cppi41.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173
  1. #include <linux/delay.h>
  2. #include <linux/dmaengine.h>
  3. #include <linux/dma-mapping.h>
  4. #include <linux/platform_device.h>
  5. #include <linux/module.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/of_dma.h>
  9. #include <linux/of_irq.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/of_address.h>
  13. #include <linux/pm_runtime.h>
  14. #include "dmaengine.h"
  15. #define DESC_TYPE 27
  16. #define DESC_TYPE_HOST 0x10
  17. #define DESC_TYPE_TEARD 0x13
  18. #define TD_DESC_IS_RX (1 << 16)
  19. #define TD_DESC_DMA_NUM 10
  20. #define DESC_LENGTH_BITS_NUM 21
  21. #define DESC_TYPE_USB (5 << 26)
  22. #define DESC_PD_COMPLETE (1 << 31)
  23. /* DMA engine */
  24. #define DMA_TDFDQ 4
  25. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  26. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  27. #define RXHPCRA0 4
  28. #define GCR_CHAN_ENABLE (1 << 31)
  29. #define GCR_TEARDOWN (1 << 30)
  30. #define GCR_STARV_RETRY (1 << 24)
  31. #define GCR_DESC_TYPE_HOST (1 << 14)
  32. /* DMA scheduler */
  33. #define DMA_SCHED_CTRL 0
  34. #define DMA_SCHED_CTRL_EN (1 << 31)
  35. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  36. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  37. #define SCHED_ENTRY0_IS_RX (1 << 7)
  38. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  39. #define SCHED_ENTRY1_IS_RX (1 << 15)
  40. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  41. #define SCHED_ENTRY2_IS_RX (1 << 23)
  42. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  43. #define SCHED_ENTRY3_IS_RX (1 << 31)
  44. /* Queue manager */
  45. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  46. #define ALLOC_DECS_NUM 128
  47. #define DESCS_AREAS 1
  48. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  49. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  50. #define QMGR_LRAM0_BASE 0x80
  51. #define QMGR_LRAM_SIZE 0x84
  52. #define QMGR_LRAM1_BASE 0x88
  53. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  54. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  55. #define QMGR_MEMCTRL_IDX_SH 16
  56. #define QMGR_MEMCTRL_DESC_SH 8
  57. #define QMGR_NUM_PEND 5
  58. #define QMGR_PEND(x) (0x90 + (x) * 4)
  59. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  60. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  61. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  62. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  63. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  64. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  65. /* Glue layer specific */
  66. /* USBSS / USB AM335x */
  67. #define USBSS_IRQ_STATUS 0x28
  68. #define USBSS_IRQ_ENABLER 0x2c
  69. #define USBSS_IRQ_CLEARR 0x30
  70. #define USBSS_IRQ_PD_COMP (1 << 2)
  71. /* Packet Descriptor */
  72. #define PD2_ZERO_LENGTH (1 << 19)
  73. struct cppi41_channel {
  74. struct dma_chan chan;
  75. struct dma_async_tx_descriptor txd;
  76. struct cppi41_dd *cdd;
  77. struct cppi41_desc *desc;
  78. dma_addr_t desc_phys;
  79. void __iomem *gcr_reg;
  80. int is_tx;
  81. u32 residue;
  82. unsigned int q_num;
  83. unsigned int q_comp_num;
  84. unsigned int port_num;
  85. unsigned td_retry;
  86. unsigned td_queued:1;
  87. unsigned td_seen:1;
  88. unsigned td_desc_seen:1;
  89. struct list_head node; /* Node for pending list */
  90. };
  91. struct cppi41_desc {
  92. u32 pd0;
  93. u32 pd1;
  94. u32 pd2;
  95. u32 pd3;
  96. u32 pd4;
  97. u32 pd5;
  98. u32 pd6;
  99. u32 pd7;
  100. } __aligned(32);
  101. struct chan_queues {
  102. u16 submit;
  103. u16 complete;
  104. };
  105. struct cppi41_dd {
  106. struct dma_device ddev;
  107. void *qmgr_scratch;
  108. dma_addr_t scratch_phys;
  109. struct cppi41_desc *cd;
  110. dma_addr_t descs_phys;
  111. u32 first_td_desc;
  112. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  113. void __iomem *usbss_mem;
  114. void __iomem *ctrl_mem;
  115. void __iomem *sched_mem;
  116. void __iomem *qmgr_mem;
  117. unsigned int irq;
  118. const struct chan_queues *queues_rx;
  119. const struct chan_queues *queues_tx;
  120. struct chan_queues td_queue;
  121. struct list_head pending; /* Pending queued transfers */
  122. spinlock_t lock; /* Lock for pending list */
  123. /* context for suspend/resume */
  124. unsigned int dma_tdfdq;
  125. };
  126. #define FIST_COMPLETION_QUEUE 93
  127. static struct chan_queues usb_queues_tx[] = {
  128. /* USB0 ENDP 1 */
  129. [ 0] = { .submit = 32, .complete = 93},
  130. [ 1] = { .submit = 34, .complete = 94},
  131. [ 2] = { .submit = 36, .complete = 95},
  132. [ 3] = { .submit = 38, .complete = 96},
  133. [ 4] = { .submit = 40, .complete = 97},
  134. [ 5] = { .submit = 42, .complete = 98},
  135. [ 6] = { .submit = 44, .complete = 99},
  136. [ 7] = { .submit = 46, .complete = 100},
  137. [ 8] = { .submit = 48, .complete = 101},
  138. [ 9] = { .submit = 50, .complete = 102},
  139. [10] = { .submit = 52, .complete = 103},
  140. [11] = { .submit = 54, .complete = 104},
  141. [12] = { .submit = 56, .complete = 105},
  142. [13] = { .submit = 58, .complete = 106},
  143. [14] = { .submit = 60, .complete = 107},
  144. /* USB1 ENDP1 */
  145. [15] = { .submit = 62, .complete = 125},
  146. [16] = { .submit = 64, .complete = 126},
  147. [17] = { .submit = 66, .complete = 127},
  148. [18] = { .submit = 68, .complete = 128},
  149. [19] = { .submit = 70, .complete = 129},
  150. [20] = { .submit = 72, .complete = 130},
  151. [21] = { .submit = 74, .complete = 131},
  152. [22] = { .submit = 76, .complete = 132},
  153. [23] = { .submit = 78, .complete = 133},
  154. [24] = { .submit = 80, .complete = 134},
  155. [25] = { .submit = 82, .complete = 135},
  156. [26] = { .submit = 84, .complete = 136},
  157. [27] = { .submit = 86, .complete = 137},
  158. [28] = { .submit = 88, .complete = 138},
  159. [29] = { .submit = 90, .complete = 139},
  160. };
  161. static const struct chan_queues usb_queues_rx[] = {
  162. /* USB0 ENDP 1 */
  163. [ 0] = { .submit = 1, .complete = 109},
  164. [ 1] = { .submit = 2, .complete = 110},
  165. [ 2] = { .submit = 3, .complete = 111},
  166. [ 3] = { .submit = 4, .complete = 112},
  167. [ 4] = { .submit = 5, .complete = 113},
  168. [ 5] = { .submit = 6, .complete = 114},
  169. [ 6] = { .submit = 7, .complete = 115},
  170. [ 7] = { .submit = 8, .complete = 116},
  171. [ 8] = { .submit = 9, .complete = 117},
  172. [ 9] = { .submit = 10, .complete = 118},
  173. [10] = { .submit = 11, .complete = 119},
  174. [11] = { .submit = 12, .complete = 120},
  175. [12] = { .submit = 13, .complete = 121},
  176. [13] = { .submit = 14, .complete = 122},
  177. [14] = { .submit = 15, .complete = 123},
  178. /* USB1 ENDP 1 */
  179. [15] = { .submit = 16, .complete = 141},
  180. [16] = { .submit = 17, .complete = 142},
  181. [17] = { .submit = 18, .complete = 143},
  182. [18] = { .submit = 19, .complete = 144},
  183. [19] = { .submit = 20, .complete = 145},
  184. [20] = { .submit = 21, .complete = 146},
  185. [21] = { .submit = 22, .complete = 147},
  186. [22] = { .submit = 23, .complete = 148},
  187. [23] = { .submit = 24, .complete = 149},
  188. [24] = { .submit = 25, .complete = 150},
  189. [25] = { .submit = 26, .complete = 151},
  190. [26] = { .submit = 27, .complete = 152},
  191. [27] = { .submit = 28, .complete = 153},
  192. [28] = { .submit = 29, .complete = 154},
  193. [29] = { .submit = 30, .complete = 155},
  194. };
  195. struct cppi_glue_infos {
  196. irqreturn_t (*isr)(int irq, void *data);
  197. const struct chan_queues *queues_rx;
  198. const struct chan_queues *queues_tx;
  199. struct chan_queues td_queue;
  200. };
  201. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  202. {
  203. return container_of(c, struct cppi41_channel, chan);
  204. }
  205. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  206. {
  207. struct cppi41_channel *c;
  208. u32 descs_size;
  209. u32 desc_num;
  210. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  211. if (!((desc >= cdd->descs_phys) &&
  212. (desc < (cdd->descs_phys + descs_size)))) {
  213. return NULL;
  214. }
  215. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  216. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  217. c = cdd->chan_busy[desc_num];
  218. cdd->chan_busy[desc_num] = NULL;
  219. return c;
  220. }
  221. static void cppi_writel(u32 val, void *__iomem *mem)
  222. {
  223. __raw_writel(val, mem);
  224. }
  225. static u32 cppi_readl(void *__iomem *mem)
  226. {
  227. return __raw_readl(mem);
  228. }
  229. static u32 pd_trans_len(u32 val)
  230. {
  231. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  232. }
  233. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  234. {
  235. u32 desc;
  236. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  237. desc &= ~0x1f;
  238. return desc;
  239. }
  240. static irqreturn_t cppi41_irq(int irq, void *data)
  241. {
  242. struct cppi41_dd *cdd = data;
  243. struct cppi41_channel *c;
  244. u32 status;
  245. int i;
  246. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  247. if (!(status & USBSS_IRQ_PD_COMP))
  248. return IRQ_NONE;
  249. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  250. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  251. i++) {
  252. u32 val;
  253. u32 q_num;
  254. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  255. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  256. u32 mask;
  257. /* set corresponding bit for completetion Q 93 */
  258. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  259. /* not set all bits for queues less than Q 93 */
  260. mask--;
  261. /* now invert and keep only Q 93+ set */
  262. val &= ~mask;
  263. }
  264. if (val)
  265. __iormb();
  266. while (val) {
  267. u32 desc, len;
  268. q_num = __fls(val);
  269. val &= ~(1 << q_num);
  270. q_num += 32 * i;
  271. desc = cppi41_pop_desc(cdd, q_num);
  272. c = desc_to_chan(cdd, desc);
  273. if (WARN_ON(!c)) {
  274. pr_err("%s() q %d desc %08x\n", __func__,
  275. q_num, desc);
  276. continue;
  277. }
  278. if (c->desc->pd2 & PD2_ZERO_LENGTH)
  279. len = 0;
  280. else
  281. len = pd_trans_len(c->desc->pd0);
  282. c->residue = pd_trans_len(c->desc->pd6) - len;
  283. dma_cookie_complete(&c->txd);
  284. dmaengine_desc_get_callback_invoke(&c->txd, NULL);
  285. /* Paired with cppi41_dma_issue_pending */
  286. pm_runtime_mark_last_busy(cdd->ddev.dev);
  287. pm_runtime_put_autosuspend(cdd->ddev.dev);
  288. }
  289. }
  290. return IRQ_HANDLED;
  291. }
  292. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  293. {
  294. dma_cookie_t cookie;
  295. cookie = dma_cookie_assign(tx);
  296. return cookie;
  297. }
  298. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  299. {
  300. struct cppi41_channel *c = to_cpp41_chan(chan);
  301. struct cppi41_dd *cdd = c->cdd;
  302. int error;
  303. error = pm_runtime_get_sync(cdd->ddev.dev);
  304. if (error < 0)
  305. return error;
  306. dma_cookie_init(chan);
  307. dma_async_tx_descriptor_init(&c->txd, chan);
  308. c->txd.tx_submit = cppi41_tx_submit;
  309. if (!c->is_tx)
  310. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  311. pm_runtime_mark_last_busy(cdd->ddev.dev);
  312. pm_runtime_put_autosuspend(cdd->ddev.dev);
  313. return 0;
  314. }
  315. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  316. {
  317. struct cppi41_channel *c = to_cpp41_chan(chan);
  318. struct cppi41_dd *cdd = c->cdd;
  319. int error;
  320. error = pm_runtime_get_sync(cdd->ddev.dev);
  321. if (error < 0)
  322. return;
  323. WARN_ON(!list_empty(&cdd->pending));
  324. pm_runtime_mark_last_busy(cdd->ddev.dev);
  325. pm_runtime_put_autosuspend(cdd->ddev.dev);
  326. }
  327. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  328. dma_cookie_t cookie, struct dma_tx_state *txstate)
  329. {
  330. struct cppi41_channel *c = to_cpp41_chan(chan);
  331. enum dma_status ret;
  332. /* lock */
  333. ret = dma_cookie_status(chan, cookie, txstate);
  334. if (txstate && ret == DMA_COMPLETE)
  335. txstate->residue = c->residue;
  336. /* unlock */
  337. return ret;
  338. }
  339. static void push_desc_queue(struct cppi41_channel *c)
  340. {
  341. struct cppi41_dd *cdd = c->cdd;
  342. u32 desc_num;
  343. u32 desc_phys;
  344. u32 reg;
  345. c->residue = 0;
  346. reg = GCR_CHAN_ENABLE;
  347. if (!c->is_tx) {
  348. reg |= GCR_STARV_RETRY;
  349. reg |= GCR_DESC_TYPE_HOST;
  350. reg |= c->q_comp_num;
  351. }
  352. cppi_writel(reg, c->gcr_reg);
  353. /*
  354. * We don't use writel() but __raw_writel() so we have to make sure
  355. * that the DMA descriptor in coherent memory made to the main memory
  356. * before starting the dma engine.
  357. */
  358. __iowmb();
  359. desc_phys = lower_32_bits(c->desc_phys);
  360. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  361. WARN_ON(cdd->chan_busy[desc_num]);
  362. cdd->chan_busy[desc_num] = c;
  363. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  364. reg |= desc_phys;
  365. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  366. }
  367. static void pending_desc(struct cppi41_channel *c)
  368. {
  369. struct cppi41_dd *cdd = c->cdd;
  370. unsigned long flags;
  371. spin_lock_irqsave(&cdd->lock, flags);
  372. list_add_tail(&c->node, &cdd->pending);
  373. spin_unlock_irqrestore(&cdd->lock, flags);
  374. }
  375. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  376. {
  377. struct cppi41_channel *c = to_cpp41_chan(chan);
  378. struct cppi41_dd *cdd = c->cdd;
  379. int error;
  380. /* PM runtime paired with dmaengine_desc_get_callback_invoke */
  381. error = pm_runtime_get(cdd->ddev.dev);
  382. if ((error != -EINPROGRESS) && error < 0) {
  383. dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
  384. error);
  385. return;
  386. }
  387. if (likely(pm_runtime_active(cdd->ddev.dev)))
  388. push_desc_queue(c);
  389. else
  390. pending_desc(c);
  391. }
  392. static u32 get_host_pd0(u32 length)
  393. {
  394. u32 reg;
  395. reg = DESC_TYPE_HOST << DESC_TYPE;
  396. reg |= length;
  397. return reg;
  398. }
  399. static u32 get_host_pd1(struct cppi41_channel *c)
  400. {
  401. u32 reg;
  402. reg = 0;
  403. return reg;
  404. }
  405. static u32 get_host_pd2(struct cppi41_channel *c)
  406. {
  407. u32 reg;
  408. reg = DESC_TYPE_USB;
  409. reg |= c->q_comp_num;
  410. return reg;
  411. }
  412. static u32 get_host_pd3(u32 length)
  413. {
  414. u32 reg;
  415. /* PD3 = packet size */
  416. reg = length;
  417. return reg;
  418. }
  419. static u32 get_host_pd6(u32 length)
  420. {
  421. u32 reg;
  422. /* PD6 buffer size */
  423. reg = DESC_PD_COMPLETE;
  424. reg |= length;
  425. return reg;
  426. }
  427. static u32 get_host_pd4_or_7(u32 addr)
  428. {
  429. u32 reg;
  430. reg = addr;
  431. return reg;
  432. }
  433. static u32 get_host_pd5(void)
  434. {
  435. u32 reg;
  436. reg = 0;
  437. return reg;
  438. }
  439. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  440. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  441. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  442. {
  443. struct cppi41_channel *c = to_cpp41_chan(chan);
  444. struct cppi41_desc *d;
  445. struct scatterlist *sg;
  446. unsigned int i;
  447. d = c->desc;
  448. for_each_sg(sgl, sg, sg_len, i) {
  449. u32 addr;
  450. u32 len;
  451. /* We need to use more than one desc once musb supports sg */
  452. addr = lower_32_bits(sg_dma_address(sg));
  453. len = sg_dma_len(sg);
  454. d->pd0 = get_host_pd0(len);
  455. d->pd1 = get_host_pd1(c);
  456. d->pd2 = get_host_pd2(c);
  457. d->pd3 = get_host_pd3(len);
  458. d->pd4 = get_host_pd4_or_7(addr);
  459. d->pd5 = get_host_pd5();
  460. d->pd6 = get_host_pd6(len);
  461. d->pd7 = get_host_pd4_or_7(addr);
  462. d++;
  463. }
  464. return &c->txd;
  465. }
  466. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  467. {
  468. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  469. }
  470. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  471. {
  472. struct cppi41_dd *cdd = c->cdd;
  473. struct cppi41_desc *td;
  474. u32 reg;
  475. u32 desc_phys;
  476. u32 td_desc_phys;
  477. td = cdd->cd;
  478. td += cdd->first_td_desc;
  479. td_desc_phys = cdd->descs_phys;
  480. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  481. if (!c->td_queued) {
  482. cppi41_compute_td_desc(td);
  483. __iowmb();
  484. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  485. reg |= td_desc_phys;
  486. cppi_writel(reg, cdd->qmgr_mem +
  487. QMGR_QUEUE_D(cdd->td_queue.submit));
  488. reg = GCR_CHAN_ENABLE;
  489. if (!c->is_tx) {
  490. reg |= GCR_STARV_RETRY;
  491. reg |= GCR_DESC_TYPE_HOST;
  492. reg |= c->q_comp_num;
  493. }
  494. reg |= GCR_TEARDOWN;
  495. cppi_writel(reg, c->gcr_reg);
  496. c->td_queued = 1;
  497. c->td_retry = 500;
  498. }
  499. if (!c->td_seen || !c->td_desc_seen) {
  500. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  501. if (!desc_phys)
  502. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  503. if (desc_phys == c->desc_phys) {
  504. c->td_desc_seen = 1;
  505. } else if (desc_phys == td_desc_phys) {
  506. u32 pd0;
  507. __iormb();
  508. pd0 = td->pd0;
  509. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  510. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  511. WARN_ON((pd0 & 0x1f) != c->port_num);
  512. c->td_seen = 1;
  513. } else if (desc_phys) {
  514. WARN_ON_ONCE(1);
  515. }
  516. }
  517. c->td_retry--;
  518. /*
  519. * If the TX descriptor / channel is in use, the caller needs to poke
  520. * his TD bit multiple times. After that he hardware releases the
  521. * transfer descriptor followed by TD descriptor. Waiting seems not to
  522. * cause any difference.
  523. * RX seems to be thrown out right away. However once the TearDown
  524. * descriptor gets through we are done. If we have seens the transfer
  525. * descriptor before the TD we fetch it from enqueue, it has to be
  526. * there waiting for us.
  527. */
  528. if (!c->td_seen && c->td_retry) {
  529. udelay(1);
  530. return -EAGAIN;
  531. }
  532. WARN_ON(!c->td_retry);
  533. if (!c->td_desc_seen) {
  534. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  535. if (!desc_phys)
  536. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  537. WARN_ON(!desc_phys);
  538. }
  539. c->td_queued = 0;
  540. c->td_seen = 0;
  541. c->td_desc_seen = 0;
  542. cppi_writel(0, c->gcr_reg);
  543. return 0;
  544. }
  545. static int cppi41_stop_chan(struct dma_chan *chan)
  546. {
  547. struct cppi41_channel *c = to_cpp41_chan(chan);
  548. struct cppi41_dd *cdd = c->cdd;
  549. u32 desc_num;
  550. u32 desc_phys;
  551. int ret;
  552. desc_phys = lower_32_bits(c->desc_phys);
  553. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  554. if (!cdd->chan_busy[desc_num])
  555. return 0;
  556. ret = cppi41_tear_down_chan(c);
  557. if (ret)
  558. return ret;
  559. WARN_ON(!cdd->chan_busy[desc_num]);
  560. cdd->chan_busy[desc_num] = NULL;
  561. return 0;
  562. }
  563. static void cleanup_chans(struct cppi41_dd *cdd)
  564. {
  565. while (!list_empty(&cdd->ddev.channels)) {
  566. struct cppi41_channel *cchan;
  567. cchan = list_first_entry(&cdd->ddev.channels,
  568. struct cppi41_channel, chan.device_node);
  569. list_del(&cchan->chan.device_node);
  570. kfree(cchan);
  571. }
  572. }
  573. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  574. {
  575. struct cppi41_channel *cchan;
  576. int i;
  577. int ret;
  578. u32 n_chans;
  579. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  580. &n_chans);
  581. if (ret)
  582. return ret;
  583. /*
  584. * The channels can only be used as TX or as RX. So we add twice
  585. * that much dma channels because USB can only do RX or TX.
  586. */
  587. n_chans *= 2;
  588. for (i = 0; i < n_chans; i++) {
  589. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  590. if (!cchan)
  591. goto err;
  592. cchan->cdd = cdd;
  593. if (i & 1) {
  594. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  595. cchan->is_tx = 1;
  596. } else {
  597. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  598. cchan->is_tx = 0;
  599. }
  600. cchan->port_num = i >> 1;
  601. cchan->desc = &cdd->cd[i];
  602. cchan->desc_phys = cdd->descs_phys;
  603. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  604. cchan->chan.device = &cdd->ddev;
  605. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  606. }
  607. cdd->first_td_desc = n_chans;
  608. return 0;
  609. err:
  610. cleanup_chans(cdd);
  611. return -ENOMEM;
  612. }
  613. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  614. {
  615. unsigned int mem_decs;
  616. int i;
  617. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  618. for (i = 0; i < DESCS_AREAS; i++) {
  619. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  620. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  621. dma_free_coherent(dev, mem_decs, cdd->cd,
  622. cdd->descs_phys);
  623. }
  624. }
  625. static void disable_sched(struct cppi41_dd *cdd)
  626. {
  627. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  628. }
  629. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  630. {
  631. disable_sched(cdd);
  632. purge_descs(dev, cdd);
  633. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  634. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  635. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  636. cdd->scratch_phys);
  637. }
  638. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  639. {
  640. unsigned int desc_size;
  641. unsigned int mem_decs;
  642. int i;
  643. u32 reg;
  644. u32 idx;
  645. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  646. (sizeof(struct cppi41_desc) - 1));
  647. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  648. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  649. desc_size = sizeof(struct cppi41_desc);
  650. mem_decs = ALLOC_DECS_NUM * desc_size;
  651. idx = 0;
  652. for (i = 0; i < DESCS_AREAS; i++) {
  653. reg = idx << QMGR_MEMCTRL_IDX_SH;
  654. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  655. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  656. BUILD_BUG_ON(DESCS_AREAS != 1);
  657. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  658. &cdd->descs_phys, GFP_KERNEL);
  659. if (!cdd->cd)
  660. return -ENOMEM;
  661. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  662. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  663. idx += ALLOC_DECS_NUM;
  664. }
  665. return 0;
  666. }
  667. static void init_sched(struct cppi41_dd *cdd)
  668. {
  669. unsigned ch;
  670. unsigned word;
  671. u32 reg;
  672. word = 0;
  673. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  674. for (ch = 0; ch < 15 * 2; ch += 2) {
  675. reg = SCHED_ENTRY0_CHAN(ch);
  676. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  677. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  678. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  679. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  680. word++;
  681. }
  682. reg = 15 * 2 * 2 - 1;
  683. reg |= DMA_SCHED_CTRL_EN;
  684. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  685. }
  686. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  687. {
  688. int ret;
  689. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  690. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  691. &cdd->scratch_phys, GFP_KERNEL);
  692. if (!cdd->qmgr_scratch)
  693. return -ENOMEM;
  694. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  695. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  696. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  697. ret = init_descs(dev, cdd);
  698. if (ret)
  699. goto err_td;
  700. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  701. init_sched(cdd);
  702. return 0;
  703. err_td:
  704. deinit_cppi41(dev, cdd);
  705. return ret;
  706. }
  707. static struct platform_driver cpp41_dma_driver;
  708. /*
  709. * The param format is:
  710. * X Y
  711. * X: Port
  712. * Y: 0 = RX else TX
  713. */
  714. #define INFO_PORT 0
  715. #define INFO_IS_TX 1
  716. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  717. {
  718. struct cppi41_channel *cchan;
  719. struct cppi41_dd *cdd;
  720. const struct chan_queues *queues;
  721. u32 *num = param;
  722. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  723. return false;
  724. cchan = to_cpp41_chan(chan);
  725. if (cchan->port_num != num[INFO_PORT])
  726. return false;
  727. if (cchan->is_tx && !num[INFO_IS_TX])
  728. return false;
  729. cdd = cchan->cdd;
  730. if (cchan->is_tx)
  731. queues = cdd->queues_tx;
  732. else
  733. queues = cdd->queues_rx;
  734. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  735. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  736. return false;
  737. cchan->q_num = queues[cchan->port_num].submit;
  738. cchan->q_comp_num = queues[cchan->port_num].complete;
  739. return true;
  740. }
  741. static struct of_dma_filter_info cpp41_dma_info = {
  742. .filter_fn = cpp41_dma_filter_fn,
  743. };
  744. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  745. struct of_dma *ofdma)
  746. {
  747. int count = dma_spec->args_count;
  748. struct of_dma_filter_info *info = ofdma->of_dma_data;
  749. if (!info || !info->filter_fn)
  750. return NULL;
  751. if (count != 2)
  752. return NULL;
  753. return dma_request_channel(info->dma_cap, info->filter_fn,
  754. &dma_spec->args[0]);
  755. }
  756. static const struct cppi_glue_infos usb_infos = {
  757. .isr = cppi41_irq,
  758. .queues_rx = usb_queues_rx,
  759. .queues_tx = usb_queues_tx,
  760. .td_queue = { .submit = 31, .complete = 0 },
  761. };
  762. static const struct of_device_id cppi41_dma_ids[] = {
  763. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  764. {},
  765. };
  766. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  767. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  768. {
  769. const struct of_device_id *of_id;
  770. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  771. if (!of_id)
  772. return NULL;
  773. return of_id->data;
  774. }
  775. #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  776. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  777. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  778. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  779. static int cppi41_dma_probe(struct platform_device *pdev)
  780. {
  781. struct cppi41_dd *cdd;
  782. struct device *dev = &pdev->dev;
  783. const struct cppi_glue_infos *glue_info;
  784. int irq;
  785. int ret;
  786. glue_info = get_glue_info(dev);
  787. if (!glue_info)
  788. return -EINVAL;
  789. cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
  790. if (!cdd)
  791. return -ENOMEM;
  792. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  793. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  794. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  795. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  796. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  797. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  798. cdd->ddev.device_terminate_all = cppi41_stop_chan;
  799. cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  800. cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
  801. cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
  802. cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  803. cdd->ddev.dev = dev;
  804. INIT_LIST_HEAD(&cdd->ddev.channels);
  805. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  806. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  807. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  808. cdd->sched_mem = of_iomap(dev->of_node, 2);
  809. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  810. spin_lock_init(&cdd->lock);
  811. INIT_LIST_HEAD(&cdd->pending);
  812. platform_set_drvdata(pdev, cdd);
  813. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  814. !cdd->qmgr_mem)
  815. return -ENXIO;
  816. pm_runtime_enable(dev);
  817. pm_runtime_set_autosuspend_delay(dev, 100);
  818. pm_runtime_use_autosuspend(dev);
  819. ret = pm_runtime_get_sync(dev);
  820. if (ret < 0)
  821. goto err_get_sync;
  822. cdd->queues_rx = glue_info->queues_rx;
  823. cdd->queues_tx = glue_info->queues_tx;
  824. cdd->td_queue = glue_info->td_queue;
  825. ret = init_cppi41(dev, cdd);
  826. if (ret)
  827. goto err_init_cppi;
  828. ret = cppi41_add_chans(dev, cdd);
  829. if (ret)
  830. goto err_chans;
  831. irq = irq_of_parse_and_map(dev->of_node, 0);
  832. if (!irq) {
  833. ret = -EINVAL;
  834. goto err_irq;
  835. }
  836. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  837. ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
  838. dev_name(dev), cdd);
  839. if (ret)
  840. goto err_irq;
  841. cdd->irq = irq;
  842. ret = dma_async_device_register(&cdd->ddev);
  843. if (ret)
  844. goto err_dma_reg;
  845. ret = of_dma_controller_register(dev->of_node,
  846. cppi41_dma_xlate, &cpp41_dma_info);
  847. if (ret)
  848. goto err_of;
  849. pm_runtime_mark_last_busy(dev);
  850. pm_runtime_put_autosuspend(dev);
  851. return 0;
  852. err_of:
  853. dma_async_device_unregister(&cdd->ddev);
  854. err_dma_reg:
  855. err_irq:
  856. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  857. cleanup_chans(cdd);
  858. err_chans:
  859. deinit_cppi41(dev, cdd);
  860. err_init_cppi:
  861. pm_runtime_dont_use_autosuspend(dev);
  862. pm_runtime_put_sync(dev);
  863. err_get_sync:
  864. pm_runtime_disable(dev);
  865. iounmap(cdd->usbss_mem);
  866. iounmap(cdd->ctrl_mem);
  867. iounmap(cdd->sched_mem);
  868. iounmap(cdd->qmgr_mem);
  869. return ret;
  870. }
  871. static int cppi41_dma_remove(struct platform_device *pdev)
  872. {
  873. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  874. of_dma_controller_free(pdev->dev.of_node);
  875. dma_async_device_unregister(&cdd->ddev);
  876. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  877. devm_free_irq(&pdev->dev, cdd->irq, cdd);
  878. cleanup_chans(cdd);
  879. deinit_cppi41(&pdev->dev, cdd);
  880. iounmap(cdd->usbss_mem);
  881. iounmap(cdd->ctrl_mem);
  882. iounmap(cdd->sched_mem);
  883. iounmap(cdd->qmgr_mem);
  884. pm_runtime_dont_use_autosuspend(&pdev->dev);
  885. pm_runtime_put_sync(&pdev->dev);
  886. pm_runtime_disable(&pdev->dev);
  887. return 0;
  888. }
  889. static int __maybe_unused cppi41_suspend(struct device *dev)
  890. {
  891. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  892. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  893. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  894. disable_sched(cdd);
  895. return 0;
  896. }
  897. static int __maybe_unused cppi41_resume(struct device *dev)
  898. {
  899. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  900. struct cppi41_channel *c;
  901. int i;
  902. for (i = 0; i < DESCS_AREAS; i++)
  903. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  904. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  905. if (!c->is_tx)
  906. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  907. init_sched(cdd);
  908. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  909. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  910. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  911. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  912. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  913. return 0;
  914. }
  915. static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
  916. {
  917. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  918. WARN_ON(!list_empty(&cdd->pending));
  919. return 0;
  920. }
  921. static int __maybe_unused cppi41_runtime_resume(struct device *dev)
  922. {
  923. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  924. struct cppi41_channel *c, *_c;
  925. unsigned long flags;
  926. spin_lock_irqsave(&cdd->lock, flags);
  927. list_for_each_entry_safe(c, _c, &cdd->pending, node) {
  928. push_desc_queue(c);
  929. list_del(&c->node);
  930. }
  931. spin_unlock_irqrestore(&cdd->lock, flags);
  932. return 0;
  933. }
  934. static const struct dev_pm_ops cppi41_pm_ops = {
  935. SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
  936. SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
  937. cppi41_runtime_resume,
  938. NULL)
  939. };
  940. static struct platform_driver cpp41_dma_driver = {
  941. .probe = cppi41_dma_probe,
  942. .remove = cppi41_dma_remove,
  943. .driver = {
  944. .name = "cppi41-dma-engine",
  945. .pm = &cppi41_pm_ops,
  946. .of_match_table = of_match_ptr(cppi41_dma_ids),
  947. },
  948. };
  949. module_platform_driver(cpp41_dma_driver);
  950. MODULE_LICENSE("GPL");
  951. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");