endpoint command after a reset
  1042. * endpoint command or streams were being configured.
  1043. * If the command was for a halted endpoint, the xHCI driver
  1044. * is not waiting on the configure endpoint command.
  1045. */
  1046. virt_dev = xhci->devs[slot_id];
  1047. ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
  1048. if (!ctrl_ctx) {
  1049. xhci_warn(xhci, "Could not get input context, bad type.\n");
  1050. return;
  1051. }
  1052. add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1053. drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1054. /* Input ctx add_flags are the endpoint index plus one */
  1055. ep_index = xhci_last_valid_endpoint(add_flags) - 1;
  1056. /* A usb_set_interface() call directly after clearing a halted
  1057. * condition may race on this quirky hardware. Not worth
  1058. * worrying about, since this is prototype hardware. Not sure
  1059. * if this will work for streams, but streams support was
  1060. * untested on this prototype.
  1061. */
  1062. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  1063. ep_index != (unsigned int) -1 &&
  1064. add_flags - SLOT_FLAG == drop_flags) {
  1065. ep_state = virt_dev->eps[ep_index].ep_state;
  1066. if (!(ep_state & EP_HALTED))
  1067. return;
  1068. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1069. "Completed config ep cmd - "
  1070. "last ep index = %d, state = %d",
  1071. ep_index, ep_state);
  1072. /* Clear internal halted state and restart ring(s) */
  1073. virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
  1074. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1075. return;
  1076. }
  1077. return;
  1078. }
  1079. static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
  1080. struct xhci_event_cmd *event)
  1081. {
  1082. xhci_dbg(xhci, "Completed reset device command.\n");
  1083. if (!xhci->devs[slot_id])
  1084. xhci_warn(xhci, "Reset device command completion "
  1085. "for disabled slot %u\n", slot_id);
  1086. }
  1087. static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
  1088. struct xhci_event_cmd *event)
  1089. {
  1090. if (!(xhci->quirks & XHCI_NEC_HOST)) {
  1091. xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
  1092. return;
  1093. }
  1094. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1095. "NEC firmware version %2x.%02x",
  1096. NEC_FW_MAJOR(le32_to_cpu(event->status)),
  1097. NEC_FW_MINOR(le32_to_cpu(event->status)));
  1098. }
  1099. static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
  1100. {
  1101. list_del(&cmd->cmd_list);
  1102. if (cmd->completion) {
  1103. cmd->status = status;
  1104. complete(cmd->completion);
  1105. } else {
  1106. kfree(cmd);
  1107. }
  1108. }
  1109. void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
  1110. {
  1111. struct xhci_command *cur_cmd, *tmp_cmd;
  1112. list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
  1113. xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
  1114. }
  1115. void xhci_handle_command_timeout(struct work_struct *work)
  1116. {
  1117. struct xhci_hcd *xhci;
  1118. int ret;
  1119. unsigned long flags;
  1120. u64 hw_ring_state;
  1121. xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
  1122. spin_lock_irqsave(&xhci->lock, flags);
  1123. /*
  1124. * If timeout work is pending, or current_cmd is NULL, it means we
  1125. * raced with command completion. Command is handled so just return.
  1126. */
  1127. if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
  1128. spin_unlock_irqrestore(&xhci->lock, flags);
  1129. return;
  1130. }
  1131. /* mark this command to be cancelled */
  1132. xhci->current_cmd->status = COMP_COMMAND_ABORTED;
  1133. /* Make sure command ring is running before aborting it */
  1134. hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1135. if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
  1136. (hw_ring_state & CMD_RING_RUNNING)) {
  1137. /* Prevent new doorbell, and start command abort */
  1138. xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
  1139. xhci_dbg(xhci, "Command timeout\n");
  1140. ret = xhci_abort_cmd_ring(xhci, flags);
  1141. if (unlikely(ret == -ESHUTDOWN)) {
  1142. xhci_err(xhci, "Abort command ring failed\n");
  1143. xhci_cleanup_command_queue(xhci);
  1144. spin_unlock_irqrestore(&xhci->lock, flags);
  1145. usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
  1146. xhci_dbg(xhci, "xHCI host controller is dead.\n");
  1147. return;
  1148. }
  1149. goto time_out_completed;
  1150. }
  1151. /* host removed. Bail out */
  1152. if (xhci->xhc_state & XHCI_STATE_REMOVING) {
  1153. xhci_dbg(xhci, "host removed, ring start fail?\n");
  1154. xhci_cleanup_command_queue(xhci);
  1155. goto time_out_completed;
  1156. }
  1157. /* command timeout on stopped ring, ring can't be aborted */
  1158. xhci_dbg(xhci, "Command timeout on stopped ring\n");
  1159. xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
  1160. time_out_completed:
  1161. spin_unlock_irqrestore(&xhci->lock, flags);
  1162. return;
  1163. }
  1164. static void handle_cmd_completion(struct xhci_hcd *xhci,
  1165. struct xhci_event_cmd *event)
  1166. {
  1167. int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1168. u64 cmd_dma;
  1169. dma_addr_t cmd_dequeue_dma;
  1170. u32 cmd_comp_code;
  1171. union xhci_trb *cmd_trb;
  1172. struct xhci_command *cmd;
  1173. u32 cmd_type;
  1174. cmd_dma = le64_to_cpu(event->cmd_trb);
  1175. cmd_trb = xhci->cmd_ring->dequeue;
  1176. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  1177. cmd_trb);
  1178. /*
  1179. * Check whether the completion event is for our internal kept
  1180. * command.
  1181. */
  1182. if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
  1183. xhci_warn(xhci,
  1184. "ERROR mismatched command completion event\n");
  1185. return;
  1186. }
  1187. cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
  1188. cancel_delayed_work(&xhci->cmd_timer);
  1189. trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
  1190. cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
  1191. /* If CMD ring stopped we own the trbs between enqueue and dequeue */
  1192. if (cmd_comp_code == COMP_STOPPED) {
  1193. complete_all(&xhci->cmd_ring_stop_completion);
  1194. return;
  1195. }
  1196. if (cmd->command_trb != xhci->cmd_ring->dequeue) {
  1197. xhci_err(xhci,
  1198. "Command completion event does not match command\n");
  1199. return;
  1200. }
  1201. /*
  1202. * Host aborted the command ring, check if the current command was
  1203. * supposed to be aborted, otherwise continue normally.
  1204. * The command ring is stopped now, but the xHC will issue a Command
  1205. * Ring Stopped event which will cause us to restart it.
  1206. */
  1207. if (cmd_comp_code == COMP_COMMAND_ABORTED) {
  1208. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  1209. if (cmd->status == COMP_COMMAND_ABORTED) {
  1210. if (xhci->current_cmd == cmd)
  1211. xhci->current_cmd = NULL;
  1212. goto event_handled;
  1213. }
  1214. }
  1215. cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
  1216. switch (cmd_type) {
  1217. case TRB_ENABLE_SLOT:
  1218. xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
  1219. break;
  1220. case TRB_DISABLE_SLOT:
  1221. xhci_handle_cmd_disable_slot(xhci, slot_id);
  1222. break;
  1223. case TRB_CONFIG_EP:
  1224. if (!cmd->completion)
  1225. xhci_handle_cmd_config_ep(xhci, slot_id, event,
  1226. cmd_comp_code);
  1227. break;
  1228. case TRB_EVAL_CONTEXT:
  1229. break;
  1230. case TRB_ADDR_DEV:
  1231. break;
  1232. case TRB_STOP_RING:
  1233. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1234. le32_to_cpu(cmd_trb->generic.field[3])));
  1235. xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
  1236. break;
  1237. case TRB_SET_DEQ:
  1238. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1239. le32_to_cpu(cmd_trb->generic.field[3])));
  1240. xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
  1241. break;
  1242. case TRB_CMD_NOOP:
  1243. /* Is this an aborted command turned to NO-OP? */
  1244. if (cmd->status == COMP_STOPPED)
  1245. cmd_comp_code = COMP_STOPPED;
  1246. break;
  1247. case TRB_RESET_EP:
  1248. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1249. le32_to_cpu(cmd_trb->generic.field[3])));
  1250. xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
  1251. break;
  1252. case TRB_RESET_DEV:
  1253. /* SLOT_ID field in reset device cmd completion event TRB is 0.
  1254. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
  1255. */
  1256. slot_id = TRB_TO_SLOT_ID(
  1257. le32_to_cpu(cmd_trb->generic.field[3]));
  1258. xhci_handle_cmd_reset_dev(xhci, slot_id, event);
  1259. break;
  1260. case TRB_NEC_GET_FW:
  1261. xhci_handle_cmd_nec_get_fw(xhci, event);
  1262. break;
  1263. default:
  1264. /* Skip over unknown commands on the event ring */
  1265. xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
  1266. break;
  1267. }
  1268. /* restart timer if this wasn't the last command */
  1269. if (!list_is_singular(&xhci->cmd_list)) {
  1270. xhci->current_cmd = list_first_entry(&cmd->cmd_list,
  1271. struct xhci_command, cmd_list);
  1272. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  1273. } else if (xhci->current_cmd == cmd) {
  1274. xhci->current_cmd = NULL;
  1275. }
  1276. event_handled:
  1277. xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
  1278. inc_deq(xhci, xhci->cmd_ring);
  1279. }
  1280. static void handle_vendor_event(struct xhci_hcd *xhci,
  1281. union xhci_trb *event)
  1282. {
  1283. u32 trb_type;
  1284. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
  1285. xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
  1286. if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
  1287. handle_cmd_completion(xhci, &event->event_cmd);
  1288. }
  1289. /* @port_id: the one-based port ID from the hardware (indexed from array of all
  1290. * port registers -- USB 3.0 and USB 2.0).
  1291. *
  1292. * Returns a zero-based port number, which is suitable for indexing into each of
  1293. * the split roothubs' port arrays and bus state arrays.
  1294. * Add one to it in order to call xhci_find_slot_id_by_port.
  1295. */
  1296. static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
  1297. struct xhci_hcd *xhci, u32 port_id)
  1298. {
  1299. unsigned int i;
  1300. unsigned int num_similar_speed_ports = 0;
  1301. /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
  1302. * and usb2_ports are 0-based indexes. Count the number of similar
  1303. * speed ports, up to 1 port before this port.
  1304. */
  1305. for (i = 0; i < (port_id - 1); i++) {
  1306. u8 port_speed = xhci->port_array[i];
  1307. /*
  1308. * Skip ports that don't have known speeds, or have duplicate
  1309. * Extended Capabilities port speed entries.
  1310. */
  1311. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  1312. continue;
  1313. /*
  1314. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  1315. * 1.1 ports are under the USB 2.0 hub. If the port speed
  1316. * matches the device speed, it's a similar speed port.
  1317. */
  1318. if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
  1319. num_similar_speed_ports++;
  1320. }
  1321. return num_similar_speed_ports;
  1322. }
  1323. static void handle_device_notification(struct xhci_hcd *xhci,
  1324. union xhci_trb *event)
  1325. {
  1326. u32 slot_id;
  1327. struct usb_device *udev;
  1328. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
  1329. if (!xhci->devs[slot_id]) {
  1330. xhci_warn(xhci, "Device Notification event for "
  1331. "unused slot %u\n", slot_id);
  1332. return;
  1333. }
  1334. xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
  1335. slot_id);
  1336. udev = xhci->devs[slot_id]->udev;
  1337. if (udev && udev->parent)
  1338. usb_wakeup_notification(udev->parent, udev->portnum);
  1339. }
  1340. static void handle_port_status(struct xhci_hcd *xhci,
  1341. union xhci_trb *event)
  1342. {
  1343. struct usb_hcd *hcd;
  1344. u32 port_id;
  1345. u32 temp, temp1;
  1346. int max_ports;
  1347. int slot_id;
  1348. unsigned int faked_port_index;
  1349. u8 major_revision;
  1350. struct xhci_bus_state *bus_state;
  1351. __le32 __iomem **port_array;
  1352. bool bogus_port_status = false;
  1353. /* Port status change events always have a successful completion code */
  1354. if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
  1355. xhci_warn(xhci,
  1356. "WARN: xHC returned failed port status event\n");
  1357. port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
  1358. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  1359. max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1360. if ((port_id <= 0) || (port_id > max_ports)) {
  1361. xhci_warn(xhci, "Invalid port id %d\n", port_id);
  1362. inc_deq(xhci, xhci->event_ring);
  1363. return;
  1364. }
  1365. /* Figure out which usb_hcd this port is attached to:
  1366. * is it a USB 3.0 port or a USB 2.0/1.1 port?
  1367. */
  1368. major_revision = xhci->port_array[port_id - 1];
  1369. /* Find the right roothub. */
  1370. hcd = xhci_to_hcd(xhci);
  1371. if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
  1372. hcd = xhci->shared_hcd;
  1373. if (major_revision == 0) {
  1374. xhci_warn(xhci, "Event for port %u not in "
  1375. "Extended Capabilities, ignoring.\n",
  1376. port_id);
  1377. bogus_port_status = true;
  1378. goto cleanup;
  1379. }
  1380. if (major_revision == DUPLICATE_ENTRY) {
  1381. xhci_warn(xhci, "Event for port %u duplicated in"
  1382. "Extended Capabilities, ignoring.\n",
  1383. port_id);
  1384. bogus_port_status = true;
  1385. goto cleanup;
  1386. }
  1387. /*
  1388. * Hardware port IDs reported by a Port Status Change Event include USB
  1389. * 3.0 and USB 2.0 ports. We want to check if the port has reported a
  1390. * resume event, but we first need to translate the hardware port ID
  1391. * into the index into the ports on the correct split roothub, and the
  1392. * correct bus_state structure.
  1393. */
  1394. bus_state = &xhci->bus_state[hcd_index(hcd)];
  1395. if (hcd->speed >= HCD_USB3)
  1396. port_array = xhci->usb3_ports;
  1397. else
  1398. port_array = xhci->usb2_ports;
  1399. /* Find the faked port hub number */
  1400. faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
  1401. port_id);
  1402. temp = readl(port_array[faked_port_index]);
  1403. if (hcd->state == HC_STATE_SUSPENDED) {
  1404. xhci_dbg(xhci, "resume root hub\n");
  1405. usb_hcd_resume_root_hub(hcd);
  1406. }
  1407. if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
  1408. bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
  1409. if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
  1410. xhci_dbg(xhci, "port resume event for port %d\n", port_id);
  1411. temp1 = readl(&xhci->op_regs->command);
  1412. if (!(temp1 & CMD_RUN)) {
  1413. xhci_warn(xhci, "xHC is not running.\n");
  1414. goto cleanup;
  1415. }
  1416. if (DEV_SUPERSPEED_ANY(temp)) {
  1417. xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
  1418. /* Set a flag to say the port signaled remote wakeup,
  1419. * so we can tell the difference between the end of
  1420. * device and host initiated resume.
  1421. */
  1422. bus_state->port_remote_wakeup |= 1 << faked_port_index;
  1423. xhci_test_and_clear_bit(xhci, port_array,
  1424. faked_port_index, PORT_PLC);
  1425. xhci_set_link_state(xhci, port_array, faked_port_index,
  1426. XDEV_U0);
  1427. /* Need to wait until the next link state change
  1428. * indicates the device is actually in U0.
  1429. */
  1430. bogus_port_status = true;
  1431. goto cleanup;
  1432. } else if (!test_bit(faked_port_index,
  1433. &bus_state->resuming_ports)) {
  1434. xhci_dbg(xhci, "resume HS port %d\n", port_id);
  1435. bus_state->resume_done[faked_port_index] = jiffies +
  1436. msecs_to_jiffies(USB_RESUME_TIMEOUT);
  1437. set_bit(faked_port_index, &bus_state->resuming_ports);
  1438. mod_timer(&hcd->rh_timer,
  1439. bus_state->resume_done[faked_port_index]);
  1440. /* Do the rest in GetPortStatus */
  1441. }
  1442. }
  1443. if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
  1444. DEV_SUPERSPEED_ANY(temp)) {
  1445. xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
  1446. /* We've just brought the device into U0 through either the
  1447. * Resume state after a device remote wakeup, or through the
  1448. * U3Exit state after a host-initiated resume. If it's a device
  1449. * initiated remote wake, don't pass up the link state change,
  1450. * so the roothub behavior is consistent with external
  1451. * USB 3.0 hub behavior.
  1452. */
  1453. slot_id = xhci_find_slot_id_by_port(hcd, xhci,
  1454. faked_port_index + 1);
  1455. if (slot_id && xhci->devs[slot_id])
  1456. xhci_ring_device(xhci, slot_id);
  1457. if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
  1458. bus_state->port_remote_wakeup &=
  1459. ~(1 << faked_port_index);
  1460. xhci_test_and_clear_bit(xhci, port_array,
  1461. faked_port_index, PORT_PLC);
  1462. usb_wakeup_notification(hcd->self.root_hub,
  1463. faked_port_index + 1);
  1464. bogus_port_status = true;
  1465. goto cleanup;
  1466. }
  1467. }
  1468. /*
  1469. * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
  1470. * RExit to a disconnect state). If so, let the the driver know it's
  1471. * out of the RExit state.
  1472. */
  1473. if (!DEV_SUPERSPEED_ANY(temp) &&
  1474. test_and_clear_bit(faked_port_index,
  1475. &bus_state->rexit_ports)) {
  1476. complete(&bus_state->rexit_done[faked_port_index]);
  1477. bogus_port_status = true;
  1478. goto cleanup;
  1479. }
  1480. if (hcd->speed < HCD_USB3)
  1481. xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
  1482. PORT_PLC);
  1483. cleanup:
  1484. /* Update event ring dequeue pointer before dropping the lock */
  1485. inc_deq(xhci, xhci->event_ring);
  1486. /* Don't make the USB core poll the roothub if we got a bad port status
  1487. * change event. Besides, at that point we can't tell which roothub
  1488. * (USB 2.0 or USB 3.0) to kick.
  1489. */
  1490. if (bogus_port_status)
  1491. return;
  1492. /*
  1493. * xHCI port-status-change events occur when the "or" of all the
  1494. * status-change bits in the portsc register changes from 0 to 1.
  1495. * New status changes won't cause an event if any other change
  1496. * bits are still set. When an event occurs, switch over to
  1497. * polling to avoid losing status changes.
  1498. */
  1499. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  1500. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1501. spin_unlock(&xhci->lock);
  1502. /* Pass this up to the core */
  1503. usb_hcd_poll_rh_status(hcd);
  1504. spin_lock(&xhci->lock);
  1505. }
  1506. /*
  1507. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  1508. * at end_trb, which may be in another segment. If the suspect DMA address is a
  1509. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  1510. * returns 0.
  1511. */
  1512. struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
  1513. struct xhci_segment *start_seg,
  1514. union xhci_trb *start_trb,
  1515. union xhci_trb *end_trb,
  1516. dma_addr_t suspect_dma,
  1517. bool debug)
  1518. {
  1519. dma_addr_t start_dma;
  1520. dma_addr_t end_seg_dma;
  1521. dma_addr_t end_trb_dma;
  1522. struct xhci_segment *cur_seg;
  1523. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  1524. cur_seg = start_seg;
  1525. do {
  1526. if (start_dma == 0)
  1527. return NULL;
  1528. /* We may get an event for a Link TRB in the middle of a TD */
  1529. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  1530. &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
  1531. /* If the end TRB isn't in this segment, this is set to 0 */
  1532. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  1533. if (debug)
  1534. xhci_warn(xhci,
  1535. "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
  1536. (unsigned long long)suspect_dma,
  1537. (unsigned long long)start_dma,
  1538. (unsigned long long)end_trb_dma,
  1539. (unsigned long long)cur_seg->dma,
  1540. (unsigned long long)end_seg_dma);
  1541. if (end_trb_dma > 0) {
  1542. /* The end TRB is in this segment, so suspect should be here */
  1543. if (start_dma <= end_trb_dma) {
  1544. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  1545. return cur_seg;
  1546. } else {
  1547. /* Case for one segment with
  1548. * a TD wrapped around to the top
  1549. */
  1550. if ((suspect_dma >= start_dma &&
  1551. suspect_dma <= end_seg_dma) ||
  1552. (suspect_dma >= cur_seg->dma &&
  1553. suspect_dma <= end_trb_dma))
  1554. return cur_seg;
  1555. }
  1556. return NULL;
  1557. } else {
  1558. /* Might still be somewhere in this segment */
  1559. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  1560. return cur_seg;
  1561. }
  1562. cur_seg = cur_seg->next;
  1563. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  1564. } while (cur_seg != start_seg);
  1565. return NULL;
  1566. }
  1567. static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
  1568. unsigned int slot_id, unsigned int ep_index,
  1569. unsigned int stream_id,
  1570. struct xhci_td *td, union xhci_trb *ep_trb)
  1571. {
  1572. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  1573. struct xhci_command *command;
  1574. command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  1575. if (!command)
  1576. return;
  1577. ep->ep_state |= EP_HALTED;
  1578. ep->stopped_stream = stream_id;
  1579. xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
  1580. xhci_cleanup_stalled_ring(xhci, ep_index, td);
  1581. ep->stopped_stream = 0;
  1582. xhci_ring_cmd_db(xhci);
  1583. }
  1584. /* Check if an error has halted the endpoint ring. The class driver will
  1585. * cleanup the halt for a non-default control endpoint if we indicate a stall.
  1586. * However, a babble and other errors also halt the endpoint ring, and the class
  1587. * driver won't clear the halt in that case, so we need to issue a Set Transfer
  1588. * Ring Dequeue Pointer command manually.
  1589. */
  1590. static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
  1591. struct xhci_ep_ctx *ep_ctx,
  1592. unsigned int trb_comp_code)
  1593. {
  1594. /* TRB completion codes that may require a manual halt cleanup */
  1595. if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
  1596. trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
  1597. trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
  1598. /* The 0.95 spec says a babbling control endpoint
  1599. * is not halted. The 0.96 spec says it is. Some HW
  1600. * claims to be 0.95 compliant, but it halts the control
  1601. * endpoint anyway. Check if a babble halted the
  1602. * endpoint.
  1603. */
  1604. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
  1605. return 1;
  1606. return 0;
  1607. }
  1608. int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
  1609. {
  1610. if (trb_comp_code >= 224 && trb_comp_code <= 255) {
  1611. /* Vendor defined "informational" completion code,
  1612. * treat as not-an-error.
  1613. */
  1614. xhci_dbg(xhci, "Vendor defined info completion code %u\n",
  1615. trb_comp_code);
  1616. xhci_dbg(xhci, "Treating code as success.\n");
  1617. return 1;
  1618. }
  1619. return 0;
  1620. }
  1621. static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
  1622. struct xhci_ring *ep_ring, int *status)
  1623. {
  1624. struct urb_priv *urb_priv;
  1625. struct urb *urb = NULL;
  1626. /* Clean up the endpoint's TD list */
  1627. urb = td->urb;
  1628. urb_priv = urb->hcpriv;
  1629. /* if a bounce buffer was used to align this td then unmap it */
  1630. if (td->bounce_seg)
  1631. xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
  1632. /* Do one last check of the actual transfer length.
  1633. * If the host controller said we transferred more data than the buffer
  1634. * length, urb->actual_length will be a very big number (since it's
  1635. * unsigned). Play it safe and say we didn't transfer anything.
  1636. */
  1637. if (urb->actual_length > urb->transfer_buffer_length) {
  1638. xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
  1639. urb->transfer_buffer_length, urb->actual_length);
  1640. urb->actual_length = 0;
  1641. *status = 0;
  1642. }
  1643. list_del_init(&td->td_list);
  1644. /* Was this TD slated to be cancelled but completed anyway? */
  1645. if (!list_empty(&td->cancelled_td_list))
  1646. list_del_init(&td->cancelled_td_list);
  1647. inc_td_cnt(urb);
  1648. /* Giveback the urb when all the tds are completed */
  1649. if (last_td_in_urb(td)) {
  1650. if ((urb->actual_length != urb->transfer_buffer_length &&
  1651. (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
  1652. (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
  1653. xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
  1654. urb, urb->actual_length,
  1655. urb->transfer_buffer_length, *status);
  1656. /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
  1657. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
  1658. *status = 0;
  1659. xhci_giveback_urb_in_irq(xhci, td, *status);
  1660. }
  1661. return 0;
  1662. }
  1663. static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1664. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1665. struct xhci_virt_ep *ep, int *status, bool skip)
  1666. {
  1667. struct xhci_virt_device *xdev;
  1668. struct xhci_ep_ctx *ep_ctx;
  1669. struct xhci_ring *ep_ring;
  1670. unsigned int slot_id;
  1671. u32 trb_comp_code;
  1672. int ep_index;
  1673. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1674. xdev = xhci->devs[slot_id];
  1675. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1676. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1677. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1678. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1679. if (skip)
  1680. goto td_cleanup;
  1681. if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  1682. trb_comp_code == COMP_STOPPED ||
  1683. trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
  1684. /* The Endpoint Stop Command completion will take care of any
  1685. * stopped TDs. A stopped TD may be restarted, so don't update
  1686. * the ring dequeue pointer or take this TD off any lists yet.
  1687. */
  1688. ep->stopped_td = td;
  1689. return 0;
  1690. }
  1691. if (trb_comp_code == COMP_STALL_ERROR ||
  1692. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  1693. trb_comp_code)) {
  1694. /* Issue a reset endpoint command to clear the host side
  1695. * halt, followed by a set dequeue command to move the
  1696. * dequeue pointer past the TD.
  1697. * The class driver clears the device side halt later.
  1698. */
  1699. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1700. ep_ring->stream_id, td, ep_trb);
  1701. } else {
  1702. /* Update ring dequeue pointer */
  1703. while (ep_ring->dequeue != td->last_trb)
  1704. inc_deq(xhci, ep_ring);
  1705. inc_deq(xhci, ep_ring);
  1706. }
  1707. td_cleanup:
  1708. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1709. }
  1710. /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
  1711. static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1712. union xhci_trb *stop_trb)
  1713. {
  1714. u32 sum;
  1715. union xhci_trb *trb = ring->dequeue;
  1716. struct xhci_segment *seg = ring->deq_seg;
  1717. for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
  1718. if (!trb_is_noop(trb) && !trb_is_link(trb))
  1719. sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
  1720. }
  1721. return sum;
  1722. }
  1723. /*
  1724. * Process control tds, update urb status and actual_length.
  1725. */
  1726. static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1727. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1728. struct xhci_virt_ep *ep, int *status)
  1729. {
  1730. struct xhci_virt_device *xdev;
  1731. struct xhci_ring *ep_ring;
  1732. unsigned int slot_id;
  1733. int ep_index;
  1734. struct xhci_ep_ctx *ep_ctx;
  1735. u32 trb_comp_code;
  1736. u32 remaining, requested;
  1737. u32 trb_type;
  1738. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
  1739. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1740. xdev = xhci->devs[slot_id];
  1741. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1742. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1743. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1744. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1745. requested = td->urb->transfer_buffer_length;
  1746. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1747. switch (trb_comp_code) {
  1748. case COMP_SUCCESS:
  1749. if (trb_type != TRB_STATUS) {
  1750. xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
  1751. (trb_type == TRB_DATA) ? "data" : "setup");
  1752. *status = -ESHUTDOWN;
  1753. break;
  1754. }
  1755. *status = 0;
  1756. break;
  1757. case COMP_SHORT_PACKET:
  1758. *status = 0;
  1759. break;
  1760. case COMP_STOPPED_SHORT_PACKET:
  1761. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1762. td->urb->actual_length = remaining;
  1763. else
  1764. xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
  1765. goto finish_td;
  1766. case COMP_STOPPED:
  1767. switch (trb_type) {
  1768. case TRB_SETUP:
  1769. td->urb->actual_length = 0;
  1770. goto finish_td;
  1771. case TRB_DATA:
  1772. case TRB_NORMAL:
  1773. td->urb->actual_length = requested - remaining;
  1774. goto finish_td;
  1775. default:
  1776. xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
  1777. trb_type);
  1778. goto finish_td;
  1779. }
  1780. case COMP_STOPPED_LENGTH_INVALID:
  1781. goto finish_td;
  1782. default:
  1783. if (!xhci_requires_manual_halt_cleanup(xhci,
  1784. ep_ctx, trb_comp_code))
  1785. break;
  1786. xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
  1787. trb_comp_code, ep_index);
  1788. /* else fall through */
  1789. case COMP_STALL_ERROR:
  1790. /* Did we transfer part of the data (middle) phase? */
  1791. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1792. td->urb->actual_length = requested - remaining;
  1793. else if (!td->urb_length_set)
  1794. td->urb->actual_length = 0;
  1795. goto finish_td;
  1796. }
  1797. /* stopped at setup stage, no data transferred */
  1798. if (trb_type == TRB_SETUP)
  1799. goto finish_td;
  1800. /*
  1801. * if on data stage then update the actual_length of the URB and flag it
  1802. * as set, so it won't be overwritten in the event for the last TRB.
  1803. */
  1804. if (trb_type == TRB_DATA ||
  1805. trb_type == TRB_NORMAL) {
  1806. td->urb_length_set = true;
  1807. td->urb->actual_length = requested - remaining;
  1808. xhci_dbg(xhci, "Waiting for status stage event\n");
  1809. return 0;
  1810. }
  1811. /* at status stage */
  1812. if (!td->urb_length_set)
  1813. td->urb->actual_length = requested;
  1814. finish_td:
  1815. return finish_td(xhci, td, ep_trb, event, ep, status, false);
  1816. }
  1817. /*
  1818. * Process isochronous tds, update urb packet status and actual_length.
  1819. */
  1820. static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1821. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1822. struct xhci_virt_ep *ep, int *status)
  1823. {
  1824. struct xhci_ring *ep_ring;
  1825. struct urb_priv *urb_priv;
  1826. int idx;
  1827. struct usb_iso_packet_descriptor *frame;
  1828. u32 trb_comp_code;
  1829. bool sum_trbs_for_length = false;
  1830. u32 remaining, requested, ep_trb_len;
  1831. int short_framestatus;
  1832. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1833. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1834. urb_priv = td->urb->hcpriv;
  1835. idx = urb_priv->td_cnt;
  1836. frame = &td->urb->iso_frame_desc[idx];
  1837. requested = frame->length;
  1838. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1839. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1840. short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
  1841. -EREMOTEIO : 0;
  1842. /* handle completion code */
  1843. switch (trb_comp_code) {
  1844. case COMP_SUCCESS:
  1845. if (remaining) {
  1846. frame->status = short_framestatus;
  1847. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  1848. sum_trbs_for_length = true;
  1849. break;
  1850. }
  1851. frame->status = 0;
  1852. break;
  1853. case COMP_SHORT_PACKET:
  1854. frame->status = short_framestatus;
  1855. sum_trbs_for_length = true;
  1856. break;
  1857. case COMP_BANDWIDTH_OVERRUN_ERROR:
  1858. frame->status = -ECOMM;
  1859. break;
  1860. case COMP_ISOCH_BUFFER_OVERRUN:
  1861. case COMP_BABBLE_DETECTED_ERROR:
  1862. frame->status = -EOVERFLOW;
  1863. break;
  1864. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  1865. case COMP_STALL_ERROR:
  1866. frame->status = -EPROTO;
  1867. break;
  1868. case COMP_USB_TRANSACTION_ERROR:
  1869. frame->status = -EPROTO;
  1870. if (ep_trb != td->last_trb)
  1871. return 0;
  1872. break;
  1873. case COMP_STOPPED:
  1874. sum_trbs_for_length = true;
  1875. break;
  1876. case COMP_STOPPED_SHORT_PACKET:
  1877. /* field normally containing residue now contains tranferred */
  1878. frame->status = short_framestatus;
  1879. requested = remaining;
  1880. break;
  1881. case COMP_STOPPED_LENGTH_INVALID:
  1882. requested = 0;
  1883. remaining = 0;
  1884. break;
  1885. default:
  1886. sum_trbs_for_length = true;
  1887. frame->status = -1;
  1888. break;
  1889. }
  1890. if (sum_trbs_for_length)
  1891. frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1892. ep_trb_len - remaining;
  1893. else
  1894. frame->actual_length = requested;
  1895. td->urb->actual_length += frame->actual_length;
  1896. return finish_td(xhci, td, ep_trb, event, ep, status, false);
  1897. }
  1898. static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1899. struct xhci_transfer_event *event,
  1900. struct xhci_virt_ep *ep, int *status)
  1901. {
  1902. struct xhci_ring *ep_ring;
  1903. struct urb_priv *urb_priv;
  1904. struct usb_iso_packet_descriptor *frame;
  1905. int idx;
  1906. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1907. urb_priv = td->urb->hcpriv;
  1908. idx = urb_priv->td_cnt;
  1909. frame = &td->urb->iso_frame_desc[idx];
  1910. /* The transfer is partly done. */
  1911. frame->status = -EXDEV;
  1912. /* calc actual length */
  1913. frame->actual_length = 0;
  1914. /* Update ring dequeue pointer */
  1915. while (ep_ring->dequeue != td->last_trb)
  1916. inc_deq(xhci, ep_ring);
  1917. inc_deq(xhci, ep_ring);
  1918. return finish_td(xhci, td, NULL, event, ep, status, true);
  1919. }
  1920. /*
  1921. * Process bulk and interrupt tds, update urb status and actual_length.
  1922. */
  1923. static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1924. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1925. struct xhci_virt_ep *ep, int *status)
  1926. {
  1927. struct xhci_ring *ep_ring;
  1928. u32 trb_comp_code;
  1929. u32 remaining, requested, ep_trb_len;
  1930. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1931. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1932. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1933. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1934. requested = td->urb->transfer_buffer_length;
  1935. switch (trb_comp_code) {
  1936. case COMP_SUCCESS:
  1937. /* handle success with untransferred data as short packet */
  1938. if (ep_trb != td->last_trb || remaining) {
  1939. xhci_warn(xhci, "WARN Successful completion on short TX\n");
  1940. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1941. td->urb->ep->desc.bEndpointAddress,
  1942. requested, remaining);
  1943. }
  1944. *status = 0;
  1945. break;
  1946. case COMP_SHORT_PACKET:
  1947. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1948. td->urb->ep->desc.bEndpointAddress,
  1949. requested, remaining);
  1950. *status = 0;
  1951. break;
  1952. case COMP_STOPPED_SHORT_PACKET:
  1953. td->urb->actual_length = remaining;
  1954. goto finish_td;
  1955. case COMP_STOPPED_LENGTH_INVALID:
  1956. /* stopped on ep trb with invalid length, exclude it */
  1957. ep_trb_len = 0;
  1958. remaining = 0;
  1959. break;
  1960. default:
  1961. /* do nothing */
  1962. break;
  1963. }
  1964. if (ep_trb == td->last_trb)
  1965. td->urb->actual_length = requested - remaining;
  1966. else
  1967. td->urb->actual_length =
  1968. sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1969. ep_trb_len - remaining;
  1970. finish_td:
  1971. if (remaining > requested) {
  1972. xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
  1973. remaining);
  1974. td->urb->actual_length = 0;
  1975. }
  1976. return finish_td(xhci, td, ep_trb, event, ep, status, false);
  1977. }
  1978. /*
  1979. * If this function returns an error condition, it means it got a Transfer
  1980. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  1981. * At this point, the host controller is probably hosed and should be reset.
  1982. */
  1983. static int handle_tx_event(struct xhci_hcd *xhci,
  1984. struct xhci_transfer_event *event)
  1985. __releases(&xhci->lock)
  1986. __acquires(&xhci->lock)
  1987. {
  1988. struct xhci_virt_device *xdev;
  1989. struct xhci_virt_ep *ep;
  1990. struct xhci_ring *ep_ring;
  1991. unsigned int slot_id;
  1992. int ep_index;
  1993. struct xhci_td *td = NULL;
  1994. dma_addr_t ep_trb_dma;
  1995. struct xhci_segment *ep_seg;
  1996. union xhci_trb *ep_trb;
  1997. int status = -EINPROGRESS;
  1998. struct xhci_ep_ctx *ep_ctx;
  1999. struct list_head *tmp;
  2000. u32 trb_comp_code;
  2001. int td_num = 0;
  2002. bool handling_skipped_tds = false;
  2003. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  2004. xdev = xhci->devs[slot_id];
  2005. if (!xdev) {
  2006. xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
  2007. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2008. (unsigned long long) xhci_trb_virt_to_dma(
  2009. xhci->event_ring->deq_seg,
  2010. xhci->event_ring->dequeue),
  2011. lower_32_bits(le64_to_cpu(event->buffer)),
  2012. upper_32_bits(le64_to_cpu(event->buffer)),
  2013. le32_to_cpu(event->transfer_len),
  2014. le32_to_cpu(event->flags));
  2015. xhci_dbg(xhci, "Event ring:\n");
  2016. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  2017. return -ENODEV;
  2018. }
  2019. /* Endpoint ID is 1 based, our index is zero based */
  2020. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  2021. ep = &xdev->eps[ep_index];
  2022. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  2023. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2024. if (!ep_ring || GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
  2025. xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
  2026. "or incorrect stream ring\n");
  2027. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2028. (unsigned long long) xhci_trb_virt_to_dma(
  2029. xhci->event_ring->deq_seg,
  2030. xhci->event_ring->dequeue),
  2031. lower_32_bits(le64_to_cpu(event->buffer)),
  2032. upper_32_bits(le64_to_cpu(event->buffer)),
  2033. le32_to_cpu(event->transfer_len),
  2034. le32_to_cpu(event->flags));
  2035. xhci_dbg(xhci, "Event ring:\n");
  2036. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  2037. return -ENODEV;
  2038. }
  2039. /* Count current td numbers if ep->skip is set */
  2040. if (ep->skip) {
  2041. list_for_each(tmp, &ep_ring->td_list)
  2042. td_num++;
  2043. }
  2044. ep_trb_dma = le64_to_cpu(event->buffer);
  2045. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  2046. /* Look for common error cases */
  2047. switch (trb_comp_code) {
  2048. /* Skip codes that require special handling depending on
  2049. * transfer type
  2050. */
  2051. case COMP_SUCCESS:
  2052. if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
  2053. break;
  2054. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  2055. trb_comp_code = COMP_SHORT_PACKET;
  2056. else
  2057. xhci_warn_ratelimited(xhci,
  2058. "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
  2059. case COMP_SHORT_PACKET:
  2060. break;
  2061. case COMP_STOPPED:
  2062. xhci_dbg(xhci, "Stopped on Transfer TRB\n");
  2063. break;
  2064. case COMP_STOPPED_LENGTH_INVALID:
  2065. xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
  2066. break;
  2067. case COMP_STOPPED_SHORT_PACKET:
  2068. xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
  2069. break;
  2070. case COMP_STALL_ERROR:
  2071. xhci_dbg(xhci, "Stalled endpoint\n");
  2072. ep->ep_state |= EP_HALTED;
  2073. status = -EPIPE;
  2074. break;
  2075. case COMP_TRB_ERROR:
  2076. xhci_warn(xhci, "WARN: TRB error on endpoint\n");
  2077. status = -EILSEQ;
  2078. break;
  2079. case COMP_SPLIT_TRANSACTION_ERROR:
  2080. case COMP_USB_TRANSACTION_ERROR:
  2081. xhci_dbg(xhci, "Transfer error on endpoint\n");
  2082. status = -EPROTO;
  2083. break;
  2084. case COMP_BABBLE_DETECTED_ERROR:
  2085. xhci_dbg(xhci, "Babble error on endpoint\n");
  2086. status = -EOVERFLOW;
  2087. break;
  2088. case COMP_DATA_BUFFER_ERROR:
  2089. xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
  2090. status = -ENOSR;
  2091. break;
  2092. case COMP_BANDWIDTH_OVERRUN_ERROR:
  2093. xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
  2094. break;
  2095. case COMP_ISOCH_BUFFER_OVERRUN:
  2096. xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
  2097. break;
  2098. case COMP_RING_UNDERRUN:
  2099. /*
  2100. * When the Isoch ring is empty, the xHC will generate
  2101. * a Ring Overrun Event for IN Isoch endpoint or Ring
  2102. * Underrun Event for OUT Isoch endpoint.
  2103. */
  2104. xhci_dbg(xhci, "underrun event on endpoint\n");
  2105. if (!list_empty(&ep_ring->td_list))
  2106. xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
  2107. "still with TDs queued?\n",
  2108. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2109. ep_index);
  2110. goto cleanup;
  2111. case COMP_RING_OVERRUN:
  2112. xhci_dbg(xhci, "overrun event on endpoint\n");
  2113. if (!list_empty(&ep_ring->td_list))
  2114. xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
  2115. "still with TDs queued?\n",
  2116. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2117. ep_index);
  2118. goto cleanup;
  2119. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  2120. xhci_warn(xhci, "WARN: detect an incompatible device");
  2121. status = -EPROTO;
  2122. break;
  2123. case COMP_MISSED_SERVICE_ERROR:
  2124. /*
  2125. * When encounter missed service error, one or more isoc tds
  2126. * may be missed by xHC.
  2127. * Set skip flag of the ep_ring; Complete the missed tds as
  2128. * short transfer when process the ep_ring next time.
  2129. */
  2130. ep->skip = true;
  2131. xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
  2132. goto cleanup;
  2133. case COMP_NO_PING_RESPONSE_ERROR:
  2134. ep->skip = true;
  2135. xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
  2136. goto cleanup;
  2137. default:
  2138. if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
  2139. status = 0;
  2140. break;
  2141. }
  2142. xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
  2143. trb_comp_code);
  2144. goto cleanup;
  2145. }
  2146. do {
  2147. /* This TRB should be in the TD at the head of this ring's
  2148. * TD list.
  2149. */
  2150. if (list_empty(&ep_ring->td_list)) {
  2151. /*
  2152. * A stopped endpoint may generate an extra completion
  2153. * event if the device was suspended. Don't print
  2154. * warnings.
  2155. */
  2156. if (!(trb_comp_code == COMP_STOPPED ||
  2157. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2158. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  2159. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2160. ep_index);
  2161. xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
  2162. (le32_to_cpu(event->flags) &
  2163. TRB_TYPE_BITMASK)>>10);
  2164. xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
  2165. }
  2166. if (ep->skip) {
  2167. ep->skip = false;
  2168. xhci_dbg(xhci, "td_list is empty while skip "
  2169. "flag set. Clear skip flag.\n");
  2170. }
  2171. goto cleanup;
  2172. }
  2173. /* We've skipped all the TDs on the ep ring when ep->skip set */
  2174. if (ep->skip && td_num == 0) {
  2175. ep->skip = false;
  2176. xhci_dbg(xhci, "All tds on the ep_ring skipped. "
  2177. "Clear skip flag.\n");
  2178. goto cleanup;
  2179. }
  2180. td = list_first_entry(&ep_ring->td_list, struct xhci_td,
  2181. td_list);
  2182. if (ep->skip)
  2183. td_num--;
  2184. /* Is this a TRB in the currently executing TD? */
  2185. ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
  2186. td->last_trb, ep_trb_dma, false);
  2187. /*
  2188. * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
  2189. * is not in the current TD pointed by ep_ring->dequeue because
  2190. * that the hardware dequeue pointer still at the previous TRB
  2191. * of the current TD. The previous TRB maybe a Link TD or the
  2192. * last TRB of the previous TD. The command completion handle
  2193. * will take care the rest.
  2194. */
  2195. if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
  2196. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2197. goto cleanup;
  2198. }
  2199. if (!ep_seg) {
  2200. if (!ep->skip ||
  2201. !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
  2202. /* Some host controllers give a spurious
  2203. * successful event after a short transfer.
  2204. * Ignore it.
  2205. */
  2206. if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
  2207. ep_ring->last_td_was_short) {
  2208. ep_ring->last_td_was_short = false;
  2209. goto cleanup;
  2210. }
  2211. /* HC is busted, give up! */
  2212. xhci_err(xhci,
  2213. "ERROR Transfer event TRB DMA ptr not "
  2214. "part of current TD ep_index %d "
  2215. "comp_code %u\n", ep_index,
  2216. trb_comp_code);
  2217. trb_in_td(xhci, ep_ring->deq_seg,
  2218. ep_ring->dequeue, td->last_trb,
  2219. ep_trb_dma, true);
  2220. return -ESHUTDOWN;
  2221. }
  2222. skip_isoc_td(xhci, td, event, ep, &status);
  2223. goto cleanup;
  2224. }
  2225. if (trb_comp_code == COMP_SHORT_PACKET)
  2226. ep_ring->last_td_was_short = true;
  2227. else
  2228. ep_ring->last_td_was_short = false;
  2229. if (ep->skip) {
  2230. xhci_dbg(xhci, "Found td. Clear skip flag.\n");
  2231. ep->skip = false;
  2232. }
  2233. ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
  2234. sizeof(*ep_trb)];
  2235. /*
  2236. * No-op TRB should not trigger interrupts.
  2237. * If ep_trb is a no-op TRB, it means the
  2238. * corresponding TD has been cancelled. Just ignore
  2239. * the TD.
  2240. */
  2241. if (trb_is_noop(ep_trb)) {
  2242. xhci_dbg(xhci, "ep_trb is a no-op TRB. Skip it\n");
  2243. goto cleanup;
  2244. }
  2245. /* update the urb's actual_length and give back to the core */
  2246. if (usb_endpoint_xfer_control(&td->urb->ep->desc))
  2247. process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
  2248. else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
  2249. process_isoc_td(xhci, td, ep_trb, event, ep, &status);
  2250. else
  2251. process_bulk_intr_td(xhci, td, ep_trb, event, ep,
  2252. &status);
  2253. cleanup:
  2254. handling_skipped_tds = ep->skip &&
  2255. trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
  2256. trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
  2257. /*
  2258. * Do not update event ring dequeue pointer if we're in a loop
  2259. * processing missed tds.
  2260. */
  2261. if (!handling_skipped_tds)
  2262. inc_deq(xhci, xhci->event_ring);
  2263. /*
  2264. * If ep->skip is set, it means there are missed tds on the
  2265. * endpoint ring need to take care of.
  2266. * Process them as short transfer until reach the td pointed by
  2267. * the event.
  2268. */
  2269. } while (handling_skipped_tds);
  2270. return 0;
  2271. }
  2272. /*
  2273. * This function handles all OS-owned events on the event ring. It may drop
  2274. * xhci->lock between event processing (e.g. to pass up port status changes).
  2275. * Returns >0 for "possibly more events to process" (caller should call again),
  2276. * otherwise 0 if done. In future, <0 returns should indicate error code.
  2277. */
  2278. static int xhci_handle_event(struct xhci_hcd *xhci)
  2279. {
  2280. union xhci_trb *event;
  2281. int update_ptrs = 1;
  2282. int ret;
  2283. /* Event ring hasn't been allocated yet. */
  2284. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  2285. xhci_err(xhci, "ERROR event ring not ready\n");
  2286. return -ENOMEM;
  2287. }
  2288. event = xhci->event_ring->dequeue;
  2289. /* Does the HC or OS own the TRB? */
  2290. if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
  2291. xhci->event_ring->cycle_state)
  2292. return 0;
  2293. /*
  2294. * Barrier between reading the TRB_CYCLE (valid) flag above and any
  2295. * speculative reads of the event's flags/data below.
  2296. */
  2297. rmb();
  2298. /* FIXME: Handle more event types. */
  2299. switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
  2300. case TRB_TYPE(TRB_COMPLETION):
  2301. handle_cmd_completion(xhci, &event->event_cmd);
  2302. break;
  2303. case TRB_TYPE(TRB_PORT_STATUS):
  2304. handle_port_status(xhci, event);
  2305. update_ptrs = 0;
  2306. break;
  2307. case TRB_TYPE(TRB_TRANSFER):
  2308. ret = handle_tx_event(xhci, &event->trans_event);
  2309. if (ret >= 0)
  2310. update_ptrs = 0;
  2311. break;
  2312. case TRB_TYPE(TRB_DEV_NOTE):
  2313. handle_device_notification(xhci, event);
  2314. break;
  2315. default:
  2316. if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
  2317. TRB_TYPE(48))
  2318. handle_vendor_event(xhci, event);
  2319. else
  2320. xhci_warn(xhci, "ERROR unknown event type %d\n",
  2321. TRB_FIELD_TO_TYPE(
  2322. le32_to_cpu(event->event_cmd.flags)));
  2323. }
  2324. /* Any of the above functions may drop and re-acquire the lock, so check
  2325. * to make sure a watchdog timer didn't mark the host as non-responsive.
  2326. */
  2327. if (xhci->xhc_state & XHCI_STATE_DYING) {
  2328. xhci_dbg(xhci, "xHCI host dying, returning from "
  2329. "event handler.\n");
  2330. return 0;
  2331. }
  2332. if (update_ptrs)
  2333. /* Update SW event ring dequeue pointer */
  2334. inc_deq(xhci, xhci->event_ring);
  2335. /* Are there more items on the event ring? Caller will call us again to
  2336. * check.
  2337. */
  2338. return 1;
  2339. }
  2340. /*
  2341. * xHCI spec says we can get an interrupt, and if the HC has an error condition,
  2342. * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
  2343. * indicators of an event TRB error, but we check the status *first* to be safe.
  2344. */
  2345. irqreturn_t xhci_irq(struct usb_hcd *hcd)
  2346. {
  2347. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2348. union xhci_trb *event_ring_deq;
  2349. irqreturn_t ret = IRQ_NONE;
  2350. dma_addr_t deq;
  2351. u64 temp_64;
  2352. u32 status;
  2353. spin_lock(&xhci->lock);
  2354. /* Check if the xHC generated the interrupt, or the irq is shared */
  2355. status = readl(&xhci->op_regs->status);
  2356. if (status == 0xffffffff) {
  2357. ret = IRQ_HANDLED;
  2358. goto out;
  2359. }
  2360. if (!(status & STS_EINT))
  2361. goto out;
  2362. if (status & STS_FATAL) {
  2363. xhci_warn(xhci, "WARNING: Host System Error\n");
  2364. xhci_halt(xhci);
  2365. ret = IRQ_HANDLED;
  2366. goto out;
  2367. }
  2368. /*
  2369. * Clear the op reg interrupt status first,
  2370. * so we can receive interrupts from other MSI-X interrupters.
  2371. * Write 1 to clear the interrupt status.
  2372. */
  2373. status |= STS_EINT;
  2374. writel(status, &xhci->op_regs->status);
  2375. /* FIXME when MSI-X is supported and there are multiple vectors */
  2376. /* Clear the MSI-X event interrupt status */
  2377. if (hcd->irq) {
  2378. u32 irq_pending;
  2379. /* Acknowledge the PCI interrupt */
  2380. irq_pending = readl(&xhci->ir_set->irq_pending);
  2381. irq_pending |= IMAN_IP;
  2382. writel(irq_pending, &xhci->ir_set->irq_pending);
  2383. }
  2384. if (xhci->xhc_state & XHCI_STATE_DYING ||
  2385. xhci->xhc_state & XHCI_STATE_HALTED) {
  2386. xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
  2387. "Shouldn't IRQs be disabled?\n");
  2388. /* Clear the event handler busy flag (RW1C);
  2389. * the event ring should be empty.
  2390. */
  2391. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2392. xhci_write_64(xhci, temp_64 | ERST_EHB,
  2393. &xhci->ir_set->erst_dequeue);
  2394. ret = IRQ_HANDLED;
  2395. goto out;
  2396. }
  2397. event_ring_deq = xhci->event_ring->dequeue;
  2398. /* FIXME this should be a delayed service routine
  2399. * that clears the EHB.
  2400. */
  2401. while (xhci_handle_event(xhci) > 0) {}
  2402. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2403. /* If necessary, update the HW's version of the event ring deq ptr. */
  2404. if (event_ring_deq != xhci->event_ring->dequeue) {
  2405. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  2406. xhci->event_ring->dequeue);
  2407. if (deq == 0)
  2408. xhci_warn(xhci, "WARN something wrong with SW event "
  2409. "ring dequeue ptr.\n");
  2410. /* Update HC event ring dequeue pointer */
  2411. temp_64 &= ERST_PTR_MASK;
  2412. temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
  2413. }
  2414. /* Clear the event handler busy flag (RW1C); event ring is empty. */
  2415. temp_64 |= ERST_EHB;
  2416. xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
  2417. ret = IRQ_HANDLED;
  2418. out:
  2419. spin_unlock(&xhci->lock);
  2420. return ret;
  2421. }
  2422. irqreturn_t xhci_msi_irq(int irq, void *hcd)
  2423. {
  2424. return xhci_irq(hcd);
  2425. }
  2426. /**** Endpoint Ring Operations ****/
  2427. /*
  2428. * Generic function for queueing a TRB on a ring.
  2429. * The caller must have checked to make sure there's room on the ring.
  2430. *
  2431. * @more_trbs_coming: Will you enqueue more TRBs before calling
  2432. * prepare_transfer()?
  2433. */
  2434. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  2435. bool more_trbs_coming,
  2436. u32 field1, u32 field2, u32 field3, u32 field4)
  2437. {
  2438. struct xhci_generic_trb *trb;
  2439. trb = &ring->enqueue->generic;
  2440. trb->field[0] = cpu_to_le32(field1);
  2441. trb->field[1] = cpu_to_le32(field2);
  2442. trb->field[2] = cpu_to_le32(field3);
  2443. trb->field[3] = cpu_to_le32(field4);
  2444. inc_enq(xhci, ring, more_trbs_coming);
  2445. }
  2446. /*
  2447. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  2448. * FIXME allocate segments if the ring is full.
  2449. */
  2450. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  2451. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  2452. {
  2453. unsigned int num_trbs_needed;
  2454. /* Make sure the endpoint has been added to xHC schedule */
  2455. switch (ep_state) {
  2456. case EP_STATE_DISABLED:
  2457. /*
  2458. * USB core changed config/interfaces without notifying us,
  2459. * or hardware is reporting the wrong state.
  2460. */
  2461. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  2462. return -ENOENT;
  2463. case EP_STATE_ERROR:
  2464. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  2465. /* FIXME event handling code for error needs to clear it */
  2466. /* XXX not sure if this should be -ENOENT or not */
  2467. return -EINVAL;
  2468. case EP_STATE_HALTED:
  2469. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  2470. case EP_STATE_STOPPED:
  2471. case EP_STATE_RUNNING:
  2472. break;
  2473. default:
  2474. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  2475. /*
  2476. * FIXME issue Configure Endpoint command to try to get the HC
  2477. * back into a known state.
  2478. */
  2479. return -EINVAL;
  2480. }
  2481. while (1) {
  2482. if (room_on_ring(xhci, ep_ring, num_trbs))
  2483. break;
  2484. if (ep_ring == xhci->cmd_ring) {
  2485. xhci_err(xhci, "Do not support expand command ring\n");
  2486. return -ENOMEM;
  2487. }
  2488. xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
  2489. "ERROR no room on ep ring, try ring expansion");
  2490. num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
  2491. if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
  2492. mem_flags)) {
  2493. xhci_err(xhci, "Ring expansion failed\n");
  2494. return -ENOMEM;
  2495. }
  2496. }
  2497. while (trb_is_link(ep_ring->enqueue)) {
  2498. /* If we're not dealing with 0.95 hardware or isoc rings
  2499. * on AMD 0.96 host, clear the chain bit.
  2500. */
  2501. if (!xhci_link_trb_quirk(xhci) &&
  2502. !(ep_ring->type == TYPE_ISOC &&
  2503. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  2504. ep_ring->enqueue->link.control &=
  2505. cpu_to_le32(~TRB_CHAIN);
  2506. else
  2507. ep_ring->enqueue->link.control |=
  2508. cpu_to_le32(TRB_CHAIN);
  2509. wmb();
  2510. ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
  2511. /* Toggle the cycle bit after the last ring segment. */
  2512. if (link_trb_toggles_cycle(ep_ring->enqueue))
  2513. ep_ring->cycle_state ^= 1;
  2514. ep_ring->enq_seg = ep_ring->enq_seg->next;
  2515. ep_ring->enqueue = ep_ring->enq_seg->trbs;
  2516. }
  2517. return 0;
  2518. }
  2519. static int prepare_transfer(struct xhci_hcd *xhci,
  2520. struct xhci_virt_device *xdev,
  2521. unsigned int ep_index,
  2522. unsigned int stream_id,
  2523. unsigned int num_trbs,
  2524. struct urb *urb,
  2525. unsigned int td_index,
  2526. gfp_t mem_flags)
  2527. {
  2528. int ret;
  2529. struct urb_priv *urb_priv;
  2530. struct xhci_td *td;
  2531. struct xhci_ring *ep_ring;
  2532. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2533. ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
  2534. if (!ep_ring) {
  2535. xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
  2536. stream_id);
  2537. return -EINVAL;
  2538. }
  2539. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  2540. num_trbs, mem_flags);
  2541. if (ret)
  2542. return ret;
  2543. urb_priv = urb->hcpriv;
  2544. td = urb_priv->td[td_index];
  2545. INIT_LIST_HEAD(&td->td_list);
  2546. INIT_LIST_HEAD(&td->cancelled_td_list);
  2547. if (td_index == 0) {
  2548. ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
  2549. if (unlikely(ret))
  2550. return ret;
  2551. }
  2552. td->urb = urb;
  2553. /* Add this TD to the tail of the endpoint ring's TD list */
  2554. list_add_tail(&td->td_list, &ep_ring->td_list);
  2555. td->start_seg = ep_ring->enq_seg;
  2556. td->first_trb = ep_ring->enqueue;
  2557. return 0;
  2558. }
  2559. static unsigned int count_trbs(u64 addr, u64 len)
  2560. {
  2561. unsigned int num_trbs;
  2562. num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
  2563. TRB_MAX_BUFF_SIZE);
  2564. if (num_trbs == 0)
  2565. num_trbs++;
  2566. return num_trbs;
  2567. }
  2568. static inline unsigned int count_trbs_needed(struct urb *urb)
  2569. {
  2570. return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
  2571. }
  2572. static unsigned int count_sg_trbs_needed(struct urb *urb)
  2573. {
  2574. struct scatterlist *sg;
  2575. unsigned int i, len, full_len, num_trbs = 0;
  2576. full_len = urb->transfer_buffer_length;
  2577. for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
  2578. len = sg_dma_len(sg);
  2579. num_trbs += count_trbs(sg_dma_address(sg), len);
  2580. len = min_t(unsigned int, len, full_len);
  2581. full_len -= len;
  2582. if (full_len == 0)
  2583. break;
  2584. }
  2585. return num_trbs;
  2586. }
  2587. static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
  2588. {
  2589. u64 addr, len;
  2590. addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
  2591. len = urb->iso_frame_desc[i].length;
  2592. return count_trbs(addr, len);
  2593. }
  2594. static void check_trb_math(struct urb *urb, int running_total)
  2595. {
  2596. if (unlikely(running_total != urb->transfer_buffer_length))
  2597. dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  2598. "queued %#x (%d), asked for %#x (%d)\n",
  2599. __func__,
  2600. urb->ep->desc.bEndpointAddress,
  2601. running_total, running_total,
  2602. urb->transfer_buffer_length,
  2603. urb->transfer_buffer_length);
  2604. }
  2605. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  2606. unsigned int ep_index, unsigned int stream_id, int start_cycle,
  2607. struct xhci_generic_trb *start_trb)
  2608. {
  2609. /*
  2610. * Pass all the TRBs to the hardware at once and make sure this write
  2611. * isn't reordered.
  2612. */
  2613. wmb();
  2614. if (start_cycle)
  2615. start_trb->field[3] |= cpu_to_le32(start_cycle);
  2616. else
  2617. start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
  2618. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
  2619. }
  2620. static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
  2621. struct xhci_ep_ctx *ep_ctx)
  2622. {
  2623. int xhci_interval;
  2624. int ep_interval;
  2625. xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
  2626. ep_interval = urb->interval;
  2627. /* Convert to microframes */
  2628. if (urb->dev->speed == USB_SPEED_LOW ||
  2629. urb->dev->speed == USB_SPEED_FULL)
  2630. ep_interval *= 8;
  2631. /* FIXME change this to a warning and a suggestion to use the new API
  2632. * to set the polling interval (once the API is added).
  2633. */
  2634. if (xhci_interval != ep_interval) {
  2635. dev_dbg_ratelimited(&urb->dev->dev,
  2636. "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
  2637. ep_interval, ep_interval == 1 ? "" : "s",
  2638. xhci_interval, xhci_interval == 1 ? "" : "s");
  2639. urb->interval = xhci_interval;
  2640. /* Convert back to frames for LS/FS devices */
  2641. if (urb->dev->speed == USB_SPEED_LOW ||
  2642. urb->dev->speed == USB_SPEED_FULL)
  2643. urb->interval /= 8;
  2644. }
  2645. }
  2646. /*
  2647. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  2648. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  2649. * (comprised of sg list entries) can take several service intervals to
  2650. * transmit.
  2651. */
  2652. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2653. struct urb *urb, int slot_id, unsigned int ep_index)
  2654. {
  2655. struct xhci_ep_ctx *ep_ctx;
  2656. ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
  2657. check_interval(xhci, urb, ep_ctx);
  2658. return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
  2659. }
  2660. /*
  2661. * For xHCI 1.0 host controllers, TD size is the number of max packet sized
  2662. * packets remaining in the TD (*not* including this TRB).
  2663. *
  2664. * Total TD packet count = total_packet_count =
  2665. * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
  2666. *
  2667. * Packets transferred up to and including this TRB = packets_transferred =
  2668. * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
  2669. *
  2670. * TD size = total_packet_count - packets_transferred
  2671. *
  2672. * For xHCI 0.96 and older, TD size field should be the remaining bytes
  2673. * including this TRB, right shifted by 10
  2674. *
  2675. * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
  2676. * This is taken care of in the TRB_TD_SIZE() macro
  2677. *
  2678. * The last TRB in a TD must have the TD size set to zero.
  2679. */
  2680. static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
  2681. int trb_buff_len, unsigned int td_total_len,
  2682. struct urb *urb, bool more_trbs_coming)
  2683. {
  2684. u32 maxp, total_packet_count;
  2685. /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
  2686. if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
  2687. return ((td_total_len - transferred) >> 10);
  2688. /* One TRB with a zero-length data packet. */
  2689. if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
  2690. trb_buff_len == td_total_len)
  2691. return 0;
  2692. /* for MTK xHCI, TD size doesn't include this TRB */
  2693. if (xhci->quirks & XHCI_MTK_HOST)
  2694. trb_buff_len = 0;
  2695. maxp = usb_endpoint_maxp(&urb->ep->desc);
  2696. total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
  2697. /* Queueing functions don't count the current TRB into transferred */
  2698. return (total_packet_count - ((transferred + trb_buff_len) / maxp));
  2699. }
  2700. static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
  2701. u32 *trb_buff_len, struct xhci_segment *seg)
  2702. {
  2703. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2704. unsigned int unalign;
  2705. unsigned int max_pkt;
  2706. u32 new_buff_len;
  2707. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  2708. unalign = (enqd_len + *trb_buff_len) % max_pkt;
  2709. /* we got lucky, last normal TRB data on segment is packet aligned */
  2710. if (unalign == 0)
  2711. return 0;
  2712. xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
  2713. unalign, *trb_buff_len);
  2714. /* is the last nornal TRB alignable by splitting it */
  2715. if (*trb_buff_len > unalign) {
  2716. *trb_buff_len -= unalign;
  2717. xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
  2718. return 0;
  2719. }
  2720. /*
  2721. * We want enqd_len + trb_buff_len to sum up to a number aligned to
  2722. * number which is divisible by the endpoint's wMaxPacketSize. IOW:
  2723. * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
  2724. */
  2725. new_buff_len = max_pkt - (enqd_len % max_pkt);
  2726. if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
  2727. new_buff_len = (urb->transfer_buffer_length - enqd_len);
  2728. /* create a max max_pkt sized bounce buffer pointed to by last trb */
  2729. if (usb_urb_dir_out(urb)) {
  2730. sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
  2731. seg->bounce_buf, new_buff_len, enqd_len);
  2732. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2733. max_pkt, DMA_TO_DEVICE);
  2734. } else {
  2735. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2736. max_pkt, DMA_FROM_DEVICE);
  2737. }
  2738. if (dma_mapping_error(dev, seg->bounce_dma)) {
  2739. /* try without aligning. Some host controllers survive */
  2740. xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
  2741. return 0;
  2742. }
  2743. *trb_buff_len = new_buff_len;
  2744. seg->bounce_len = new_buff_len;
  2745. seg->bounce_offs = enqd_len;
  2746. xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
  2747. return 1;
  2748. }
  2749. /* This is very similar to what ehci-q.c qtd_fill() does */
  2750. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2751. struct urb *urb, int slot_id, unsigned int ep_index)
  2752. {
  2753. struct xhci_ring *ring;
  2754. struct urb_priv *urb_priv;
  2755. struct xhci_td *td;
  2756. struct xhci_generic_trb *start_trb;
  2757. struct scatterlist *sg = NULL;
  2758. bool more_trbs_coming = true;
  2759. bool need_zero_pkt = false;
  2760. bool first_trb = true;
  2761. unsigned int num_trbs;
  2762. unsigned int start_cycle, num_sgs = 0;
  2763. unsigned int enqd_len, block_len, trb_buff_len, full_len;
  2764. int sent_len, ret;
  2765. u32 field, length_field, remainder;
  2766. u64 addr, send_addr;
  2767. ring = xhci_urb_to_transfer_ring(xhci, urb);
  2768. if (!ring)
  2769. return -EINVAL;
  2770. full_len = urb->transfer_buffer_length;
  2771. /* If we have scatter/gather list, we use it. */
  2772. if (urb->num_sgs) {
  2773. num_sgs = urb->num_mapped_sgs;
  2774. sg = urb->sg;
  2775. addr = (u64) sg_dma_address(sg);
  2776. block_len = sg_dma_len(sg);
  2777. num_trbs = count_sg_trbs_needed(urb);
  2778. } else {
  2779. num_trbs = count_trbs_needed(urb);
  2780. addr = (u64) urb->transfer_dma;
  2781. block_len = full_len;
  2782. }
  2783. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2784. ep_index, urb->stream_id,
  2785. num_trbs, urb, 0, mem_flags);
  2786. if (unlikely(ret < 0))
  2787. return ret;
  2788. urb_priv = urb->hcpriv;
  2789. /* Deal with URB_ZERO_PACKET - need one more td/trb */
  2790. if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length > 1)
  2791. need_zero_pkt = true;
  2792. td = urb_priv->td[0];
  2793. /*
  2794. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2795. * until we've finished creating all the other TRBs. The ring's cycle
  2796. * state may change as we enqueue the other TRBs, so save it too.
  2797. */
  2798. start_trb = &ring->enqueue->generic;
  2799. start_cycle = ring->cycle_state;
  2800. send_addr = addr;
  2801. /* Queue the TRBs, even if they are zero-length */
  2802. for (enqd_len = 0; first_trb || enqd_len < full_len;
  2803. enqd_len += trb_buff_len) {
  2804. field = TRB_TYPE(TRB_NORMAL);
  2805. /* TRB buffer should not cross 64KB boundaries */
  2806. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  2807. trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
  2808. if (enqd_len + trb_buff_len > full_len)
  2809. trb_buff_len = full_len - enqd_len;
  2810. /* Don't change the cycle bit of the first TRB until later */
  2811. if (first_trb) {
  2812. first_trb = false;
  2813. if (start_cycle == 0)
  2814. field |= TRB_CYCLE;
  2815. } else
  2816. field |= ring->cycle_state;
  2817. /* Chain all the TRBs together; clear the chain bit in the last
  2818. * TRB to indicate it's the last TRB in the chain.
  2819. */
  2820. if (enqd_len + trb_buff_len < full_len) {
  2821. field |= TRB_CHAIN;
  2822. if (trb_is_link(ring->enqueue + 1)) {
  2823. if (xhci_align_td(xhci, urb, enqd_len,
  2824. &trb_buff_len,
  2825. ring->enq_seg)) {
  2826. send_addr = ring->enq_seg->bounce_dma;
  2827. /* assuming TD won't span 2 segs */
  2828. td->bounce_seg = ring->enq_seg;
  2829. }
  2830. }
  2831. }
  2832. if (enqd_len + trb_buff_len >= full_len) {
  2833. field &= ~TRB_CHAIN;
  2834. field |= TRB_IOC;
  2835. more_trbs_coming = false;
  2836. td->last_trb = ring->enqueue;
  2837. }
  2838. /* Only set interrupt on short packet for IN endpoints */
  2839. if (usb_urb_dir_in(urb))
  2840. field |= TRB_ISP;
  2841. /* Set the TRB length, TD size, and interrupter fields. */
  2842. remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
  2843. full_len, urb, more_trbs_coming);
  2844. length_field = TRB_LEN(trb_buff_len) |
  2845. TRB_TD_SIZE(remainder) |
  2846. TRB_INTR_TARGET(0);
  2847. queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
  2848. lower_32_bits(send_addr),
  2849. upper_32_bits(send_addr),
  2850. length_field,
  2851. field);
  2852. addr += trb_buff_len;
  2853. sent_len = trb_buff_len;
  2854. while (sg && sent_len >= block_len) {
  2855. /* New sg entry */
  2856. --num_sgs;
  2857. sent_len -= block_len;
  2858. if (num_sgs != 0) {
  2859. sg = sg_next(sg);
  2860. block_len = sg_dma_len(sg);
  2861. addr = (u64) sg_dma_address(sg);
  2862. addr += sent_len;
  2863. }
  2864. }
  2865. block_len -= sent_len;
  2866. send_addr = addr;
  2867. }
  2868. if (need_zero_pkt) {
  2869. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2870. ep_index, urb->stream_id,
  2871. 1, urb, 1, mem_flags);
  2872. urb_priv->td[1]->last_trb = ring->enqueue;
  2873. field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
  2874. queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
  2875. }
  2876. check_trb_math(urb, enqd_len);
  2877. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  2878. start_cycle, start_trb);
  2879. return 0;
  2880. }
  2881. /* Caller must have locked xhci->lock */
  2882. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2883. struct urb *urb, int slot_id, unsigned int ep_index)
  2884. {
  2885. struct xhci_ring *ep_ring;
  2886. int num_trbs;
  2887. int ret;
  2888. struct usb_ctrlrequest *setup;
  2889. struct xhci_generic_trb *start_trb;
  2890. int start_cycle;
  2891. u32 field;
  2892. struct urb_priv *urb_priv;
  2893. struct xhci_td *td;
  2894. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  2895. if (!ep_ring)
  2896. return -EINVAL;
  2897. /*
  2898. * Need to copy setup packet into setup TRB, so we can't use the setup
  2899. * DMA address.
  2900. */
  2901. if (!urb->setup_packet)
  2902. return -EINVAL;
  2903. /* 1 TRB for setup, 1 for status */
  2904. num_trbs = 2;
  2905. /*
  2906. * Don't need to check if we need additional event data and normal TRBs,
  2907. * since data in control transfers will never get bigger than 16MB
  2908. * XXX: can we get a buffer that crosses 64KB boundaries?
  2909. */
  2910. if (urb->transfer_buffer_length > 0)
  2911. num_trbs++;
  2912. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2913. ep_index, urb->stream_id,
  2914. num_trbs, urb, 0, mem_flags);
  2915. if (ret < 0)
  2916. return ret;
  2917. urb_priv = urb->hcpriv;
  2918. td = urb_priv->td[0];
  2919. /*
  2920. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2921. * until we've finished creating all the other TRBs. The ring's cycle
  2922. * state may change as we enqueue the other TRBs, so save it too.
  2923. */
  2924. start_trb = &ep_ring->enqueue->generic;
  2925. start_cycle = ep_ring->cycle_state;
  2926. /* Queue setup TRB - see section 6.4.1.2.1 */
  2927. /* FIXME better way to translate setup_packet into two u32 fields? */
  2928. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  2929. field = 0;
  2930. field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
  2931. if (start_cycle == 0)
  2932. field |= 0x1;
  2933. /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
  2934. if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
  2935. if (urb->transfer_buffer_length > 0) {
  2936. if (setup->bRequestType & USB_DIR_IN)
  2937. field |= TRB_TX_TYPE(TRB_DATA_IN);
  2938. else
  2939. field |= TRB_TX_TYPE(TRB_DATA_OUT);
  2940. }
  2941. }
  2942. queue_trb(xhci, ep_ring, true,
  2943. setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
  2944. le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
  2945. TRB_LEN(8) | TRB_INTR_TARGET(0),
  2946. /* Immediate data in pointer */
  2947. field);
  2948. /* If there's data, queue data TRBs */
  2949. /* Only set interrupt on short packet for IN endpoints */
  2950. if (usb_urb_dir_in(urb))
  2951. field = TRB_ISP | TRB_TYPE(TRB_DATA);
  2952. else
  2953. field = TRB_TYPE(TRB_DATA);
  2954. if (urb->transfer_buffer_length > 0) {
  2955. u32 length_field, remainder;
  2956. remainder = xhci_td_remainder(xhci, 0,
  2957. urb->transfer_buffer_length,
  2958. urb->transfer_buffer_length,
  2959. urb, 1);
  2960. length_field = TRB_LEN(urb->transfer_buffer_length) |
  2961. TRB_TD_SIZE(remainder) |
  2962. TRB_INTR_TARGET(0);
  2963. if (setup->bRequestType & USB_DIR_IN)
  2964. field |= TRB_DIR_IN;
  2965. queue_trb(xhci, ep_ring, true,
  2966. lower_32_bits(urb->transfer_dma),
  2967. upper_32_bits(urb->transfer_dma),
  2968. length_field,
  2969. field | ep_ring->cycle_state);
  2970. }
  2971. /* Save the DMA address of the last TRB in the TD */
  2972. td->last_trb = ep_ring->enqueue;
  2973. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  2974. /* If the device sent data, the status stage is an OUT transfer */
  2975. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  2976. field = 0;
  2977. else
  2978. field = TRB_DIR_IN;
  2979. queue_trb(xhci, ep_ring, false,
  2980. 0,
  2981. 0,
  2982. TRB_INTR_TARGET(0),
  2983. /* Event on completion */
  2984. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  2985. giveback_first_trb(xhci, slot_id, ep_index, 0,
  2986. start_cycle, start_trb);
  2987. return 0;
  2988. }
  2989. /*
  2990. * The transfer burst count field of the isochronous TRB defines the number of
  2991. * bursts that are required to move all packets in this TD. Only SuperSpeed
  2992. * devices can burst up to bMaxBurst number of packets per service interval.
  2993. * This field is zero based, meaning a value of zero in the field means one
  2994. * burst. Basically, for everything but SuperSpeed devices, this field will be
  2995. * zero. Only xHCI 1.0 host controllers support this field.
  2996. */
  2997. static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
  2998. struct urb *urb, unsigned int total_packet_count)
  2999. {
  3000. unsigned int max_burst;
  3001. if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
  3002. return 0;
  3003. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3004. return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
  3005. }
  3006. /*
  3007. * Returns the number of packets in the last "burst" of packets. This field is
  3008. * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
  3009. * the last burst packet count is equal to the total number of packets in the
  3010. * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
  3011. * must contain (bMaxBurst + 1) number of packets, but the last burst can
  3012. * contain 1 to (bMaxBurst + 1) packets.
  3013. */
  3014. static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
  3015. struct urb *urb, unsigned int total_packet_count)
  3016. {
  3017. unsigned int max_burst;
  3018. unsigned int residue;
  3019. if (xhci->hci_version < 0x100)
  3020. return 0;
  3021. if (urb->dev->speed >= USB_SPEED_SUPER) {
  3022. /* bMaxBurst is zero based: 0 means 1 packet per burst */
  3023. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3024. residue = total_packet_count % (max_burst + 1);
  3025. /* If residue is zero, the last burst contains (max_burst + 1)
  3026. * number of packets, but the TLBPC field is zero-based.
  3027. */
  3028. if (residue == 0)
  3029. return max_burst;
  3030. return residue - 1;
  3031. }
  3032. if (total_packet_count == 0)
  3033. return 0;
  3034. return total_packet_count - 1;
  3035. }
  3036. /*
  3037. * Calculates Frame ID field of the isochronous TRB identifies the
  3038. * target frame that the Interval associated with this Isochronous
  3039. * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
  3040. *
  3041. * Returns actual frame id on success, negative value on error.
  3042. */
  3043. static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
  3044. struct urb *urb, int index)
  3045. {
  3046. int start_frame, ist, ret = 0;
  3047. int start_frame_id, end_frame_id, current_frame_id;
  3048. if (urb->dev->speed == USB_SPEED_LOW ||
  3049. urb->dev->speed == USB_SPEED_FULL)
  3050. start_frame = urb->start_frame + index * urb->interval;
  3051. else
  3052. start_frame = (urb->start_frame + index * urb->interval) >> 3;
  3053. /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
  3054. *
  3055. * If bit [3] of IST is cleared to '0', software can add a TRB no
  3056. * later than IST[2:0] Microframes before that TRB is scheduled to
  3057. * be executed.
  3058. * If bit [3] of IST is set to '1', software can add a TRB no later
  3059. * than IST[2:0] Frames before that TRB is scheduled to be executed.
  3060. */
  3061. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3062. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3063. ist <<= 3;
  3064. /* Software shall not schedule an Isoch TD with a Frame ID value that
  3065. * is less than the Start Frame ID or greater than the End Frame ID,
  3066. * where:
  3067. *
  3068. * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
  3069. * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
  3070. *
  3071. * Both the End Frame ID and Start Frame ID values are calculated
  3072. * in microframes. When software determines the valid Frame ID value;
  3073. * The End Frame ID value should be rounded down to the nearest Frame
  3074. * boundary, and the Start Frame ID value should be rounded up to the
  3075. * nearest Frame boundary.
  3076. */
  3077. current_frame_id = readl(&xhci->run_regs->microframe_index);
  3078. start_frame_id = roundup(current_frame_id + ist + 1, 8);
  3079. end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
  3080. start_frame &= 0x7ff;
  3081. start_frame_id = (start_frame_id >> 3) & 0x7ff;
  3082. end_frame_id = (end_frame_id >> 3) & 0x7ff;
  3083. xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
  3084. __func__, index, readl(&xhci->run_regs->microframe_index),
  3085. start_frame_id, end_frame_id, start_frame);
  3086. if (start_frame_id < end_frame_id) {
  3087. if (start_frame > end_frame_id ||
  3088. start_frame < start_frame_id)
  3089. ret = -EINVAL;
  3090. } else if (start_frame_id > end_frame_id) {
  3091. if ((start_frame > end_frame_id &&
  3092. start_frame < start_frame_id))
  3093. ret = -EINVAL;
  3094. } else {
  3095. ret = -EINVAL;
  3096. }
  3097. if (index == 0) {
  3098. if (ret == -EINVAL || start_frame == start_frame_id) {
  3099. start_frame = start_frame_id + 1;
  3100. if (urb->dev->speed == USB_SPEED_LOW ||
  3101. urb->dev->speed == USB_SPEED_FULL)
  3102. urb->start_frame = start_frame;
  3103. else
  3104. urb->start_frame = start_frame << 3;
  3105. ret = 0;
  3106. }
  3107. }
  3108. if (ret) {
  3109. xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
  3110. start_frame, current_frame_id, index,
  3111. start_frame_id, end_frame_id);
  3112. xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
  3113. return ret;
  3114. }
  3115. return start_frame;
  3116. }
  3117. /* This is for isoc transfer */
  3118. static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  3119. struct urb *urb, int slot_id, unsigned int ep_index)
  3120. {
  3121. struct xhci_ring *ep_ring;
  3122. struct urb_priv *urb_priv;
  3123. struct xhci_td *td;
  3124. int num_tds, trbs_per_td;
  3125. struct xhci_generic_trb *start_trb;
  3126. bool first_trb;
  3127. int start_cycle;
  3128. u32 field, length_field;
  3129. int running_total, trb_buff_len, td_len, td_remain_len, ret;
  3130. u64 start_addr, addr;
  3131. int i, j;
  3132. bool more_trbs_coming;
  3133. struct xhci_virt_ep *xep;
  3134. int frame_id;
  3135. xep = &xhci->devs[slot_id]->eps[ep_index];
  3136. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  3137. num_tds = urb->number_of_packets;
  3138. if (num_tds < 1) {
  3139. xhci_dbg(xhci, "Isoc URB with zero packets?\n");
  3140. return -EINVAL;
  3141. }
  3142. start_addr = (u64) urb->transfer_dma;
  3143. start_trb = &ep_ring->enqueue->generic;
  3144. start_cycle = ep_ring->cycle_state;
  3145. urb_priv = urb->hcpriv;
  3146. /* Queue the TRBs for each TD, even if they are zero-length */
  3147. for (i = 0; i < num_tds; i++) {
  3148. unsigned int total_pkt_count, max_pkt;
  3149. unsigned int burst_count, last_burst_pkt_count;
  3150. u32 sia_frame_id;
  3151. first_trb = true;
  3152. running_total = 0;
  3153. addr = start_addr + urb->iso_frame_desc[i].offset;
  3154. td_len = urb->iso_frame_desc[i].length;
  3155. td_remain_len = td_len;
  3156. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  3157. total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
  3158. /* A zero-length transfer still involves at least one packet. */
  3159. if (total_pkt_count == 0)
  3160. total_pkt_count++;
  3161. burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
  3162. last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
  3163. urb, total_pkt_count);
  3164. trbs_per_td = count_isoc_trbs_needed(urb, i);
  3165. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  3166. urb->stream_id, trbs_per_td, urb, i, mem_flags);
  3167. if (ret < 0) {
  3168. if (i == 0)
  3169. return ret;
  3170. goto cleanup;
  3171. }
  3172. td = urb_priv->td[i];
  3173. /* use SIA as default, if frame id is used overwrite it */
  3174. sia_frame_id = TRB_SIA;
  3175. if (!(urb->transfer_flags & URB_ISO_ASAP) &&
  3176. HCC_CFC(xhci->hcc_params)) {
  3177. frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
  3178. if (frame_id >= 0)
  3179. sia_frame_id = TRB_FRAME_ID(frame_id);
  3180. }
  3181. /*
  3182. * Set isoc specific data for the first TRB in a TD.
  3183. * Prevent HW from getting the TRBs by keeping the cycle state
  3184. * inverted in the first TDs isoc TRB.
  3185. */
  3186. field = TRB_TYPE(TRB_ISOC) |
  3187. TRB_TLBPC(last_burst_pkt_count) |
  3188. sia_frame_id |
  3189. (i ? ep_ring->cycle_state : !start_cycle);
  3190. /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
  3191. if (!xep->use_extended_tbc)
  3192. field |= TRB_TBC(burst_count);
  3193. /* fill the rest of the TRB fields, and remaining normal TRBs */
  3194. for (j = 0; j < trbs_per_td; j++) {
  3195. u32 remainder = 0;
  3196. /* only first TRB is isoc, overwrite otherwise */
  3197. if (!first_trb)
  3198. field = TRB_TYPE(TRB_NORMAL) |
  3199. ep_ring->cycle_state;
  3200. /* Only set interrupt on short packet for IN EPs */
  3201. if (usb_urb_dir_in(urb))
  3202. field |= TRB_ISP;
  3203. /* Set the chain bit for all except the last TRB */
  3204. if (j < trbs_per_td - 1) {
  3205. more_trbs_coming = true;
  3206. field |= TRB_CHAIN;
  3207. } else {
  3208. more_trbs_coming = false;
  3209. td->last_trb = ep_ring->enqueue;
  3210. field |= TRB_IOC;
  3211. /* set BEI, except for the last TD */
  3212. if (xhci->hci_version >= 0x100 &&
  3213. !(xhci->quirks & XHCI_AVOID_BEI) &&
  3214. i < num_tds - 1)
  3215. field |= TRB_BEI;
  3216. }
  3217. /* Calculate TRB length */
  3218. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  3219. if (trb_buff_len > td_remain_len)
  3220. trb_buff_len = td_remain_len;
  3221. /* Set the TRB length, TD size, & interrupter fields. */
  3222. remainder = xhci_td_remainder(xhci, running_total,
  3223. trb_buff_len, td_len,
  3224. urb, more_trbs_coming);
  3225. length_field = TRB_LEN(trb_buff_len) |
  3226. TRB_INTR_TARGET(0);
  3227. /* xhci 1.1 with ETE uses TD Size field for TBC */
  3228. if (first_trb && xep->use_extended_tbc)
  3229. length_field |= TRB_TD_SIZE_TBC(burst_count);
  3230. else
  3231. length_field |= TRB_TD_SIZE(remainder);
  3232. first_trb = false;
  3233. queue_trb(xhci, ep_ring, more_trbs_coming,
  3234. lower_32_bits(addr),
  3235. upper_32_bits(addr),
  3236. length_field,
  3237. field);
  3238. running_total += trb_buff_len;
  3239. addr += trb_buff_len;
  3240. td_remain_len -= trb_buff_len;
  3241. }
  3242. /* Check TD length */
  3243. if (running_total != td_len) {
  3244. xhci_err(xhci, "ISOC TD length unmatch\n");
  3245. ret = -EINVAL;
  3246. goto cleanup;
  3247. }
  3248. }
  3249. /* store the next frame id */
  3250. if (HCC_CFC(xhci->hcc_params))
  3251. xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
  3252. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  3253. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  3254. usb_amd_quirk_pll_disable();
  3255. }
  3256. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
  3257. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  3258. start_cycle, start_trb);
  3259. return 0;
  3260. cleanup:
  3261. /* Clean up a partially enqueued isoc transfer. */
  3262. for (i--; i >= 0; i--)
  3263. list_del_init(&urb_priv->td[i]->td_list);
  3264. /* Use the first TD as a temporary variable to turn the TDs we've queued
  3265. * into No-ops with a software-owned cycle bit. That way the hardware
  3266. * won't accidentally start executing bogus TDs when we partially
  3267. * overwrite them. td->first_trb and td->start_seg are already set.
  3268. */
  3269. urb_priv->td[0]->last_trb = ep_ring->enqueue;
  3270. /* Every TRB except the first & last will have its cycle bit flipped. */
  3271. td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
  3272. /* Reset the ring enqueue back to the first TRB and its cycle bit. */
  3273. ep_ring->enqueue = urb_priv->td[0]->first_trb;
  3274. ep_ring->enq_seg = urb_priv->td[0]->start_seg;
  3275. ep_ring->cycle_state = start_cycle;
  3276. ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
  3277. usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
  3278. return ret;
  3279. }
  3280. /*
  3281. * Check transfer ring to guarantee there is enough room for the urb.
  3282. * Update ISO URB start_frame and interval.
  3283. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
  3284. * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
  3285. * Contiguous Frame ID is not supported by HC.
  3286. */
  3287. int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
  3288. struct urb *urb, int slot_id, unsigned int ep_index)
  3289. {
  3290. struct xhci_virt_device *xdev;
  3291. struct xhci_ring *ep_ring;
  3292. struct xhci_ep_ctx *ep_ctx;
  3293. int start_frame;
  3294. int num_tds, num_trbs, i;
  3295. int ret;
  3296. struct xhci_virt_ep *xep;
  3297. int ist;
  3298. xdev = xhci->devs[slot_id];
  3299. xep = &xhci->devs[slot_id]->eps[ep_index];
  3300. ep_ring = xdev->eps[ep_index].ring;
  3301. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  3302. num_trbs = 0;
  3303. num_tds = urb->number_of_packets;
  3304. for (i = 0; i < num_tds; i++)
  3305. num_trbs += count_isoc_trbs_needed(urb, i);
  3306. /* Check the ring to guarantee there is enough room for the whole urb.
  3307. * Do not insert any td of the urb to the ring if the check failed.
  3308. */
  3309. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  3310. num_trbs, mem_flags);
  3311. if (ret)
  3312. return ret;
  3313. /*
  3314. * Check interval value. This should be done before we start to
  3315. * calculate the start frame value.
  3316. */
  3317. check_interval(xhci, urb, ep_ctx);
  3318. /* Calculate the start frame and put it in urb->start_frame. */
  3319. if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
  3320. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
  3321. urb->start_frame = xep->next_frame_id;
  3322. goto skip_start_over;
  3323. }
  3324. }
  3325. start_frame = readl(&xhci->run_regs->microframe_index);
  3326. start_frame &= 0x3fff;
  3327. /*
  3328. * Round up to the next frame and consider the time before trb really
  3329. * gets scheduled by hardare.
  3330. */
  3331. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3332. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3333. ist <<= 3;
  3334. start_frame += ist + XHCI_CFC_DELAY;
  3335. start_frame = roundup(start_frame, 8);
  3336. /*
  3337. * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
  3338. * is greate than 8 microframes.
  3339. */
  3340. if (urb->dev->speed == USB_SPEED_LOW ||
  3341. urb->dev->speed == USB_SPEED_FULL) {
  3342. start_frame = roundup(start_frame, urb->interval << 3);
  3343. urb->start_frame = start_frame >> 3;
  3344. } else {
  3345. start_frame = roundup(start_frame, urb->interval);
  3346. urb->start_frame = start_frame;
  3347. }
  3348. skip_start_over:
  3349. ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
  3350. return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
  3351. }
  3352. /**** Command Ring Operations ****/
  3353. /* Generic function for queueing a command TRB on the command ring.
  3354. * Check to make sure there's room on the command ring for one command TRB.
  3355. * Also check that there's room reserved for commands that must not fail.
  3356. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  3357. * then only check for the number of reserved spots.
  3358. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  3359. * because the command event handler may want to resubmit a failed command.
  3360. */
  3361. static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3362. u32 field1, u32 field2,
  3363. u32 field3, u32 field4, bool command_must_succeed)
  3364. {
  3365. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  3366. int ret;
  3367. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  3368. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3369. xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
  3370. return -ESHUTDOWN;
  3371. }
  3372. if (!command_must_succeed)
  3373. reserved_trbs++;
  3374. ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
  3375. reserved_trbs, GFP_ATOMIC);
  3376. if (ret < 0) {
  3377. xhci_err(xhci, "ERR: No room for command on command ring\n");
  3378. if (command_must_succeed)
  3379. xhci_err(xhci, "ERR: Reserved TRB counting for "
  3380. "unfailable commands failed.\n");
  3381. return ret;
  3382. }
  3383. cmd->command_trb = xhci->cmd_ring->enqueue;
  3384. /* if there are no other commands queued we start the timeout timer */
  3385. if (list_empty(&xhci->cmd_list)) {
  3386. xhci->current_cmd = cmd;
  3387. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  3388. }
  3389. list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
  3390. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  3391. field4 | xhci->cmd_ring->cycle_state);
  3392. return 0;
  3393. }
  3394. /* Queue a slot enable or disable request on the command ring */
  3395. int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3396. u32 trb_type, u32 slot_id)
  3397. {
  3398. return queue_command(xhci, cmd, 0, 0, 0,
  3399. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  3400. }
  3401. /* Queue an address device command TRB */
  3402. int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3403. dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
  3404. {
  3405. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3406. upper_32_bits(in_ctx_ptr), 0,
  3407. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
  3408. | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
  3409. }
  3410. int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3411. u32 field1, u32 field2, u32 field3, u32 field4)
  3412. {
  3413. return queue_command(xhci, cmd, field1, field2, field3, field4, false);
  3414. }
  3415. /* Queue a reset device command TRB */
  3416. int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3417. u32 slot_id)
  3418. {
  3419. return queue_command(xhci, cmd, 0, 0, 0,
  3420. TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
  3421. false);
  3422. }
  3423. /* Queue a configure endpoint command TRB */
  3424. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
  3425. struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
  3426. u32 slot_id, bool command_must_succeed)
  3427. {
  3428. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3429. upper_32_bits(in_ctx_ptr), 0,
  3430. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  3431. command_must_succeed);
  3432. }
  3433. /* Queue an evaluate context command TRB */
  3434. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3435. dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
  3436. {
  3437. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3438. upper_32_bits(in_ctx_ptr), 0,
  3439. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  3440. command_must_succeed);
  3441. }
  3442. /*
  3443. * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
  3444. * activity on an endpoint that is about to be suspended.
  3445. */
  3446. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3447. int slot_id, unsigned int ep_index, int suspend)
  3448. {
  3449. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3450. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3451. u32 type = TRB_TYPE(TRB_STOP_RING);
  3452. u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
  3453. return queue_command(xhci, cmd, 0, 0, 0,
  3454. trb_slot_id | trb_ep_index | type | trb_suspend, false);
  3455. }
  3456. /* Set Transfer Ring Dequeue Pointer command */
  3457. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  3458. unsigned int slot_id, unsigned int ep_index,
  3459. unsigned int stream_id,
  3460. struct xhci_dequeue_state *deq_state)
  3461. {
  3462. dma_addr_t addr;
  3463. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3464. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3465. u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
  3466. u32 trb_sct = 0;
  3467. u32 type = TRB_TYPE(TRB_SET_DEQ);
  3468. struct xhci_virt_ep *ep;
  3469. struct xhci_command *cmd;
  3470. int ret;
  3471. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  3472. "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
  3473. deq_state->new_deq_seg,
  3474. (unsigned long long)deq_state->new_deq_seg->dma,
  3475. deq_state->new_deq_ptr,
  3476. (unsigned long long)xhci_trb_virt_to_dma(
  3477. deq_state->new_deq_seg, deq_state->new_deq_ptr),
  3478. deq_state->new_cycle_state);
  3479. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  3480. deq_state->new_deq_ptr);
  3481. if (addr == 0) {
  3482. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3483. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  3484. deq_state->new_deq_seg, deq_state->new_deq_ptr);
  3485. return;
  3486. }
  3487. ep = &xhci->devs[slot_id]->eps[ep_index];
  3488. if ((ep->ep_state & SET_DEQ_PENDING)) {
  3489. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3490. xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
  3491. return;
  3492. }
  3493. /* This function gets called from contexts where it cannot sleep */
  3494. cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  3495. if (!cmd) {
  3496. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
  3497. return;
  3498. }
  3499. ep->queued_deq_seg = deq_state->new_deq_seg;
  3500. ep->queued_deq_ptr = deq_state->new_deq_ptr;
  3501. if (stream_id)
  3502. trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
  3503. ret = queue_command(xhci, cmd,
  3504. lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
  3505. upper_32_bits(addr), trb_stream_id,
  3506. trb_slot_id | trb_ep_index | type, false);
  3507. if (ret < 0) {
  3508. xhci_free_command(xhci, cmd);
  3509. return;
  3510. }
  3511. /* Stop the TD queueing code from ringing the doorbell until
  3512. * this command completes. The HC won't set the dequeue pointer
  3513. * if the ring is running, and ringing the doorbell starts the
  3514. * ring running.
  3515. */
  3516. ep->ep_state |= SET_DEQ_PENDING;
  3517. }
  3518. int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3519. int slot_id, unsigned int ep_index)
  3520. {
  3521. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3522. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3523. u32 type = TRB_TYPE(TRB_RESET_EP);
  3524. return queue_command(xhci, cmd, 0, 0, 0,
  3525. trb_slot_id | trb_ep_index | type, false);
  3526. }