intel_pm.c 261 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include <drm/drm_plane_helper.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. #include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33. #include <drm/drm_atomic_helper.h>
  34. /**
  35. * DOC: RC6
  36. *
  37. * RC6 is a special power stage which allows the GPU to enter an very
  38. * low-voltage mode when idle, using down to 0V while at this stage. This
  39. * stage is entered automatically when the GPU is idle when RC6 support is
  40. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41. *
  42. * There are different RC6 modes available in Intel GPU, which differentiate
  43. * among each other with the latency required to enter and leave RC6 and
  44. * voltage consumed by the GPU in different states.
  45. *
  46. * The combination of the following flags define which states GPU is allowed
  47. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48. * RC6pp is deepest RC6. Their support by hardware varies according to the
  49. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50. * which brings the most power savings; deeper states save more power, but
  51. * require higher latency to switch to and wake up.
  52. */
  53. #define INTEL_RC6_ENABLE (1<<0)
  54. #define INTEL_RC6p_ENABLE (1<<1)
  55. #define INTEL_RC6pp_ENABLE (1<<2)
  56. static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57. {
  58. /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  59. I915_WRITE(CHICKEN_PAR1_1,
  60. I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  61. I915_WRITE(GEN8_CONFIG0,
  62. I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  63. /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  64. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  65. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  66. /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
  67. /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
  68. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  69. DISP_FBC_WM_DIS |
  70. DISP_FBC_MEMORY_WAKE);
  71. /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
  72. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  73. ILK_DPFC_DISABLE_DUMMY0);
  74. }
  75. static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  76. {
  77. gen9_init_clock_gating(dev_priv);
  78. /* WaDisableSDEUnitClockGating:bxt */
  79. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  80. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  81. /*
  82. * FIXME:
  83. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  84. */
  85. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  86. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  87. /*
  88. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  89. * to stay fully on.
  90. */
  91. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  92. PWM1_GATING_DIS | PWM2_GATING_DIS);
  93. }
  94. static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
  95. {
  96. gen9_init_clock_gating(dev_priv);
  97. /*
  98. * WaDisablePWMClockGating:glk
  99. * Backlight PWM may stop in the asserted state, causing backlight
  100. * to stay fully on.
  101. */
  102. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  103. PWM1_GATING_DIS | PWM2_GATING_DIS);
  104. /* WaDDIIOTimeout:glk */
  105. if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
  106. u32 val = I915_READ(CHICKEN_MISC_2);
  107. val &= ~(GLK_CL0_PWR_DOWN |
  108. GLK_CL1_PWR_DOWN |
  109. GLK_CL2_PWR_DOWN);
  110. I915_WRITE(CHICKEN_MISC_2, val);
  111. }
  112. }
  113. static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  114. {
  115. u32 tmp;
  116. tmp = I915_READ(CLKCFG);
  117. switch (tmp & CLKCFG_FSB_MASK) {
  118. case CLKCFG_FSB_533:
  119. dev_priv->fsb_freq = 533; /* 133*4 */
  120. break;
  121. case CLKCFG_FSB_800:
  122. dev_priv->fsb_freq = 800; /* 200*4 */
  123. break;
  124. case CLKCFG_FSB_667:
  125. dev_priv->fsb_freq = 667; /* 167*4 */
  126. break;
  127. case CLKCFG_FSB_400:
  128. dev_priv->fsb_freq = 400; /* 100*4 */
  129. break;
  130. }
  131. switch (tmp & CLKCFG_MEM_MASK) {
  132. case CLKCFG_MEM_533:
  133. dev_priv->mem_freq = 533;
  134. break;
  135. case CLKCFG_MEM_667:
  136. dev_priv->mem_freq = 667;
  137. break;
  138. case CLKCFG_MEM_800:
  139. dev_priv->mem_freq = 800;
  140. break;
  141. }
  142. /* detect pineview DDR3 setting */
  143. tmp = I915_READ(CSHRDDR3CTL);
  144. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  145. }
  146. static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  147. {
  148. u16 ddrpll, csipll;
  149. ddrpll = I915_READ16(DDRMPLL1);
  150. csipll = I915_READ16(CSIPLL0);
  151. switch (ddrpll & 0xff) {
  152. case 0xc:
  153. dev_priv->mem_freq = 800;
  154. break;
  155. case 0x10:
  156. dev_priv->mem_freq = 1066;
  157. break;
  158. case 0x14:
  159. dev_priv->mem_freq = 1333;
  160. break;
  161. case 0x18:
  162. dev_priv->mem_freq = 1600;
  163. break;
  164. default:
  165. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  166. ddrpll & 0xff);
  167. dev_priv->mem_freq = 0;
  168. break;
  169. }
  170. dev_priv->ips.r_t = dev_priv->mem_freq;
  171. switch (csipll & 0x3ff) {
  172. case 0x00c:
  173. dev_priv->fsb_freq = 3200;
  174. break;
  175. case 0x00e:
  176. dev_priv->fsb_freq = 3733;
  177. break;
  178. case 0x010:
  179. dev_priv->fsb_freq = 4266;
  180. break;
  181. case 0x012:
  182. dev_priv->fsb_freq = 4800;
  183. break;
  184. case 0x014:
  185. dev_priv->fsb_freq = 5333;
  186. break;
  187. case 0x016:
  188. dev_priv->fsb_freq = 5866;
  189. break;
  190. case 0x018:
  191. dev_priv->fsb_freq = 6400;
  192. break;
  193. default:
  194. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  195. csipll & 0x3ff);
  196. dev_priv->fsb_freq = 0;
  197. break;
  198. }
  199. if (dev_priv->fsb_freq == 3200) {
  200. dev_priv->ips.c_m = 0;
  201. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  202. dev_priv->ips.c_m = 1;
  203. } else {
  204. dev_priv->ips.c_m = 2;
  205. }
  206. }
  207. static const struct cxsr_latency cxsr_latency_table[] = {
  208. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  209. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  210. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  211. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  212. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  213. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  214. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  215. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  216. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  217. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  218. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  219. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  220. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  221. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  222. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  223. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  224. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  225. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  226. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  227. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  228. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  229. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  230. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  231. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  232. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  233. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  234. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  235. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  236. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  237. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  238. };
  239. static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  240. bool is_ddr3,
  241. int fsb,
  242. int mem)
  243. {
  244. const struct cxsr_latency *latency;
  245. int i;
  246. if (fsb == 0 || mem == 0)
  247. return NULL;
  248. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  249. latency = &cxsr_latency_table[i];
  250. if (is_desktop == latency->is_desktop &&
  251. is_ddr3 == latency->is_ddr3 &&
  252. fsb == latency->fsb_freq && mem == latency->mem_freq)
  253. return latency;
  254. }
  255. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  256. return NULL;
  257. }
  258. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  259. {
  260. u32 val;
  261. mutex_lock(&dev_priv->rps.hw_lock);
  262. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  263. if (enable)
  264. val &= ~FORCE_DDR_HIGH_FREQ;
  265. else
  266. val |= FORCE_DDR_HIGH_FREQ;
  267. val &= ~FORCE_DDR_LOW_FREQ;
  268. val |= FORCE_DDR_FREQ_REQ_ACK;
  269. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  270. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  271. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  272. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  273. mutex_unlock(&dev_priv->rps.hw_lock);
  274. }
  275. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  276. {
  277. u32 val;
  278. mutex_lock(&dev_priv->rps.hw_lock);
  279. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  280. if (enable)
  281. val |= DSP_MAXFIFO_PM5_ENABLE;
  282. else
  283. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  284. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  285. mutex_unlock(&dev_priv->rps.hw_lock);
  286. }
  287. #define FW_WM(value, plane) \
  288. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  289. static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  290. {
  291. bool was_enabled;
  292. u32 val;
  293. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  294. was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  295. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  296. POSTING_READ(FW_BLC_SELF_VLV);
  297. } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  298. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  299. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  300. POSTING_READ(FW_BLC_SELF);
  301. } else if (IS_PINEVIEW(dev_priv)) {
  302. val = I915_READ(DSPFW3);
  303. was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  304. if (enable)
  305. val |= PINEVIEW_SELF_REFRESH_EN;
  306. else
  307. val &= ~PINEVIEW_SELF_REFRESH_EN;
  308. I915_WRITE(DSPFW3, val);
  309. POSTING_READ(DSPFW3);
  310. } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  311. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  312. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  313. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  314. I915_WRITE(FW_BLC_SELF, val);
  315. POSTING_READ(FW_BLC_SELF);
  316. } else if (IS_I915GM(dev_priv)) {
  317. /*
  318. * FIXME can't find a bit like this for 915G, and
  319. * and yet it does have the related watermark in
  320. * FW_BLC_SELF. What's going on?
  321. */
  322. was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  323. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  324. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  325. I915_WRITE(INSTPM, val);
  326. POSTING_READ(INSTPM);
  327. } else {
  328. return false;
  329. }
  330. trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
  331. DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  332. enableddisabled(enable),
  333. enableddisabled(was_enabled));
  334. return was_enabled;
  335. }
  336. /**
  337. * intel_set_memory_cxsr - Configure CxSR state
  338. * @dev_priv: i915 device
  339. * @enable: Allow vs. disallow CxSR
  340. *
  341. * Allow or disallow the system to enter a special CxSR
  342. * (C-state self refresh) state. What typically happens in CxSR mode
  343. * is that several display FIFOs may get combined into a single larger
  344. * FIFO for a particular plane (so called max FIFO mode) to allow the
  345. * system to defer memory fetches longer, and the memory will enter
  346. * self refresh.
  347. *
  348. * Note that enabling CxSR does not guarantee that the system enter
  349. * this special mode, nor does it guarantee that the system stays
  350. * in that mode once entered. So this just allows/disallows the system
  351. * to autonomously utilize the CxSR mode. Other factors such as core
  352. * C-states will affect when/if the system actually enters/exits the
  353. * CxSR mode.
  354. *
  355. * Note that on VLV/CHV this actually only controls the max FIFO mode,
  356. * and the system is free to enter/exit memory self refresh at any time
  357. * even when the use of CxSR has been disallowed.
  358. *
  359. * While the system is actually in the CxSR/max FIFO mode, some plane
  360. * control registers will not get latched on vblank. Thus in order to
  361. * guarantee the system will respond to changes in the plane registers
  362. * we must always disallow CxSR prior to making changes to those registers.
  363. * Unfortunately the system will re-evaluate the CxSR conditions at
  364. * frame start which happens after vblank start (which is when the plane
  365. * registers would get latched), so we can't proceed with the plane update
  366. * during the same frame where we disallowed CxSR.
  367. *
  368. * Certain platforms also have a deeper HPLL SR mode. Fortunately the
  369. * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
  370. * the hardware w.r.t. HPLL SR when writing to plane registers.
  371. * Disallowing just CxSR is sufficient.
  372. */
  373. bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  374. {
  375. bool ret;
  376. mutex_lock(&dev_priv->wm.wm_mutex);
  377. ret = _intel_set_memory_cxsr(dev_priv, enable);
  378. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  379. dev_priv->wm.vlv.cxsr = enable;
  380. else if (IS_G4X(dev_priv))
  381. dev_priv->wm.g4x.cxsr = enable;
  382. mutex_unlock(&dev_priv->wm.wm_mutex);
  383. return ret;
  384. }
  385. /*
  386. * Latency for FIFO fetches is dependent on several factors:
  387. * - memory configuration (speed, channels)
  388. * - chipset
  389. * - current MCH state
  390. * It can be fairly high in some situations, so here we assume a fairly
  391. * pessimal value. It's a tradeoff between extra memory fetches (if we
  392. * set this value too high, the FIFO will fetch frequently to stay full)
  393. * and power consumption (set it too low to save power and we might see
  394. * FIFO underruns and display "flicker").
  395. *
  396. * A value of 5us seems to be a good balance; safe for very low end
  397. * platforms but not overly aggressive on lower latency configs.
  398. */
  399. static const int pessimal_latency_ns = 5000;
  400. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  401. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  402. static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
  403. {
  404. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  405. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  406. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  407. enum pipe pipe = crtc->pipe;
  408. int sprite0_start, sprite1_start;
  409. switch (pipe) {
  410. uint32_t dsparb, dsparb2, dsparb3;
  411. case PIPE_A:
  412. dsparb = I915_READ(DSPARB);
  413. dsparb2 = I915_READ(DSPARB2);
  414. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  415. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  416. break;
  417. case PIPE_B:
  418. dsparb = I915_READ(DSPARB);
  419. dsparb2 = I915_READ(DSPARB2);
  420. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  421. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  422. break;
  423. case PIPE_C:
  424. dsparb2 = I915_READ(DSPARB2);
  425. dsparb3 = I915_READ(DSPARB3);
  426. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  427. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  428. break;
  429. default:
  430. MISSING_CASE(pipe);
  431. return;
  432. }
  433. fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
  434. fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
  435. fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
  436. fifo_state->plane[PLANE_CURSOR] = 63;
  437. }
  438. static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  439. {
  440. uint32_t dsparb = I915_READ(DSPARB);
  441. int size;
  442. size = dsparb & 0x7f;
  443. if (plane)
  444. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  445. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  446. plane ? "B" : "A", size);
  447. return size;
  448. }
  449. static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  450. {
  451. uint32_t dsparb = I915_READ(DSPARB);
  452. int size;
  453. size = dsparb & 0x1ff;
  454. if (plane)
  455. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  456. size >>= 1; /* Convert to cachelines */
  457. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  458. plane ? "B" : "A", size);
  459. return size;
  460. }
  461. static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  462. {
  463. uint32_t dsparb = I915_READ(DSPARB);
  464. int size;
  465. size = dsparb & 0x7f;
  466. size >>= 2; /* Convert to cachelines */
  467. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  468. plane ? "B" : "A",
  469. size);
  470. return size;
  471. }
  472. /* Pineview has different values for various configs */
  473. static const struct intel_watermark_params pineview_display_wm = {
  474. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  475. .max_wm = PINEVIEW_MAX_WM,
  476. .default_wm = PINEVIEW_DFT_WM,
  477. .guard_size = PINEVIEW_GUARD_WM,
  478. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  479. };
  480. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  481. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  482. .max_wm = PINEVIEW_MAX_WM,
  483. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  484. .guard_size = PINEVIEW_GUARD_WM,
  485. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  486. };
  487. static const struct intel_watermark_params pineview_cursor_wm = {
  488. .fifo_size = PINEVIEW_CURSOR_FIFO,
  489. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  490. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  491. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  492. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  493. };
  494. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  495. .fifo_size = PINEVIEW_CURSOR_FIFO,
  496. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  497. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  498. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  499. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  500. };
  501. static const struct intel_watermark_params i965_cursor_wm_info = {
  502. .fifo_size = I965_CURSOR_FIFO,
  503. .max_wm = I965_CURSOR_MAX_WM,
  504. .default_wm = I965_CURSOR_DFT_WM,
  505. .guard_size = 2,
  506. .cacheline_size = I915_FIFO_LINE_SIZE,
  507. };
  508. static const struct intel_watermark_params i945_wm_info = {
  509. .fifo_size = I945_FIFO_SIZE,
  510. .max_wm = I915_MAX_WM,
  511. .default_wm = 1,
  512. .guard_size = 2,
  513. .cacheline_size = I915_FIFO_LINE_SIZE,
  514. };
  515. static const struct intel_watermark_params i915_wm_info = {
  516. .fifo_size = I915_FIFO_SIZE,
  517. .max_wm = I915_MAX_WM,
  518. .default_wm = 1,
  519. .guard_size = 2,
  520. .cacheline_size = I915_FIFO_LINE_SIZE,
  521. };
  522. static const struct intel_watermark_params i830_a_wm_info = {
  523. .fifo_size = I855GM_FIFO_SIZE,
  524. .max_wm = I915_MAX_WM,
  525. .default_wm = 1,
  526. .guard_size = 2,
  527. .cacheline_size = I830_FIFO_LINE_SIZE,
  528. };
  529. static const struct intel_watermark_params i830_bc_wm_info = {
  530. .fifo_size = I855GM_FIFO_SIZE,
  531. .max_wm = I915_MAX_WM/2,
  532. .default_wm = 1,
  533. .guard_size = 2,
  534. .cacheline_size = I830_FIFO_LINE_SIZE,
  535. };
  536. static const struct intel_watermark_params i845_wm_info = {
  537. .fifo_size = I830_FIFO_SIZE,
  538. .max_wm = I915_MAX_WM,
  539. .default_wm = 1,
  540. .guard_size = 2,
  541. .cacheline_size = I830_FIFO_LINE_SIZE,
  542. };
  543. /**
  544. * intel_wm_method1 - Method 1 / "small buffer" watermark formula
  545. * @pixel_rate: Pipe pixel rate in kHz
  546. * @cpp: Plane bytes per pixel
  547. * @latency: Memory wakeup latency in 0.1us units
  548. *
  549. * Compute the watermark using the method 1 or "small buffer"
  550. * formula. The caller may additonally add extra cachelines
  551. * to account for TLB misses and clock crossings.
  552. *
  553. * This method is concerned with the short term drain rate
  554. * of the FIFO, ie. it does not account for blanking periods
  555. * which would effectively reduce the average drain rate across
  556. * a longer period. The name "small" refers to the fact the
  557. * FIFO is relatively small compared to the amount of data
  558. * fetched.
  559. *
  560. * The FIFO level vs. time graph might look something like:
  561. *
  562. * |\ |\
  563. * | \ | \
  564. * __---__---__ (- plane active, _ blanking)
  565. * -> time
  566. *
  567. * or perhaps like this:
  568. *
  569. * |\|\ |\|\
  570. * __----__----__ (- plane active, _ blanking)
  571. * -> time
  572. *
  573. * Returns:
  574. * The watermark in bytes
  575. */
  576. static unsigned int intel_wm_method1(unsigned int pixel_rate,
  577. unsigned int cpp,
  578. unsigned int latency)
  579. {
  580. uint64_t ret;
  581. ret = (uint64_t) pixel_rate * cpp * latency;
  582. ret = DIV_ROUND_UP_ULL(ret, 10000);
  583. return ret;
  584. }
  585. /**
  586. * intel_wm_method2 - Method 2 / "large buffer" watermark formula
  587. * @pixel_rate: Pipe pixel rate in kHz
  588. * @htotal: Pipe horizontal total
  589. * @width: Plane width in pixels
  590. * @cpp: Plane bytes per pixel
  591. * @latency: Memory wakeup latency in 0.1us units
  592. *
  593. * Compute the watermark using the method 2 or "large buffer"
  594. * formula. The caller may additonally add extra cachelines
  595. * to account for TLB misses and clock crossings.
  596. *
  597. * This method is concerned with the long term drain rate
  598. * of the FIFO, ie. it does account for blanking periods
  599. * which effectively reduce the average drain rate across
  600. * a longer period. The name "large" refers to the fact the
  601. * FIFO is relatively large compared to the amount of data
  602. * fetched.
  603. *
  604. * The FIFO level vs. time graph might look something like:
  605. *
  606. * |\___ |\___
  607. * | \___ | \___
  608. * | \ | \
  609. * __ --__--__--__--__--__--__ (- plane active, _ blanking)
  610. * -> time
  611. *
  612. * Returns:
  613. * The watermark in bytes
  614. */
  615. static unsigned int intel_wm_method2(unsigned int pixel_rate,
  616. unsigned int htotal,
  617. unsigned int width,
  618. unsigned int cpp,
  619. unsigned int latency)
  620. {
  621. unsigned int ret;
  622. /*
  623. * FIXME remove once all users are computing
  624. * watermarks in the correct place.
  625. */
  626. if (WARN_ON_ONCE(htotal == 0))
  627. htotal = 1;
  628. ret = (latency * pixel_rate) / (htotal * 10000);
  629. ret = (ret + 1) * width * cpp;
  630. return ret;
  631. }
  632. /**
  633. * intel_calculate_wm - calculate watermark level
  634. * @pixel_rate: pixel clock
  635. * @wm: chip FIFO params
  636. * @cpp: bytes per pixel
  637. * @latency_ns: memory latency for the platform
  638. *
  639. * Calculate the watermark level (the level at which the display plane will
  640. * start fetching from memory again). Each chip has a different display
  641. * FIFO size and allocation, so the caller needs to figure that out and pass
  642. * in the correct intel_watermark_params structure.
  643. *
  644. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  645. * on the pixel size. When it reaches the watermark level, it'll start
  646. * fetching FIFO line sized based chunks from memory until the FIFO fills
  647. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  648. * will occur, and a display engine hang could result.
  649. */
  650. static unsigned int intel_calculate_wm(int pixel_rate,
  651. const struct intel_watermark_params *wm,
  652. int fifo_size, int cpp,
  653. unsigned int latency_ns)
  654. {
  655. int entries, wm_size;
  656. /*
  657. * Note: we need to make sure we don't overflow for various clock &
  658. * latency values.
  659. * clocks go from a few thousand to several hundred thousand.
  660. * latency is usually a few thousand
  661. */
  662. entries = intel_wm_method1(pixel_rate, cpp,
  663. latency_ns / 100);
  664. entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
  665. wm->guard_size;
  666. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
  667. wm_size = fifo_size - entries;
  668. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  669. /* Don't promote wm_size to unsigned... */
  670. if (wm_size > wm->max_wm)
  671. wm_size = wm->max_wm;
  672. if (wm_size <= 0)
  673. wm_size = wm->default_wm;
  674. /*
  675. * Bspec seems to indicate that the value shouldn't be lower than
  676. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  677. * Lets go for 8 which is the burst size since certain platforms
  678. * already use a hardcoded 8 (which is what the spec says should be
  679. * done).
  680. */
  681. if (wm_size <= 8)
  682. wm_size = 8;
  683. return wm_size;
  684. }
  685. static bool is_disabling(int old, int new, int threshold)
  686. {
  687. return old >= threshold && new < threshold;
  688. }
  689. static bool is_enabling(int old, int new, int threshold)
  690. {
  691. return old < threshold && new >= threshold;
  692. }
  693. static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
  694. {
  695. return dev_priv->wm.max_level + 1;
  696. }
  697. static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
  698. const struct intel_plane_state *plane_state)
  699. {
  700. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  701. /* FIXME check the 'enable' instead */
  702. if (!crtc_state->base.active)
  703. return false;
  704. /*
  705. * Treat cursor with fb as always visible since cursor updates
  706. * can happen faster than the vrefresh rate, and the current
  707. * watermark code doesn't handle that correctly. Cursor updates
  708. * which set/clear the fb or change the cursor size are going
  709. * to get throttled by intel_legacy_cursor_update() to work
  710. * around this problem with the watermark code.
  711. */
  712. if (plane->id == PLANE_CURSOR)
  713. return plane_state->base.fb != NULL;
  714. else
  715. return plane_state->base.visible;
  716. }
  717. static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  718. {
  719. struct intel_crtc *crtc, *enabled = NULL;
  720. for_each_intel_crtc(&dev_priv->drm, crtc) {
  721. if (intel_crtc_active(crtc)) {
  722. if (enabled)
  723. return NULL;
  724. enabled = crtc;
  725. }
  726. }
  727. return enabled;
  728. }
  729. static void pineview_update_wm(struct intel_crtc *unused_crtc)
  730. {
  731. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  732. struct intel_crtc *crtc;
  733. const struct cxsr_latency *latency;
  734. u32 reg;
  735. unsigned int wm;
  736. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  737. dev_priv->is_ddr3,
  738. dev_priv->fsb_freq,
  739. dev_priv->mem_freq);
  740. if (!latency) {
  741. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  742. intel_set_memory_cxsr(dev_priv, false);
  743. return;
  744. }
  745. crtc = single_enabled_crtc(dev_priv);
  746. if (crtc) {
  747. const struct drm_display_mode *adjusted_mode =
  748. &crtc->config->base.adjusted_mode;
  749. const struct drm_framebuffer *fb =
  750. crtc->base.primary->state->fb;
  751. int cpp = fb->format->cpp[0];
  752. int clock = adjusted_mode->crtc_clock;
  753. /* Display SR */
  754. wm = intel_calculate_wm(clock, &pineview_display_wm,
  755. pineview_display_wm.fifo_size,
  756. cpp, latency->display_sr);
  757. reg = I915_READ(DSPFW1);
  758. reg &= ~DSPFW_SR_MASK;
  759. reg |= FW_WM(wm, SR);
  760. I915_WRITE(DSPFW1, reg);
  761. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  762. /* cursor SR */
  763. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  764. pineview_display_wm.fifo_size,
  765. 4, latency->cursor_sr);
  766. reg = I915_READ(DSPFW3);
  767. reg &= ~DSPFW_CURSOR_SR_MASK;
  768. reg |= FW_WM(wm, CURSOR_SR);
  769. I915_WRITE(DSPFW3, reg);
  770. /* Display HPLL off SR */
  771. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  772. pineview_display_hplloff_wm.fifo_size,
  773. cpp, latency->display_hpll_disable);
  774. reg = I915_READ(DSPFW3);
  775. reg &= ~DSPFW_HPLL_SR_MASK;
  776. reg |= FW_WM(wm, HPLL_SR);
  777. I915_WRITE(DSPFW3, reg);
  778. /* cursor HPLL off SR */
  779. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  780. pineview_display_hplloff_wm.fifo_size,
  781. 4, latency->cursor_hpll_disable);
  782. reg = I915_READ(DSPFW3);
  783. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  784. reg |= FW_WM(wm, HPLL_CURSOR);
  785. I915_WRITE(DSPFW3, reg);
  786. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  787. intel_set_memory_cxsr(dev_priv, true);
  788. } else {
  789. intel_set_memory_cxsr(dev_priv, false);
  790. }
  791. }
  792. /*
  793. * Documentation says:
  794. * "If the line size is small, the TLB fetches can get in the way of the
  795. * data fetches, causing some lag in the pixel data return which is not
  796. * accounted for in the above formulas. The following adjustment only
  797. * needs to be applied if eight whole lines fit in the buffer at once.
  798. * The WM is adjusted upwards by the difference between the FIFO size
  799. * and the size of 8 whole lines. This adjustment is always performed
  800. * in the actual pixel depth regardless of whether FBC is enabled or not."
  801. */
  802. static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
  803. {
  804. int tlb_miss = fifo_size * 64 - width * cpp * 8;
  805. return max(0, tlb_miss);
  806. }
  807. static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
  808. const struct g4x_wm_values *wm)
  809. {
  810. enum pipe pipe;
  811. for_each_pipe(dev_priv, pipe)
  812. trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  813. I915_WRITE(DSPFW1,
  814. FW_WM(wm->sr.plane, SR) |
  815. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  816. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  817. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  818. I915_WRITE(DSPFW2,
  819. (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
  820. FW_WM(wm->sr.fbc, FBC_SR) |
  821. FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
  822. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
  823. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  824. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  825. I915_WRITE(DSPFW3,
  826. (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
  827. FW_WM(wm->sr.cursor, CURSOR_SR) |
  828. FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
  829. FW_WM(wm->hpll.plane, HPLL_SR));
  830. POSTING_READ(DSPFW1);
  831. }
  832. #define FW_WM_VLV(value, plane) \
  833. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  834. static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  835. const struct vlv_wm_values *wm)
  836. {
  837. enum pipe pipe;
  838. for_each_pipe(dev_priv, pipe) {
  839. trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  840. I915_WRITE(VLV_DDL(pipe),
  841. (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  842. (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  843. (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  844. (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  845. }
  846. /*
  847. * Zero the (unused) WM1 watermarks, and also clear all the
  848. * high order bits so that there are no out of bounds values
  849. * present in the registers during the reprogramming.
  850. */
  851. I915_WRITE(DSPHOWM, 0);
  852. I915_WRITE(DSPHOWM1, 0);
  853. I915_WRITE(DSPFW4, 0);
  854. I915_WRITE(DSPFW5, 0);
  855. I915_WRITE(DSPFW6, 0);
  856. I915_WRITE(DSPFW1,
  857. FW_WM(wm->sr.plane, SR) |
  858. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  859. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  860. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  861. I915_WRITE(DSPFW2,
  862. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
  863. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  864. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  865. I915_WRITE(DSPFW3,
  866. FW_WM(wm->sr.cursor, CURSOR_SR));
  867. if (IS_CHERRYVIEW(dev_priv)) {
  868. I915_WRITE(DSPFW7_CHV,
  869. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  870. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  871. I915_WRITE(DSPFW8_CHV,
  872. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
  873. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
  874. I915_WRITE(DSPFW9_CHV,
  875. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
  876. FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
  877. I915_WRITE(DSPHOWM,
  878. FW_WM(wm->sr.plane >> 9, SR_HI) |
  879. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
  880. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
  881. FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
  882. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  883. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  884. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  885. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  886. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  887. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  888. } else {
  889. I915_WRITE(DSPFW7,
  890. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  891. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  892. I915_WRITE(DSPHOWM,
  893. FW_WM(wm->sr.plane >> 9, SR_HI) |
  894. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  895. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  896. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  897. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  898. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  899. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  900. }
  901. POSTING_READ(DSPFW1);
  902. }
  903. #undef FW_WM_VLV
  904. static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
  905. {
  906. /* all latencies in usec */
  907. dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
  908. dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
  909. dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
  910. dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
  911. }
  912. static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
  913. {
  914. /*
  915. * DSPCNTR[13] supposedly controls whether the
  916. * primary plane can use the FIFO space otherwise
  917. * reserved for the sprite plane. It's not 100% clear
  918. * what the actual FIFO size is, but it looks like we
  919. * can happily set both primary and sprite watermarks
  920. * up to 127 cachelines. So that would seem to mean
  921. * that either DSPCNTR[13] doesn't do anything, or that
  922. * the total FIFO is >= 256 cachelines in size. Either
  923. * way, we don't seem to have to worry about this
  924. * repartitioning as the maximum watermark value the
  925. * register can hold for each plane is lower than the
  926. * minimum FIFO size.
  927. */
  928. switch (plane_id) {
  929. case PLANE_CURSOR:
  930. return 63;
  931. case PLANE_PRIMARY:
  932. return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
  933. case PLANE_SPRITE0:
  934. return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
  935. default:
  936. MISSING_CASE(plane_id);
  937. return 0;
  938. }
  939. }
  940. static int g4x_fbc_fifo_size(int level)
  941. {
  942. switch (level) {
  943. case G4X_WM_LEVEL_SR:
  944. return 7;
  945. case G4X_WM_LEVEL_HPLL:
  946. return 15;
  947. default:
  948. MISSING_CASE(level);
  949. return 0;
  950. }
  951. }
  952. static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
  953. const struct intel_plane_state *plane_state,
  954. int level)
  955. {
  956. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  957. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  958. const struct drm_display_mode *adjusted_mode =
  959. &crtc_state->base.adjusted_mode;
  960. int clock, htotal, cpp, width, wm;
  961. int latency = dev_priv->wm.pri_latency[level] * 10;
  962. if (latency == 0)
  963. return USHRT_MAX;
  964. if (!intel_wm_plane_visible(crtc_state, plane_state))
  965. return 0;
  966. /*
  967. * Not 100% sure which way ELK should go here as the
  968. * spec only says CL/CTG should assume 32bpp and BW
  969. * doesn't need to. But as these things followed the
  970. * mobile vs. desktop lines on gen3 as well, let's
  971. * assume ELK doesn't need this.
  972. *
  973. * The spec also fails to list such a restriction for
  974. * the HPLL watermark, which seems a little strange.
  975. * Let's use 32bpp for the HPLL watermark as well.
  976. */
  977. if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
  978. level != G4X_WM_LEVEL_NORMAL)
  979. cpp = 4;
  980. else
  981. cpp = plane_state->base.fb->format->cpp[0];
  982. clock = adjusted_mode->crtc_clock;
  983. htotal = adjusted_mode->crtc_htotal;
  984. if (plane->id == PLANE_CURSOR)
  985. width = plane_state->base.crtc_w;
  986. else
  987. width = drm_rect_width(&plane_state->base.dst);
  988. if (plane->id == PLANE_CURSOR) {
  989. wm = intel_wm_method2(clock, htotal, width, cpp, latency);
  990. } else if (plane->id == PLANE_PRIMARY &&
  991. level == G4X_WM_LEVEL_NORMAL) {
  992. wm = intel_wm_method1(clock, cpp, latency);
  993. } else {
  994. int small, large;
  995. small = intel_wm_method1(clock, cpp, latency);
  996. large = intel_wm_method2(clock, htotal, width, cpp, latency);
  997. wm = min(small, large);
  998. }
  999. wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
  1000. width, cpp);
  1001. wm = DIV_ROUND_UP(wm, 64) + 2;
  1002. return min_t(int, wm, USHRT_MAX);
  1003. }
  1004. static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1005. int level, enum plane_id plane_id, u16 value)
  1006. {
  1007. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1008. bool dirty = false;
  1009. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1010. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1011. dirty |= raw->plane[plane_id] != value;
  1012. raw->plane[plane_id] = value;
  1013. }
  1014. return dirty;
  1015. }
  1016. static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
  1017. int level, u16 value)
  1018. {
  1019. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1020. bool dirty = false;
  1021. /* NORMAL level doesn't have an FBC watermark */
  1022. level = max(level, G4X_WM_LEVEL_SR);
  1023. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1024. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1025. dirty |= raw->fbc != value;
  1026. raw->fbc = value;
  1027. }
  1028. return dirty;
  1029. }
  1030. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1031. const struct intel_plane_state *pstate,
  1032. uint32_t pri_val);
  1033. static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1034. const struct intel_plane_state *plane_state)
  1035. {
  1036. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1037. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1038. enum plane_id plane_id = plane->id;
  1039. bool dirty = false;
  1040. int level;
  1041. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1042. dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1043. if (plane_id == PLANE_PRIMARY)
  1044. dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
  1045. goto out;
  1046. }
  1047. for (level = 0; level < num_levels; level++) {
  1048. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1049. int wm, max_wm;
  1050. wm = g4x_compute_wm(crtc_state, plane_state, level);
  1051. max_wm = g4x_plane_fifo_size(plane_id, level);
  1052. if (wm > max_wm)
  1053. break;
  1054. dirty |= raw->plane[plane_id] != wm;
  1055. raw->plane[plane_id] = wm;
  1056. if (plane_id != PLANE_PRIMARY ||
  1057. level == G4X_WM_LEVEL_NORMAL)
  1058. continue;
  1059. wm = ilk_compute_fbc_wm(crtc_state, plane_state,
  1060. raw->plane[plane_id]);
  1061. max_wm = g4x_fbc_fifo_size(level);
  1062. /*
  1063. * FBC wm is not mandatory as we
  1064. * can always just disable its use.
  1065. */
  1066. if (wm > max_wm)
  1067. wm = USHRT_MAX;
  1068. dirty |= raw->fbc != wm;
  1069. raw->fbc = wm;
  1070. }
  1071. /* mark watermarks as invalid */
  1072. dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1073. if (plane_id == PLANE_PRIMARY)
  1074. dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  1075. out:
  1076. if (dirty) {
  1077. DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
  1078. plane->base.name,
  1079. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
  1080. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
  1081. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
  1082. if (plane_id == PLANE_PRIMARY)
  1083. DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
  1084. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
  1085. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
  1086. }
  1087. return dirty;
  1088. }
  1089. static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1090. enum plane_id plane_id, int level)
  1091. {
  1092. const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1093. return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
  1094. }
  1095. static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1096. int level)
  1097. {
  1098. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1099. if (level > dev_priv->wm.max_level)
  1100. return false;
  1101. return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1102. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1103. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1104. }
  1105. /* mark all levels starting from 'level' as invalid */
  1106. static void g4x_invalidate_wms(struct intel_crtc *crtc,
  1107. struct g4x_wm_state *wm_state, int level)
  1108. {
  1109. if (level <= G4X_WM_LEVEL_NORMAL) {
  1110. enum plane_id plane_id;
  1111. for_each_plane_id_on_crtc(crtc, plane_id)
  1112. wm_state->wm.plane[plane_id] = USHRT_MAX;
  1113. }
  1114. if (level <= G4X_WM_LEVEL_SR) {
  1115. wm_state->cxsr = false;
  1116. wm_state->sr.cursor = USHRT_MAX;
  1117. wm_state->sr.plane = USHRT_MAX;
  1118. wm_state->sr.fbc = USHRT_MAX;
  1119. }
  1120. if (level <= G4X_WM_LEVEL_HPLL) {
  1121. wm_state->hpll_en = false;
  1122. wm_state->hpll.cursor = USHRT_MAX;
  1123. wm_state->hpll.plane = USHRT_MAX;
  1124. wm_state->hpll.fbc = USHRT_MAX;
  1125. }
  1126. }
  1127. static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1128. {
  1129. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1130. struct intel_atomic_state *state =
  1131. to_intel_atomic_state(crtc_state->base.state);
  1132. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  1133. int num_active_planes = hweight32(crtc_state->active_planes &
  1134. ~BIT(PLANE_CURSOR));
  1135. const struct g4x_pipe_wm *raw;
  1136. struct intel_plane_state *plane_state;
  1137. struct intel_plane *plane;
  1138. enum plane_id plane_id;
  1139. int i, level;
  1140. unsigned int dirty = 0;
  1141. for_each_intel_plane_in_state(state, plane, plane_state, i) {
  1142. const struct intel_plane_state *old_plane_state =
  1143. to_intel_plane_state(plane->base.state);
  1144. if (plane_state->base.crtc != &crtc->base &&
  1145. old_plane_state->base.crtc != &crtc->base)
  1146. continue;
  1147. if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
  1148. dirty |= BIT(plane->id);
  1149. }
  1150. if (!dirty)
  1151. return 0;
  1152. level = G4X_WM_LEVEL_NORMAL;
  1153. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1154. goto out;
  1155. raw = &crtc_state->wm.g4x.raw[level];
  1156. for_each_plane_id_on_crtc(crtc, plane_id)
  1157. wm_state->wm.plane[plane_id] = raw->plane[plane_id];
  1158. level = G4X_WM_LEVEL_SR;
  1159. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1160. goto out;
  1161. raw = &crtc_state->wm.g4x.raw[level];
  1162. wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
  1163. wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
  1164. wm_state->sr.fbc = raw->fbc;
  1165. wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
  1166. level = G4X_WM_LEVEL_HPLL;
  1167. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1168. goto out;
  1169. raw = &crtc_state->wm.g4x.raw[level];
  1170. wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
  1171. wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
  1172. wm_state->hpll.fbc = raw->fbc;
  1173. wm_state->hpll_en = wm_state->cxsr;
  1174. level++;
  1175. out:
  1176. if (level == G4X_WM_LEVEL_NORMAL)
  1177. return -EINVAL;
  1178. /* invalidate the higher levels */
  1179. g4x_invalidate_wms(crtc, wm_state, level);
  1180. /*
  1181. * Determine if the FBC watermark(s) can be used. IF
  1182. * this isn't the case we prefer to disable the FBC
  1183. ( watermark(s) rather than disable the SR/HPLL
  1184. * level(s) entirely.
  1185. */
  1186. wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
  1187. if (level >= G4X_WM_LEVEL_SR &&
  1188. wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
  1189. wm_state->fbc_en = false;
  1190. else if (level >= G4X_WM_LEVEL_HPLL &&
  1191. wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
  1192. wm_state->fbc_en = false;
  1193. return 0;
  1194. }
  1195. static int g4x_compute_intermediate_wm(struct drm_device *dev,
  1196. struct intel_crtc *crtc,
  1197. struct intel_crtc_state *crtc_state)
  1198. {
  1199. struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
  1200. const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
  1201. const struct g4x_wm_state *active = &crtc->wm.active.g4x;
  1202. enum plane_id plane_id;
  1203. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1204. !crtc_state->disable_cxsr;
  1205. intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
  1206. !crtc_state->disable_cxsr;
  1207. intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
  1208. for_each_plane_id_on_crtc(crtc, plane_id) {
  1209. intermediate->wm.plane[plane_id] =
  1210. max(optimal->wm.plane[plane_id],
  1211. active->wm.plane[plane_id]);
  1212. WARN_ON(intermediate->wm.plane[plane_id] >
  1213. g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
  1214. }
  1215. intermediate->sr.plane = max(optimal->sr.plane,
  1216. active->sr.plane);
  1217. intermediate->sr.cursor = max(optimal->sr.cursor,
  1218. active->sr.cursor);
  1219. intermediate->sr.fbc = max(optimal->sr.fbc,
  1220. active->sr.fbc);
  1221. intermediate->hpll.plane = max(optimal->hpll.plane,
  1222. active->hpll.plane);
  1223. intermediate->hpll.cursor = max(optimal->hpll.cursor,
  1224. active->hpll.cursor);
  1225. intermediate->hpll.fbc = max(optimal->hpll.fbc,
  1226. active->hpll.fbc);
  1227. WARN_ON((intermediate->sr.plane >
  1228. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
  1229. intermediate->sr.cursor >
  1230. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
  1231. intermediate->cxsr);
  1232. WARN_ON((intermediate->sr.plane >
  1233. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
  1234. intermediate->sr.cursor >
  1235. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
  1236. intermediate->hpll_en);
  1237. WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
  1238. intermediate->fbc_en && intermediate->cxsr);
  1239. WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
  1240. intermediate->fbc_en && intermediate->hpll_en);
  1241. /*
  1242. * If our intermediate WM are identical to the final WM, then we can
  1243. * omit the post-vblank programming; only update if it's different.
  1244. */
  1245. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1246. crtc_state->wm.need_postvbl_update = true;
  1247. return 0;
  1248. }
  1249. static void g4x_merge_wm(struct drm_i915_private *dev_priv,
  1250. struct g4x_wm_values *wm)
  1251. {
  1252. struct intel_crtc *crtc;
  1253. int num_active_crtcs = 0;
  1254. wm->cxsr = true;
  1255. wm->hpll_en = true;
  1256. wm->fbc_en = true;
  1257. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1258. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1259. if (!crtc->active)
  1260. continue;
  1261. if (!wm_state->cxsr)
  1262. wm->cxsr = false;
  1263. if (!wm_state->hpll_en)
  1264. wm->hpll_en = false;
  1265. if (!wm_state->fbc_en)
  1266. wm->fbc_en = false;
  1267. num_active_crtcs++;
  1268. }
  1269. if (num_active_crtcs != 1) {
  1270. wm->cxsr = false;
  1271. wm->hpll_en = false;
  1272. wm->fbc_en = false;
  1273. }
  1274. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1275. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1276. enum pipe pipe = crtc->pipe;
  1277. wm->pipe[pipe] = wm_state->wm;
  1278. if (crtc->active && wm->cxsr)
  1279. wm->sr = wm_state->sr;
  1280. if (crtc->active && wm->hpll_en)
  1281. wm->hpll = wm_state->hpll;
  1282. }
  1283. }
  1284. static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
  1285. {
  1286. struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
  1287. struct g4x_wm_values new_wm = {};
  1288. g4x_merge_wm(dev_priv, &new_wm);
  1289. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1290. return;
  1291. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1292. _intel_set_memory_cxsr(dev_priv, false);
  1293. g4x_write_wm_values(dev_priv, &new_wm);
  1294. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1295. _intel_set_memory_cxsr(dev_priv, true);
  1296. *old_wm = new_wm;
  1297. }
  1298. static void g4x_initial_watermarks(struct intel_atomic_state *state,
  1299. struct intel_crtc_state *crtc_state)
  1300. {
  1301. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1302. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1303. mutex_lock(&dev_priv->wm.wm_mutex);
  1304. crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
  1305. g4x_program_watermarks(dev_priv);
  1306. mutex_unlock(&dev_priv->wm.wm_mutex);
  1307. }
  1308. static void g4x_optimize_watermarks(struct intel_atomic_state *state,
  1309. struct intel_crtc_state *crtc_state)
  1310. {
  1311. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1312. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1313. if (!crtc_state->wm.need_postvbl_update)
  1314. return;
  1315. mutex_lock(&dev_priv->wm.wm_mutex);
  1316. intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  1317. g4x_program_watermarks(dev_priv);
  1318. mutex_unlock(&dev_priv->wm.wm_mutex);
  1319. }
  1320. /* latency must be in 0.1us units. */
  1321. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  1322. unsigned int htotal,
  1323. unsigned int width,
  1324. unsigned int cpp,
  1325. unsigned int latency)
  1326. {
  1327. unsigned int ret;
  1328. ret = intel_wm_method2(pixel_rate, htotal,
  1329. width, cpp, latency);
  1330. ret = DIV_ROUND_UP(ret, 64);
  1331. return ret;
  1332. }
  1333. static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
  1334. {
  1335. /* all latencies in usec */
  1336. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  1337. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  1338. if (IS_CHERRYVIEW(dev_priv)) {
  1339. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  1340. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  1341. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  1342. }
  1343. }
  1344. static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
  1345. const struct intel_plane_state *plane_state,
  1346. int level)
  1347. {
  1348. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1349. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  1350. const struct drm_display_mode *adjusted_mode =
  1351. &crtc_state->base.adjusted_mode;
  1352. int clock, htotal, cpp, width, wm;
  1353. if (dev_priv->wm.pri_latency[level] == 0)
  1354. return USHRT_MAX;
  1355. if (!intel_wm_plane_visible(crtc_state, plane_state))
  1356. return 0;
  1357. cpp = plane_state->base.fb->format->cpp[0];
  1358. clock = adjusted_mode->crtc_clock;
  1359. htotal = adjusted_mode->crtc_htotal;
  1360. width = crtc_state->pipe_src_w;
  1361. if (plane->id == PLANE_CURSOR) {
  1362. /*
  1363. * FIXME the formula gives values that are
  1364. * too big for the cursor FIFO, and hence we
  1365. * would never be able to use cursors. For
  1366. * now just hardcode the watermark.
  1367. */
  1368. wm = 63;
  1369. } else {
  1370. wm = vlv_wm_method2(clock, htotal, width, cpp,
  1371. dev_priv->wm.pri_latency[level] * 10);
  1372. }
  1373. return min_t(int, wm, USHRT_MAX);
  1374. }
  1375. static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
  1376. {
  1377. return (active_planes & (BIT(PLANE_SPRITE0) |
  1378. BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
  1379. }
  1380. static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
  1381. {
  1382. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1383. const struct g4x_pipe_wm *raw =
  1384. &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
  1385. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  1386. unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
  1387. int num_active_planes = hweight32(active_planes);
  1388. const int fifo_size = 511;
  1389. int fifo_extra, fifo_left = fifo_size;
  1390. int sprite0_fifo_extra = 0;
  1391. unsigned int total_rate;
  1392. enum plane_id plane_id;
  1393. /*
  1394. * When enabling sprite0 after sprite1 has already been enabled
  1395. * we tend to get an underrun unless sprite0 already has some
  1396. * FIFO space allcoated. Hence we always allocate at least one
  1397. * cacheline for sprite0 whenever sprite1 is enabled.
  1398. *
  1399. * All other plane enable sequences appear immune to this problem.
  1400. */
  1401. if (vlv_need_sprite0_fifo_workaround(active_planes))
  1402. sprite0_fifo_extra = 1;
  1403. total_rate = raw->plane[PLANE_PRIMARY] +
  1404. raw->plane[PLANE_SPRITE0] +
  1405. raw->plane[PLANE_SPRITE1] +
  1406. sprite0_fifo_extra;
  1407. if (total_rate > fifo_size)
  1408. return -EINVAL;
  1409. if (total_rate == 0)
  1410. total_rate = 1;
  1411. for_each_plane_id_on_crtc(crtc, plane_id) {
  1412. unsigned int rate;
  1413. if ((active_planes & BIT(plane_id)) == 0) {
  1414. fifo_state->plane[plane_id] = 0;
  1415. continue;
  1416. }
  1417. rate = raw->plane[plane_id];
  1418. fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
  1419. fifo_left -= fifo_state->plane[plane_id];
  1420. }
  1421. fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
  1422. fifo_left -= sprite0_fifo_extra;
  1423. fifo_state->plane[PLANE_CURSOR] = 63;
  1424. fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
  1425. /* spread the remainder evenly */
  1426. for_each_plane_id_on_crtc(crtc, plane_id) {
  1427. int plane_extra;
  1428. if (fifo_left == 0)
  1429. break;
  1430. if ((active_planes & BIT(plane_id)) == 0)
  1431. continue;
  1432. plane_extra = min(fifo_extra, fifo_left);
  1433. fifo_state->plane[plane_id] += plane_extra;
  1434. fifo_left -= plane_extra;
  1435. }
  1436. WARN_ON(active_planes != 0 && fifo_left != 0);
  1437. /* give it all to the first plane if none are active */
  1438. if (active_planes == 0) {
  1439. WARN_ON(fifo_left != fifo_size);
  1440. fifo_state->plane[PLANE_PRIMARY] = fifo_left;
  1441. }
  1442. return 0;
  1443. }
  1444. /* mark all levels starting from 'level' as invalid */
  1445. static void vlv_invalidate_wms(struct intel_crtc *crtc,
  1446. struct vlv_wm_state *wm_state, int level)
  1447. {
  1448. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1449. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1450. enum plane_id plane_id;
  1451. for_each_plane_id_on_crtc(crtc, plane_id)
  1452. wm_state->wm[level].plane[plane_id] = USHRT_MAX;
  1453. wm_state->sr[level].cursor = USHRT_MAX;
  1454. wm_state->sr[level].plane = USHRT_MAX;
  1455. }
  1456. }
  1457. static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
  1458. {
  1459. if (wm > fifo_size)
  1460. return USHRT_MAX;
  1461. else
  1462. return fifo_size - wm;
  1463. }
  1464. /*
  1465. * Starting from 'level' set all higher
  1466. * levels to 'value' in the "raw" watermarks.
  1467. */
  1468. static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1469. int level, enum plane_id plane_id, u16 value)
  1470. {
  1471. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1472. int num_levels = intel_wm_num_levels(dev_priv);
  1473. bool dirty = false;
  1474. for (; level < num_levels; level++) {
  1475. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1476. dirty |= raw->plane[plane_id] != value;
  1477. raw->plane[plane_id] = value;
  1478. }
  1479. return dirty;
  1480. }
  1481. static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1482. const struct intel_plane_state *plane_state)
  1483. {
  1484. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1485. enum plane_id plane_id = plane->id;
  1486. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1487. int level;
  1488. bool dirty = false;
  1489. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1490. dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1491. goto out;
  1492. }
  1493. for (level = 0; level < num_levels; level++) {
  1494. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1495. int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
  1496. int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
  1497. if (wm > max_wm)
  1498. break;
  1499. dirty |= raw->plane[plane_id] != wm;
  1500. raw->plane[plane_id] = wm;
  1501. }
  1502. /* mark all higher levels as invalid */
  1503. dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1504. out:
  1505. if (dirty)
  1506. DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
  1507. plane->base.name,
  1508. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
  1509. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
  1510. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
  1511. return dirty;
  1512. }
  1513. static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1514. enum plane_id plane_id, int level)
  1515. {
  1516. const struct g4x_pipe_wm *raw =
  1517. &crtc_state->wm.vlv.raw[level];
  1518. const struct vlv_fifo_state *fifo_state =
  1519. &crtc_state->wm.vlv.fifo_state;
  1520. return raw->plane[plane_id] <= fifo_state->plane[plane_id];
  1521. }
  1522. static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
  1523. {
  1524. return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1525. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1526. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
  1527. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1528. }
  1529. static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1530. {
  1531. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1532. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1533. struct intel_atomic_state *state =
  1534. to_intel_atomic_state(crtc_state->base.state);
  1535. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  1536. const struct vlv_fifo_state *fifo_state =
  1537. &crtc_state->wm.vlv.fifo_state;
  1538. int num_active_planes = hweight32(crtc_state->active_planes &
  1539. ~BIT(PLANE_CURSOR));
  1540. bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
  1541. struct intel_plane_state *plane_state;
  1542. struct intel_plane *plane;
  1543. enum plane_id plane_id;
  1544. int level, ret, i;
  1545. unsigned int dirty = 0;
  1546. for_each_intel_plane_in_state(state, plane, plane_state, i) {
  1547. const struct intel_plane_state *old_plane_state =
  1548. to_intel_plane_state(plane->base.state);
  1549. if (plane_state->base.crtc != &crtc->base &&
  1550. old_plane_state->base.crtc != &crtc->base)
  1551. continue;
  1552. if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
  1553. dirty |= BIT(plane->id);
  1554. }
  1555. /*
  1556. * DSPARB registers may have been reset due to the
  1557. * power well being turned off. Make sure we restore
  1558. * them to a consistent state even if no primary/sprite
  1559. * planes are initially active.
  1560. */
  1561. if (needs_modeset)
  1562. crtc_state->fifo_changed = true;
  1563. if (!dirty)
  1564. return 0;
  1565. /* cursor changes don't warrant a FIFO recompute */
  1566. if (dirty & ~BIT(PLANE_CURSOR)) {
  1567. const struct intel_crtc_state *old_crtc_state =
  1568. to_intel_crtc_state(crtc->base.state);
  1569. const struct vlv_fifo_state *old_fifo_state =
  1570. &old_crtc_state->wm.vlv.fifo_state;
  1571. ret = vlv_compute_fifo(crtc_state);
  1572. if (ret)
  1573. return ret;
  1574. if (needs_modeset ||
  1575. memcmp(old_fifo_state, fifo_state,
  1576. sizeof(*fifo_state)) != 0)
  1577. crtc_state->fifo_changed = true;
  1578. }
  1579. /* initially allow all levels */
  1580. wm_state->num_levels = intel_wm_num_levels(dev_priv);
  1581. /*
  1582. * Note that enabling cxsr with no primary/sprite planes
  1583. * enabled can wedge the pipe. Hence we only allow cxsr
  1584. * with exactly one enabled primary/sprite plane.
  1585. */
  1586. wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
  1587. for (level = 0; level < wm_state->num_levels; level++) {
  1588. const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1589. const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  1590. if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
  1591. break;
  1592. for_each_plane_id_on_crtc(crtc, plane_id) {
  1593. wm_state->wm[level].plane[plane_id] =
  1594. vlv_invert_wm_value(raw->plane[plane_id],
  1595. fifo_state->plane[plane_id]);
  1596. }
  1597. wm_state->sr[level].plane =
  1598. vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
  1599. raw->plane[PLANE_SPRITE0],
  1600. raw->plane[PLANE_SPRITE1]),
  1601. sr_fifo_size);
  1602. wm_state->sr[level].cursor =
  1603. vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
  1604. 63);
  1605. }
  1606. if (level == 0)
  1607. return -EINVAL;
  1608. /* limit to only levels we can actually handle */
  1609. wm_state->num_levels = level;
  1610. /* invalidate the higher levels */
  1611. vlv_invalidate_wms(crtc, wm_state, level);
  1612. return 0;
  1613. }
  1614. #define VLV_FIFO(plane, value) \
  1615. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1616. static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
  1617. struct intel_crtc_state *crtc_state)
  1618. {
  1619. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1620. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1621. const struct vlv_fifo_state *fifo_state =
  1622. &crtc_state->wm.vlv.fifo_state;
  1623. int sprite0_start, sprite1_start, fifo_size;
  1624. if (!crtc_state->fifo_changed)
  1625. return;
  1626. sprite0_start = fifo_state->plane[PLANE_PRIMARY];
  1627. sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
  1628. fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
  1629. WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
  1630. WARN_ON(fifo_size != 511);
  1631. trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
  1632. /*
  1633. * uncore.lock serves a double purpose here. It allows us to
  1634. * use the less expensive I915_{READ,WRITE}_FW() functions, and
  1635. * it protects the DSPARB registers from getting clobbered by
  1636. * parallel updates from multiple pipes.
  1637. *
  1638. * intel_pipe_update_start() has already disabled interrupts
  1639. * for us, so a plain spin_lock() is sufficient here.
  1640. */
  1641. spin_lock(&dev_priv->uncore.lock);
  1642. switch (crtc->pipe) {
  1643. uint32_t dsparb, dsparb2, dsparb3;
  1644. case PIPE_A:
  1645. dsparb = I915_READ_FW(DSPARB);
  1646. dsparb2 = I915_READ_FW(DSPARB2);
  1647. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1648. VLV_FIFO(SPRITEB, 0xff));
  1649. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1650. VLV_FIFO(SPRITEB, sprite1_start));
  1651. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1652. VLV_FIFO(SPRITEB_HI, 0x1));
  1653. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1654. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1655. I915_WRITE_FW(DSPARB, dsparb);
  1656. I915_WRITE_FW(DSPARB2, dsparb2);
  1657. break;
  1658. case PIPE_B:
  1659. dsparb = I915_READ_FW(DSPARB);
  1660. dsparb2 = I915_READ_FW(DSPARB2);
  1661. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1662. VLV_FIFO(SPRITED, 0xff));
  1663. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1664. VLV_FIFO(SPRITED, sprite1_start));
  1665. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1666. VLV_FIFO(SPRITED_HI, 0xff));
  1667. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1668. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1669. I915_WRITE_FW(DSPARB, dsparb);
  1670. I915_WRITE_FW(DSPARB2, dsparb2);
  1671. break;
  1672. case PIPE_C:
  1673. dsparb3 = I915_READ_FW(DSPARB3);
  1674. dsparb2 = I915_READ_FW(DSPARB2);
  1675. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1676. VLV_FIFO(SPRITEF, 0xff));
  1677. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1678. VLV_FIFO(SPRITEF, sprite1_start));
  1679. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1680. VLV_FIFO(SPRITEF_HI, 0xff));
  1681. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1682. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1683. I915_WRITE_FW(DSPARB3, dsparb3);
  1684. I915_WRITE_FW(DSPARB2, dsparb2);
  1685. break;
  1686. default:
  1687. break;
  1688. }
  1689. POSTING_READ_FW(DSPARB);
  1690. spin_unlock(&dev_priv->uncore.lock);
  1691. }
  1692. #undef VLV_FIFO
  1693. static int vlv_compute_intermediate_wm(struct drm_device *dev,
  1694. struct intel_crtc *crtc,
  1695. struct intel_crtc_state *crtc_state)
  1696. {
  1697. struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
  1698. const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
  1699. const struct vlv_wm_state *active = &crtc->wm.active.vlv;
  1700. int level;
  1701. intermediate->num_levels = min(optimal->num_levels, active->num_levels);
  1702. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1703. !crtc_state->disable_cxsr;
  1704. for (level = 0; level < intermediate->num_levels; level++) {
  1705. enum plane_id plane_id;
  1706. for_each_plane_id_on_crtc(crtc, plane_id) {
  1707. intermediate->wm[level].plane[plane_id] =
  1708. min(optimal->wm[level].plane[plane_id],
  1709. active->wm[level].plane[plane_id]);
  1710. }
  1711. intermediate->sr[level].plane = min(optimal->sr[level].plane,
  1712. active->sr[level].plane);
  1713. intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
  1714. active->sr[level].cursor);
  1715. }
  1716. vlv_invalidate_wms(crtc, intermediate, level);
  1717. /*
  1718. * If our intermediate WM are identical to the final WM, then we can
  1719. * omit the post-vblank programming; only update if it's different.
  1720. */
  1721. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1722. crtc_state->wm.need_postvbl_update = true;
  1723. return 0;
  1724. }
  1725. static void vlv_merge_wm(struct drm_i915_private *dev_priv,
  1726. struct vlv_wm_values *wm)
  1727. {
  1728. struct intel_crtc *crtc;
  1729. int num_active_crtcs = 0;
  1730. wm->level = dev_priv->wm.max_level;
  1731. wm->cxsr = true;
  1732. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1733. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1734. if (!crtc->active)
  1735. continue;
  1736. if (!wm_state->cxsr)
  1737. wm->cxsr = false;
  1738. num_active_crtcs++;
  1739. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1740. }
  1741. if (num_active_crtcs != 1)
  1742. wm->cxsr = false;
  1743. if (num_active_crtcs > 1)
  1744. wm->level = VLV_WM_LEVEL_PM2;
  1745. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1746. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1747. enum pipe pipe = crtc->pipe;
  1748. wm->pipe[pipe] = wm_state->wm[wm->level];
  1749. if (crtc->active && wm->cxsr)
  1750. wm->sr = wm_state->sr[wm->level];
  1751. wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
  1752. wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
  1753. wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
  1754. wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
  1755. }
  1756. }
  1757. static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
  1758. {
  1759. struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
  1760. struct vlv_wm_values new_wm = {};
  1761. vlv_merge_wm(dev_priv, &new_wm);
  1762. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1763. return;
  1764. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1765. chv_set_memory_dvfs(dev_priv, false);
  1766. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1767. chv_set_memory_pm5(dev_priv, false);
  1768. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1769. _intel_set_memory_cxsr(dev_priv, false);
  1770. vlv_write_wm_values(dev_priv, &new_wm);
  1771. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1772. _intel_set_memory_cxsr(dev_priv, true);
  1773. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1774. chv_set_memory_pm5(dev_priv, true);
  1775. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1776. chv_set_memory_dvfs(dev_priv, true);
  1777. *old_wm = new_wm;
  1778. }
  1779. static void vlv_initial_watermarks(struct intel_atomic_state *state,
  1780. struct intel_crtc_state *crtc_state)
  1781. {
  1782. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1783. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1784. mutex_lock(&dev_priv->wm.wm_mutex);
  1785. crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
  1786. vlv_program_watermarks(dev_priv);
  1787. mutex_unlock(&dev_priv->wm.wm_mutex);
  1788. }
  1789. static void vlv_optimize_watermarks(struct intel_atomic_state *state,
  1790. struct intel_crtc_state *crtc_state)
  1791. {
  1792. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1793. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1794. if (!crtc_state->wm.need_postvbl_update)
  1795. return;
  1796. mutex_lock(&dev_priv->wm.wm_mutex);
  1797. intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  1798. vlv_program_watermarks(dev_priv);
  1799. mutex_unlock(&dev_priv->wm.wm_mutex);
  1800. }
  1801. static void i965_update_wm(struct intel_crtc *unused_crtc)
  1802. {
  1803. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1804. struct intel_crtc *crtc;
  1805. int srwm = 1;
  1806. int cursor_sr = 16;
  1807. bool cxsr_enabled;
  1808. /* Calc sr entries for one plane configs */
  1809. crtc = single_enabled_crtc(dev_priv);
  1810. if (crtc) {
  1811. /* self-refresh has much higher latency */
  1812. static const int sr_latency_ns = 12000;
  1813. const struct drm_display_mode *adjusted_mode =
  1814. &crtc->config->base.adjusted_mode;
  1815. const struct drm_framebuffer *fb =
  1816. crtc->base.primary->state->fb;
  1817. int clock = adjusted_mode->crtc_clock;
  1818. int htotal = adjusted_mode->crtc_htotal;
  1819. int hdisplay = crtc->config->pipe_src_w;
  1820. int cpp = fb->format->cpp[0];
  1821. int entries;
  1822. entries = intel_wm_method2(clock, htotal,
  1823. hdisplay, cpp, sr_latency_ns / 100);
  1824. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1825. srwm = I965_FIFO_SIZE - entries;
  1826. if (srwm < 0)
  1827. srwm = 1;
  1828. srwm &= 0x1ff;
  1829. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1830. entries, srwm);
  1831. entries = intel_wm_method2(clock, htotal,
  1832. crtc->base.cursor->state->crtc_w, 4,
  1833. sr_latency_ns / 100);
  1834. entries = DIV_ROUND_UP(entries,
  1835. i965_cursor_wm_info.cacheline_size) +
  1836. i965_cursor_wm_info.guard_size;
  1837. cursor_sr = i965_cursor_wm_info.fifo_size - entries;
  1838. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1839. cursor_sr = i965_cursor_wm_info.max_wm;
  1840. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1841. "cursor %d\n", srwm, cursor_sr);
  1842. cxsr_enabled = true;
  1843. } else {
  1844. cxsr_enabled = false;
  1845. /* Turn off self refresh if both pipes are enabled */
  1846. intel_set_memory_cxsr(dev_priv, false);
  1847. }
  1848. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1849. srwm);
  1850. /* 965 has limitations... */
  1851. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1852. FW_WM(8, CURSORB) |
  1853. FW_WM(8, PLANEB) |
  1854. FW_WM(8, PLANEA));
  1855. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1856. FW_WM(8, PLANEC_OLD));
  1857. /* update cursor SR watermark */
  1858. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1859. if (cxsr_enabled)
  1860. intel_set_memory_cxsr(dev_priv, true);
  1861. }
  1862. #undef FW_WM
  1863. static void i9xx_update_wm(struct intel_crtc *unused_crtc)
  1864. {
  1865. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1866. const struct intel_watermark_params *wm_info;
  1867. uint32_t fwater_lo;
  1868. uint32_t fwater_hi;
  1869. int cwm, srwm = 1;
  1870. int fifo_size;
  1871. int planea_wm, planeb_wm;
  1872. struct intel_crtc *crtc, *enabled = NULL;
  1873. if (IS_I945GM(dev_priv))
  1874. wm_info = &i945_wm_info;
  1875. else if (!IS_GEN2(dev_priv))
  1876. wm_info = &i915_wm_info;
  1877. else
  1878. wm_info = &i830_a_wm_info;
  1879. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
  1880. crtc = intel_get_crtc_for_plane(dev_priv, 0);
  1881. if (intel_crtc_active(crtc)) {
  1882. const struct drm_display_mode *adjusted_mode =
  1883. &crtc->config->base.adjusted_mode;
  1884. const struct drm_framebuffer *fb =
  1885. crtc->base.primary->state->fb;
  1886. int cpp;
  1887. if (IS_GEN2(dev_priv))
  1888. cpp = 4;
  1889. else
  1890. cpp = fb->format->cpp[0];
  1891. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1892. wm_info, fifo_size, cpp,
  1893. pessimal_latency_ns);
  1894. enabled = crtc;
  1895. } else {
  1896. planea_wm = fifo_size - wm_info->guard_size;
  1897. if (planea_wm > (long)wm_info->max_wm)
  1898. planea_wm = wm_info->max_wm;
  1899. }
  1900. if (IS_GEN2(dev_priv))
  1901. wm_info = &i830_bc_wm_info;
  1902. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
  1903. crtc = intel_get_crtc_for_plane(dev_priv, 1);
  1904. if (intel_crtc_active(crtc)) {
  1905. const struct drm_display_mode *adjusted_mode =
  1906. &crtc->config->base.adjusted_mode;
  1907. const struct drm_framebuffer *fb =
  1908. crtc->base.primary->state->fb;
  1909. int cpp;
  1910. if (IS_GEN2(dev_priv))
  1911. cpp = 4;
  1912. else
  1913. cpp = fb->format->cpp[0];
  1914. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1915. wm_info, fifo_size, cpp,
  1916. pessimal_latency_ns);
  1917. if (enabled == NULL)
  1918. enabled = crtc;
  1919. else
  1920. enabled = NULL;
  1921. } else {
  1922. planeb_wm = fifo_size - wm_info->guard_size;
  1923. if (planeb_wm > (long)wm_info->max_wm)
  1924. planeb_wm = wm_info->max_wm;
  1925. }
  1926. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1927. if (IS_I915GM(dev_priv) && enabled) {
  1928. struct drm_i915_gem_object *obj;
  1929. obj = intel_fb_obj(enabled->base.primary->state->fb);
  1930. /* self-refresh seems busted with untiled */
  1931. if (!i915_gem_object_is_tiled(obj))
  1932. enabled = NULL;
  1933. }
  1934. /*
  1935. * Overlay gets an aggressive default since video jitter is bad.
  1936. */
  1937. cwm = 2;
  1938. /* Play safe and disable self-refresh before adjusting watermarks. */
  1939. intel_set_memory_cxsr(dev_priv, false);
  1940. /* Calc sr entries for one plane configs */
  1941. if (HAS_FW_BLC(dev_priv) && enabled) {
  1942. /* self-refresh has much higher latency */
  1943. static const int sr_latency_ns = 6000;
  1944. const struct drm_display_mode *adjusted_mode =
  1945. &enabled->config->base.adjusted_mode;
  1946. const struct drm_framebuffer *fb =
  1947. enabled->base.primary->state->fb;
  1948. int clock = adjusted_mode->crtc_clock;
  1949. int htotal = adjusted_mode->crtc_htotal;
  1950. int hdisplay = enabled->config->pipe_src_w;
  1951. int cpp;
  1952. int entries;
  1953. if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
  1954. cpp = 4;
  1955. else
  1956. cpp = fb->format->cpp[0];
  1957. entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
  1958. sr_latency_ns / 100);
  1959. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1960. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1961. srwm = wm_info->fifo_size - entries;
  1962. if (srwm < 0)
  1963. srwm = 1;
  1964. if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1965. I915_WRITE(FW_BLC_SELF,
  1966. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1967. else
  1968. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1969. }
  1970. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1971. planea_wm, planeb_wm, cwm, srwm);
  1972. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1973. fwater_hi = (cwm & 0x1f);
  1974. /* Set request length to 8 cachelines per fetch */
  1975. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1976. fwater_hi = fwater_hi | (1 << 8);
  1977. I915_WRITE(FW_BLC, fwater_lo);
  1978. I915_WRITE(FW_BLC2, fwater_hi);
  1979. if (enabled)
  1980. intel_set_memory_cxsr(dev_priv, true);
  1981. }
  1982. static void i845_update_wm(struct intel_crtc *unused_crtc)
  1983. {
  1984. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1985. struct intel_crtc *crtc;
  1986. const struct drm_display_mode *adjusted_mode;
  1987. uint32_t fwater_lo;
  1988. int planea_wm;
  1989. crtc = single_enabled_crtc(dev_priv);
  1990. if (crtc == NULL)
  1991. return;
  1992. adjusted_mode = &crtc->config->base.adjusted_mode;
  1993. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1994. &i845_wm_info,
  1995. dev_priv->display.get_fifo_size(dev_priv, 0),
  1996. 4, pessimal_latency_ns);
  1997. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1998. fwater_lo |= (3<<8) | planea_wm;
  1999. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2000. I915_WRITE(FW_BLC, fwater_lo);
  2001. }
  2002. /* latency must be in 0.1us units. */
  2003. static unsigned int ilk_wm_method1(unsigned int pixel_rate,
  2004. unsigned int cpp,
  2005. unsigned int latency)
  2006. {
  2007. unsigned int ret;
  2008. ret = intel_wm_method1(pixel_rate, cpp, latency);
  2009. ret = DIV_ROUND_UP(ret, 64) + 2;
  2010. return ret;
  2011. }
  2012. /* latency must be in 0.1us units. */
  2013. static unsigned int ilk_wm_method2(unsigned int pixel_rate,
  2014. unsigned int htotal,
  2015. unsigned int width,
  2016. unsigned int cpp,
  2017. unsigned int latency)
  2018. {
  2019. unsigned int ret;
  2020. ret = intel_wm_method2(pixel_rate, htotal,
  2021. width, cpp, latency);
  2022. ret = DIV_ROUND_UP(ret, 64) + 2;
  2023. return ret;
  2024. }
  2025. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  2026. uint8_t cpp)
  2027. {
  2028. /*
  2029. * Neither of these should be possible since this function shouldn't be
  2030. * called if the CRTC is off or the plane is invisible. But let's be
  2031. * extra paranoid to avoid a potential divide-by-zero if we screw up
  2032. * elsewhere in the driver.
  2033. */
  2034. if (WARN_ON(!cpp))
  2035. return 0;
  2036. if (WARN_ON(!horiz_pixels))
  2037. return 0;
  2038. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  2039. }
  2040. struct ilk_wm_maximums {
  2041. uint16_t pri;
  2042. uint16_t spr;
  2043. uint16_t cur;
  2044. uint16_t fbc;
  2045. };
  2046. /*
  2047. * For both WM_PIPE and WM_LP.
  2048. * mem_value must be in 0.1us units.
  2049. */
  2050. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  2051. const struct intel_plane_state *pstate,
  2052. uint32_t mem_value,
  2053. bool is_lp)
  2054. {
  2055. uint32_t method1, method2;
  2056. int cpp;
  2057. if (!intel_wm_plane_visible(cstate, pstate))
  2058. return 0;
  2059. cpp = pstate->base.fb->format->cpp[0];
  2060. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2061. if (!is_lp)
  2062. return method1;
  2063. method2 = ilk_wm_method2(cstate->pixel_rate,
  2064. cstate->base.adjusted_mode.crtc_htotal,
  2065. drm_rect_width(&pstate->base.dst),
  2066. cpp, mem_value);
  2067. return min(method1, method2);
  2068. }
  2069. /*
  2070. * For both WM_PIPE and WM_LP.
  2071. * mem_value must be in 0.1us units.
  2072. */
  2073. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  2074. const struct intel_plane_state *pstate,
  2075. uint32_t mem_value)
  2076. {
  2077. uint32_t method1, method2;
  2078. int cpp;
  2079. if (!intel_wm_plane_visible(cstate, pstate))
  2080. return 0;
  2081. cpp = pstate->base.fb->format->cpp[0];
  2082. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2083. method2 = ilk_wm_method2(cstate->pixel_rate,
  2084. cstate->base.adjusted_mode.crtc_htotal,
  2085. drm_rect_width(&pstate->base.dst),
  2086. cpp, mem_value);
  2087. return min(method1, method2);
  2088. }
  2089. /*
  2090. * For both WM_PIPE and WM_LP.
  2091. * mem_value must be in 0.1us units.
  2092. */
  2093. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  2094. const struct intel_plane_state *pstate,
  2095. uint32_t mem_value)
  2096. {
  2097. int cpp;
  2098. if (!intel_wm_plane_visible(cstate, pstate))
  2099. return 0;
  2100. cpp = pstate->base.fb->format->cpp[0];
  2101. return ilk_wm_method2(cstate->pixel_rate,
  2102. cstate->base.adjusted_mode.crtc_htotal,
  2103. pstate->base.crtc_w, cpp, mem_value);
  2104. }
  2105. /* Only for WM_LP. */
  2106. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  2107. const struct intel_plane_state *pstate,
  2108. uint32_t pri_val)
  2109. {
  2110. int cpp;
  2111. if (!intel_wm_plane_visible(cstate, pstate))
  2112. return 0;
  2113. cpp = pstate->base.fb->format->cpp[0];
  2114. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
  2115. }
  2116. static unsigned int
  2117. ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
  2118. {
  2119. if (INTEL_GEN(dev_priv) >= 8)
  2120. return 3072;
  2121. else if (INTEL_GEN(dev_priv) >= 7)
  2122. return 768;
  2123. else
  2124. return 512;
  2125. }
  2126. static unsigned int
  2127. ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
  2128. int level, bool is_sprite)
  2129. {
  2130. if (INTEL_GEN(dev_priv) >= 8)
  2131. /* BDW primary/sprite plane watermarks */
  2132. return level == 0 ? 255 : 2047;
  2133. else if (INTEL_GEN(dev_priv) >= 7)
  2134. /* IVB/HSW primary/sprite plane watermarks */
  2135. return level == 0 ? 127 : 1023;
  2136. else if (!is_sprite)
  2137. /* ILK/SNB primary plane watermarks */
  2138. return level == 0 ? 127 : 511;
  2139. else
  2140. /* ILK/SNB sprite plane watermarks */
  2141. return level == 0 ? 63 : 255;
  2142. }
  2143. static unsigned int
  2144. ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
  2145. {
  2146. if (INTEL_GEN(dev_priv) >= 7)
  2147. return level == 0 ? 63 : 255;
  2148. else
  2149. return level == 0 ? 31 : 63;
  2150. }
  2151. static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
  2152. {
  2153. if (INTEL_GEN(dev_priv) >= 8)
  2154. return 31;
  2155. else
  2156. return 15;
  2157. }
  2158. /* Calculate the maximum primary/sprite plane watermark */
  2159. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  2160. int level,
  2161. const struct intel_wm_config *config,
  2162. enum intel_ddb_partitioning ddb_partitioning,
  2163. bool is_sprite)
  2164. {
  2165. struct drm_i915_private *dev_priv = to_i915(dev);
  2166. unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
  2167. /* if sprites aren't enabled, sprites get nothing */
  2168. if (is_sprite && !config->sprites_enabled)
  2169. return 0;
  2170. /* HSW allows LP1+ watermarks even with multiple pipes */
  2171. if (level == 0 || config->num_pipes_active > 1) {
  2172. fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
  2173. /*
  2174. * For some reason the non self refresh
  2175. * FIFO size is only half of the self
  2176. * refresh FIFO size on ILK/SNB.
  2177. */
  2178. if (INTEL_GEN(dev_priv) <= 6)
  2179. fifo_size /= 2;
  2180. }
  2181. if (config->sprites_enabled) {
  2182. /* level 0 is always calculated with 1:1 split */
  2183. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2184. if (is_sprite)
  2185. fifo_size *= 5;
  2186. fifo_size /= 6;
  2187. } else {
  2188. fifo_size /= 2;
  2189. }
  2190. }
  2191. /* clamp to max that the registers can hold */
  2192. return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
  2193. }
  2194. /* Calculate the maximum cursor plane watermark */
  2195. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2196. int level,
  2197. const struct intel_wm_config *config)
  2198. {
  2199. /* HSW LP1+ watermarks w/ multiple pipes */
  2200. if (level > 0 && config->num_pipes_active > 1)
  2201. return 64;
  2202. /* otherwise just report max that registers can hold */
  2203. return ilk_cursor_wm_reg_max(to_i915(dev), level);
  2204. }
  2205. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  2206. int level,
  2207. const struct intel_wm_config *config,
  2208. enum intel_ddb_partitioning ddb_partitioning,
  2209. struct ilk_wm_maximums *max)
  2210. {
  2211. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2212. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2213. max->cur = ilk_cursor_wm_max(dev, level, config);
  2214. max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
  2215. }
  2216. static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
  2217. int level,
  2218. struct ilk_wm_maximums *max)
  2219. {
  2220. max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
  2221. max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
  2222. max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
  2223. max->fbc = ilk_fbc_wm_reg_max(dev_priv);
  2224. }
  2225. static bool ilk_validate_wm_level(int level,
  2226. const struct ilk_wm_maximums *max,
  2227. struct intel_wm_level *result)
  2228. {
  2229. bool ret;
  2230. /* already determined to be invalid? */
  2231. if (!result->enable)
  2232. return false;
  2233. result->enable = result->pri_val <= max->pri &&
  2234. result->spr_val <= max->spr &&
  2235. result->cur_val <= max->cur;
  2236. ret = result->enable;
  2237. /*
  2238. * HACK until we can pre-compute everything,
  2239. * and thus fail gracefully if LP0 watermarks
  2240. * are exceeded...
  2241. */
  2242. if (level == 0 && !result->enable) {
  2243. if (result->pri_val > max->pri)
  2244. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2245. level, result->pri_val, max->pri);
  2246. if (result->spr_val > max->spr)
  2247. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2248. level, result->spr_val, max->spr);
  2249. if (result->cur_val > max->cur)
  2250. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2251. level, result->cur_val, max->cur);
  2252. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2253. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2254. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2255. result->enable = true;
  2256. }
  2257. return ret;
  2258. }
  2259. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  2260. const struct intel_crtc *intel_crtc,
  2261. int level,
  2262. struct intel_crtc_state *cstate,
  2263. struct intel_plane_state *pristate,
  2264. struct intel_plane_state *sprstate,
  2265. struct intel_plane_state *curstate,
  2266. struct intel_wm_level *result)
  2267. {
  2268. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2269. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2270. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2271. /* WM1+ latency values stored in 0.5us units */
  2272. if (level > 0) {
  2273. pri_latency *= 5;
  2274. spr_latency *= 5;
  2275. cur_latency *= 5;
  2276. }
  2277. if (pristate) {
  2278. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  2279. pri_latency, level);
  2280. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  2281. }
  2282. if (sprstate)
  2283. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  2284. if (curstate)
  2285. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  2286. result->enable = true;
  2287. }
  2288. static uint32_t
  2289. hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
  2290. {
  2291. const struct intel_atomic_state *intel_state =
  2292. to_intel_atomic_state(cstate->base.state);
  2293. const struct drm_display_mode *adjusted_mode =
  2294. &cstate->base.adjusted_mode;
  2295. u32 linetime, ips_linetime;
  2296. if (!cstate->base.active)
  2297. return 0;
  2298. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  2299. return 0;
  2300. if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
  2301. return 0;
  2302. /* The WM are computed with base on how long it takes to fill a single
  2303. * row at the given clock rate, multiplied by 8.
  2304. * */
  2305. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2306. adjusted_mode->crtc_clock);
  2307. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2308. intel_state->cdclk.logical.cdclk);
  2309. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2310. PIPE_WM_LINETIME_TIME(linetime);
  2311. }
  2312. static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
  2313. uint16_t wm[8])
  2314. {
  2315. if (IS_GEN9(dev_priv)) {
  2316. uint32_t val;
  2317. int ret, i;
  2318. int level, max_level = ilk_wm_max_level(dev_priv);
  2319. /* read the first set of memory latencies[0:3] */
  2320. val = 0; /* data0 to be programmed to 0 for first set */
  2321. mutex_lock(&dev_priv->rps.hw_lock);
  2322. ret = sandybridge_pcode_read(dev_priv,
  2323. GEN9_PCODE_READ_MEM_LATENCY,
  2324. &val);
  2325. mutex_unlock(&dev_priv->rps.hw_lock);
  2326. if (ret) {
  2327. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2328. return;
  2329. }
  2330. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2331. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2332. GEN9_MEM_LATENCY_LEVEL_MASK;
  2333. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2334. GEN9_MEM_LATENCY_LEVEL_MASK;
  2335. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2336. GEN9_MEM_LATENCY_LEVEL_MASK;
  2337. /* read the second set of memory latencies[4:7] */
  2338. val = 1; /* data0 to be programmed to 1 for second set */
  2339. mutex_lock(&dev_priv->rps.hw_lock);
  2340. ret = sandybridge_pcode_read(dev_priv,
  2341. GEN9_PCODE_READ_MEM_LATENCY,
  2342. &val);
  2343. mutex_unlock(&dev_priv->rps.hw_lock);
  2344. if (ret) {
  2345. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2346. return;
  2347. }
  2348. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2349. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2350. GEN9_MEM_LATENCY_LEVEL_MASK;
  2351. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2352. GEN9_MEM_LATENCY_LEVEL_MASK;
  2353. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2354. GEN9_MEM_LATENCY_LEVEL_MASK;
  2355. /*
  2356. * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
  2357. * need to be disabled. We make sure to sanitize the values out
  2358. * of the punit to satisfy this requirement.
  2359. */
  2360. for (level = 1; level <= max_level; level++) {
  2361. if (wm[level] == 0) {
  2362. for (i = level + 1; i <= max_level; i++)
  2363. wm[i] = 0;
  2364. break;
  2365. }
  2366. }
  2367. /*
  2368. * WaWmMemoryReadLatency:skl,glk
  2369. *
  2370. * punit doesn't take into account the read latency so we need
  2371. * to add 2us to the various latency levels we retrieve from the
  2372. * punit when level 0 response data us 0us.
  2373. */
  2374. if (wm[0] == 0) {
  2375. wm[0] += 2;
  2376. for (level = 1; level <= max_level; level++) {
  2377. if (wm[level] == 0)
  2378. break;
  2379. wm[level] += 2;
  2380. }
  2381. }
  2382. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2383. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2384. wm[0] = (sskpd >> 56) & 0xFF;
  2385. if (wm[0] == 0)
  2386. wm[0] = sskpd & 0xF;
  2387. wm[1] = (sskpd >> 4) & 0xFF;
  2388. wm[2] = (sskpd >> 12) & 0xFF;
  2389. wm[3] = (sskpd >> 20) & 0x1FF;
  2390. wm[4] = (sskpd >> 32) & 0x1FF;
  2391. } else if (INTEL_GEN(dev_priv) >= 6) {
  2392. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2393. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2394. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2395. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2396. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2397. } else if (INTEL_GEN(dev_priv) >= 5) {
  2398. uint32_t mltr = I915_READ(MLTR_ILK);
  2399. /* ILK primary LP0 latency is 700 ns */
  2400. wm[0] = 7;
  2401. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2402. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2403. }
  2404. }
  2405. static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
  2406. uint16_t wm[5])
  2407. {
  2408. /* ILK sprite LP0 latency is 1300 ns */
  2409. if (IS_GEN5(dev_priv))
  2410. wm[0] = 13;
  2411. }
  2412. static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
  2413. uint16_t wm[5])
  2414. {
  2415. /* ILK cursor LP0 latency is 1300 ns */
  2416. if (IS_GEN5(dev_priv))
  2417. wm[0] = 13;
  2418. /* WaDoubleCursorLP3Latency:ivb */
  2419. if (IS_IVYBRIDGE(dev_priv))
  2420. wm[3] *= 2;
  2421. }
  2422. int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
  2423. {
  2424. /* how many WM levels are we expecting */
  2425. if (INTEL_GEN(dev_priv) >= 9)
  2426. return 7;
  2427. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2428. return 4;
  2429. else if (INTEL_GEN(dev_priv) >= 6)
  2430. return 3;
  2431. else
  2432. return 2;
  2433. }
  2434. static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
  2435. const char *name,
  2436. const uint16_t wm[8])
  2437. {
  2438. int level, max_level = ilk_wm_max_level(dev_priv);
  2439. for (level = 0; level <= max_level; level++) {
  2440. unsigned int latency = wm[level];
  2441. if (latency == 0) {
  2442. DRM_ERROR("%s WM%d latency not provided\n",
  2443. name, level);
  2444. continue;
  2445. }
  2446. /*
  2447. * - latencies are in us on gen9.
  2448. * - before then, WM1+ latency values are in 0.5us units
  2449. */
  2450. if (IS_GEN9(dev_priv))
  2451. latency *= 10;
  2452. else if (level > 0)
  2453. latency *= 5;
  2454. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2455. name, level, wm[level],
  2456. latency / 10, latency % 10);
  2457. }
  2458. }
  2459. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  2460. uint16_t wm[5], uint16_t min)
  2461. {
  2462. int level, max_level = ilk_wm_max_level(dev_priv);
  2463. if (wm[0] >= min)
  2464. return false;
  2465. wm[0] = max(wm[0], min);
  2466. for (level = 1; level <= max_level; level++)
  2467. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  2468. return true;
  2469. }
  2470. static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
  2471. {
  2472. bool changed;
  2473. /*
  2474. * The BIOS provided WM memory latency values are often
  2475. * inadequate for high resolution displays. Adjust them.
  2476. */
  2477. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  2478. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  2479. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2480. if (!changed)
  2481. return;
  2482. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2483. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2484. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2485. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2486. }
  2487. static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
  2488. {
  2489. intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
  2490. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2491. sizeof(dev_priv->wm.pri_latency));
  2492. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2493. sizeof(dev_priv->wm.pri_latency));
  2494. intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
  2495. intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
  2496. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2497. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2498. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2499. if (IS_GEN6(dev_priv))
  2500. snb_wm_latency_quirk(dev_priv);
  2501. }
  2502. static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
  2503. {
  2504. intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
  2505. intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
  2506. }
  2507. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  2508. struct intel_pipe_wm *pipe_wm)
  2509. {
  2510. /* LP0 watermark maximums depend on this pipe alone */
  2511. const struct intel_wm_config config = {
  2512. .num_pipes_active = 1,
  2513. .sprites_enabled = pipe_wm->sprites_enabled,
  2514. .sprites_scaled = pipe_wm->sprites_scaled,
  2515. };
  2516. struct ilk_wm_maximums max;
  2517. /* LP0 watermarks always use 1/2 DDB partitioning */
  2518. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2519. /* At least LP0 must be valid */
  2520. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  2521. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  2522. return false;
  2523. }
  2524. return true;
  2525. }
  2526. /* Compute new watermarks for the pipe */
  2527. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  2528. {
  2529. struct drm_atomic_state *state = cstate->base.state;
  2530. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2531. struct intel_pipe_wm *pipe_wm;
  2532. struct drm_device *dev = state->dev;
  2533. const struct drm_i915_private *dev_priv = to_i915(dev);
  2534. struct intel_plane *intel_plane;
  2535. struct intel_plane_state *pristate = NULL;
  2536. struct intel_plane_state *sprstate = NULL;
  2537. struct intel_plane_state *curstate = NULL;
  2538. int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
  2539. struct ilk_wm_maximums max;
  2540. pipe_wm = &cstate->wm.ilk.optimal;
  2541. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2542. struct intel_plane_state *ps;
  2543. ps = intel_atomic_get_existing_plane_state(state,
  2544. intel_plane);
  2545. if (!ps)
  2546. continue;
  2547. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  2548. pristate = ps;
  2549. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  2550. sprstate = ps;
  2551. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2552. curstate = ps;
  2553. }
  2554. pipe_wm->pipe_enabled = cstate->base.active;
  2555. if (sprstate) {
  2556. pipe_wm->sprites_enabled = sprstate->base.visible;
  2557. pipe_wm->sprites_scaled = sprstate->base.visible &&
  2558. (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
  2559. drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
  2560. }
  2561. usable_level = max_level;
  2562. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2563. if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
  2564. usable_level = 1;
  2565. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2566. if (pipe_wm->sprites_scaled)
  2567. usable_level = 0;
  2568. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2569. pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
  2570. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  2571. pipe_wm->wm[0] = pipe_wm->raw_wm[0];
  2572. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2573. pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
  2574. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  2575. return -EINVAL;
  2576. ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
  2577. for (level = 1; level <= max_level; level++) {
  2578. struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
  2579. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2580. pristate, sprstate, curstate, wm);
  2581. /*
  2582. * Disable any watermark level that exceeds the
  2583. * register maximums since such watermarks are
  2584. * always invalid.
  2585. */
  2586. if (level > usable_level)
  2587. continue;
  2588. if (ilk_validate_wm_level(level, &max, wm))
  2589. pipe_wm->wm[level] = *wm;
  2590. else
  2591. usable_level = level;
  2592. }
  2593. return 0;
  2594. }
  2595. /*
  2596. * Build a set of 'intermediate' watermark values that satisfy both the old
  2597. * state and the new state. These can be programmed to the hardware
  2598. * immediately.
  2599. */
  2600. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2601. struct intel_crtc *intel_crtc,
  2602. struct intel_crtc_state *newstate)
  2603. {
  2604. struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
  2605. struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
  2606. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2607. /*
  2608. * Start with the final, target watermarks, then combine with the
  2609. * currently active watermarks to get values that are safe both before
  2610. * and after the vblank.
  2611. */
  2612. *a = newstate->wm.ilk.optimal;
  2613. a->pipe_enabled |= b->pipe_enabled;
  2614. a->sprites_enabled |= b->sprites_enabled;
  2615. a->sprites_scaled |= b->sprites_scaled;
  2616. for (level = 0; level <= max_level; level++) {
  2617. struct intel_wm_level *a_wm = &a->wm[level];
  2618. const struct intel_wm_level *b_wm = &b->wm[level];
  2619. a_wm->enable &= b_wm->enable;
  2620. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2621. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2622. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2623. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2624. }
  2625. /*
  2626. * We need to make sure that these merged watermark values are
  2627. * actually a valid configuration themselves. If they're not,
  2628. * there's no safe way to transition from the old state to
  2629. * the new state, so we need to fail the atomic transaction.
  2630. */
  2631. if (!ilk_validate_pipe_wm(dev, a))
  2632. return -EINVAL;
  2633. /*
  2634. * If our intermediate WM are identical to the final WM, then we can
  2635. * omit the post-vblank programming; only update if it's different.
  2636. */
  2637. if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
  2638. newstate->wm.need_postvbl_update = true;
  2639. return 0;
  2640. }
  2641. /*
  2642. * Merge the watermarks from all active pipes for a specific level.
  2643. */
  2644. static void ilk_merge_wm_level(struct drm_device *dev,
  2645. int level,
  2646. struct intel_wm_level *ret_wm)
  2647. {
  2648. const struct intel_crtc *intel_crtc;
  2649. ret_wm->enable = true;
  2650. for_each_intel_crtc(dev, intel_crtc) {
  2651. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2652. const struct intel_wm_level *wm = &active->wm[level];
  2653. if (!active->pipe_enabled)
  2654. continue;
  2655. /*
  2656. * The watermark values may have been used in the past,
  2657. * so we must maintain them in the registers for some
  2658. * time even if the level is now disabled.
  2659. */
  2660. if (!wm->enable)
  2661. ret_wm->enable = false;
  2662. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2663. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2664. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2665. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2666. }
  2667. }
  2668. /*
  2669. * Merge all low power watermarks for all active pipes.
  2670. */
  2671. static void ilk_wm_merge(struct drm_device *dev,
  2672. const struct intel_wm_config *config,
  2673. const struct ilk_wm_maximums *max,
  2674. struct intel_pipe_wm *merged)
  2675. {
  2676. struct drm_i915_private *dev_priv = to_i915(dev);
  2677. int level, max_level = ilk_wm_max_level(dev_priv);
  2678. int last_enabled_level = max_level;
  2679. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2680. if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
  2681. config->num_pipes_active > 1)
  2682. last_enabled_level = 0;
  2683. /* ILK: FBC WM must be disabled always */
  2684. merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
  2685. /* merge each WM1+ level */
  2686. for (level = 1; level <= max_level; level++) {
  2687. struct intel_wm_level *wm = &merged->wm[level];
  2688. ilk_merge_wm_level(dev, level, wm);
  2689. if (level > last_enabled_level)
  2690. wm->enable = false;
  2691. else if (!ilk_validate_wm_level(level, max, wm))
  2692. /* make sure all following levels get disabled */
  2693. last_enabled_level = level - 1;
  2694. /*
  2695. * The spec says it is preferred to disable
  2696. * FBC WMs instead of disabling a WM level.
  2697. */
  2698. if (wm->fbc_val > max->fbc) {
  2699. if (wm->enable)
  2700. merged->fbc_wm_enabled = false;
  2701. wm->fbc_val = 0;
  2702. }
  2703. }
  2704. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2705. /*
  2706. * FIXME this is racy. FBC might get enabled later.
  2707. * What we should check here is whether FBC can be
  2708. * enabled sometime later.
  2709. */
  2710. if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
  2711. intel_fbc_is_active(dev_priv)) {
  2712. for (level = 2; level <= max_level; level++) {
  2713. struct intel_wm_level *wm = &merged->wm[level];
  2714. wm->enable = false;
  2715. }
  2716. }
  2717. }
  2718. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2719. {
  2720. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2721. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2722. }
  2723. /* The value we need to program into the WM_LPx latency field */
  2724. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2725. {
  2726. struct drm_i915_private *dev_priv = to_i915(dev);
  2727. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2728. return 2 * level;
  2729. else
  2730. return dev_priv->wm.pri_latency[level];
  2731. }
  2732. static void ilk_compute_wm_results(struct drm_device *dev,
  2733. const struct intel_pipe_wm *merged,
  2734. enum intel_ddb_partitioning partitioning,
  2735. struct ilk_wm_values *results)
  2736. {
  2737. struct drm_i915_private *dev_priv = to_i915(dev);
  2738. struct intel_crtc *intel_crtc;
  2739. int level, wm_lp;
  2740. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2741. results->partitioning = partitioning;
  2742. /* LP1+ register values */
  2743. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2744. const struct intel_wm_level *r;
  2745. level = ilk_wm_lp_to_level(wm_lp, merged);
  2746. r = &merged->wm[level];
  2747. /*
  2748. * Maintain the watermark values even if the level is
  2749. * disabled. Doing otherwise could cause underruns.
  2750. */
  2751. results->wm_lp[wm_lp - 1] =
  2752. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2753. (r->pri_val << WM1_LP_SR_SHIFT) |
  2754. r->cur_val;
  2755. if (r->enable)
  2756. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2757. if (INTEL_GEN(dev_priv) >= 8)
  2758. results->wm_lp[wm_lp - 1] |=
  2759. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2760. else
  2761. results->wm_lp[wm_lp - 1] |=
  2762. r->fbc_val << WM1_LP_FBC_SHIFT;
  2763. /*
  2764. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2765. * level is disabled. Doing otherwise could cause underruns.
  2766. */
  2767. if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
  2768. WARN_ON(wm_lp != 1);
  2769. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2770. } else
  2771. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2772. }
  2773. /* LP0 register values */
  2774. for_each_intel_crtc(dev, intel_crtc) {
  2775. enum pipe pipe = intel_crtc->pipe;
  2776. const struct intel_wm_level *r =
  2777. &intel_crtc->wm.active.ilk.wm[0];
  2778. if (WARN_ON(!r->enable))
  2779. continue;
  2780. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2781. results->wm_pipe[pipe] =
  2782. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2783. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2784. r->cur_val;
  2785. }
  2786. }
  2787. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2788. * case both are at the same level. Prefer r1 in case they're the same. */
  2789. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2790. struct intel_pipe_wm *r1,
  2791. struct intel_pipe_wm *r2)
  2792. {
  2793. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2794. int level1 = 0, level2 = 0;
  2795. for (level = 1; level <= max_level; level++) {
  2796. if (r1->wm[level].enable)
  2797. level1 = level;
  2798. if (r2->wm[level].enable)
  2799. level2 = level;
  2800. }
  2801. if (level1 == level2) {
  2802. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2803. return r2;
  2804. else
  2805. return r1;
  2806. } else if (level1 > level2) {
  2807. return r1;
  2808. } else {
  2809. return r2;
  2810. }
  2811. }
  2812. /* dirty bits used to track which watermarks need changes */
  2813. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2814. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2815. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2816. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2817. #define WM_DIRTY_FBC (1 << 24)
  2818. #define WM_DIRTY_DDB (1 << 25)
  2819. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2820. const struct ilk_wm_values *old,
  2821. const struct ilk_wm_values *new)
  2822. {
  2823. unsigned int dirty = 0;
  2824. enum pipe pipe;
  2825. int wm_lp;
  2826. for_each_pipe(dev_priv, pipe) {
  2827. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2828. dirty |= WM_DIRTY_LINETIME(pipe);
  2829. /* Must disable LP1+ watermarks too */
  2830. dirty |= WM_DIRTY_LP_ALL;
  2831. }
  2832. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2833. dirty |= WM_DIRTY_PIPE(pipe);
  2834. /* Must disable LP1+ watermarks too */
  2835. dirty |= WM_DIRTY_LP_ALL;
  2836. }
  2837. }
  2838. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2839. dirty |= WM_DIRTY_FBC;
  2840. /* Must disable LP1+ watermarks too */
  2841. dirty |= WM_DIRTY_LP_ALL;
  2842. }
  2843. if (old->partitioning != new->partitioning) {
  2844. dirty |= WM_DIRTY_DDB;
  2845. /* Must disable LP1+ watermarks too */
  2846. dirty |= WM_DIRTY_LP_ALL;
  2847. }
  2848. /* LP1+ watermarks already deemed dirty, no need to continue */
  2849. if (dirty & WM_DIRTY_LP_ALL)
  2850. return dirty;
  2851. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2852. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2853. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2854. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2855. break;
  2856. }
  2857. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2858. for (; wm_lp <= 3; wm_lp++)
  2859. dirty |= WM_DIRTY_LP(wm_lp);
  2860. return dirty;
  2861. }
  2862. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2863. unsigned int dirty)
  2864. {
  2865. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2866. bool changed = false;
  2867. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2868. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2869. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2870. changed = true;
  2871. }
  2872. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2873. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2874. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2875. changed = true;
  2876. }
  2877. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2878. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2879. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2880. changed = true;
  2881. }
  2882. /*
  2883. * Don't touch WM1S_LP_EN here.
  2884. * Doing so could cause underruns.
  2885. */
  2886. return changed;
  2887. }
  2888. /*
  2889. * The spec says we shouldn't write when we don't need, because every write
  2890. * causes WMs to be re-evaluated, expending some power.
  2891. */
  2892. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2893. struct ilk_wm_values *results)
  2894. {
  2895. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2896. unsigned int dirty;
  2897. uint32_t val;
  2898. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2899. if (!dirty)
  2900. return;
  2901. _ilk_disable_lp_wm(dev_priv, dirty);
  2902. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2903. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2904. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2905. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2906. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2907. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2908. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2909. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2910. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2911. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2912. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2913. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2914. if (dirty & WM_DIRTY_DDB) {
  2915. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2916. val = I915_READ(WM_MISC);
  2917. if (results->partitioning == INTEL_DDB_PART_1_2)
  2918. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2919. else
  2920. val |= WM_MISC_DATA_PARTITION_5_6;
  2921. I915_WRITE(WM_MISC, val);
  2922. } else {
  2923. val = I915_READ(DISP_ARB_CTL2);
  2924. if (results->partitioning == INTEL_DDB_PART_1_2)
  2925. val &= ~DISP_DATA_PARTITION_5_6;
  2926. else
  2927. val |= DISP_DATA_PARTITION_5_6;
  2928. I915_WRITE(DISP_ARB_CTL2, val);
  2929. }
  2930. }
  2931. if (dirty & WM_DIRTY_FBC) {
  2932. val = I915_READ(DISP_ARB_CTL);
  2933. if (results->enable_fbc_wm)
  2934. val &= ~DISP_FBC_WM_DIS;
  2935. else
  2936. val |= DISP_FBC_WM_DIS;
  2937. I915_WRITE(DISP_ARB_CTL, val);
  2938. }
  2939. if (dirty & WM_DIRTY_LP(1) &&
  2940. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2941. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2942. if (INTEL_GEN(dev_priv) >= 7) {
  2943. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2944. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2945. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2946. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2947. }
  2948. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2949. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2950. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2951. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2952. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2953. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2954. dev_priv->wm.hw = *results;
  2955. }
  2956. bool ilk_disable_lp_wm(struct drm_device *dev)
  2957. {
  2958. struct drm_i915_private *dev_priv = to_i915(dev);
  2959. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2960. }
  2961. #define SKL_SAGV_BLOCK_TIME 30 /* µs */
  2962. /*
  2963. * FIXME: We still don't have the proper code detect if we need to apply the WA,
  2964. * so assume we'll always need it in order to avoid underruns.
  2965. */
  2966. static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
  2967. {
  2968. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  2969. if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
  2970. return true;
  2971. return false;
  2972. }
  2973. static bool
  2974. intel_has_sagv(struct drm_i915_private *dev_priv)
  2975. {
  2976. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  2977. return true;
  2978. if (IS_SKYLAKE(dev_priv) &&
  2979. dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
  2980. return true;
  2981. return false;
  2982. }
  2983. /*
  2984. * SAGV dynamically adjusts the system agent voltage and clock frequencies
  2985. * depending on power and performance requirements. The display engine access
  2986. * to system memory is blocked during the adjustment time. Because of the
  2987. * blocking time, having this enabled can cause full system hangs and/or pipe
  2988. * underruns if we don't meet all of the following requirements:
  2989. *
  2990. * - <= 1 pipe enabled
  2991. * - All planes can enable watermarks for latencies >= SAGV engine block time
  2992. * - We're not using an interlaced display configuration
  2993. */
  2994. int
  2995. intel_enable_sagv(struct drm_i915_private *dev_priv)
  2996. {
  2997. int ret;
  2998. if (!intel_has_sagv(dev_priv))
  2999. return 0;
  3000. if (dev_priv->sagv_status == I915_SAGV_ENABLED)
  3001. return 0;
  3002. DRM_DEBUG_KMS("Enabling the SAGV\n");
  3003. mutex_lock(&dev_priv->rps.hw_lock);
  3004. ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3005. GEN9_SAGV_ENABLE);
  3006. /* We don't need to wait for the SAGV when enabling */
  3007. mutex_unlock(&dev_priv->rps.hw_lock);
  3008. /*
  3009. * Some skl systems, pre-release machines in particular,
  3010. * don't actually have an SAGV.
  3011. */
  3012. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3013. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3014. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3015. return 0;
  3016. } else if (ret < 0) {
  3017. DRM_ERROR("Failed to enable the SAGV\n");
  3018. return ret;
  3019. }
  3020. dev_priv->sagv_status = I915_SAGV_ENABLED;
  3021. return 0;
  3022. }
  3023. int
  3024. intel_disable_sagv(struct drm_i915_private *dev_priv)
  3025. {
  3026. int ret;
  3027. if (!intel_has_sagv(dev_priv))
  3028. return 0;
  3029. if (dev_priv->sagv_status == I915_SAGV_DISABLED)
  3030. return 0;
  3031. DRM_DEBUG_KMS("Disabling the SAGV\n");
  3032. mutex_lock(&dev_priv->rps.hw_lock);
  3033. /* bspec says to keep retrying for at least 1 ms */
  3034. ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3035. GEN9_SAGV_DISABLE,
  3036. GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
  3037. 1);
  3038. mutex_unlock(&dev_priv->rps.hw_lock);
  3039. /*
  3040. * Some skl systems, pre-release machines in particular,
  3041. * don't actually have an SAGV.
  3042. */
  3043. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3044. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3045. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3046. return 0;
  3047. } else if (ret < 0) {
  3048. DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
  3049. return ret;
  3050. }
  3051. dev_priv->sagv_status = I915_SAGV_DISABLED;
  3052. return 0;
  3053. }
  3054. bool intel_can_enable_sagv(struct drm_atomic_state *state)
  3055. {
  3056. struct drm_device *dev = state->dev;
  3057. struct drm_i915_private *dev_priv = to_i915(dev);
  3058. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3059. struct intel_crtc *crtc;
  3060. struct intel_plane *plane;
  3061. struct intel_crtc_state *cstate;
  3062. enum pipe pipe;
  3063. int level, latency;
  3064. if (!intel_has_sagv(dev_priv))
  3065. return false;
  3066. /*
  3067. * SKL workaround: bspec recommends we disable the SAGV when we have
  3068. * more then one pipe enabled
  3069. *
  3070. * If there are no active CRTCs, no additional checks need be performed
  3071. */
  3072. if (hweight32(intel_state->active_crtcs) == 0)
  3073. return true;
  3074. else if (hweight32(intel_state->active_crtcs) > 1)
  3075. return false;
  3076. /* Since we're now guaranteed to only have one active CRTC... */
  3077. pipe = ffs(intel_state->active_crtcs) - 1;
  3078. crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  3079. cstate = to_intel_crtc_state(crtc->base.state);
  3080. if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  3081. return false;
  3082. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  3083. struct skl_plane_wm *wm =
  3084. &cstate->wm.skl.optimal.planes[plane->id];
  3085. /* Skip this plane if it's not enabled */
  3086. if (!wm->wm[0].plane_en)
  3087. continue;
  3088. /* Find the highest enabled wm level for this plane */
  3089. for (level = ilk_wm_max_level(dev_priv);
  3090. !wm->wm[level].plane_en; --level)
  3091. { }
  3092. latency = dev_priv->wm.skl_latency[level];
  3093. if (skl_needs_memory_bw_wa(intel_state) &&
  3094. plane->base.state->fb->modifier ==
  3095. I915_FORMAT_MOD_X_TILED)
  3096. latency += 15;
  3097. /*
  3098. * If any of the planes on this pipe don't enable wm levels
  3099. * that incur memory latencies higher then 30µs we can't enable
  3100. * the SAGV
  3101. */
  3102. if (latency < SKL_SAGV_BLOCK_TIME)
  3103. return false;
  3104. }
  3105. return true;
  3106. }
  3107. static void
  3108. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  3109. const struct intel_crtc_state *cstate,
  3110. struct skl_ddb_entry *alloc, /* out */
  3111. int *num_active /* out */)
  3112. {
  3113. struct drm_atomic_state *state = cstate->base.state;
  3114. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3115. struct drm_i915_private *dev_priv = to_i915(dev);
  3116. struct drm_crtc *for_crtc = cstate->base.crtc;
  3117. unsigned int pipe_size, ddb_size;
  3118. int nth_active_pipe;
  3119. if (WARN_ON(!state) || !cstate->base.active) {
  3120. alloc->start = 0;
  3121. alloc->end = 0;
  3122. *num_active = hweight32(dev_priv->active_crtcs);
  3123. return;
  3124. }
  3125. if (intel_state->active_pipe_changes)
  3126. *num_active = hweight32(intel_state->active_crtcs);
  3127. else
  3128. *num_active = hweight32(dev_priv->active_crtcs);
  3129. ddb_size = INTEL_INFO(dev_priv)->ddb_size;
  3130. WARN_ON(ddb_size == 0);
  3131. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  3132. /*
  3133. * If the state doesn't change the active CRTC's, then there's
  3134. * no need to recalculate; the existing pipe allocation limits
  3135. * should remain unchanged. Note that we're safe from racing
  3136. * commits since any racing commit that changes the active CRTC
  3137. * list would need to grab _all_ crtc locks, including the one
  3138. * we currently hold.
  3139. */
  3140. if (!intel_state->active_pipe_changes) {
  3141. /*
  3142. * alloc may be cleared by clear_intel_crtc_state,
  3143. * copy from old state to be sure
  3144. */
  3145. *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
  3146. return;
  3147. }
  3148. nth_active_pipe = hweight32(intel_state->active_crtcs &
  3149. (drm_crtc_mask(for_crtc) - 1));
  3150. pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
  3151. alloc->start = nth_active_pipe * ddb_size / *num_active;
  3152. alloc->end = alloc->start + pipe_size;
  3153. }
  3154. static unsigned int skl_cursor_allocation(int num_active)
  3155. {
  3156. if (num_active == 1)
  3157. return 32;
  3158. return 8;
  3159. }
  3160. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  3161. {
  3162. entry->start = reg & 0x3ff;
  3163. entry->end = (reg >> 16) & 0x3ff;
  3164. if (entry->end)
  3165. entry->end += 1;
  3166. }
  3167. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  3168. struct skl_ddb_allocation *ddb /* out */)
  3169. {
  3170. struct intel_crtc *crtc;
  3171. memset(ddb, 0, sizeof(*ddb));
  3172. for_each_intel_crtc(&dev_priv->drm, crtc) {
  3173. enum intel_display_power_domain power_domain;
  3174. enum plane_id plane_id;
  3175. enum pipe pipe = crtc->pipe;
  3176. power_domain = POWER_DOMAIN_PIPE(pipe);
  3177. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  3178. continue;
  3179. for_each_plane_id_on_crtc(crtc, plane_id) {
  3180. u32 val;
  3181. if (plane_id != PLANE_CURSOR)
  3182. val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
  3183. else
  3184. val = I915_READ(CUR_BUF_CFG(pipe));
  3185. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
  3186. }
  3187. intel_display_power_put(dev_priv, power_domain);
  3188. }
  3189. }
  3190. /*
  3191. * Determines the downscale amount of a plane for the purposes of watermark calculations.
  3192. * The bspec defines downscale amount as:
  3193. *
  3194. * """
  3195. * Horizontal down scale amount = maximum[1, Horizontal source size /
  3196. * Horizontal destination size]
  3197. * Vertical down scale amount = maximum[1, Vertical source size /
  3198. * Vertical destination size]
  3199. * Total down scale amount = Horizontal down scale amount *
  3200. * Vertical down scale amount
  3201. * """
  3202. *
  3203. * Return value is provided in 16.16 fixed point form to retain fractional part.
  3204. * Caller should take care of dividing & rounding off the value.
  3205. */
  3206. static uint_fixed_16_16_t
  3207. skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
  3208. const struct intel_plane_state *pstate)
  3209. {
  3210. struct intel_plane *plane = to_intel_plane(pstate->base.plane);
  3211. uint32_t src_w, src_h, dst_w, dst_h;
  3212. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3213. uint_fixed_16_16_t downscale_h, downscale_w;
  3214. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3215. return u32_to_fixed16(0);
  3216. /* n.b., src is 16.16 fixed point, dst is whole integer */
  3217. if (plane->id == PLANE_CURSOR) {
  3218. /*
  3219. * Cursors only support 0/180 degree rotation,
  3220. * hence no need to account for rotation here.
  3221. */
  3222. src_w = pstate->base.src_w >> 16;
  3223. src_h = pstate->base.src_h >> 16;
  3224. dst_w = pstate->base.crtc_w;
  3225. dst_h = pstate->base.crtc_h;
  3226. } else {
  3227. /*
  3228. * Src coordinates are already rotated by 270 degrees for
  3229. * the 90/270 degree plane rotation cases (to match the
  3230. * GTT mapping), hence no need to account for rotation here.
  3231. */
  3232. src_w = drm_rect_width(&pstate->base.src) >> 16;
  3233. src_h = drm_rect_height(&pstate->base.src) >> 16;
  3234. dst_w = drm_rect_width(&pstate->base.dst);
  3235. dst_h = drm_rect_height(&pstate->base.dst);
  3236. }
  3237. fp_w_ratio = div_fixed16(src_w, dst_w);
  3238. fp_h_ratio = div_fixed16(src_h, dst_h);
  3239. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3240. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3241. return mul_fixed16(downscale_w, downscale_h);
  3242. }
  3243. static uint_fixed_16_16_t
  3244. skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
  3245. {
  3246. uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
  3247. if (!crtc_state->base.enable)
  3248. return pipe_downscale;
  3249. if (crtc_state->pch_pfit.enabled) {
  3250. uint32_t src_w, src_h, dst_w, dst_h;
  3251. uint32_t pfit_size = crtc_state->pch_pfit.size;
  3252. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3253. uint_fixed_16_16_t downscale_h, downscale_w;
  3254. src_w = crtc_state->pipe_src_w;
  3255. src_h = crtc_state->pipe_src_h;
  3256. dst_w = pfit_size >> 16;
  3257. dst_h = pfit_size & 0xffff;
  3258. if (!dst_w || !dst_h)
  3259. return pipe_downscale;
  3260. fp_w_ratio = div_fixed16(src_w, dst_w);
  3261. fp_h_ratio = div_fixed16(src_h, dst_h);
  3262. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3263. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3264. pipe_downscale = mul_fixed16(downscale_w, downscale_h);
  3265. }
  3266. return pipe_downscale;
  3267. }
  3268. int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
  3269. struct intel_crtc_state *cstate)
  3270. {
  3271. struct drm_crtc_state *crtc_state = &cstate->base;
  3272. struct drm_atomic_state *state = crtc_state->state;
  3273. struct drm_plane *plane;
  3274. const struct drm_plane_state *pstate;
  3275. struct intel_plane_state *intel_pstate;
  3276. int crtc_clock, dotclk;
  3277. uint32_t pipe_max_pixel_rate;
  3278. uint_fixed_16_16_t pipe_downscale;
  3279. uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
  3280. if (!cstate->base.enable)
  3281. return 0;
  3282. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3283. uint_fixed_16_16_t plane_downscale;
  3284. uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
  3285. int bpp;
  3286. if (!intel_wm_plane_visible(cstate,
  3287. to_intel_plane_state(pstate)))
  3288. continue;
  3289. if (WARN_ON(!pstate->fb))
  3290. return -EINVAL;
  3291. intel_pstate = to_intel_plane_state(pstate);
  3292. plane_downscale = skl_plane_downscale_amount(cstate,
  3293. intel_pstate);
  3294. bpp = pstate->fb->format->cpp[0] * 8;
  3295. if (bpp == 64)
  3296. plane_downscale = mul_fixed16(plane_downscale,
  3297. fp_9_div_8);
  3298. max_downscale = max_fixed16(plane_downscale, max_downscale);
  3299. }
  3300. pipe_downscale = skl_pipe_downscale_amount(cstate);
  3301. pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
  3302. crtc_clock = crtc_state->adjusted_mode.crtc_clock;
  3303. dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
  3304. if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
  3305. dotclk *= 2;
  3306. pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
  3307. if (pipe_max_pixel_rate < crtc_clock) {
  3308. DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
  3309. return -EINVAL;
  3310. }
  3311. return 0;
  3312. }
  3313. static unsigned int
  3314. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  3315. const struct drm_plane_state *pstate,
  3316. int y)
  3317. {
  3318. struct intel_plane *plane = to_intel_plane(pstate->plane);
  3319. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3320. uint32_t data_rate;
  3321. uint32_t width = 0, height = 0;
  3322. struct drm_framebuffer *fb;
  3323. u32 format;
  3324. uint_fixed_16_16_t down_scale_amount;
  3325. if (!intel_pstate->base.visible)
  3326. return 0;
  3327. fb = pstate->fb;
  3328. format = fb->format->format;
  3329. if (plane->id == PLANE_CURSOR)
  3330. return 0;
  3331. if (y && format != DRM_FORMAT_NV12)
  3332. return 0;
  3333. /*
  3334. * Src coordinates are already rotated by 270 degrees for
  3335. * the 90/270 degree plane rotation cases (to match the
  3336. * GTT mapping), hence no need to account for rotation here.
  3337. */
  3338. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3339. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  3340. /* for planar format */
  3341. if (format == DRM_FORMAT_NV12) {
  3342. if (y) /* y-plane data rate */
  3343. data_rate = width * height *
  3344. fb->format->cpp[0];
  3345. else /* uv-plane data rate */
  3346. data_rate = (width / 2) * (height / 2) *
  3347. fb->format->cpp[1];
  3348. } else {
  3349. /* for packed formats */
  3350. data_rate = width * height * fb->format->cpp[0];
  3351. }
  3352. down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
  3353. return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
  3354. }
  3355. /*
  3356. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  3357. * a 8192x4096@32bpp framebuffer:
  3358. * 3 * 4096 * 8192 * 4 < 2^32
  3359. */
  3360. static unsigned int
  3361. skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
  3362. unsigned *plane_data_rate,
  3363. unsigned *plane_y_data_rate)
  3364. {
  3365. struct drm_crtc_state *cstate = &intel_cstate->base;
  3366. struct drm_atomic_state *state = cstate->state;
  3367. struct drm_plane *plane;
  3368. const struct drm_plane_state *pstate;
  3369. unsigned int total_data_rate = 0;
  3370. if (WARN_ON(!state))
  3371. return 0;
  3372. /* Calculate and cache data rate for each plane */
  3373. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
  3374. enum plane_id plane_id = to_intel_plane(plane)->id;
  3375. unsigned int rate;
  3376. /* packed/uv */
  3377. rate = skl_plane_relative_data_rate(intel_cstate,
  3378. pstate, 0);
  3379. plane_data_rate[plane_id] = rate;
  3380. total_data_rate += rate;
  3381. /* y-plane */
  3382. rate = skl_plane_relative_data_rate(intel_cstate,
  3383. pstate, 1);
  3384. plane_y_data_rate[plane_id] = rate;
  3385. total_data_rate += rate;
  3386. }
  3387. return total_data_rate;
  3388. }
  3389. static uint16_t
  3390. skl_ddb_min_alloc(const struct drm_plane_state *pstate,
  3391. const int y)
  3392. {
  3393. struct drm_framebuffer *fb = pstate->fb;
  3394. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3395. uint32_t src_w, src_h;
  3396. uint32_t min_scanlines = 8;
  3397. uint8_t plane_bpp;
  3398. if (WARN_ON(!fb))
  3399. return 0;
  3400. /* For packed formats, no y-plane, return 0 */
  3401. if (y && fb->format->format != DRM_FORMAT_NV12)
  3402. return 0;
  3403. /* For Non Y-tile return 8-blocks */
  3404. if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
  3405. fb->modifier != I915_FORMAT_MOD_Yf_TILED)
  3406. return 8;
  3407. /*
  3408. * Src coordinates are already rotated by 270 degrees for
  3409. * the 90/270 degree plane rotation cases (to match the
  3410. * GTT mapping), hence no need to account for rotation here.
  3411. */
  3412. src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
  3413. src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
  3414. /* Halve UV plane width and height for NV12 */
  3415. if (fb->format->format == DRM_FORMAT_NV12 && !y) {
  3416. src_w /= 2;
  3417. src_h /= 2;
  3418. }
  3419. if (fb->format->format == DRM_FORMAT_NV12 && !y)
  3420. plane_bpp = fb->format->cpp[1];
  3421. else
  3422. plane_bpp = fb->format->cpp[0];
  3423. if (drm_rotation_90_or_270(pstate->rotation)) {
  3424. switch (plane_bpp) {
  3425. case 1:
  3426. min_scanlines = 32;
  3427. break;
  3428. case 2:
  3429. min_scanlines = 16;
  3430. break;
  3431. case 4:
  3432. min_scanlines = 8;
  3433. break;
  3434. case 8:
  3435. min_scanlines = 4;
  3436. break;
  3437. default:
  3438. WARN(1, "Unsupported pixel depth %u for rotation",
  3439. plane_bpp);
  3440. min_scanlines = 32;
  3441. }
  3442. }
  3443. return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
  3444. }
  3445. static void
  3446. skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
  3447. uint16_t *minimum, uint16_t *y_minimum)
  3448. {
  3449. const struct drm_plane_state *pstate;
  3450. struct drm_plane *plane;
  3451. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
  3452. enum plane_id plane_id = to_intel_plane(plane)->id;
  3453. if (plane_id == PLANE_CURSOR)
  3454. continue;
  3455. if (!pstate->visible)
  3456. continue;
  3457. minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
  3458. y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
  3459. }
  3460. minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
  3461. }
  3462. static int
  3463. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  3464. struct skl_ddb_allocation *ddb /* out */)
  3465. {
  3466. struct drm_atomic_state *state = cstate->base.state;
  3467. struct drm_crtc *crtc = cstate->base.crtc;
  3468. struct drm_device *dev = crtc->dev;
  3469. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3470. enum pipe pipe = intel_crtc->pipe;
  3471. struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
  3472. uint16_t alloc_size, start;
  3473. uint16_t minimum[I915_MAX_PLANES] = {};
  3474. uint16_t y_minimum[I915_MAX_PLANES] = {};
  3475. unsigned int total_data_rate;
  3476. enum plane_id plane_id;
  3477. int num_active;
  3478. unsigned plane_data_rate[I915_MAX_PLANES] = {};
  3479. unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
  3480. uint16_t total_min_blocks = 0;
  3481. /* Clear the partitioning for disabled planes. */
  3482. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  3483. memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
  3484. if (WARN_ON(!state))
  3485. return 0;
  3486. if (!cstate->base.active) {
  3487. alloc->start = alloc->end = 0;
  3488. return 0;
  3489. }
  3490. skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
  3491. alloc_size = skl_ddb_entry_size(alloc);
  3492. if (alloc_size == 0)
  3493. return 0;
  3494. skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
  3495. /*
  3496. * 1. Allocate the mininum required blocks for each active plane
  3497. * and allocate the cursor, it doesn't require extra allocation
  3498. * proportional to the data rate.
  3499. */
  3500. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3501. total_min_blocks += minimum[plane_id];
  3502. total_min_blocks += y_minimum[plane_id];
  3503. }
  3504. if (total_min_blocks > alloc_size) {
  3505. DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
  3506. DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
  3507. alloc_size);
  3508. return -EINVAL;
  3509. }
  3510. alloc_size -= total_min_blocks;
  3511. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
  3512. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  3513. /*
  3514. * 2. Distribute the remaining space in proportion to the amount of
  3515. * data each plane needs to fetch from memory.
  3516. *
  3517. * FIXME: we may not allocate every single block here.
  3518. */
  3519. total_data_rate = skl_get_total_relative_data_rate(cstate,
  3520. plane_data_rate,
  3521. plane_y_data_rate);
  3522. if (total_data_rate == 0)
  3523. return 0;
  3524. start = alloc->start;
  3525. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3526. unsigned int data_rate, y_data_rate;
  3527. uint16_t plane_blocks, y_plane_blocks = 0;
  3528. if (plane_id == PLANE_CURSOR)
  3529. continue;
  3530. data_rate = plane_data_rate[plane_id];
  3531. /*
  3532. * allocation for (packed formats) or (uv-plane part of planar format):
  3533. * promote the expression to 64 bits to avoid overflowing, the
  3534. * result is < available as data_rate / total_data_rate < 1
  3535. */
  3536. plane_blocks = minimum[plane_id];
  3537. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  3538. total_data_rate);
  3539. /* Leave disabled planes at (0,0) */
  3540. if (data_rate) {
  3541. ddb->plane[pipe][plane_id].start = start;
  3542. ddb->plane[pipe][plane_id].end = start + plane_blocks;
  3543. }
  3544. start += plane_blocks;
  3545. /*
  3546. * allocation for y_plane part of planar format:
  3547. */
  3548. y_data_rate = plane_y_data_rate[plane_id];
  3549. y_plane_blocks = y_minimum[plane_id];
  3550. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  3551. total_data_rate);
  3552. if (y_data_rate) {
  3553. ddb->y_plane[pipe][plane_id].start = start;
  3554. ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
  3555. }
  3556. start += y_plane_blocks;
  3557. }
  3558. return 0;
  3559. }
  3560. /*
  3561. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  3562. * for the read latency) and cpp should always be <= 8, so that
  3563. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  3564. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  3565. */
  3566. static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
  3567. uint32_t latency)
  3568. {
  3569. uint32_t wm_intermediate_val;
  3570. uint_fixed_16_16_t ret;
  3571. if (latency == 0)
  3572. return FP_16_16_MAX;
  3573. wm_intermediate_val = latency * pixel_rate * cpp;
  3574. ret = div_fixed16(wm_intermediate_val, 1000 * 512);
  3575. return ret;
  3576. }
  3577. static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
  3578. uint32_t pipe_htotal,
  3579. uint32_t latency,
  3580. uint_fixed_16_16_t plane_blocks_per_line)
  3581. {
  3582. uint32_t wm_intermediate_val;
  3583. uint_fixed_16_16_t ret;
  3584. if (latency == 0)
  3585. return FP_16_16_MAX;
  3586. wm_intermediate_val = latency * pixel_rate;
  3587. wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
  3588. pipe_htotal * 1000);
  3589. ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
  3590. return ret;
  3591. }
  3592. static uint_fixed_16_16_t
  3593. intel_get_linetime_us(struct intel_crtc_state *cstate)
  3594. {
  3595. uint32_t pixel_rate;
  3596. uint32_t crtc_htotal;
  3597. uint_fixed_16_16_t linetime_us;
  3598. if (!cstate->base.active)
  3599. return u32_to_fixed16(0);
  3600. pixel_rate = cstate->pixel_rate;
  3601. if (WARN_ON(pixel_rate == 0))
  3602. return u32_to_fixed16(0);
  3603. crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
  3604. linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
  3605. return linetime_us;
  3606. }
  3607. static uint32_t
  3608. skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
  3609. const struct intel_plane_state *pstate)
  3610. {
  3611. uint64_t adjusted_pixel_rate;
  3612. uint_fixed_16_16_t downscale_amount;
  3613. /* Shouldn't reach here on disabled planes... */
  3614. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3615. return 0;
  3616. /*
  3617. * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
  3618. * with additional adjustments for plane-specific scaling.
  3619. */
  3620. adjusted_pixel_rate = cstate->pixel_rate;
  3621. downscale_amount = skl_plane_downscale_amount(cstate, pstate);
  3622. return mul_round_up_u32_fixed16(adjusted_pixel_rate,
  3623. downscale_amount);
  3624. }
  3625. static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  3626. struct intel_crtc_state *cstate,
  3627. const struct intel_plane_state *intel_pstate,
  3628. uint16_t ddb_allocation,
  3629. int level,
  3630. uint16_t *out_blocks, /* out */
  3631. uint8_t *out_lines, /* out */
  3632. bool *enabled /* out */)
  3633. {
  3634. struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
  3635. const struct drm_plane_state *pstate = &intel_pstate->base;
  3636. const struct drm_framebuffer *fb = pstate->fb;
  3637. uint32_t latency = dev_priv->wm.skl_latency[level];
  3638. uint_fixed_16_16_t method1, method2;
  3639. uint_fixed_16_16_t plane_blocks_per_line;
  3640. uint_fixed_16_16_t selected_result;
  3641. uint32_t interm_pbpl;
  3642. uint32_t plane_bytes_per_line;
  3643. uint32_t res_blocks, res_lines;
  3644. uint8_t cpp;
  3645. uint32_t width = 0;
  3646. uint32_t plane_pixel_rate;
  3647. uint_fixed_16_16_t y_tile_minimum;
  3648. uint32_t y_min_scanlines;
  3649. struct intel_atomic_state *state =
  3650. to_intel_atomic_state(cstate->base.state);
  3651. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  3652. bool y_tiled, x_tiled;
  3653. if (latency == 0 ||
  3654. !intel_wm_plane_visible(cstate, intel_pstate)) {
  3655. *enabled = false;
  3656. return 0;
  3657. }
  3658. y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
  3659. fb->modifier == I915_FORMAT_MOD_Yf_TILED;
  3660. x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
  3661. /* Display WA #1141: kbl,cfl */
  3662. if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
  3663. dev_priv->ipc_enabled)
  3664. latency += 4;
  3665. if (apply_memory_bw_wa && x_tiled)
  3666. latency += 15;
  3667. if (plane->id == PLANE_CURSOR) {
  3668. width = intel_pstate->base.crtc_w;
  3669. } else {
  3670. /*
  3671. * Src coordinates are already rotated by 270 degrees for
  3672. * the 90/270 degree plane rotation cases (to match the
  3673. * GTT mapping), hence no need to account for rotation here.
  3674. */
  3675. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3676. }
  3677. cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
  3678. fb->format->cpp[0];
  3679. plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
  3680. if (drm_rotation_90_or_270(pstate->rotation)) {
  3681. switch (cpp) {
  3682. case 1:
  3683. y_min_scanlines = 16;
  3684. break;
  3685. case 2:
  3686. y_min_scanlines = 8;
  3687. break;
  3688. case 4:
  3689. y_min_scanlines = 4;
  3690. break;
  3691. default:
  3692. MISSING_CASE(cpp);
  3693. return -EINVAL;
  3694. }
  3695. } else {
  3696. y_min_scanlines = 4;
  3697. }
  3698. if (apply_memory_bw_wa)
  3699. y_min_scanlines *= 2;
  3700. plane_bytes_per_line = width * cpp;
  3701. if (y_tiled) {
  3702. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
  3703. y_min_scanlines, 512);
  3704. plane_blocks_per_line = div_fixed16(interm_pbpl,
  3705. y_min_scanlines);
  3706. } else if (x_tiled) {
  3707. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3708. plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3709. } else {
  3710. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
  3711. plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3712. }
  3713. method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
  3714. method2 = skl_wm_method2(plane_pixel_rate,
  3715. cstate->base.adjusted_mode.crtc_htotal,
  3716. latency,
  3717. plane_blocks_per_line);
  3718. y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
  3719. plane_blocks_per_line);
  3720. if (y_tiled) {
  3721. selected_result = max_fixed16(method2, y_tile_minimum);
  3722. } else {
  3723. uint32_t linetime_us;
  3724. linetime_us = fixed16_to_u32_round_up(
  3725. intel_get_linetime_us(cstate));
  3726. if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
  3727. (plane_bytes_per_line / 512 < 1))
  3728. selected_result = method2;
  3729. else if (ddb_allocation >=
  3730. fixed16_to_u32_round_up(plane_blocks_per_line))
  3731. selected_result = min_fixed16(method1, method2);
  3732. else if (latency >= linetime_us)
  3733. selected_result = min_fixed16(method1, method2);
  3734. else
  3735. selected_result = method1;
  3736. }
  3737. res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
  3738. res_lines = div_round_up_fixed16(selected_result,
  3739. plane_blocks_per_line);
  3740. if (level >= 1 && level <= 7) {
  3741. if (y_tiled) {
  3742. res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
  3743. res_lines += y_min_scanlines;
  3744. } else {
  3745. res_blocks++;
  3746. }
  3747. }
  3748. if (res_blocks >= ddb_allocation || res_lines > 31) {
  3749. *enabled = false;
  3750. /*
  3751. * If there are no valid level 0 watermarks, then we can't
  3752. * support this display configuration.
  3753. */
  3754. if (level) {
  3755. return 0;
  3756. } else {
  3757. struct drm_plane *plane = pstate->plane;
  3758. DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
  3759. DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
  3760. plane->base.id, plane->name,
  3761. res_blocks, ddb_allocation, res_lines);
  3762. return -EINVAL;
  3763. }
  3764. }
  3765. *out_blocks = res_blocks;
  3766. *out_lines = res_lines;
  3767. *enabled = true;
  3768. return 0;
  3769. }
  3770. static int
  3771. skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
  3772. struct skl_ddb_allocation *ddb,
  3773. struct intel_crtc_state *cstate,
  3774. const struct intel_plane_state *intel_pstate,
  3775. struct skl_plane_wm *wm)
  3776. {
  3777. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3778. struct drm_plane *plane = intel_pstate->base.plane;
  3779. struct intel_plane *intel_plane = to_intel_plane(plane);
  3780. uint16_t ddb_blocks;
  3781. enum pipe pipe = intel_crtc->pipe;
  3782. int level, max_level = ilk_wm_max_level(dev_priv);
  3783. int ret;
  3784. if (WARN_ON(!intel_pstate->base.fb))
  3785. return -EINVAL;
  3786. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
  3787. for (level = 0; level <= max_level; level++) {
  3788. struct skl_wm_level *result = &wm->wm[level];
  3789. ret = skl_compute_plane_wm(dev_priv,
  3790. cstate,
  3791. intel_pstate,
  3792. ddb_blocks,
  3793. level,
  3794. &result->plane_res_b,
  3795. &result->plane_res_l,
  3796. &result->plane_en);
  3797. if (ret)
  3798. return ret;
  3799. }
  3800. return 0;
  3801. }
  3802. static uint32_t
  3803. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3804. {
  3805. struct drm_atomic_state *state = cstate->base.state;
  3806. struct drm_i915_private *dev_priv = to_i915(state->dev);
  3807. uint_fixed_16_16_t linetime_us;
  3808. uint32_t linetime_wm;
  3809. linetime_us = intel_get_linetime_us(cstate);
  3810. if (is_fixed16_zero(linetime_us))
  3811. return 0;
  3812. linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
  3813. /* Display WA #1135: bxt. */
  3814. if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
  3815. linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
  3816. return linetime_wm;
  3817. }
  3818. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3819. struct skl_wm_level *trans_wm /* out */)
  3820. {
  3821. if (!cstate->base.active)
  3822. return;
  3823. /* Until we know more, just disable transition WMs */
  3824. trans_wm->plane_en = false;
  3825. }
  3826. static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
  3827. struct skl_ddb_allocation *ddb,
  3828. struct skl_pipe_wm *pipe_wm)
  3829. {
  3830. struct drm_device *dev = cstate->base.crtc->dev;
  3831. struct drm_crtc_state *crtc_state = &cstate->base;
  3832. const struct drm_i915_private *dev_priv = to_i915(dev);
  3833. struct drm_plane *plane;
  3834. const struct drm_plane_state *pstate;
  3835. struct skl_plane_wm *wm;
  3836. int ret;
  3837. /*
  3838. * We'll only calculate watermarks for planes that are actually
  3839. * enabled, so make sure all other planes are set as disabled.
  3840. */
  3841. memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
  3842. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3843. const struct intel_plane_state *intel_pstate =
  3844. to_intel_plane_state(pstate);
  3845. enum plane_id plane_id = to_intel_plane(plane)->id;
  3846. wm = &pipe_wm->planes[plane_id];
  3847. ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
  3848. intel_pstate, wm);
  3849. if (ret)
  3850. return ret;
  3851. skl_compute_transition_wm(cstate, &wm->trans_wm);
  3852. }
  3853. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3854. return 0;
  3855. }
  3856. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3857. i915_reg_t reg,
  3858. const struct skl_ddb_entry *entry)
  3859. {
  3860. if (entry->end)
  3861. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3862. else
  3863. I915_WRITE(reg, 0);
  3864. }
  3865. static void skl_write_wm_level(struct drm_i915_private *dev_priv,
  3866. i915_reg_t reg,
  3867. const struct skl_wm_level *level)
  3868. {
  3869. uint32_t val = 0;
  3870. if (level->plane_en) {
  3871. val |= PLANE_WM_EN;
  3872. val |= level->plane_res_b;
  3873. val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
  3874. }
  3875. I915_WRITE(reg, val);
  3876. }
  3877. static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
  3878. const struct skl_plane_wm *wm,
  3879. const struct skl_ddb_allocation *ddb,
  3880. enum plane_id plane_id)
  3881. {
  3882. struct drm_crtc *crtc = &intel_crtc->base;
  3883. struct drm_device *dev = crtc->dev;
  3884. struct drm_i915_private *dev_priv = to_i915(dev);
  3885. int level, max_level = ilk_wm_max_level(dev_priv);
  3886. enum pipe pipe = intel_crtc->pipe;
  3887. for (level = 0; level <= max_level; level++) {
  3888. skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
  3889. &wm->wm[level]);
  3890. }
  3891. skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
  3892. &wm->trans_wm);
  3893. skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
  3894. &ddb->plane[pipe][plane_id]);
  3895. skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
  3896. &ddb->y_plane[pipe][plane_id]);
  3897. }
  3898. static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
  3899. const struct skl_plane_wm *wm,
  3900. const struct skl_ddb_allocation *ddb)
  3901. {
  3902. struct drm_crtc *crtc = &intel_crtc->base;
  3903. struct drm_device *dev = crtc->dev;
  3904. struct drm_i915_private *dev_priv = to_i915(dev);
  3905. int level, max_level = ilk_wm_max_level(dev_priv);
  3906. enum pipe pipe = intel_crtc->pipe;
  3907. for (level = 0; level <= max_level; level++) {
  3908. skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
  3909. &wm->wm[level]);
  3910. }
  3911. skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
  3912. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  3913. &ddb->plane[pipe][PLANE_CURSOR]);
  3914. }
  3915. bool skl_wm_level_equals(const struct skl_wm_level *l1,
  3916. const struct skl_wm_level *l2)
  3917. {
  3918. if (l1->plane_en != l2->plane_en)
  3919. return false;
  3920. /* If both planes aren't enabled, the rest shouldn't matter */
  3921. if (!l1->plane_en)
  3922. return true;
  3923. return (l1->plane_res_l == l2->plane_res_l &&
  3924. l1->plane_res_b == l2->plane_res_b);
  3925. }
  3926. static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
  3927. const struct skl_ddb_entry *b)
  3928. {
  3929. return a->start < b->end && b->start < a->end;
  3930. }
  3931. bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
  3932. const struct skl_ddb_entry *ddb,
  3933. int ignore)
  3934. {
  3935. int i;
  3936. for (i = 0; i < I915_MAX_PIPES; i++)
  3937. if (i != ignore && entries[i] &&
  3938. skl_ddb_entries_overlap(ddb, entries[i]))
  3939. return true;
  3940. return false;
  3941. }
  3942. static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
  3943. const struct skl_pipe_wm *old_pipe_wm,
  3944. struct skl_pipe_wm *pipe_wm, /* out */
  3945. struct skl_ddb_allocation *ddb, /* out */
  3946. bool *changed /* out */)
  3947. {
  3948. struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
  3949. int ret;
  3950. ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
  3951. if (ret)
  3952. return ret;
  3953. if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
  3954. *changed = false;
  3955. else
  3956. *changed = true;
  3957. return 0;
  3958. }
  3959. static uint32_t
  3960. pipes_modified(struct drm_atomic_state *state)
  3961. {
  3962. struct drm_crtc *crtc;
  3963. struct drm_crtc_state *cstate;
  3964. uint32_t i, ret = 0;
  3965. for_each_new_crtc_in_state(state, crtc, cstate, i)
  3966. ret |= drm_crtc_mask(crtc);
  3967. return ret;
  3968. }
  3969. static int
  3970. skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
  3971. {
  3972. struct drm_atomic_state *state = cstate->base.state;
  3973. struct drm_device *dev = state->dev;
  3974. struct drm_crtc *crtc = cstate->base.crtc;
  3975. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3976. struct drm_i915_private *dev_priv = to_i915(dev);
  3977. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3978. struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  3979. struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  3980. struct drm_plane_state *plane_state;
  3981. struct drm_plane *plane;
  3982. enum pipe pipe = intel_crtc->pipe;
  3983. WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
  3984. drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
  3985. enum plane_id plane_id = to_intel_plane(plane)->id;
  3986. if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
  3987. &new_ddb->plane[pipe][plane_id]) &&
  3988. skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
  3989. &new_ddb->y_plane[pipe][plane_id]))
  3990. continue;
  3991. plane_state = drm_atomic_get_plane_state(state, plane);
  3992. if (IS_ERR(plane_state))
  3993. return PTR_ERR(plane_state);
  3994. }
  3995. return 0;
  3996. }
  3997. static int
  3998. skl_compute_ddb(struct drm_atomic_state *state)
  3999. {
  4000. struct drm_device *dev = state->dev;
  4001. struct drm_i915_private *dev_priv = to_i915(dev);
  4002. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4003. struct intel_crtc *intel_crtc;
  4004. struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
  4005. uint32_t realloc_pipes = pipes_modified(state);
  4006. int ret;
  4007. /*
  4008. * If this is our first atomic update following hardware readout,
  4009. * we can't trust the DDB that the BIOS programmed for us. Let's
  4010. * pretend that all pipes switched active status so that we'll
  4011. * ensure a full DDB recompute.
  4012. */
  4013. if (dev_priv->wm.distrust_bios_wm) {
  4014. ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
  4015. state->acquire_ctx);
  4016. if (ret)
  4017. return ret;
  4018. intel_state->active_pipe_changes = ~0;
  4019. /*
  4020. * We usually only initialize intel_state->active_crtcs if we
  4021. * we're doing a modeset; make sure this field is always
  4022. * initialized during the sanitization process that happens
  4023. * on the first commit too.
  4024. */
  4025. if (!intel_state->modeset)
  4026. intel_state->active_crtcs = dev_priv->active_crtcs;
  4027. }
  4028. /*
  4029. * If the modeset changes which CRTC's are active, we need to
  4030. * recompute the DDB allocation for *all* active pipes, even
  4031. * those that weren't otherwise being modified in any way by this
  4032. * atomic commit. Due to the shrinking of the per-pipe allocations
  4033. * when new active CRTC's are added, it's possible for a pipe that
  4034. * we were already using and aren't changing at all here to suddenly
  4035. * become invalid if its DDB needs exceeds its new allocation.
  4036. *
  4037. * Note that if we wind up doing a full DDB recompute, we can't let
  4038. * any other display updates race with this transaction, so we need
  4039. * to grab the lock on *all* CRTC's.
  4040. */
  4041. if (intel_state->active_pipe_changes) {
  4042. realloc_pipes = ~0;
  4043. intel_state->wm_results.dirty_pipes = ~0;
  4044. }
  4045. /*
  4046. * We're not recomputing for the pipes not included in the commit, so
  4047. * make sure we start with the current state.
  4048. */
  4049. memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
  4050. for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
  4051. struct intel_crtc_state *cstate;
  4052. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  4053. if (IS_ERR(cstate))
  4054. return PTR_ERR(cstate);
  4055. ret = skl_allocate_pipe_ddb(cstate, ddb);
  4056. if (ret)
  4057. return ret;
  4058. ret = skl_ddb_add_affected_planes(cstate);
  4059. if (ret)
  4060. return ret;
  4061. }
  4062. return 0;
  4063. }
  4064. static void
  4065. skl_copy_wm_for_pipe(struct skl_wm_values *dst,
  4066. struct skl_wm_values *src,
  4067. enum pipe pipe)
  4068. {
  4069. memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
  4070. sizeof(dst->ddb.y_plane[pipe]));
  4071. memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
  4072. sizeof(dst->ddb.plane[pipe]));
  4073. }
  4074. static void
  4075. skl_print_wm_changes(const struct drm_atomic_state *state)
  4076. {
  4077. const struct drm_device *dev = state->dev;
  4078. const struct drm_i915_private *dev_priv = to_i915(dev);
  4079. const struct intel_atomic_state *intel_state =
  4080. to_intel_atomic_state(state);
  4081. const struct drm_crtc *crtc;
  4082. const struct drm_crtc_state *cstate;
  4083. const struct intel_plane *intel_plane;
  4084. const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
  4085. const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  4086. int i;
  4087. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4088. const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4089. enum pipe pipe = intel_crtc->pipe;
  4090. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  4091. enum plane_id plane_id = intel_plane->id;
  4092. const struct skl_ddb_entry *old, *new;
  4093. old = &old_ddb->plane[pipe][plane_id];
  4094. new = &new_ddb->plane[pipe][plane_id];
  4095. if (skl_ddb_entry_equal(old, new))
  4096. continue;
  4097. DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
  4098. intel_plane->base.base.id,
  4099. intel_plane->base.name,
  4100. old->start, old->end,
  4101. new->start, new->end);
  4102. }
  4103. }
  4104. }
  4105. static int
  4106. skl_compute_wm(struct drm_atomic_state *state)
  4107. {
  4108. struct drm_crtc *crtc;
  4109. struct drm_crtc_state *cstate;
  4110. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4111. struct skl_wm_values *results = &intel_state->wm_results;
  4112. struct drm_device *dev = state->dev;
  4113. struct skl_pipe_wm *pipe_wm;
  4114. bool changed = false;
  4115. int ret, i;
  4116. /*
  4117. * When we distrust bios wm we always need to recompute to set the
  4118. * expected DDB allocations for each CRTC.
  4119. */
  4120. if (to_i915(dev)->wm.distrust_bios_wm)
  4121. changed = true;
  4122. /*
  4123. * If this transaction isn't actually touching any CRTC's, don't
  4124. * bother with watermark calculation. Note that if we pass this
  4125. * test, we're guaranteed to hold at least one CRTC state mutex,
  4126. * which means we can safely use values like dev_priv->active_crtcs
  4127. * since any racing commits that want to update them would need to
  4128. * hold _all_ CRTC state mutexes.
  4129. */
  4130. for_each_new_crtc_in_state(state, crtc, cstate, i)
  4131. changed = true;
  4132. if (!changed)
  4133. return 0;
  4134. /* Clear all dirty flags */
  4135. results->dirty_pipes = 0;
  4136. ret = skl_compute_ddb(state);
  4137. if (ret)
  4138. return ret;
  4139. /*
  4140. * Calculate WM's for all pipes that are part of this transaction.
  4141. * Note that the DDB allocation above may have added more CRTC's that
  4142. * weren't otherwise being modified (and set bits in dirty_pipes) if
  4143. * pipe allocations had to change.
  4144. *
  4145. * FIXME: Now that we're doing this in the atomic check phase, we
  4146. * should allow skl_update_pipe_wm() to return failure in cases where
  4147. * no suitable watermark values can be found.
  4148. */
  4149. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4150. struct intel_crtc_state *intel_cstate =
  4151. to_intel_crtc_state(cstate);
  4152. const struct skl_pipe_wm *old_pipe_wm =
  4153. &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
  4154. pipe_wm = &intel_cstate->wm.skl.optimal;
  4155. ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
  4156. &results->ddb, &changed);
  4157. if (ret)
  4158. return ret;
  4159. if (changed)
  4160. results->dirty_pipes |= drm_crtc_mask(crtc);
  4161. if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
  4162. /* This pipe's WM's did not change */
  4163. continue;
  4164. intel_cstate->update_wm_pre = true;
  4165. }
  4166. skl_print_wm_changes(state);
  4167. return 0;
  4168. }
  4169. static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
  4170. struct intel_crtc_state *cstate)
  4171. {
  4172. struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
  4173. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  4174. struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
  4175. const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
  4176. enum pipe pipe = crtc->pipe;
  4177. enum plane_id plane_id;
  4178. if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
  4179. return;
  4180. I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
  4181. for_each_plane_id_on_crtc(crtc, plane_id) {
  4182. if (plane_id != PLANE_CURSOR)
  4183. skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
  4184. ddb, plane_id);
  4185. else
  4186. skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
  4187. ddb);
  4188. }
  4189. }
  4190. static void skl_initial_wm(struct intel_atomic_state *state,
  4191. struct intel_crtc_state *cstate)
  4192. {
  4193. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4194. struct drm_device *dev = intel_crtc->base.dev;
  4195. struct drm_i915_private *dev_priv = to_i915(dev);
  4196. struct skl_wm_values *results = &state->wm_results;
  4197. struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
  4198. enum pipe pipe = intel_crtc->pipe;
  4199. if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
  4200. return;
  4201. mutex_lock(&dev_priv->wm.wm_mutex);
  4202. if (cstate->base.active_changed)
  4203. skl_atomic_update_crtc_wm(state, cstate);
  4204. skl_copy_wm_for_pipe(hw_vals, results, pipe);
  4205. mutex_unlock(&dev_priv->wm.wm_mutex);
  4206. }
  4207. static void ilk_compute_wm_config(struct drm_device *dev,
  4208. struct intel_wm_config *config)
  4209. {
  4210. struct intel_crtc *crtc;
  4211. /* Compute the currently _active_ config */
  4212. for_each_intel_crtc(dev, crtc) {
  4213. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  4214. if (!wm->pipe_enabled)
  4215. continue;
  4216. config->sprites_enabled |= wm->sprites_enabled;
  4217. config->sprites_scaled |= wm->sprites_scaled;
  4218. config->num_pipes_active++;
  4219. }
  4220. }
  4221. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  4222. {
  4223. struct drm_device *dev = &dev_priv->drm;
  4224. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  4225. struct ilk_wm_maximums max;
  4226. struct intel_wm_config config = {};
  4227. struct ilk_wm_values results = {};
  4228. enum intel_ddb_partitioning partitioning;
  4229. ilk_compute_wm_config(dev, &config);
  4230. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  4231. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  4232. /* 5/6 split only in single pipe config on IVB+ */
  4233. if (INTEL_GEN(dev_priv) >= 7 &&
  4234. config.num_pipes_active == 1 && config.sprites_enabled) {
  4235. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  4236. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  4237. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  4238. } else {
  4239. best_lp_wm = &lp_wm_1_2;
  4240. }
  4241. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  4242. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  4243. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  4244. ilk_write_wm_values(dev_priv, &results);
  4245. }
  4246. static void ilk_initial_watermarks(struct intel_atomic_state *state,
  4247. struct intel_crtc_state *cstate)
  4248. {
  4249. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4250. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4251. mutex_lock(&dev_priv->wm.wm_mutex);
  4252. intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
  4253. ilk_program_watermarks(dev_priv);
  4254. mutex_unlock(&dev_priv->wm.wm_mutex);
  4255. }
  4256. static void ilk_optimize_watermarks(struct intel_atomic_state *state,
  4257. struct intel_crtc_state *cstate)
  4258. {
  4259. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4260. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4261. mutex_lock(&dev_priv->wm.wm_mutex);
  4262. if (cstate->wm.need_postvbl_update) {
  4263. intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
  4264. ilk_program_watermarks(dev_priv);
  4265. }
  4266. mutex_unlock(&dev_priv->wm.wm_mutex);
  4267. }
  4268. static inline void skl_wm_level_from_reg_val(uint32_t val,
  4269. struct skl_wm_level *level)
  4270. {
  4271. level->plane_en = val & PLANE_WM_EN;
  4272. level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
  4273. level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
  4274. PLANE_WM_LINES_MASK;
  4275. }
  4276. void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
  4277. struct skl_pipe_wm *out)
  4278. {
  4279. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  4280. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4281. enum pipe pipe = intel_crtc->pipe;
  4282. int level, max_level;
  4283. enum plane_id plane_id;
  4284. uint32_t val;
  4285. max_level = ilk_wm_max_level(dev_priv);
  4286. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  4287. struct skl_plane_wm *wm = &out->planes[plane_id];
  4288. for (level = 0; level <= max_level; level++) {
  4289. if (plane_id != PLANE_CURSOR)
  4290. val = I915_READ(PLANE_WM(pipe, plane_id, level));
  4291. else
  4292. val = I915_READ(CUR_WM(pipe, level));
  4293. skl_wm_level_from_reg_val(val, &wm->wm[level]);
  4294. }
  4295. if (plane_id != PLANE_CURSOR)
  4296. val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
  4297. else
  4298. val = I915_READ(CUR_WM_TRANS(pipe));
  4299. skl_wm_level_from_reg_val(val, &wm->trans_wm);
  4300. }
  4301. if (!intel_crtc->active)
  4302. return;
  4303. out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
  4304. }
  4305. void skl_wm_get_hw_state(struct drm_device *dev)
  4306. {
  4307. struct drm_i915_private *dev_priv = to_i915(dev);
  4308. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  4309. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  4310. struct drm_crtc *crtc;
  4311. struct intel_crtc *intel_crtc;
  4312. struct intel_crtc_state *cstate;
  4313. skl_ddb_get_hw_state(dev_priv, ddb);
  4314. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4315. intel_crtc = to_intel_crtc(crtc);
  4316. cstate = to_intel_crtc_state(crtc->state);
  4317. skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
  4318. if (intel_crtc->active)
  4319. hw->dirty_pipes |= drm_crtc_mask(crtc);
  4320. }
  4321. if (dev_priv->active_crtcs) {
  4322. /* Fully recompute DDB on first atomic commit */
  4323. dev_priv->wm.distrust_bios_wm = true;
  4324. } else {
  4325. /* Easy/common case; just sanitize DDB now if everything off */
  4326. memset(ddb, 0, sizeof(*ddb));
  4327. }
  4328. }
  4329. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  4330. {
  4331. struct drm_device *dev = crtc->dev;
  4332. struct drm_i915_private *dev_priv = to_i915(dev);
  4333. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4334. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4335. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  4336. struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
  4337. enum pipe pipe = intel_crtc->pipe;
  4338. static const i915_reg_t wm0_pipe_reg[] = {
  4339. [PIPE_A] = WM0_PIPEA_ILK,
  4340. [PIPE_B] = WM0_PIPEB_ILK,
  4341. [PIPE_C] = WM0_PIPEC_IVB,
  4342. };
  4343. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  4344. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4345. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  4346. memset(active, 0, sizeof(*active));
  4347. active->pipe_enabled = intel_crtc->active;
  4348. if (active->pipe_enabled) {
  4349. u32 tmp = hw->wm_pipe[pipe];
  4350. /*
  4351. * For active pipes LP0 watermark is marked as
  4352. * enabled, and LP1+ watermaks as disabled since
  4353. * we can't really reverse compute them in case
  4354. * multiple pipes are active.
  4355. */
  4356. active->wm[0].enable = true;
  4357. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  4358. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  4359. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  4360. active->linetime = hw->wm_linetime[pipe];
  4361. } else {
  4362. int level, max_level = ilk_wm_max_level(dev_priv);
  4363. /*
  4364. * For inactive pipes, all watermark levels
  4365. * should be marked as enabled but zeroed,
  4366. * which is what we'd compute them to.
  4367. */
  4368. for (level = 0; level <= max_level; level++)
  4369. active->wm[level].enable = true;
  4370. }
  4371. intel_crtc->wm.active.ilk = *active;
  4372. }
  4373. #define _FW_WM(value, plane) \
  4374. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  4375. #define _FW_WM_VLV(value, plane) \
  4376. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  4377. static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
  4378. struct g4x_wm_values *wm)
  4379. {
  4380. uint32_t tmp;
  4381. tmp = I915_READ(DSPFW1);
  4382. wm->sr.plane = _FW_WM(tmp, SR);
  4383. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4384. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
  4385. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
  4386. tmp = I915_READ(DSPFW2);
  4387. wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
  4388. wm->sr.fbc = _FW_WM(tmp, FBC_SR);
  4389. wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
  4390. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
  4391. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4392. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
  4393. tmp = I915_READ(DSPFW3);
  4394. wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
  4395. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4396. wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
  4397. wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
  4398. }
  4399. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  4400. struct vlv_wm_values *wm)
  4401. {
  4402. enum pipe pipe;
  4403. uint32_t tmp;
  4404. for_each_pipe(dev_priv, pipe) {
  4405. tmp = I915_READ(VLV_DDL(pipe));
  4406. wm->ddl[pipe].plane[PLANE_PRIMARY] =
  4407. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4408. wm->ddl[pipe].plane[PLANE_CURSOR] =
  4409. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4410. wm->ddl[pipe].plane[PLANE_SPRITE0] =
  4411. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4412. wm->ddl[pipe].plane[PLANE_SPRITE1] =
  4413. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4414. }
  4415. tmp = I915_READ(DSPFW1);
  4416. wm->sr.plane = _FW_WM(tmp, SR);
  4417. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4418. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
  4419. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
  4420. tmp = I915_READ(DSPFW2);
  4421. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
  4422. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4423. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
  4424. tmp = I915_READ(DSPFW3);
  4425. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4426. if (IS_CHERRYVIEW(dev_priv)) {
  4427. tmp = I915_READ(DSPFW7_CHV);
  4428. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4429. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4430. tmp = I915_READ(DSPFW8_CHV);
  4431. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
  4432. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
  4433. tmp = I915_READ(DSPFW9_CHV);
  4434. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
  4435. wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
  4436. tmp = I915_READ(DSPHOWM);
  4437. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4438. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  4439. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  4440. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
  4441. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4442. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4443. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4444. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4445. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4446. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4447. } else {
  4448. tmp = I915_READ(DSPFW7);
  4449. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4450. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4451. tmp = I915_READ(DSPHOWM);
  4452. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4453. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4454. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4455. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4456. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4457. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4458. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4459. }
  4460. }
  4461. #undef _FW_WM
  4462. #undef _FW_WM_VLV
  4463. void g4x_wm_get_hw_state(struct drm_device *dev)
  4464. {
  4465. struct drm_i915_private *dev_priv = to_i915(dev);
  4466. struct g4x_wm_values *wm = &dev_priv->wm.g4x;
  4467. struct intel_crtc *crtc;
  4468. g4x_read_wm_values(dev_priv, wm);
  4469. wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  4470. for_each_intel_crtc(dev, crtc) {
  4471. struct intel_crtc_state *crtc_state =
  4472. to_intel_crtc_state(crtc->base.state);
  4473. struct g4x_wm_state *active = &crtc->wm.active.g4x;
  4474. struct g4x_pipe_wm *raw;
  4475. enum pipe pipe = crtc->pipe;
  4476. enum plane_id plane_id;
  4477. int level, max_level;
  4478. active->cxsr = wm->cxsr;
  4479. active->hpll_en = wm->hpll_en;
  4480. active->fbc_en = wm->fbc_en;
  4481. active->sr = wm->sr;
  4482. active->hpll = wm->hpll;
  4483. for_each_plane_id_on_crtc(crtc, plane_id) {
  4484. active->wm.plane[plane_id] =
  4485. wm->pipe[pipe].plane[plane_id];
  4486. }
  4487. if (wm->cxsr && wm->hpll_en)
  4488. max_level = G4X_WM_LEVEL_HPLL;
  4489. else if (wm->cxsr)
  4490. max_level = G4X_WM_LEVEL_SR;
  4491. else
  4492. max_level = G4X_WM_LEVEL_NORMAL;
  4493. level = G4X_WM_LEVEL_NORMAL;
  4494. raw = &crtc_state->wm.g4x.raw[level];
  4495. for_each_plane_id_on_crtc(crtc, plane_id)
  4496. raw->plane[plane_id] = active->wm.plane[plane_id];
  4497. if (++level > max_level)
  4498. goto out;
  4499. raw = &crtc_state->wm.g4x.raw[level];
  4500. raw->plane[PLANE_PRIMARY] = active->sr.plane;
  4501. raw->plane[PLANE_CURSOR] = active->sr.cursor;
  4502. raw->plane[PLANE_SPRITE0] = 0;
  4503. raw->fbc = active->sr.fbc;
  4504. if (++level > max_level)
  4505. goto out;
  4506. raw = &crtc_state->wm.g4x.raw[level];
  4507. raw->plane[PLANE_PRIMARY] = active->hpll.plane;
  4508. raw->plane[PLANE_CURSOR] = active->hpll.cursor;
  4509. raw->plane[PLANE_SPRITE0] = 0;
  4510. raw->fbc = active->hpll.fbc;
  4511. out:
  4512. for_each_plane_id_on_crtc(crtc, plane_id)
  4513. g4x_raw_plane_wm_set(crtc_state, level,
  4514. plane_id, USHRT_MAX);
  4515. g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  4516. crtc_state->wm.g4x.optimal = *active;
  4517. crtc_state->wm.g4x.intermediate = *active;
  4518. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
  4519. pipe_name(pipe),
  4520. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4521. wm->pipe[pipe].plane[PLANE_CURSOR],
  4522. wm->pipe[pipe].plane[PLANE_SPRITE0]);
  4523. }
  4524. DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
  4525. wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
  4526. DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
  4527. wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
  4528. DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
  4529. yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
  4530. }
  4531. void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
  4532. {
  4533. struct intel_plane *plane;
  4534. struct intel_crtc *crtc;
  4535. mutex_lock(&dev_priv->wm.wm_mutex);
  4536. for_each_intel_plane(&dev_priv->drm, plane) {
  4537. struct intel_crtc *crtc =
  4538. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4539. struct intel_crtc_state *crtc_state =
  4540. to_intel_crtc_state(crtc->base.state);
  4541. struct intel_plane_state *plane_state =
  4542. to_intel_plane_state(plane->base.state);
  4543. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  4544. enum plane_id plane_id = plane->id;
  4545. int level;
  4546. if (plane_state->base.visible)
  4547. continue;
  4548. for (level = 0; level < 3; level++) {
  4549. struct g4x_pipe_wm *raw =
  4550. &crtc_state->wm.g4x.raw[level];
  4551. raw->plane[plane_id] = 0;
  4552. wm_state->wm.plane[plane_id] = 0;
  4553. }
  4554. if (plane_id == PLANE_PRIMARY) {
  4555. for (level = 0; level < 3; level++) {
  4556. struct g4x_pipe_wm *raw =
  4557. &crtc_state->wm.g4x.raw[level];
  4558. raw->fbc = 0;
  4559. }
  4560. wm_state->sr.fbc = 0;
  4561. wm_state->hpll.fbc = 0;
  4562. wm_state->fbc_en = false;
  4563. }
  4564. }
  4565. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4566. struct intel_crtc_state *crtc_state =
  4567. to_intel_crtc_state(crtc->base.state);
  4568. crtc_state->wm.g4x.intermediate =
  4569. crtc_state->wm.g4x.optimal;
  4570. crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  4571. }
  4572. g4x_program_watermarks(dev_priv);
  4573. mutex_unlock(&dev_priv->wm.wm_mutex);
  4574. }
  4575. void vlv_wm_get_hw_state(struct drm_device *dev)
  4576. {
  4577. struct drm_i915_private *dev_priv = to_i915(dev);
  4578. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  4579. struct intel_crtc *crtc;
  4580. u32 val;
  4581. vlv_read_wm_values(dev_priv, wm);
  4582. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  4583. wm->level = VLV_WM_LEVEL_PM2;
  4584. if (IS_CHERRYVIEW(dev_priv)) {
  4585. mutex_lock(&dev_priv->rps.hw_lock);
  4586. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  4587. if (val & DSP_MAXFIFO_PM5_ENABLE)
  4588. wm->level = VLV_WM_LEVEL_PM5;
  4589. /*
  4590. * If DDR DVFS is disabled in the BIOS, Punit
  4591. * will never ack the request. So if that happens
  4592. * assume we don't have to enable/disable DDR DVFS
  4593. * dynamically. To test that just set the REQ_ACK
  4594. * bit to poke the Punit, but don't change the
  4595. * HIGH/LOW bits so that we don't actually change
  4596. * the current state.
  4597. */
  4598. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4599. val |= FORCE_DDR_FREQ_REQ_ACK;
  4600. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  4601. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  4602. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  4603. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  4604. "assuming DDR DVFS is disabled\n");
  4605. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  4606. } else {
  4607. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4608. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  4609. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  4610. }
  4611. mutex_unlock(&dev_priv->rps.hw_lock);
  4612. }
  4613. for_each_intel_crtc(dev, crtc) {
  4614. struct intel_crtc_state *crtc_state =
  4615. to_intel_crtc_state(crtc->base.state);
  4616. struct vlv_wm_state *active = &crtc->wm.active.vlv;
  4617. const struct vlv_fifo_state *fifo_state =
  4618. &crtc_state->wm.vlv.fifo_state;
  4619. enum pipe pipe = crtc->pipe;
  4620. enum plane_id plane_id;
  4621. int level;
  4622. vlv_get_fifo_size(crtc_state);
  4623. active->num_levels = wm->level + 1;
  4624. active->cxsr = wm->cxsr;
  4625. for (level = 0; level < active->num_levels; level++) {
  4626. struct g4x_pipe_wm *raw =
  4627. &crtc_state->wm.vlv.raw[level];
  4628. active->sr[level].plane = wm->sr.plane;
  4629. active->sr[level].cursor = wm->sr.cursor;
  4630. for_each_plane_id_on_crtc(crtc, plane_id) {
  4631. active->wm[level].plane[plane_id] =
  4632. wm->pipe[pipe].plane[plane_id];
  4633. raw->plane[plane_id] =
  4634. vlv_invert_wm_value(active->wm[level].plane[plane_id],
  4635. fifo_state->plane[plane_id]);
  4636. }
  4637. }
  4638. for_each_plane_id_on_crtc(crtc, plane_id)
  4639. vlv_raw_plane_wm_set(crtc_state, level,
  4640. plane_id, USHRT_MAX);
  4641. vlv_invalidate_wms(crtc, active, level);
  4642. crtc_state->wm.vlv.optimal = *active;
  4643. crtc_state->wm.vlv.intermediate = *active;
  4644. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  4645. pipe_name(pipe),
  4646. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4647. wm->pipe[pipe].plane[PLANE_CURSOR],
  4648. wm->pipe[pipe].plane[PLANE_SPRITE0],
  4649. wm->pipe[pipe].plane[PLANE_SPRITE1]);
  4650. }
  4651. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  4652. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  4653. }
  4654. void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
  4655. {
  4656. struct intel_plane *plane;
  4657. struct intel_crtc *crtc;
  4658. mutex_lock(&dev_priv->wm.wm_mutex);
  4659. for_each_intel_plane(&dev_priv->drm, plane) {
  4660. struct intel_crtc *crtc =
  4661. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4662. struct intel_crtc_state *crtc_state =
  4663. to_intel_crtc_state(crtc->base.state);
  4664. struct intel_plane_state *plane_state =
  4665. to_intel_plane_state(plane->base.state);
  4666. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  4667. const struct vlv_fifo_state *fifo_state =
  4668. &crtc_state->wm.vlv.fifo_state;
  4669. enum plane_id plane_id = plane->id;
  4670. int level;
  4671. if (plane_state->base.visible)
  4672. continue;
  4673. for (level = 0; level < wm_state->num_levels; level++) {
  4674. struct g4x_pipe_wm *raw =
  4675. &crtc_state->wm.vlv.raw[level];
  4676. raw->plane[plane_id] = 0;
  4677. wm_state->wm[level].plane[plane_id] =
  4678. vlv_invert_wm_value(raw->plane[plane_id],
  4679. fifo_state->plane[plane_id]);
  4680. }
  4681. }
  4682. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4683. struct intel_crtc_state *crtc_state =
  4684. to_intel_crtc_state(crtc->base.state);
  4685. crtc_state->wm.vlv.intermediate =
  4686. crtc_state->wm.vlv.optimal;
  4687. crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  4688. }
  4689. vlv_program_watermarks(dev_priv);
  4690. mutex_unlock(&dev_priv->wm.wm_mutex);
  4691. }
  4692. void ilk_wm_get_hw_state(struct drm_device *dev)
  4693. {
  4694. struct drm_i915_private *dev_priv = to_i915(dev);
  4695. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4696. struct drm_crtc *crtc;
  4697. for_each_crtc(dev, crtc)
  4698. ilk_pipe_wm_get_hw_state(crtc);
  4699. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  4700. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  4701. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  4702. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  4703. if (INTEL_GEN(dev_priv) >= 7) {
  4704. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  4705. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  4706. }
  4707. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4708. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  4709. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4710. else if (IS_IVYBRIDGE(dev_priv))
  4711. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  4712. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4713. hw->enable_fbc_wm =
  4714. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  4715. }
  4716. /**
  4717. * intel_update_watermarks - update FIFO watermark values based on current modes
  4718. *
  4719. * Calculate watermark values for the various WM regs based on current mode
  4720. * and plane configuration.
  4721. *
  4722. * There are several cases to deal with here:
  4723. * - normal (i.e. non-self-refresh)
  4724. * - self-refresh (SR) mode
  4725. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4726. * - lines are small relative to FIFO size (buffer can hold more than 2
  4727. * lines), so need to account for TLB latency
  4728. *
  4729. * The normal calculation is:
  4730. * watermark = dotclock * bytes per pixel * latency
  4731. * where latency is platform & configuration dependent (we assume pessimal
  4732. * values here).
  4733. *
  4734. * The SR calculation is:
  4735. * watermark = (trunc(latency/line time)+1) * surface width *
  4736. * bytes per pixel
  4737. * where
  4738. * line time = htotal / dotclock
  4739. * surface width = hdisplay for normal plane and 64 for cursor
  4740. * and latency is assumed to be high, as above.
  4741. *
  4742. * The final value programmed to the register should always be rounded up,
  4743. * and include an extra 2 entries to account for clock crossings.
  4744. *
  4745. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4746. * to set the non-SR watermarks to 8.
  4747. */
  4748. void intel_update_watermarks(struct intel_crtc *crtc)
  4749. {
  4750. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  4751. if (dev_priv->display.update_wm)
  4752. dev_priv->display.update_wm(crtc);
  4753. }
  4754. /*
  4755. * Lock protecting IPS related data structures
  4756. */
  4757. DEFINE_SPINLOCK(mchdev_lock);
  4758. /* Global for IPS driver to get at the current i915 device. Protected by
  4759. * mchdev_lock. */
  4760. static struct drm_i915_private *i915_mch_dev;
  4761. bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
  4762. {
  4763. u16 rgvswctl;
  4764. lockdep_assert_held(&mchdev_lock);
  4765. rgvswctl = I915_READ16(MEMSWCTL);
  4766. if (rgvswctl & MEMCTL_CMD_STS) {
  4767. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4768. return false; /* still busy with another command */
  4769. }
  4770. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4771. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4772. I915_WRITE16(MEMSWCTL, rgvswctl);
  4773. POSTING_READ16(MEMSWCTL);
  4774. rgvswctl |= MEMCTL_CMD_STS;
  4775. I915_WRITE16(MEMSWCTL, rgvswctl);
  4776. return true;
  4777. }
  4778. static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
  4779. {
  4780. u32 rgvmodectl;
  4781. u8 fmax, fmin, fstart, vstart;
  4782. spin_lock_irq(&mchdev_lock);
  4783. rgvmodectl = I915_READ(MEMMODECTL);
  4784. /* Enable temp reporting */
  4785. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  4786. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  4787. /* 100ms RC evaluation intervals */
  4788. I915_WRITE(RCUPEI, 100000);
  4789. I915_WRITE(RCDNEI, 100000);
  4790. /* Set max/min thresholds to 90ms and 80ms respectively */
  4791. I915_WRITE(RCBMAXAVG, 90000);
  4792. I915_WRITE(RCBMINAVG, 80000);
  4793. I915_WRITE(MEMIHYST, 1);
  4794. /* Set up min, max, and cur for interrupt handling */
  4795. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4796. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4797. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4798. MEMMODE_FSTART_SHIFT;
  4799. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  4800. PXVFREQ_PX_SHIFT;
  4801. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  4802. dev_priv->ips.fstart = fstart;
  4803. dev_priv->ips.max_delay = fstart;
  4804. dev_priv->ips.min_delay = fmin;
  4805. dev_priv->ips.cur_delay = fstart;
  4806. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  4807. fmax, fmin, fstart);
  4808. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4809. /*
  4810. * Interrupts will be enabled in ironlake_irq_postinstall
  4811. */
  4812. I915_WRITE(VIDSTART, vstart);
  4813. POSTING_READ(VIDSTART);
  4814. rgvmodectl |= MEMMODE_SWMODE_EN;
  4815. I915_WRITE(MEMMODECTL, rgvmodectl);
  4816. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4817. DRM_ERROR("stuck trying to change perf mode\n");
  4818. mdelay(1);
  4819. ironlake_set_drps(dev_priv, fstart);
  4820. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  4821. I915_READ(DDREC) + I915_READ(CSIEC);
  4822. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  4823. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  4824. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  4825. spin_unlock_irq(&mchdev_lock);
  4826. }
  4827. static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
  4828. {
  4829. u16 rgvswctl;
  4830. spin_lock_irq(&mchdev_lock);
  4831. rgvswctl = I915_READ16(MEMSWCTL);
  4832. /* Ack interrupts, disable EFC interrupt */
  4833. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4834. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4835. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4836. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4837. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4838. /* Go back to the starting frequency */
  4839. ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
  4840. mdelay(1);
  4841. rgvswctl |= MEMCTL_CMD_STS;
  4842. I915_WRITE(MEMSWCTL, rgvswctl);
  4843. mdelay(1);
  4844. spin_unlock_irq(&mchdev_lock);
  4845. }
  4846. /* There's a funny hw issue where the hw returns all 0 when reading from
  4847. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  4848. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  4849. * all limits and the gpu stuck at whatever frequency it is at atm).
  4850. */
  4851. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  4852. {
  4853. u32 limits;
  4854. /* Only set the down limit when we've reached the lowest level to avoid
  4855. * getting more interrupts, otherwise leave this clear. This prevents a
  4856. * race in the hw when coming out of rc6: There's a tiny window where
  4857. * the hw runs at the minimal clock before selecting the desired
  4858. * frequency, if the down threshold expires in that window we will not
  4859. * receive a down interrupt. */
  4860. if (INTEL_GEN(dev_priv) >= 9) {
  4861. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  4862. if (val <= dev_priv->rps.min_freq_softlimit)
  4863. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  4864. } else {
  4865. limits = dev_priv->rps.max_freq_softlimit << 24;
  4866. if (val <= dev_priv->rps.min_freq_softlimit)
  4867. limits |= dev_priv->rps.min_freq_softlimit << 16;
  4868. }
  4869. return limits;
  4870. }
  4871. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  4872. {
  4873. int new_power;
  4874. u32 threshold_up = 0, threshold_down = 0; /* in % */
  4875. u32 ei_up = 0, ei_down = 0;
  4876. new_power = dev_priv->rps.power;
  4877. switch (dev_priv->rps.power) {
  4878. case LOW_POWER:
  4879. if (val > dev_priv->rps.efficient_freq + 1 &&
  4880. val > dev_priv->rps.cur_freq)
  4881. new_power = BETWEEN;
  4882. break;
  4883. case BETWEEN:
  4884. if (val <= dev_priv->rps.efficient_freq &&
  4885. val < dev_priv->rps.cur_freq)
  4886. new_power = LOW_POWER;
  4887. else if (val >= dev_priv->rps.rp0_freq &&
  4888. val > dev_priv->rps.cur_freq)
  4889. new_power = HIGH_POWER;
  4890. break;
  4891. case HIGH_POWER:
  4892. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
  4893. val < dev_priv->rps.cur_freq)
  4894. new_power = BETWEEN;
  4895. break;
  4896. }
  4897. /* Max/min bins are special */
  4898. if (val <= dev_priv->rps.min_freq_softlimit)
  4899. new_power = LOW_POWER;
  4900. if (val >= dev_priv->rps.max_freq_softlimit)
  4901. new_power = HIGH_POWER;
  4902. if (new_power == dev_priv->rps.power)
  4903. return;
  4904. /* Note the units here are not exactly 1us, but 1280ns. */
  4905. switch (new_power) {
  4906. case LOW_POWER:
  4907. /* Upclock if more than 95% busy over 16ms */
  4908. ei_up = 16000;
  4909. threshold_up = 95;
  4910. /* Downclock if less than 85% busy over 32ms */
  4911. ei_down = 32000;
  4912. threshold_down = 85;
  4913. break;
  4914. case BETWEEN:
  4915. /* Upclock if more than 90% busy over 13ms */
  4916. ei_up = 13000;
  4917. threshold_up = 90;
  4918. /* Downclock if less than 75% busy over 32ms */
  4919. ei_down = 32000;
  4920. threshold_down = 75;
  4921. break;
  4922. case HIGH_POWER:
  4923. /* Upclock if more than 85% busy over 10ms */
  4924. ei_up = 10000;
  4925. threshold_up = 85;
  4926. /* Downclock if less than 60% busy over 32ms */
  4927. ei_down = 32000;
  4928. threshold_down = 60;
  4929. break;
  4930. }
  4931. /* When byt can survive without system hang with dynamic
  4932. * sw freq adjustments, this restriction can be lifted.
  4933. */
  4934. if (IS_VALLEYVIEW(dev_priv))
  4935. goto skip_hw_write;
  4936. I915_WRITE(GEN6_RP_UP_EI,
  4937. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  4938. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  4939. GT_INTERVAL_FROM_US(dev_priv,
  4940. ei_up * threshold_up / 100));
  4941. I915_WRITE(GEN6_RP_DOWN_EI,
  4942. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  4943. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  4944. GT_INTERVAL_FROM_US(dev_priv,
  4945. ei_down * threshold_down / 100));
  4946. I915_WRITE(GEN6_RP_CONTROL,
  4947. GEN6_RP_MEDIA_TURBO |
  4948. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4949. GEN6_RP_MEDIA_IS_GFX |
  4950. GEN6_RP_ENABLE |
  4951. GEN6_RP_UP_BUSY_AVG |
  4952. GEN6_RP_DOWN_IDLE_AVG);
  4953. skip_hw_write:
  4954. dev_priv->rps.power = new_power;
  4955. dev_priv->rps.up_threshold = threshold_up;
  4956. dev_priv->rps.down_threshold = threshold_down;
  4957. dev_priv->rps.last_adj = 0;
  4958. }
  4959. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  4960. {
  4961. u32 mask = 0;
  4962. /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
  4963. if (val > dev_priv->rps.min_freq_softlimit)
  4964. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  4965. if (val < dev_priv->rps.max_freq_softlimit)
  4966. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  4967. mask &= dev_priv->pm_rps_events;
  4968. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  4969. }
  4970. /* gen6_set_rps is called to update the frequency request, but should also be
  4971. * called when the range (min_delay and max_delay) is modified so that we can
  4972. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  4973. static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4974. {
  4975. /* min/max delay may still have been modified so be sure to
  4976. * write the limits value.
  4977. */
  4978. if (val != dev_priv->rps.cur_freq) {
  4979. gen6_set_rps_thresholds(dev_priv, val);
  4980. if (INTEL_GEN(dev_priv) >= 9)
  4981. I915_WRITE(GEN6_RPNSWREQ,
  4982. GEN9_FREQUENCY(val));
  4983. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4984. I915_WRITE(GEN6_RPNSWREQ,
  4985. HSW_FREQUENCY(val));
  4986. else
  4987. I915_WRITE(GEN6_RPNSWREQ,
  4988. GEN6_FREQUENCY(val) |
  4989. GEN6_OFFSET(0) |
  4990. GEN6_AGGRESSIVE_TURBO);
  4991. }
  4992. /* Make sure we continue to get interrupts
  4993. * until we hit the minimum or maximum frequencies.
  4994. */
  4995. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  4996. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4997. dev_priv->rps.cur_freq = val;
  4998. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4999. return 0;
  5000. }
  5001. static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5002. {
  5003. int err;
  5004. if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
  5005. "Odd GPU freq value\n"))
  5006. val &= ~1;
  5007. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  5008. if (val != dev_priv->rps.cur_freq) {
  5009. err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  5010. if (err)
  5011. return err;
  5012. gen6_set_rps_thresholds(dev_priv, val);
  5013. }
  5014. dev_priv->rps.cur_freq = val;
  5015. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  5016. return 0;
  5017. }
  5018. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  5019. *
  5020. * * If Gfx is Idle, then
  5021. * 1. Forcewake Media well.
  5022. * 2. Request idle freq.
  5023. * 3. Release Forcewake of Media well.
  5024. */
  5025. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  5026. {
  5027. u32 val = dev_priv->rps.idle_freq;
  5028. int err;
  5029. if (dev_priv->rps.cur_freq <= val)
  5030. return;
  5031. /* The punit delays the write of the frequency and voltage until it
  5032. * determines the GPU is awake. During normal usage we don't want to
  5033. * waste power changing the frequency if the GPU is sleeping (rc6).
  5034. * However, the GPU and driver is now idle and we do not want to delay
  5035. * switching to minimum voltage (reducing power whilst idle) as we do
  5036. * not expect to be woken in the near future and so must flush the
  5037. * change by waking the device.
  5038. *
  5039. * We choose to take the media powerwell (either would do to trick the
  5040. * punit into committing the voltage change) as that takes a lot less
  5041. * power than the render powerwell.
  5042. */
  5043. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  5044. err = valleyview_set_rps(dev_priv, val);
  5045. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  5046. if (err)
  5047. DRM_ERROR("Failed to set RPS for idle\n");
  5048. }
  5049. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  5050. {
  5051. mutex_lock(&dev_priv->rps.hw_lock);
  5052. if (dev_priv->rps.enabled) {
  5053. u8 freq;
  5054. if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
  5055. gen6_rps_reset_ei(dev_priv);
  5056. I915_WRITE(GEN6_PMINTRMSK,
  5057. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  5058. gen6_enable_rps_interrupts(dev_priv);
  5059. /* Use the user's desired frequency as a guide, but for better
  5060. * performance, jump directly to RPe as our starting frequency.
  5061. */
  5062. freq = max(dev_priv->rps.cur_freq,
  5063. dev_priv->rps.efficient_freq);
  5064. if (intel_set_rps(dev_priv,
  5065. clamp(freq,
  5066. dev_priv->rps.min_freq_softlimit,
  5067. dev_priv->rps.max_freq_softlimit)))
  5068. DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
  5069. }
  5070. mutex_unlock(&dev_priv->rps.hw_lock);
  5071. }
  5072. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  5073. {
  5074. /* Flush our bottom-half so that it does not race with us
  5075. * setting the idle frequency and so that it is bounded by
  5076. * our rpm wakeref. And then disable the interrupts to stop any
  5077. * futher RPS reclocking whilst we are asleep.
  5078. */
  5079. gen6_disable_rps_interrupts(dev_priv);
  5080. mutex_lock(&dev_priv->rps.hw_lock);
  5081. if (dev_priv->rps.enabled) {
  5082. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5083. vlv_set_rps_idle(dev_priv);
  5084. else
  5085. gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
  5086. dev_priv->rps.last_adj = 0;
  5087. I915_WRITE(GEN6_PMINTRMSK,
  5088. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  5089. }
  5090. mutex_unlock(&dev_priv->rps.hw_lock);
  5091. }
  5092. void gen6_rps_boost(struct drm_i915_gem_request *rq,
  5093. struct intel_rps_client *rps)
  5094. {
  5095. struct drm_i915_private *i915 = rq->i915;
  5096. bool boost;
  5097. /* This is intentionally racy! We peek at the state here, then
  5098. * validate inside the RPS worker.
  5099. */
  5100. if (!i915->rps.enabled)
  5101. return;
  5102. boost = false;
  5103. spin_lock_irq(&rq->lock);
  5104. if (!rq->waitboost && !i915_gem_request_completed(rq)) {
  5105. atomic_inc(&i915->rps.num_waiters);
  5106. rq->waitboost = true;
  5107. boost = true;
  5108. }
  5109. spin_unlock_irq(&rq->lock);
  5110. if (!boost)
  5111. return;
  5112. if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
  5113. schedule_work(&i915->rps.work);
  5114. atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
  5115. }
  5116. int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5117. {
  5118. int err;
  5119. lockdep_assert_held(&dev_priv->rps.hw_lock);
  5120. GEM_BUG_ON(val > dev_priv->rps.max_freq);
  5121. GEM_BUG_ON(val < dev_priv->rps.min_freq);
  5122. if (!dev_priv->rps.enabled) {
  5123. dev_priv->rps.cur_freq = val;
  5124. return 0;
  5125. }
  5126. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5127. err = valleyview_set_rps(dev_priv, val);
  5128. else
  5129. err = gen6_set_rps(dev_priv, val);
  5130. return err;
  5131. }
  5132. static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
  5133. {
  5134. I915_WRITE(GEN6_RC_CONTROL, 0);
  5135. I915_WRITE(GEN9_PG_ENABLE, 0);
  5136. }
  5137. static void gen9_disable_rps(struct drm_i915_private *dev_priv)
  5138. {
  5139. I915_WRITE(GEN6_RP_CONTROL, 0);
  5140. }
  5141. static void gen6_disable_rps(struct drm_i915_private *dev_priv)
  5142. {
  5143. I915_WRITE(GEN6_RC_CONTROL, 0);
  5144. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  5145. I915_WRITE(GEN6_RP_CONTROL, 0);
  5146. }
  5147. static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
  5148. {
  5149. I915_WRITE(GEN6_RC_CONTROL, 0);
  5150. }
  5151. static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
  5152. {
  5153. /* we're doing forcewake before Disabling RC6,
  5154. * This what the BIOS expects when going into suspend */
  5155. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5156. I915_WRITE(GEN6_RC_CONTROL, 0);
  5157. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5158. }
  5159. static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
  5160. {
  5161. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  5162. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  5163. mode = GEN6_RC_CTL_RC6_ENABLE;
  5164. else
  5165. mode = 0;
  5166. }
  5167. if (HAS_RC6p(dev_priv))
  5168. DRM_DEBUG_DRIVER("Enabling RC6 states: "
  5169. "RC6 %s RC6p %s RC6pp %s\n",
  5170. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  5171. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  5172. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  5173. else
  5174. DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
  5175. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  5176. }
  5177. static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
  5178. {
  5179. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5180. bool enable_rc6 = true;
  5181. unsigned long rc6_ctx_base;
  5182. u32 rc_ctl;
  5183. int rc_sw_target;
  5184. rc_ctl = I915_READ(GEN6_RC_CONTROL);
  5185. rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
  5186. RC_SW_TARGET_STATE_SHIFT;
  5187. DRM_DEBUG_DRIVER("BIOS enabled RC states: "
  5188. "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
  5189. onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
  5190. onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
  5191. rc_sw_target);
  5192. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  5193. DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
  5194. enable_rc6 = false;
  5195. }
  5196. /*
  5197. * The exact context size is not known for BXT, so assume a page size
  5198. * for this check.
  5199. */
  5200. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  5201. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  5202. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  5203. ggtt->stolen_reserved_size))) {
  5204. DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
  5205. enable_rc6 = false;
  5206. }
  5207. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5208. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  5209. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5210. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  5211. DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
  5212. enable_rc6 = false;
  5213. }
  5214. if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
  5215. !I915_READ(GEN8_PUSHBUS_ENABLE) ||
  5216. !I915_READ(GEN8_PUSHBUS_SHIFT)) {
  5217. DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
  5218. enable_rc6 = false;
  5219. }
  5220. if (!I915_READ(GEN6_GFXPAUSE)) {
  5221. DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
  5222. enable_rc6 = false;
  5223. }
  5224. if (!I915_READ(GEN8_MISC_CTRL0)) {
  5225. DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
  5226. enable_rc6 = false;
  5227. }
  5228. return enable_rc6;
  5229. }
  5230. int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
  5231. {
  5232. /* No RC6 before Ironlake and code is gone for ilk. */
  5233. if (INTEL_INFO(dev_priv)->gen < 6)
  5234. return 0;
  5235. if (!enable_rc6)
  5236. return 0;
  5237. if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
  5238. DRM_INFO("RC6 disabled by BIOS\n");
  5239. return 0;
  5240. }
  5241. /* Respect the kernel parameter if it is set */
  5242. if (enable_rc6 >= 0) {
  5243. int mask;
  5244. if (HAS_RC6p(dev_priv))
  5245. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  5246. INTEL_RC6pp_ENABLE;
  5247. else
  5248. mask = INTEL_RC6_ENABLE;
  5249. if ((enable_rc6 & mask) != enable_rc6)
  5250. DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
  5251. "(requested %d, valid %d)\n",
  5252. enable_rc6 & mask, enable_rc6, mask);
  5253. return enable_rc6 & mask;
  5254. }
  5255. if (IS_IVYBRIDGE(dev_priv))
  5256. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  5257. return INTEL_RC6_ENABLE;
  5258. }
  5259. static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
  5260. {
  5261. /* All of these values are in units of 50MHz */
  5262. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  5263. if (IS_GEN9_LP(dev_priv)) {
  5264. u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  5265. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  5266. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  5267. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  5268. } else {
  5269. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  5270. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  5271. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  5272. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  5273. }
  5274. /* hw_max = RP0 until we check for overclocking */
  5275. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  5276. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  5277. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
  5278. IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5279. u32 ddcc_status = 0;
  5280. if (sandybridge_pcode_read(dev_priv,
  5281. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  5282. &ddcc_status) == 0)
  5283. dev_priv->rps.efficient_freq =
  5284. clamp_t(u8,
  5285. ((ddcc_status >> 8) & 0xff),
  5286. dev_priv->rps.min_freq,
  5287. dev_priv->rps.max_freq);
  5288. }
  5289. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5290. /* Store the frequency values in 16.66 MHZ units, which is
  5291. * the natural hardware unit for SKL
  5292. */
  5293. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  5294. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  5295. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  5296. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  5297. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  5298. }
  5299. }
  5300. static void reset_rps(struct drm_i915_private *dev_priv,
  5301. int (*set)(struct drm_i915_private *, u8))
  5302. {
  5303. u8 freq = dev_priv->rps.cur_freq;
  5304. /* force a reset */
  5305. dev_priv->rps.power = -1;
  5306. dev_priv->rps.cur_freq = -1;
  5307. if (set(dev_priv, freq))
  5308. DRM_ERROR("Failed to reset RPS to initial values\n");
  5309. }
  5310. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  5311. static void gen9_enable_rps(struct drm_i915_private *dev_priv)
  5312. {
  5313. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5314. /* Program defaults and thresholds for RPS*/
  5315. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5316. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  5317. /* 1 second timeout*/
  5318. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  5319. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  5320. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  5321. /* Leaning on the below call to gen6_set_rps to program/setup the
  5322. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  5323. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  5324. reset_rps(dev_priv, gen6_set_rps);
  5325. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5326. }
  5327. static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
  5328. {
  5329. struct intel_engine_cs *engine;
  5330. enum intel_engine_id id;
  5331. uint32_t rc6_mask = 0;
  5332. /* 1a: Software RC state - RC0 */
  5333. I915_WRITE(GEN6_RC_STATE, 0);
  5334. /* 1b: Get forcewake during program sequence. Although the driver
  5335. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5336. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5337. /* 2a: Disable RC states. */
  5338. I915_WRITE(GEN6_RC_CONTROL, 0);
  5339. /* 2b: Program RC6 thresholds.*/
  5340. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  5341. if (IS_SKYLAKE(dev_priv))
  5342. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  5343. else
  5344. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  5345. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5346. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5347. for_each_engine(engine, dev_priv, id)
  5348. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5349. if (HAS_GUC(dev_priv))
  5350. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  5351. I915_WRITE(GEN6_RC_SLEEP, 0);
  5352. /* 2c: Program Coarse Power Gating Policies. */
  5353. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  5354. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  5355. /* 3a: Enable RC6 */
  5356. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5357. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5358. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  5359. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  5360. I915_WRITE(GEN6_RC_CONTROL,
  5361. GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
  5362. /*
  5363. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  5364. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  5365. */
  5366. if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
  5367. I915_WRITE(GEN9_PG_ENABLE, 0);
  5368. else
  5369. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  5370. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  5371. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5372. }
  5373. static void gen8_enable_rps(struct drm_i915_private *dev_priv)
  5374. {
  5375. struct intel_engine_cs *engine;
  5376. enum intel_engine_id id;
  5377. uint32_t rc6_mask = 0;
  5378. /* 1a: Software RC state - RC0 */
  5379. I915_WRITE(GEN6_RC_STATE, 0);
  5380. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  5381. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5382. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5383. /* 2a: Disable RC states. */
  5384. I915_WRITE(GEN6_RC_CONTROL, 0);
  5385. /* 2b: Program RC6 thresholds.*/
  5386. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5387. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5388. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5389. for_each_engine(engine, dev_priv, id)
  5390. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5391. I915_WRITE(GEN6_RC_SLEEP, 0);
  5392. if (IS_BROADWELL(dev_priv))
  5393. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  5394. else
  5395. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  5396. /* 3: Enable RC6 */
  5397. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5398. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5399. intel_print_rc6_info(dev_priv, rc6_mask);
  5400. if (IS_BROADWELL(dev_priv))
  5401. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  5402. GEN7_RC_CTL_TO_MODE |
  5403. rc6_mask);
  5404. else
  5405. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  5406. GEN6_RC_CTL_EI_MODE(1) |
  5407. rc6_mask);
  5408. /* 4 Program defaults and thresholds for RPS*/
  5409. I915_WRITE(GEN6_RPNSWREQ,
  5410. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  5411. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5412. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  5413. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  5414. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  5415. /* Docs recommend 900MHz, and 300 MHz respectively */
  5416. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  5417. dev_priv->rps.max_freq_softlimit << 24 |
  5418. dev_priv->rps.min_freq_softlimit << 16);
  5419. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  5420. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  5421. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  5422. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  5423. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5424. /* 5: Enable RPS */
  5425. I915_WRITE(GEN6_RP_CONTROL,
  5426. GEN6_RP_MEDIA_TURBO |
  5427. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5428. GEN6_RP_MEDIA_IS_GFX |
  5429. GEN6_RP_ENABLE |
  5430. GEN6_RP_UP_BUSY_AVG |
  5431. GEN6_RP_DOWN_IDLE_AVG);
  5432. /* 6: Ring frequency + overclocking (our driver does this later */
  5433. reset_rps(dev_priv, gen6_set_rps);
  5434. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5435. }
  5436. static void gen6_enable_rps(struct drm_i915_private *dev_priv)
  5437. {
  5438. struct intel_engine_cs *engine;
  5439. enum intel_engine_id id;
  5440. u32 rc6vids, rc6_mask = 0;
  5441. u32 gtfifodbg;
  5442. int rc6_mode;
  5443. int ret;
  5444. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5445. /* Here begins a magic sequence of register writes to enable
  5446. * auto-downclocking.
  5447. *
  5448. * Perhaps there might be some value in exposing these to
  5449. * userspace...
  5450. */
  5451. I915_WRITE(GEN6_RC_STATE, 0);
  5452. /* Clear the DBG now so we don't confuse earlier errors */
  5453. gtfifodbg = I915_READ(GTFIFODBG);
  5454. if (gtfifodbg) {
  5455. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  5456. I915_WRITE(GTFIFODBG, gtfifodbg);
  5457. }
  5458. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5459. /* disable the counters and set deterministic thresholds */
  5460. I915_WRITE(GEN6_RC_CONTROL, 0);
  5461. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  5462. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  5463. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  5464. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5465. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5466. for_each_engine(engine, dev_priv, id)
  5467. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5468. I915_WRITE(GEN6_RC_SLEEP, 0);
  5469. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  5470. if (IS_IVYBRIDGE(dev_priv))
  5471. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  5472. else
  5473. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  5474. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  5475. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  5476. /* Check if we are enabling RC6 */
  5477. rc6_mode = intel_enable_rc6();
  5478. if (rc6_mode & INTEL_RC6_ENABLE)
  5479. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  5480. /* We don't use those on Haswell */
  5481. if (!IS_HASWELL(dev_priv)) {
  5482. if (rc6_mode & INTEL_RC6p_ENABLE)
  5483. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  5484. if (rc6_mode & INTEL_RC6pp_ENABLE)
  5485. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  5486. }
  5487. intel_print_rc6_info(dev_priv, rc6_mask);
  5488. I915_WRITE(GEN6_RC_CONTROL,
  5489. rc6_mask |
  5490. GEN6_RC_CTL_EI_MODE(1) |
  5491. GEN6_RC_CTL_HW_ENABLE);
  5492. /* Power down if completely idle for over 50ms */
  5493. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  5494. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5495. reset_rps(dev_priv, gen6_set_rps);
  5496. rc6vids = 0;
  5497. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  5498. if (IS_GEN6(dev_priv) && ret) {
  5499. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  5500. } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  5501. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  5502. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  5503. rc6vids &= 0xffff00;
  5504. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  5505. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  5506. if (ret)
  5507. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  5508. }
  5509. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5510. }
  5511. static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  5512. {
  5513. int min_freq = 15;
  5514. unsigned int gpu_freq;
  5515. unsigned int max_ia_freq, min_ring_freq;
  5516. unsigned int max_gpu_freq, min_gpu_freq;
  5517. int scaling_factor = 180;
  5518. struct cpufreq_policy *policy;
  5519. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5520. policy = cpufreq_cpu_get(0);
  5521. if (policy) {
  5522. max_ia_freq = policy->cpuinfo.max_freq;
  5523. cpufreq_cpu_put(policy);
  5524. } else {
  5525. /*
  5526. * Default to measured freq if none found, PCU will ensure we
  5527. * don't go over
  5528. */
  5529. max_ia_freq = tsc_khz;
  5530. }
  5531. /* Convert from kHz to MHz */
  5532. max_ia_freq /= 1000;
  5533. min_ring_freq = I915_READ(DCLK) & 0xf;
  5534. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  5535. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  5536. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5537. /* Convert GT frequency to 50 HZ units */
  5538. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  5539. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  5540. } else {
  5541. min_gpu_freq = dev_priv->rps.min_freq;
  5542. max_gpu_freq = dev_priv->rps.max_freq;
  5543. }
  5544. /*
  5545. * For each potential GPU frequency, load a ring frequency we'd like
  5546. * to use for memory access. We do this by specifying the IA frequency
  5547. * the PCU should use as a reference to determine the ring frequency.
  5548. */
  5549. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  5550. int diff = max_gpu_freq - gpu_freq;
  5551. unsigned int ia_freq = 0, ring_freq = 0;
  5552. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5553. /*
  5554. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  5555. * No floor required for ring frequency on SKL.
  5556. */
  5557. ring_freq = gpu_freq;
  5558. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  5559. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  5560. ring_freq = max(min_ring_freq, gpu_freq);
  5561. } else if (IS_HASWELL(dev_priv)) {
  5562. ring_freq = mult_frac(gpu_freq, 5, 4);
  5563. ring_freq = max(min_ring_freq, ring_freq);
  5564. /* leave ia_freq as the default, chosen by cpufreq */
  5565. } else {
  5566. /* On older processors, there is no separate ring
  5567. * clock domain, so in order to boost the bandwidth
  5568. * of the ring, we need to upclock the CPU (ia_freq).
  5569. *
  5570. * For GPU frequencies less than 750MHz,
  5571. * just use the lowest ring freq.
  5572. */
  5573. if (gpu_freq < min_freq)
  5574. ia_freq = 800;
  5575. else
  5576. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  5577. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  5578. }
  5579. sandybridge_pcode_write(dev_priv,
  5580. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  5581. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  5582. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  5583. gpu_freq);
  5584. }
  5585. }
  5586. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  5587. {
  5588. u32 val, rp0;
  5589. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5590. switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
  5591. case 8:
  5592. /* (2 * 4) config */
  5593. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  5594. break;
  5595. case 12:
  5596. /* (2 * 6) config */
  5597. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  5598. break;
  5599. case 16:
  5600. /* (2 * 8) config */
  5601. default:
  5602. /* Setting (2 * 8) Min RP0 for any other combination */
  5603. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  5604. break;
  5605. }
  5606. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  5607. return rp0;
  5608. }
  5609. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5610. {
  5611. u32 val, rpe;
  5612. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  5613. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  5614. return rpe;
  5615. }
  5616. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5617. {
  5618. u32 val, rp1;
  5619. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5620. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  5621. return rp1;
  5622. }
  5623. static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  5624. {
  5625. u32 val, rpn;
  5626. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  5627. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  5628. FB_GFX_FREQ_FUSE_MASK);
  5629. return rpn;
  5630. }
  5631. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5632. {
  5633. u32 val, rp1;
  5634. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5635. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  5636. return rp1;
  5637. }
  5638. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  5639. {
  5640. u32 val, rp0;
  5641. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5642. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  5643. /* Clamp to max */
  5644. rp0 = min_t(u32, rp0, 0xea);
  5645. return rp0;
  5646. }
  5647. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5648. {
  5649. u32 val, rpe;
  5650. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  5651. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  5652. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  5653. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  5654. return rpe;
  5655. }
  5656. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  5657. {
  5658. u32 val;
  5659. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  5660. /*
  5661. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  5662. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  5663. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  5664. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  5665. * to make sure it matches what Punit accepts.
  5666. */
  5667. return max_t(u32, val, 0xc0);
  5668. }
  5669. /* Check that the pctx buffer wasn't move under us. */
  5670. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  5671. {
  5672. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5673. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  5674. dev_priv->vlv_pctx->stolen->start);
  5675. }
  5676. /* Check that the pcbr address is not empty. */
  5677. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  5678. {
  5679. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5680. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  5681. }
  5682. static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
  5683. {
  5684. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5685. unsigned long pctx_paddr, paddr;
  5686. u32 pcbr;
  5687. int pctx_size = 32*1024;
  5688. pcbr = I915_READ(VLV_PCBR);
  5689. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  5690. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5691. paddr = (dev_priv->mm.stolen_base +
  5692. (ggtt->stolen_size - pctx_size));
  5693. pctx_paddr = (paddr & (~4095));
  5694. I915_WRITE(VLV_PCBR, pctx_paddr);
  5695. }
  5696. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5697. }
  5698. static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
  5699. {
  5700. struct drm_i915_gem_object *pctx;
  5701. unsigned long pctx_paddr;
  5702. u32 pcbr;
  5703. int pctx_size = 24*1024;
  5704. pcbr = I915_READ(VLV_PCBR);
  5705. if (pcbr) {
  5706. /* BIOS set it up already, grab the pre-alloc'd space */
  5707. int pcbr_offset;
  5708. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  5709. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
  5710. pcbr_offset,
  5711. I915_GTT_OFFSET_NONE,
  5712. pctx_size);
  5713. goto out;
  5714. }
  5715. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5716. /*
  5717. * From the Gunit register HAS:
  5718. * The Gfx driver is expected to program this register and ensure
  5719. * proper allocation within Gfx stolen memory. For example, this
  5720. * register should be programmed such than the PCBR range does not
  5721. * overlap with other ranges, such as the frame buffer, protected
  5722. * memory, or any other relevant ranges.
  5723. */
  5724. pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
  5725. if (!pctx) {
  5726. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  5727. goto out;
  5728. }
  5729. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  5730. I915_WRITE(VLV_PCBR, pctx_paddr);
  5731. out:
  5732. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5733. dev_priv->vlv_pctx = pctx;
  5734. }
  5735. static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
  5736. {
  5737. if (WARN_ON(!dev_priv->vlv_pctx))
  5738. return;
  5739. i915_gem_object_put(dev_priv->vlv_pctx);
  5740. dev_priv->vlv_pctx = NULL;
  5741. }
  5742. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  5743. {
  5744. dev_priv->rps.gpll_ref_freq =
  5745. vlv_get_cck_clock(dev_priv, "GPLL ref",
  5746. CCK_GPLL_CLOCK_CONTROL,
  5747. dev_priv->czclk_freq);
  5748. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  5749. dev_priv->rps.gpll_ref_freq);
  5750. }
  5751. static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5752. {
  5753. u32 val;
  5754. valleyview_setup_pctx(dev_priv);
  5755. vlv_init_gpll_ref_freq(dev_priv);
  5756. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5757. switch ((val >> 6) & 3) {
  5758. case 0:
  5759. case 1:
  5760. dev_priv->mem_freq = 800;
  5761. break;
  5762. case 2:
  5763. dev_priv->mem_freq = 1066;
  5764. break;
  5765. case 3:
  5766. dev_priv->mem_freq = 1333;
  5767. break;
  5768. }
  5769. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5770. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  5771. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5772. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5773. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5774. dev_priv->rps.max_freq);
  5775. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  5776. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5777. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5778. dev_priv->rps.efficient_freq);
  5779. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  5780. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  5781. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5782. dev_priv->rps.rp1_freq);
  5783. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  5784. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5785. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5786. dev_priv->rps.min_freq);
  5787. }
  5788. static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5789. {
  5790. u32 val;
  5791. cherryview_setup_pctx(dev_priv);
  5792. vlv_init_gpll_ref_freq(dev_priv);
  5793. mutex_lock(&dev_priv->sb_lock);
  5794. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  5795. mutex_unlock(&dev_priv->sb_lock);
  5796. switch ((val >> 2) & 0x7) {
  5797. case 3:
  5798. dev_priv->mem_freq = 2000;
  5799. break;
  5800. default:
  5801. dev_priv->mem_freq = 1600;
  5802. break;
  5803. }
  5804. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5805. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  5806. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5807. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5808. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5809. dev_priv->rps.max_freq);
  5810. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  5811. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5812. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5813. dev_priv->rps.efficient_freq);
  5814. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  5815. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  5816. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5817. dev_priv->rps.rp1_freq);
  5818. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  5819. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5820. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5821. dev_priv->rps.min_freq);
  5822. WARN_ONCE((dev_priv->rps.max_freq |
  5823. dev_priv->rps.efficient_freq |
  5824. dev_priv->rps.rp1_freq |
  5825. dev_priv->rps.min_freq) & 1,
  5826. "Odd GPU freq values\n");
  5827. }
  5828. static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  5829. {
  5830. valleyview_cleanup_pctx(dev_priv);
  5831. }
  5832. static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
  5833. {
  5834. struct intel_engine_cs *engine;
  5835. enum intel_engine_id id;
  5836. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  5837. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5838. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  5839. GT_FIFO_FREE_ENTRIES_CHV);
  5840. if (gtfifodbg) {
  5841. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5842. gtfifodbg);
  5843. I915_WRITE(GTFIFODBG, gtfifodbg);
  5844. }
  5845. cherryview_check_pctx(dev_priv);
  5846. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  5847. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5848. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5849. /* Disable RC states. */
  5850. I915_WRITE(GEN6_RC_CONTROL, 0);
  5851. /* 2a: Program RC6 thresholds.*/
  5852. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5853. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5854. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5855. for_each_engine(engine, dev_priv, id)
  5856. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5857. I915_WRITE(GEN6_RC_SLEEP, 0);
  5858. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  5859. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  5860. /* allows RC6 residency counter to work */
  5861. I915_WRITE(VLV_COUNTER_CONTROL,
  5862. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5863. VLV_MEDIA_RC6_COUNT_EN |
  5864. VLV_RENDER_RC6_COUNT_EN));
  5865. /* For now we assume BIOS is allocating and populating the PCBR */
  5866. pcbr = I915_READ(VLV_PCBR);
  5867. /* 3: Enable RC6 */
  5868. if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
  5869. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  5870. rc6_mode = GEN7_RC_CTL_TO_MODE;
  5871. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5872. /* 4 Program defaults and thresholds for RPS*/
  5873. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5874. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5875. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5876. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5877. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5878. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5879. /* 5: Enable RPS */
  5880. I915_WRITE(GEN6_RP_CONTROL,
  5881. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5882. GEN6_RP_MEDIA_IS_GFX |
  5883. GEN6_RP_ENABLE |
  5884. GEN6_RP_UP_BUSY_AVG |
  5885. GEN6_RP_DOWN_IDLE_AVG);
  5886. /* Setting Fixed Bias */
  5887. val = VLV_OVERRIDE_EN |
  5888. VLV_SOC_TDP_EN |
  5889. CHV_BIAS_CPU_50_SOC_50;
  5890. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5891. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5892. /* RPS code assumes GPLL is used */
  5893. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5894. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5895. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5896. reset_rps(dev_priv, valleyview_set_rps);
  5897. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5898. }
  5899. static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
  5900. {
  5901. struct intel_engine_cs *engine;
  5902. enum intel_engine_id id;
  5903. u32 gtfifodbg, val, rc6_mode = 0;
  5904. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5905. valleyview_check_pctx(dev_priv);
  5906. gtfifodbg = I915_READ(GTFIFODBG);
  5907. if (gtfifodbg) {
  5908. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5909. gtfifodbg);
  5910. I915_WRITE(GTFIFODBG, gtfifodbg);
  5911. }
  5912. /* If VLV, Forcewake all wells, else re-direct to regular path */
  5913. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5914. /* Disable RC states. */
  5915. I915_WRITE(GEN6_RC_CONTROL, 0);
  5916. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5917. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5918. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5919. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5920. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5921. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5922. I915_WRITE(GEN6_RP_CONTROL,
  5923. GEN6_RP_MEDIA_TURBO |
  5924. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5925. GEN6_RP_MEDIA_IS_GFX |
  5926. GEN6_RP_ENABLE |
  5927. GEN6_RP_UP_BUSY_AVG |
  5928. GEN6_RP_DOWN_IDLE_CONT);
  5929. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  5930. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5931. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5932. for_each_engine(engine, dev_priv, id)
  5933. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5934. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  5935. /* allows RC6 residency counter to work */
  5936. I915_WRITE(VLV_COUNTER_CONTROL,
  5937. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5938. VLV_MEDIA_RC0_COUNT_EN |
  5939. VLV_RENDER_RC0_COUNT_EN |
  5940. VLV_MEDIA_RC6_COUNT_EN |
  5941. VLV_RENDER_RC6_COUNT_EN));
  5942. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5943. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  5944. intel_print_rc6_info(dev_priv, rc6_mode);
  5945. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5946. /* Setting Fixed Bias */
  5947. val = VLV_OVERRIDE_EN |
  5948. VLV_SOC_TDP_EN |
  5949. VLV_BIAS_CPU_125_SOC_875;
  5950. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5951. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5952. /* RPS code assumes GPLL is used */
  5953. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5954. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5955. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5956. reset_rps(dev_priv, valleyview_set_rps);
  5957. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5958. }
  5959. static unsigned long intel_pxfreq(u32 vidfreq)
  5960. {
  5961. unsigned long freq;
  5962. int div = (vidfreq & 0x3f0000) >> 16;
  5963. int post = (vidfreq & 0x3000) >> 12;
  5964. int pre = (vidfreq & 0x7);
  5965. if (!pre)
  5966. return 0;
  5967. freq = ((div * 133333) / ((1<<post) * pre));
  5968. return freq;
  5969. }
  5970. static const struct cparams {
  5971. u16 i;
  5972. u16 t;
  5973. u16 m;
  5974. u16 c;
  5975. } cparams[] = {
  5976. { 1, 1333, 301, 28664 },
  5977. { 1, 1066, 294, 24460 },
  5978. { 1, 800, 294, 25192 },
  5979. { 0, 1333, 276, 27605 },
  5980. { 0, 1066, 276, 27605 },
  5981. { 0, 800, 231, 23784 },
  5982. };
  5983. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  5984. {
  5985. u64 total_count, diff, ret;
  5986. u32 count1, count2, count3, m = 0, c = 0;
  5987. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  5988. int i;
  5989. lockdep_assert_held(&mchdev_lock);
  5990. diff1 = now - dev_priv->ips.last_time1;
  5991. /* Prevent division-by-zero if we are asking too fast.
  5992. * Also, we don't get interesting results if we are polling
  5993. * faster than once in 10ms, so just return the saved value
  5994. * in such cases.
  5995. */
  5996. if (diff1 <= 10)
  5997. return dev_priv->ips.chipset_power;
  5998. count1 = I915_READ(DMIEC);
  5999. count2 = I915_READ(DDREC);
  6000. count3 = I915_READ(CSIEC);
  6001. total_count = count1 + count2 + count3;
  6002. /* FIXME: handle per-counter overflow */
  6003. if (total_count < dev_priv->ips.last_count1) {
  6004. diff = ~0UL - dev_priv->ips.last_count1;
  6005. diff += total_count;
  6006. } else {
  6007. diff = total_count - dev_priv->ips.last_count1;
  6008. }
  6009. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  6010. if (cparams[i].i == dev_priv->ips.c_m &&
  6011. cparams[i].t == dev_priv->ips.r_t) {
  6012. m = cparams[i].m;
  6013. c = cparams[i].c;
  6014. break;
  6015. }
  6016. }
  6017. diff = div_u64(diff, diff1);
  6018. ret = ((m * diff) + c);
  6019. ret = div_u64(ret, 10);
  6020. dev_priv->ips.last_count1 = total_count;
  6021. dev_priv->ips.last_time1 = now;
  6022. dev_priv->ips.chipset_power = ret;
  6023. return ret;
  6024. }
  6025. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  6026. {
  6027. unsigned long val;
  6028. if (INTEL_INFO(dev_priv)->gen != 5)
  6029. return 0;
  6030. spin_lock_irq(&mchdev_lock);
  6031. val = __i915_chipset_val(dev_priv);
  6032. spin_unlock_irq(&mchdev_lock);
  6033. return val;
  6034. }
  6035. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  6036. {
  6037. unsigned long m, x, b;
  6038. u32 tsfs;
  6039. tsfs = I915_READ(TSFS);
  6040. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  6041. x = I915_READ8(TR1);
  6042. b = tsfs & TSFS_INTR_MASK;
  6043. return ((m * x) / 127) - b;
  6044. }
  6045. static int _pxvid_to_vd(u8 pxvid)
  6046. {
  6047. if (pxvid == 0)
  6048. return 0;
  6049. if (pxvid >= 8 && pxvid < 31)
  6050. pxvid = 31;
  6051. return (pxvid + 2) * 125;
  6052. }
  6053. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  6054. {
  6055. const int vd = _pxvid_to_vd(pxvid);
  6056. const int vm = vd - 1125;
  6057. if (INTEL_INFO(dev_priv)->is_mobile)
  6058. return vm > 0 ? vm : 0;
  6059. return vd;
  6060. }
  6061. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6062. {
  6063. u64 now, diff, diffms;
  6064. u32 count;
  6065. lockdep_assert_held(&mchdev_lock);
  6066. now = ktime_get_raw_ns();
  6067. diffms = now - dev_priv->ips.last_time2;
  6068. do_div(diffms, NSEC_PER_MSEC);
  6069. /* Don't divide by 0 */
  6070. if (!diffms)
  6071. return;
  6072. count = I915_READ(GFXEC);
  6073. if (count < dev_priv->ips.last_count2) {
  6074. diff = ~0UL - dev_priv->ips.last_count2;
  6075. diff += count;
  6076. } else {
  6077. diff = count - dev_priv->ips.last_count2;
  6078. }
  6079. dev_priv->ips.last_count2 = count;
  6080. dev_priv->ips.last_time2 = now;
  6081. /* More magic constants... */
  6082. diff = diff * 1181;
  6083. diff = div_u64(diff, diffms * 10);
  6084. dev_priv->ips.gfx_power = diff;
  6085. }
  6086. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6087. {
  6088. if (INTEL_INFO(dev_priv)->gen != 5)
  6089. return;
  6090. spin_lock_irq(&mchdev_lock);
  6091. __i915_update_gfx_val(dev_priv);
  6092. spin_unlock_irq(&mchdev_lock);
  6093. }
  6094. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  6095. {
  6096. unsigned long t, corr, state1, corr2, state2;
  6097. u32 pxvid, ext_v;
  6098. lockdep_assert_held(&mchdev_lock);
  6099. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  6100. pxvid = (pxvid >> 24) & 0x7f;
  6101. ext_v = pvid_to_extvid(dev_priv, pxvid);
  6102. state1 = ext_v;
  6103. t = i915_mch_val(dev_priv);
  6104. /* Revel in the empirically derived constants */
  6105. /* Correction factor in 1/100000 units */
  6106. if (t > 80)
  6107. corr = ((t * 2349) + 135940);
  6108. else if (t >= 50)
  6109. corr = ((t * 964) + 29317);
  6110. else /* < 50 */
  6111. corr = ((t * 301) + 1004);
  6112. corr = corr * ((150142 * state1) / 10000 - 78642);
  6113. corr /= 100000;
  6114. corr2 = (corr * dev_priv->ips.corr);
  6115. state2 = (corr2 * state1) / 10000;
  6116. state2 /= 100; /* convert to mW */
  6117. __i915_update_gfx_val(dev_priv);
  6118. return dev_priv->ips.gfx_power + state2;
  6119. }
  6120. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  6121. {
  6122. unsigned long val;
  6123. if (INTEL_INFO(dev_priv)->gen != 5)
  6124. return 0;
  6125. spin_lock_irq(&mchdev_lock);
  6126. val = __i915_gfx_val(dev_priv);
  6127. spin_unlock_irq(&mchdev_lock);
  6128. return val;
  6129. }
  6130. /**
  6131. * i915_read_mch_val - return value for IPS use
  6132. *
  6133. * Calculate and return a value for the IPS driver to use when deciding whether
  6134. * we have thermal and power headroom to increase CPU or GPU power budget.
  6135. */
  6136. unsigned long i915_read_mch_val(void)
  6137. {
  6138. struct drm_i915_private *dev_priv;
  6139. unsigned long chipset_val, graphics_val, ret = 0;
  6140. spin_lock_irq(&mchdev_lock);
  6141. if (!i915_mch_dev)
  6142. goto out_unlock;
  6143. dev_priv = i915_mch_dev;
  6144. chipset_val = __i915_chipset_val(dev_priv);
  6145. graphics_val = __i915_gfx_val(dev_priv);
  6146. ret = chipset_val + graphics_val;
  6147. out_unlock:
  6148. spin_unlock_irq(&mchdev_lock);
  6149. return ret;
  6150. }
  6151. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  6152. /**
  6153. * i915_gpu_raise - raise GPU frequency limit
  6154. *
  6155. * Raise the limit; IPS indicates we have thermal headroom.
  6156. */
  6157. bool i915_gpu_raise(void)
  6158. {
  6159. struct drm_i915_private *dev_priv;
  6160. bool ret = true;
  6161. spin_lock_irq(&mchdev_lock);
  6162. if (!i915_mch_dev) {
  6163. ret = false;
  6164. goto out_unlock;
  6165. }
  6166. dev_priv = i915_mch_dev;
  6167. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  6168. dev_priv->ips.max_delay--;
  6169. out_unlock:
  6170. spin_unlock_irq(&mchdev_lock);
  6171. return ret;
  6172. }
  6173. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  6174. /**
  6175. * i915_gpu_lower - lower GPU frequency limit
  6176. *
  6177. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  6178. * frequency maximum.
  6179. */
  6180. bool i915_gpu_lower(void)
  6181. {
  6182. struct drm_i915_private *dev_priv;
  6183. bool ret = true;
  6184. spin_lock_irq(&mchdev_lock);
  6185. if (!i915_mch_dev) {
  6186. ret = false;
  6187. goto out_unlock;
  6188. }
  6189. dev_priv = i915_mch_dev;
  6190. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  6191. dev_priv->ips.max_delay++;
  6192. out_unlock:
  6193. spin_unlock_irq(&mchdev_lock);
  6194. return ret;
  6195. }
  6196. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  6197. /**
  6198. * i915_gpu_busy - indicate GPU business to IPS
  6199. *
  6200. * Tell the IPS driver whether or not the GPU is busy.
  6201. */
  6202. bool i915_gpu_busy(void)
  6203. {
  6204. bool ret = false;
  6205. spin_lock_irq(&mchdev_lock);
  6206. if (i915_mch_dev)
  6207. ret = i915_mch_dev->gt.awake;
  6208. spin_unlock_irq(&mchdev_lock);
  6209. return ret;
  6210. }
  6211. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  6212. /**
  6213. * i915_gpu_turbo_disable - disable graphics turbo
  6214. *
  6215. * Disable graphics turbo by resetting the max frequency and setting the
  6216. * current frequency to the default.
  6217. */
  6218. bool i915_gpu_turbo_disable(void)
  6219. {
  6220. struct drm_i915_private *dev_priv;
  6221. bool ret = true;
  6222. spin_lock_irq(&mchdev_lock);
  6223. if (!i915_mch_dev) {
  6224. ret = false;
  6225. goto out_unlock;
  6226. }
  6227. dev_priv = i915_mch_dev;
  6228. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  6229. if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
  6230. ret = false;
  6231. out_unlock:
  6232. spin_unlock_irq(&mchdev_lock);
  6233. return ret;
  6234. }
  6235. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  6236. /**
  6237. * Tells the intel_ips driver that the i915 driver is now loaded, if
  6238. * IPS got loaded first.
  6239. *
  6240. * This awkward dance is so that neither module has to depend on the
  6241. * other in order for IPS to do the appropriate communication of
  6242. * GPU turbo limits to i915.
  6243. */
  6244. static void
  6245. ips_ping_for_i915_load(void)
  6246. {
  6247. void (*link)(void);
  6248. link = symbol_get(ips_link_to_i915_driver);
  6249. if (link) {
  6250. link();
  6251. symbol_put(ips_link_to_i915_driver);
  6252. }
  6253. }
  6254. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  6255. {
  6256. /* We only register the i915 ips part with intel-ips once everything is
  6257. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  6258. spin_lock_irq(&mchdev_lock);
  6259. i915_mch_dev = dev_priv;
  6260. spin_unlock_irq(&mchdev_lock);
  6261. ips_ping_for_i915_load();
  6262. }
  6263. void intel_gpu_ips_teardown(void)
  6264. {
  6265. spin_lock_irq(&mchdev_lock);
  6266. i915_mch_dev = NULL;
  6267. spin_unlock_irq(&mchdev_lock);
  6268. }
  6269. static void intel_init_emon(struct drm_i915_private *dev_priv)
  6270. {
  6271. u32 lcfuse;
  6272. u8 pxw[16];
  6273. int i;
  6274. /* Disable to program */
  6275. I915_WRITE(ECR, 0);
  6276. POSTING_READ(ECR);
  6277. /* Program energy weights for various events */
  6278. I915_WRITE(SDEW, 0x15040d00);
  6279. I915_WRITE(CSIEW0, 0x007f0000);
  6280. I915_WRITE(CSIEW1, 0x1e220004);
  6281. I915_WRITE(CSIEW2, 0x04000004);
  6282. for (i = 0; i < 5; i++)
  6283. I915_WRITE(PEW(i), 0);
  6284. for (i = 0; i < 3; i++)
  6285. I915_WRITE(DEW(i), 0);
  6286. /* Program P-state weights to account for frequency power adjustment */
  6287. for (i = 0; i < 16; i++) {
  6288. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  6289. unsigned long freq = intel_pxfreq(pxvidfreq);
  6290. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6291. PXVFREQ_PX_SHIFT;
  6292. unsigned long val;
  6293. val = vid * vid;
  6294. val *= (freq / 1000);
  6295. val *= 255;
  6296. val /= (127*127*900);
  6297. if (val > 0xff)
  6298. DRM_ERROR("bad pxval: %ld\n", val);
  6299. pxw[i] = val;
  6300. }
  6301. /* Render standby states get 0 weight */
  6302. pxw[14] = 0;
  6303. pxw[15] = 0;
  6304. for (i = 0; i < 4; i++) {
  6305. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6306. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6307. I915_WRITE(PXW(i), val);
  6308. }
  6309. /* Adjust magic regs to magic values (more experimental results) */
  6310. I915_WRITE(OGW0, 0);
  6311. I915_WRITE(OGW1, 0);
  6312. I915_WRITE(EG0, 0x00007f00);
  6313. I915_WRITE(EG1, 0x0000000e);
  6314. I915_WRITE(EG2, 0x000e0000);
  6315. I915_WRITE(EG3, 0x68000300);
  6316. I915_WRITE(EG4, 0x42000000);
  6317. I915_WRITE(EG5, 0x00140031);
  6318. I915_WRITE(EG6, 0);
  6319. I915_WRITE(EG7, 0);
  6320. for (i = 0; i < 8; i++)
  6321. I915_WRITE(PXWL(i), 0);
  6322. /* Enable PMON + select events */
  6323. I915_WRITE(ECR, 0x80000019);
  6324. lcfuse = I915_READ(LCFUSE02);
  6325. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  6326. }
  6327. void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
  6328. {
  6329. /*
  6330. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6331. * requirement.
  6332. */
  6333. if (!i915.enable_rc6) {
  6334. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6335. intel_runtime_pm_get(dev_priv);
  6336. }
  6337. mutex_lock(&dev_priv->drm.struct_mutex);
  6338. mutex_lock(&dev_priv->rps.hw_lock);
  6339. /* Initialize RPS limits (for userspace) */
  6340. if (IS_CHERRYVIEW(dev_priv))
  6341. cherryview_init_gt_powersave(dev_priv);
  6342. else if (IS_VALLEYVIEW(dev_priv))
  6343. valleyview_init_gt_powersave(dev_priv);
  6344. else if (INTEL_GEN(dev_priv) >= 6)
  6345. gen6_init_rps_frequencies(dev_priv);
  6346. /* Derive initial user preferences/limits from the hardware limits */
  6347. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  6348. dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
  6349. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  6350. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  6351. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  6352. dev_priv->rps.min_freq_softlimit =
  6353. max_t(int,
  6354. dev_priv->rps.efficient_freq,
  6355. intel_freq_opcode(dev_priv, 450));
  6356. /* After setting max-softlimit, find the overclock max freq */
  6357. if (IS_GEN6(dev_priv) ||
  6358. IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
  6359. u32 params = 0;
  6360. sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
  6361. if (params & BIT(31)) { /* OC supported */
  6362. DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
  6363. (dev_priv->rps.max_freq & 0xff) * 50,
  6364. (params & 0xff) * 50);
  6365. dev_priv->rps.max_freq = params & 0xff;
  6366. }
  6367. }
  6368. /* Finally allow us to boost to max by default */
  6369. dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
  6370. mutex_unlock(&dev_priv->rps.hw_lock);
  6371. mutex_unlock(&dev_priv->drm.struct_mutex);
  6372. intel_autoenable_gt_powersave(dev_priv);
  6373. }
  6374. void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  6375. {
  6376. if (IS_VALLEYVIEW(dev_priv))
  6377. valleyview_cleanup_gt_powersave(dev_priv);
  6378. if (!i915.enable_rc6)
  6379. intel_runtime_pm_put(dev_priv);
  6380. }
  6381. /**
  6382. * intel_suspend_gt_powersave - suspend PM work and helper threads
  6383. * @dev_priv: i915 device
  6384. *
  6385. * We don't want to disable RC6 or other features here, we just want
  6386. * to make sure any work we've queued has finished and won't bother
  6387. * us while we're suspended.
  6388. */
  6389. void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
  6390. {
  6391. if (INTEL_GEN(dev_priv) < 6)
  6392. return;
  6393. if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
  6394. intel_runtime_pm_put(dev_priv);
  6395. /* gen6_rps_idle() will be called later to disable interrupts */
  6396. }
  6397. void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
  6398. {
  6399. dev_priv->rps.enabled = true; /* force disabling */
  6400. intel_disable_gt_powersave(dev_priv);
  6401. gen6_reset_rps_interrupts(dev_priv);
  6402. }
  6403. void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
  6404. {
  6405. if (!READ_ONCE(dev_priv->rps.enabled))
  6406. return;
  6407. mutex_lock(&dev_priv->rps.hw_lock);
  6408. if (INTEL_GEN(dev_priv) >= 9) {
  6409. gen9_disable_rc6(dev_priv);
  6410. gen9_disable_rps(dev_priv);
  6411. } else if (IS_CHERRYVIEW(dev_priv)) {
  6412. cherryview_disable_rps(dev_priv);
  6413. } else if (IS_VALLEYVIEW(dev_priv)) {
  6414. valleyview_disable_rps(dev_priv);
  6415. } else if (INTEL_GEN(dev_priv) >= 6) {
  6416. gen6_disable_rps(dev_priv);
  6417. } else if (IS_IRONLAKE_M(dev_priv)) {
  6418. ironlake_disable_drps(dev_priv);
  6419. }
  6420. dev_priv->rps.enabled = false;
  6421. mutex_unlock(&dev_priv->rps.hw_lock);
  6422. }
  6423. void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
  6424. {
  6425. /* We shouldn't be disabling as we submit, so this should be less
  6426. * racy than it appears!
  6427. */
  6428. if (READ_ONCE(dev_priv->rps.enabled))
  6429. return;
  6430. /* Powersaving is controlled by the host when inside a VM */
  6431. if (intel_vgpu_active(dev_priv))
  6432. return;
  6433. mutex_lock(&dev_priv->rps.hw_lock);
  6434. if (IS_CHERRYVIEW(dev_priv)) {
  6435. cherryview_enable_rps(dev_priv);
  6436. } else if (IS_VALLEYVIEW(dev_priv)) {
  6437. valleyview_enable_rps(dev_priv);
  6438. } else if (INTEL_GEN(dev_priv) >= 9) {
  6439. gen9_enable_rc6(dev_priv);
  6440. gen9_enable_rps(dev_priv);
  6441. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
  6442. gen6_update_ring_freq(dev_priv);
  6443. } else if (IS_BROADWELL(dev_priv)) {
  6444. gen8_enable_rps(dev_priv);
  6445. gen6_update_ring_freq(dev_priv);
  6446. } else if (INTEL_GEN(dev_priv) >= 6) {
  6447. gen6_enable_rps(dev_priv);
  6448. gen6_update_ring_freq(dev_priv);
  6449. } else if (IS_IRONLAKE_M(dev_priv)) {
  6450. ironlake_enable_drps(dev_priv);
  6451. intel_init_emon(dev_priv);
  6452. }
  6453. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  6454. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  6455. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  6456. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  6457. dev_priv->rps.enabled = true;
  6458. mutex_unlock(&dev_priv->rps.hw_lock);
  6459. }
  6460. static void __intel_autoenable_gt_powersave(struct work_struct *work)
  6461. {
  6462. struct drm_i915_private *dev_priv =
  6463. container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
  6464. struct intel_engine_cs *rcs;
  6465. struct drm_i915_gem_request *req;
  6466. if (READ_ONCE(dev_priv->rps.enabled))
  6467. goto out;
  6468. rcs = dev_priv->engine[RCS];
  6469. if (rcs->last_retired_context)
  6470. goto out;
  6471. if (!rcs->init_context)
  6472. goto out;
  6473. mutex_lock(&dev_priv->drm.struct_mutex);
  6474. req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
  6475. if (IS_ERR(req))
  6476. goto unlock;
  6477. if (!i915.enable_execlists && i915_switch_context(req) == 0)
  6478. rcs->init_context(req);
  6479. /* Mark the device busy, calling intel_enable_gt_powersave() */
  6480. i915_add_request(req);
  6481. unlock:
  6482. mutex_unlock(&dev_priv->drm.struct_mutex);
  6483. out:
  6484. intel_runtime_pm_put(dev_priv);
  6485. }
  6486. void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
  6487. {
  6488. if (READ_ONCE(dev_priv->rps.enabled))
  6489. return;
  6490. if (IS_IRONLAKE_M(dev_priv)) {
  6491. ironlake_enable_drps(dev_priv);
  6492. intel_init_emon(dev_priv);
  6493. } else if (INTEL_INFO(dev_priv)->gen >= 6) {
  6494. /*
  6495. * PCU communication is slow and this doesn't need to be
  6496. * done at any specific time, so do this out of our fast path
  6497. * to make resume and init faster.
  6498. *
  6499. * We depend on the HW RC6 power context save/restore
  6500. * mechanism when entering D3 through runtime PM suspend. So
  6501. * disable RPM until RPS/RC6 is properly setup. We can only
  6502. * get here via the driver load/system resume/runtime resume
  6503. * paths, so the _noresume version is enough (and in case of
  6504. * runtime resume it's necessary).
  6505. */
  6506. if (queue_delayed_work(dev_priv->wq,
  6507. &dev_priv->rps.autoenable_work,
  6508. round_jiffies_up_relative(HZ)))
  6509. intel_runtime_pm_get_noresume(dev_priv);
  6510. }
  6511. }
  6512. static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
  6513. {
  6514. /*
  6515. * On Ibex Peak and Cougar Point, we need to disable clock
  6516. * gating for the panel power sequencer or it will fail to
  6517. * start up when no ports are active.
  6518. */
  6519. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6520. }
  6521. static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
  6522. {
  6523. enum pipe pipe;
  6524. for_each_pipe(dev_priv, pipe) {
  6525. I915_WRITE(DSPCNTR(pipe),
  6526. I915_READ(DSPCNTR(pipe)) |
  6527. DISPPLANE_TRICKLE_FEED_DISABLE);
  6528. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  6529. POSTING_READ(DSPSURF(pipe));
  6530. }
  6531. }
  6532. static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
  6533. {
  6534. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  6535. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  6536. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  6537. /*
  6538. * Don't touch WM1S_LP_EN here.
  6539. * Doing so could cause underruns.
  6540. */
  6541. }
  6542. static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
  6543. {
  6544. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6545. /*
  6546. * Required for FBC
  6547. * WaFbcDisableDpfcClockGating:ilk
  6548. */
  6549. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  6550. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  6551. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  6552. I915_WRITE(PCH_3DCGDIS0,
  6553. MARIUNIT_CLOCK_GATE_DISABLE |
  6554. SVSMUNIT_CLOCK_GATE_DISABLE);
  6555. I915_WRITE(PCH_3DCGDIS1,
  6556. VFMUNIT_CLOCK_GATE_DISABLE);
  6557. /*
  6558. * According to the spec the following bits should be set in
  6559. * order to enable memory self-refresh
  6560. * The bit 22/21 of 0x42004
  6561. * The bit 5 of 0x42020
  6562. * The bit 15 of 0x45000
  6563. */
  6564. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6565. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6566. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6567. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  6568. I915_WRITE(DISP_ARB_CTL,
  6569. (I915_READ(DISP_ARB_CTL) |
  6570. DISP_FBC_WM_DIS));
  6571. ilk_init_lp_watermarks(dev_priv);
  6572. /*
  6573. * Based on the document from hardware guys the following bits
  6574. * should be set unconditionally in order to enable FBC.
  6575. * The bit 22 of 0x42000
  6576. * The bit 22 of 0x42004
  6577. * The bit 7,8,9 of 0x42020.
  6578. */
  6579. if (IS_IRONLAKE_M(dev_priv)) {
  6580. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  6581. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6582. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6583. ILK_FBCQ_DIS);
  6584. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6585. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6586. ILK_DPARB_GATE);
  6587. }
  6588. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6589. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6590. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6591. ILK_ELPIN_409_SELECT);
  6592. I915_WRITE(_3D_CHICKEN2,
  6593. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6594. _3D_CHICKEN2_WM_READ_PIPELINED);
  6595. /* WaDisableRenderCachePipelinedFlush:ilk */
  6596. I915_WRITE(CACHE_MODE_0,
  6597. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6598. /* WaDisable_RenderCache_OperationalFlush:ilk */
  6599. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6600. g4x_disable_trickle_feed(dev_priv);
  6601. ibx_init_clock_gating(dev_priv);
  6602. }
  6603. static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6604. {
  6605. int pipe;
  6606. uint32_t val;
  6607. /*
  6608. * On Ibex Peak and Cougar Point, we need to disable clock
  6609. * gating for the panel power sequencer or it will fail to
  6610. * start up when no ports are active.
  6611. */
  6612. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  6613. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  6614. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  6615. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  6616. DPLS_EDP_PPS_FIX_DIS);
  6617. /* The below fixes the weird display corruption, a few pixels shifted
  6618. * downward, on (only) LVDS of some HP laptops with IVY.
  6619. */
  6620. for_each_pipe(dev_priv, pipe) {
  6621. val = I915_READ(TRANS_CHICKEN2(pipe));
  6622. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  6623. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6624. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  6625. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6626. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  6627. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  6628. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  6629. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  6630. }
  6631. /* WADP0ClockGatingDisable */
  6632. for_each_pipe(dev_priv, pipe) {
  6633. I915_WRITE(TRANS_CHICKEN1(pipe),
  6634. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6635. }
  6636. }
  6637. static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
  6638. {
  6639. uint32_t tmp;
  6640. tmp = I915_READ(MCH_SSKPD);
  6641. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  6642. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  6643. tmp);
  6644. }
  6645. static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
  6646. {
  6647. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6648. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6649. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6650. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6651. ILK_ELPIN_409_SELECT);
  6652. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  6653. I915_WRITE(_3D_CHICKEN,
  6654. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  6655. /* WaDisable_RenderCache_OperationalFlush:snb */
  6656. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6657. /*
  6658. * BSpec recoomends 8x4 when MSAA is used,
  6659. * however in practice 16x4 seems fastest.
  6660. *
  6661. * Note that PS/WM thread counts depend on the WIZ hashing
  6662. * disable bit, which we don't touch here, but it's good
  6663. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6664. */
  6665. I915_WRITE(GEN6_GT_MODE,
  6666. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6667. ilk_init_lp_watermarks(dev_priv);
  6668. I915_WRITE(CACHE_MODE_0,
  6669. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  6670. I915_WRITE(GEN6_UCGCTL1,
  6671. I915_READ(GEN6_UCGCTL1) |
  6672. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  6673. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6674. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  6675. * gating disable must be set. Failure to set it results in
  6676. * flickering pixels due to Z write ordering failures after
  6677. * some amount of runtime in the Mesa "fire" demo, and Unigine
  6678. * Sanctuary and Tropics, and apparently anything else with
  6679. * alpha test or pixel discard.
  6680. *
  6681. * According to the spec, bit 11 (RCCUNIT) must also be set,
  6682. * but we didn't debug actual testcases to find it out.
  6683. *
  6684. * WaDisableRCCUnitClockGating:snb
  6685. * WaDisableRCPBUnitClockGating:snb
  6686. */
  6687. I915_WRITE(GEN6_UCGCTL2,
  6688. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  6689. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  6690. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  6691. I915_WRITE(_3D_CHICKEN3,
  6692. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  6693. /*
  6694. * Bspec says:
  6695. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  6696. * 3DSTATE_SF number of SF output attributes is more than 16."
  6697. */
  6698. I915_WRITE(_3D_CHICKEN3,
  6699. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  6700. /*
  6701. * According to the spec the following bits should be
  6702. * set in order to enable memory self-refresh and fbc:
  6703. * The bit21 and bit22 of 0x42000
  6704. * The bit21 and bit22 of 0x42004
  6705. * The bit5 and bit7 of 0x42020
  6706. * The bit14 of 0x70180
  6707. * The bit14 of 0x71180
  6708. *
  6709. * WaFbcAsynchFlipDisableFbcQueue:snb
  6710. */
  6711. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6712. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6713. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6714. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6715. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6716. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6717. I915_WRITE(ILK_DSPCLK_GATE_D,
  6718. I915_READ(ILK_DSPCLK_GATE_D) |
  6719. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  6720. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  6721. g4x_disable_trickle_feed(dev_priv);
  6722. cpt_init_clock_gating(dev_priv);
  6723. gen6_check_mch_setup(dev_priv);
  6724. }
  6725. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  6726. {
  6727. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  6728. /*
  6729. * WaVSThreadDispatchOverride:ivb,vlv
  6730. *
  6731. * This actually overrides the dispatch
  6732. * mode for all thread types.
  6733. */
  6734. reg &= ~GEN7_FF_SCHED_MASK;
  6735. reg |= GEN7_FF_TS_SCHED_HW;
  6736. reg |= GEN7_FF_VS_SCHED_HW;
  6737. reg |= GEN7_FF_DS_SCHED_HW;
  6738. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  6739. }
  6740. static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6741. {
  6742. /*
  6743. * TODO: this bit should only be enabled when really needed, then
  6744. * disabled when not needed anymore in order to save power.
  6745. */
  6746. if (HAS_PCH_LPT_LP(dev_priv))
  6747. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  6748. I915_READ(SOUTH_DSPCLK_GATE_D) |
  6749. PCH_LP_PARTITION_LEVEL_DISABLE);
  6750. /* WADPOClockGatingDisable:hsw */
  6751. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  6752. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  6753. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6754. }
  6755. static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
  6756. {
  6757. if (HAS_PCH_LPT_LP(dev_priv)) {
  6758. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6759. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  6760. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6761. }
  6762. }
  6763. static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
  6764. int general_prio_credits,
  6765. int high_prio_credits)
  6766. {
  6767. u32 misccpctl;
  6768. /* WaTempDisableDOPClkGating:bdw */
  6769. misccpctl = I915_READ(GEN7_MISCCPCTL);
  6770. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  6771. I915_WRITE(GEN8_L3SQCREG1,
  6772. L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
  6773. L3_HIGH_PRIO_CREDITS(high_prio_credits));
  6774. /*
  6775. * Wait at least 100 clocks before re-enabling clock gating.
  6776. * See the definition of L3SQCREG1 in BSpec.
  6777. */
  6778. POSTING_READ(GEN8_L3SQCREG1);
  6779. udelay(1);
  6780. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  6781. }
  6782. static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
  6783. {
  6784. gen9_init_clock_gating(dev_priv);
  6785. /* WaDisableSDEUnitClockGating:kbl */
  6786. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  6787. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6788. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6789. /* WaDisableGamClockGating:kbl */
  6790. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  6791. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  6792. GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
  6793. /* WaFbcNukeOnHostModify:kbl,cfl */
  6794. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  6795. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  6796. }
  6797. static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
  6798. {
  6799. gen9_init_clock_gating(dev_priv);
  6800. /* WAC6entrylatency:skl */
  6801. I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
  6802. FBC_LLC_FULLY_OPEN);
  6803. /* WaFbcNukeOnHostModify:skl */
  6804. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  6805. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  6806. }
  6807. static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
  6808. {
  6809. enum pipe pipe;
  6810. ilk_init_lp_watermarks(dev_priv);
  6811. /* WaSwitchSolVfFArbitrationPriority:bdw */
  6812. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6813. /* WaPsrDPAMaskVBlankInSRD:bdw */
  6814. I915_WRITE(CHICKEN_PAR1_1,
  6815. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  6816. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  6817. for_each_pipe(dev_priv, pipe) {
  6818. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  6819. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  6820. BDW_DPRS_MASK_VBLANK_SRD);
  6821. }
  6822. /* WaVSRefCountFullforceMissDisable:bdw */
  6823. /* WaDSRefCountFullforceMissDisable:bdw */
  6824. I915_WRITE(GEN7_FF_THREAD_MODE,
  6825. I915_READ(GEN7_FF_THREAD_MODE) &
  6826. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6827. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6828. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6829. /* WaDisableSDEUnitClockGating:bdw */
  6830. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6831. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6832. /* WaProgramL3SqcReg1Default:bdw */
  6833. gen8_set_l3sqc_credits(dev_priv, 30, 2);
  6834. /*
  6835. * WaGttCachingOffByDefault:bdw
  6836. * GTT cache may not work with big pages, so if those
  6837. * are ever enabled GTT cache may need to be disabled.
  6838. */
  6839. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6840. /* WaKVMNotificationOnConfigChange:bdw */
  6841. I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
  6842. | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
  6843. lpt_init_clock_gating(dev_priv);
  6844. /* WaDisableDopClockGating:bdw
  6845. *
  6846. * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
  6847. * clock gating.
  6848. */
  6849. I915_WRITE(GEN6_UCGCTL1,
  6850. I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  6851. }
  6852. static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
  6853. {
  6854. ilk_init_lp_watermarks(dev_priv);
  6855. /* L3 caching of data atomics doesn't work -- disable it. */
  6856. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  6857. I915_WRITE(HSW_ROW_CHICKEN3,
  6858. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  6859. /* This is required by WaCatErrorRejectionIssue:hsw */
  6860. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6861. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6862. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6863. /* WaVSRefCountFullforceMissDisable:hsw */
  6864. I915_WRITE(GEN7_FF_THREAD_MODE,
  6865. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  6866. /* WaDisable_RenderCache_OperationalFlush:hsw */
  6867. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6868. /* enable HiZ Raw Stall Optimization */
  6869. I915_WRITE(CACHE_MODE_0_GEN7,
  6870. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6871. /* WaDisable4x2SubspanOptimization:hsw */
  6872. I915_WRITE(CACHE_MODE_1,
  6873. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6874. /*
  6875. * BSpec recommends 8x4 when MSAA is used,
  6876. * however in practice 16x4 seems fastest.
  6877. *
  6878. * Note that PS/WM thread counts depend on the WIZ hashing
  6879. * disable bit, which we don't touch here, but it's good
  6880. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6881. */
  6882. I915_WRITE(GEN7_GT_MODE,
  6883. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6884. /* WaSampleCChickenBitEnable:hsw */
  6885. I915_WRITE(HALF_SLICE_CHICKEN3,
  6886. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  6887. /* WaSwitchSolVfFArbitrationPriority:hsw */
  6888. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6889. /* WaRsPkgCStateDisplayPMReq:hsw */
  6890. I915_WRITE(CHICKEN_PAR1_1,
  6891. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  6892. lpt_init_clock_gating(dev_priv);
  6893. }
  6894. static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
  6895. {
  6896. uint32_t snpcr;
  6897. ilk_init_lp_watermarks(dev_priv);
  6898. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  6899. /* WaDisableEarlyCull:ivb */
  6900. I915_WRITE(_3D_CHICKEN3,
  6901. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6902. /* WaDisableBackToBackFlipFix:ivb */
  6903. I915_WRITE(IVB_CHICKEN3,
  6904. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6905. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6906. /* WaDisablePSDDualDispatchEnable:ivb */
  6907. if (IS_IVB_GT1(dev_priv))
  6908. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6909. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6910. /* WaDisable_RenderCache_OperationalFlush:ivb */
  6911. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6912. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  6913. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  6914. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  6915. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  6916. I915_WRITE(GEN7_L3CNTLREG1,
  6917. GEN7_WA_FOR_GEN7_L3_CONTROL);
  6918. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  6919. GEN7_WA_L3_CHICKEN_MODE);
  6920. if (IS_IVB_GT1(dev_priv))
  6921. I915_WRITE(GEN7_ROW_CHICKEN2,
  6922. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6923. else {
  6924. /* must write both registers */
  6925. I915_WRITE(GEN7_ROW_CHICKEN2,
  6926. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6927. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  6928. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6929. }
  6930. /* WaForceL3Serialization:ivb */
  6931. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6932. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6933. /*
  6934. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6935. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  6936. */
  6937. I915_WRITE(GEN6_UCGCTL2,
  6938. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6939. /* This is required by WaCatErrorRejectionIssue:ivb */
  6940. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6941. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6942. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6943. g4x_disable_trickle_feed(dev_priv);
  6944. gen7_setup_fixed_func_scheduler(dev_priv);
  6945. if (0) { /* causes HiZ corruption on ivb:gt1 */
  6946. /* enable HiZ Raw Stall Optimization */
  6947. I915_WRITE(CACHE_MODE_0_GEN7,
  6948. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6949. }
  6950. /* WaDisable4x2SubspanOptimization:ivb */
  6951. I915_WRITE(CACHE_MODE_1,
  6952. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6953. /*
  6954. * BSpec recommends 8x4 when MSAA is used,
  6955. * however in practice 16x4 seems fastest.
  6956. *
  6957. * Note that PS/WM thread counts depend on the WIZ hashing
  6958. * disable bit, which we don't touch here, but it's good
  6959. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6960. */
  6961. I915_WRITE(GEN7_GT_MODE,
  6962. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6963. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  6964. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  6965. snpcr |= GEN6_MBC_SNPCR_MED;
  6966. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  6967. if (!HAS_PCH_NOP(dev_priv))
  6968. cpt_init_clock_gating(dev_priv);
  6969. gen6_check_mch_setup(dev_priv);
  6970. }
  6971. static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
  6972. {
  6973. /* WaDisableEarlyCull:vlv */
  6974. I915_WRITE(_3D_CHICKEN3,
  6975. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6976. /* WaDisableBackToBackFlipFix:vlv */
  6977. I915_WRITE(IVB_CHICKEN3,
  6978. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6979. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6980. /* WaPsdDispatchEnable:vlv */
  6981. /* WaDisablePSDDualDispatchEnable:vlv */
  6982. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6983. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  6984. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6985. /* WaDisable_RenderCache_OperationalFlush:vlv */
  6986. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6987. /* WaForceL3Serialization:vlv */
  6988. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6989. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6990. /* WaDisableDopClockGating:vlv */
  6991. I915_WRITE(GEN7_ROW_CHICKEN2,
  6992. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6993. /* This is required by WaCatErrorRejectionIssue:vlv */
  6994. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6995. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6996. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6997. gen7_setup_fixed_func_scheduler(dev_priv);
  6998. /*
  6999. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7000. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  7001. */
  7002. I915_WRITE(GEN6_UCGCTL2,
  7003. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7004. /* WaDisableL3Bank2xClockGate:vlv
  7005. * Disabling L3 clock gating- MMIO 940c[25] = 1
  7006. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  7007. I915_WRITE(GEN7_UCGCTL4,
  7008. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  7009. /*
  7010. * BSpec says this must be set, even though
  7011. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  7012. */
  7013. I915_WRITE(CACHE_MODE_1,
  7014. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  7015. /*
  7016. * BSpec recommends 8x4 when MSAA is used,
  7017. * however in practice 16x4 seems fastest.
  7018. *
  7019. * Note that PS/WM thread counts depend on the WIZ hashing
  7020. * disable bit, which we don't touch here, but it's good
  7021. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  7022. */
  7023. I915_WRITE(GEN7_GT_MODE,
  7024. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  7025. /*
  7026. * WaIncreaseL3CreditsForVLVB0:vlv
  7027. * This is the hardware default actually.
  7028. */
  7029. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  7030. /*
  7031. * WaDisableVLVClockGating_VBIIssue:vlv
  7032. * Disable clock gating on th GCFG unit to prevent a delay
  7033. * in the reporting of vblank events.
  7034. */
  7035. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  7036. }
  7037. static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
  7038. {
  7039. /* WaVSRefCountFullforceMissDisable:chv */
  7040. /* WaDSRefCountFullforceMissDisable:chv */
  7041. I915_WRITE(GEN7_FF_THREAD_MODE,
  7042. I915_READ(GEN7_FF_THREAD_MODE) &
  7043. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  7044. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  7045. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  7046. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  7047. /* WaDisableCSUnitClockGating:chv */
  7048. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  7049. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  7050. /* WaDisableSDEUnitClockGating:chv */
  7051. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  7052. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  7053. /*
  7054. * WaProgramL3SqcReg1Default:chv
  7055. * See gfxspecs/Related Documents/Performance Guide/
  7056. * LSQC Setting Recommendations.
  7057. */
  7058. gen8_set_l3sqc_credits(dev_priv, 38, 2);
  7059. /*
  7060. * GTT cache may not work with big pages, so if those
  7061. * are ever enabled GTT cache may need to be disabled.
  7062. */
  7063. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  7064. }
  7065. static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
  7066. {
  7067. uint32_t dspclk_gate;
  7068. I915_WRITE(RENCLK_GATE_D1, 0);
  7069. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7070. GS_UNIT_CLOCK_GATE_DISABLE |
  7071. CL_UNIT_CLOCK_GATE_DISABLE);
  7072. I915_WRITE(RAMCLK_GATE_D, 0);
  7073. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7074. OVRUNIT_CLOCK_GATE_DISABLE |
  7075. OVCUNIT_CLOCK_GATE_DISABLE;
  7076. if (IS_GM45(dev_priv))
  7077. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7078. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7079. /* WaDisableRenderCachePipelinedFlush */
  7080. I915_WRITE(CACHE_MODE_0,
  7081. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  7082. /* WaDisable_RenderCache_OperationalFlush:g4x */
  7083. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7084. g4x_disable_trickle_feed(dev_priv);
  7085. }
  7086. static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
  7087. {
  7088. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7089. I915_WRITE(RENCLK_GATE_D2, 0);
  7090. I915_WRITE(DSPCLK_GATE_D, 0);
  7091. I915_WRITE(RAMCLK_GATE_D, 0);
  7092. I915_WRITE16(DEUC, 0);
  7093. I915_WRITE(MI_ARB_STATE,
  7094. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7095. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7096. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7097. }
  7098. static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
  7099. {
  7100. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7101. I965_RCC_CLOCK_GATE_DISABLE |
  7102. I965_RCPB_CLOCK_GATE_DISABLE |
  7103. I965_ISC_CLOCK_GATE_DISABLE |
  7104. I965_FBC_CLOCK_GATE_DISABLE);
  7105. I915_WRITE(RENCLK_GATE_D2, 0);
  7106. I915_WRITE(MI_ARB_STATE,
  7107. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7108. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7109. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7110. }
  7111. static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
  7112. {
  7113. u32 dstate = I915_READ(D_STATE);
  7114. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7115. DSTATE_DOT_CLOCK_GATING;
  7116. I915_WRITE(D_STATE, dstate);
  7117. if (IS_PINEVIEW(dev_priv))
  7118. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  7119. /* IIR "flip pending" means done if this bit is set */
  7120. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  7121. /* interrupts should cause a wake up from C3 */
  7122. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  7123. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  7124. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  7125. I915_WRITE(MI_ARB_STATE,
  7126. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7127. }
  7128. static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
  7129. {
  7130. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7131. /* interrupts should cause a wake up from C3 */
  7132. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  7133. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  7134. I915_WRITE(MEM_MODE,
  7135. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  7136. }
  7137. static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
  7138. {
  7139. I915_WRITE(MEM_MODE,
  7140. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  7141. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  7142. }
  7143. void intel_init_clock_gating(struct drm_i915_private *dev_priv)
  7144. {
  7145. dev_priv->display.init_clock_gating(dev_priv);
  7146. }
  7147. void intel_suspend_hw(struct drm_i915_private *dev_priv)
  7148. {
  7149. if (HAS_PCH_LPT(dev_priv))
  7150. lpt_suspend_hw(dev_priv);
  7151. }
  7152. static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
  7153. {
  7154. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  7155. }
  7156. /**
  7157. * intel_init_clock_gating_hooks - setup the clock gating hooks
  7158. * @dev_priv: device private
  7159. *
  7160. * Setup the hooks that configure which clocks of a given platform can be
  7161. * gated and also apply various GT and display specific workarounds for these
  7162. * platforms. Note that some GT specific workarounds are applied separately
  7163. * when GPU contexts or batchbuffers start their execution.
  7164. */
  7165. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  7166. {
  7167. if (IS_SKYLAKE(dev_priv))
  7168. dev_priv->display.init_clock_gating = skylake_init_clock_gating;
  7169. else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  7170. dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
  7171. else if (IS_BROXTON(dev_priv))
  7172. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  7173. else if (IS_GEMINILAKE(dev_priv))
  7174. dev_priv->display.init_clock_gating = glk_init_clock_gating;
  7175. else if (IS_BROADWELL(dev_priv))
  7176. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  7177. else if (IS_CHERRYVIEW(dev_priv))
  7178. dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
  7179. else if (IS_HASWELL(dev_priv))
  7180. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  7181. else if (IS_IVYBRIDGE(dev_priv))
  7182. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7183. else if (IS_VALLEYVIEW(dev_priv))
  7184. dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
  7185. else if (IS_GEN6(dev_priv))
  7186. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7187. else if (IS_GEN5(dev_priv))
  7188. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7189. else if (IS_G4X(dev_priv))
  7190. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7191. else if (IS_I965GM(dev_priv))
  7192. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7193. else if (IS_I965G(dev_priv))
  7194. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7195. else if (IS_GEN3(dev_priv))
  7196. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7197. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  7198. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7199. else if (IS_GEN2(dev_priv))
  7200. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7201. else {
  7202. MISSING_CASE(INTEL_DEVID(dev_priv));
  7203. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  7204. }
  7205. }
  7206. /* Set up chip specific power management-related functions */
  7207. void intel_init_pm(struct drm_i915_private *dev_priv)
  7208. {
  7209. intel_fbc_init(dev_priv);
  7210. /* For cxsr */
  7211. if (IS_PINEVIEW(dev_priv))
  7212. i915_pineview_get_mem_freq(dev_priv);
  7213. else if (IS_GEN5(dev_priv))
  7214. i915_ironlake_get_mem_freq(dev_priv);
  7215. /* For FIFO watermark updates */
  7216. if (INTEL_GEN(dev_priv) >= 9) {
  7217. skl_setup_wm_latency(dev_priv);
  7218. dev_priv->display.initial_watermarks = skl_initial_wm;
  7219. dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
  7220. dev_priv->display.compute_global_watermarks = skl_compute_wm;
  7221. } else if (HAS_PCH_SPLIT(dev_priv)) {
  7222. ilk_setup_wm_latency(dev_priv);
  7223. if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
  7224. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  7225. (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
  7226. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  7227. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  7228. dev_priv->display.compute_intermediate_wm =
  7229. ilk_compute_intermediate_wm;
  7230. dev_priv->display.initial_watermarks =
  7231. ilk_initial_watermarks;
  7232. dev_priv->display.optimize_watermarks =
  7233. ilk_optimize_watermarks;
  7234. } else {
  7235. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7236. "Disable CxSR\n");
  7237. }
  7238. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7239. vlv_setup_wm_latency(dev_priv);
  7240. dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
  7241. dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
  7242. dev_priv->display.initial_watermarks = vlv_initial_watermarks;
  7243. dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
  7244. dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
  7245. } else if (IS_G4X(dev_priv)) {
  7246. g4x_setup_wm_latency(dev_priv);
  7247. dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
  7248. dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
  7249. dev_priv->display.initial_watermarks = g4x_initial_watermarks;
  7250. dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
  7251. } else if (IS_PINEVIEW(dev_priv)) {
  7252. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  7253. dev_priv->is_ddr3,
  7254. dev_priv->fsb_freq,
  7255. dev_priv->mem_freq)) {
  7256. DRM_INFO("failed to find known CxSR latency "
  7257. "(found ddr%s fsb freq %d, mem freq %d), "
  7258. "disabling CxSR\n",
  7259. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7260. dev_priv->fsb_freq, dev_priv->mem_freq);
  7261. /* Disable CxSR and never update its watermark again */
  7262. intel_set_memory_cxsr(dev_priv, false);
  7263. dev_priv->display.update_wm = NULL;
  7264. } else
  7265. dev_priv->display.update_wm = pineview_update_wm;
  7266. } else if (IS_GEN4(dev_priv)) {
  7267. dev_priv->display.update_wm = i965_update_wm;
  7268. } else if (IS_GEN3(dev_priv)) {
  7269. dev_priv->display.update_wm = i9xx_update_wm;
  7270. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7271. } else if (IS_GEN2(dev_priv)) {
  7272. if (INTEL_INFO(dev_priv)->num_pipes == 1) {
  7273. dev_priv->display.update_wm = i845_update_wm;
  7274. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7275. } else {
  7276. dev_priv->display.update_wm = i9xx_update_wm;
  7277. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7278. }
  7279. } else {
  7280. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  7281. }
  7282. }
  7283. static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
  7284. {
  7285. uint32_t flags =
  7286. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7287. switch (flags) {
  7288. case GEN6_PCODE_SUCCESS:
  7289. return 0;
  7290. case GEN6_PCODE_UNIMPLEMENTED_CMD:
  7291. case GEN6_PCODE_ILLEGAL_CMD:
  7292. return -ENXIO;
  7293. case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7294. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7295. return -EOVERFLOW;
  7296. case GEN6_PCODE_TIMEOUT:
  7297. return -ETIMEDOUT;
  7298. default:
  7299. MISSING_CASE(flags);
  7300. return 0;
  7301. }
  7302. }
  7303. static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
  7304. {
  7305. uint32_t flags =
  7306. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7307. switch (flags) {
  7308. case GEN6_PCODE_SUCCESS:
  7309. return 0;
  7310. case GEN6_PCODE_ILLEGAL_CMD:
  7311. return -ENXIO;
  7312. case GEN7_PCODE_TIMEOUT:
  7313. return -ETIMEDOUT;
  7314. case GEN7_PCODE_ILLEGAL_DATA:
  7315. return -EINVAL;
  7316. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7317. return -EOVERFLOW;
  7318. default:
  7319. MISSING_CASE(flags);
  7320. return 0;
  7321. }
  7322. }
  7323. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  7324. {
  7325. int status;
  7326. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7327. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7328. * use te fw I915_READ variants to reduce the amount of work
  7329. * required when reading/writing.
  7330. */
  7331. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7332. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  7333. return -EAGAIN;
  7334. }
  7335. I915_WRITE_FW(GEN6_PCODE_DATA, *val);
  7336. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7337. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7338. if (__intel_wait_for_register_fw(dev_priv,
  7339. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7340. 500, 0, NULL)) {
  7341. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  7342. return -ETIMEDOUT;
  7343. }
  7344. *val = I915_READ_FW(GEN6_PCODE_DATA);
  7345. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7346. if (INTEL_GEN(dev_priv) > 6)
  7347. status = gen7_check_mailbox_status(dev_priv);
  7348. else
  7349. status = gen6_check_mailbox_status(dev_priv);
  7350. if (status) {
  7351. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
  7352. status);
  7353. return status;
  7354. }
  7355. return 0;
  7356. }
  7357. int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
  7358. u32 mbox, u32 val)
  7359. {
  7360. int status;
  7361. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7362. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7363. * use te fw I915_READ variants to reduce the amount of work
  7364. * required when reading/writing.
  7365. */
  7366. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7367. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  7368. return -EAGAIN;
  7369. }
  7370. I915_WRITE_FW(GEN6_PCODE_DATA, val);
  7371. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7372. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7373. if (__intel_wait_for_register_fw(dev_priv,
  7374. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7375. 500, 0, NULL)) {
  7376. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  7377. return -ETIMEDOUT;
  7378. }
  7379. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7380. if (INTEL_GEN(dev_priv) > 6)
  7381. status = gen7_check_mailbox_status(dev_priv);
  7382. else
  7383. status = gen6_check_mailbox_status(dev_priv);
  7384. if (status) {
  7385. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
  7386. status);
  7387. return status;
  7388. }
  7389. return 0;
  7390. }
  7391. static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
  7392. u32 request, u32 reply_mask, u32 reply,
  7393. u32 *status)
  7394. {
  7395. u32 val = request;
  7396. *status = sandybridge_pcode_read(dev_priv, mbox, &val);
  7397. return *status || ((val & reply_mask) == reply);
  7398. }
  7399. /**
  7400. * skl_pcode_request - send PCODE request until acknowledgment
  7401. * @dev_priv: device private
  7402. * @mbox: PCODE mailbox ID the request is targeted for
  7403. * @request: request ID
  7404. * @reply_mask: mask used to check for request acknowledgment
  7405. * @reply: value used to check for request acknowledgment
  7406. * @timeout_base_ms: timeout for polling with preemption enabled
  7407. *
  7408. * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
  7409. * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
  7410. * The request is acknowledged once the PCODE reply dword equals @reply after
  7411. * applying @reply_mask. Polling is first attempted with preemption enabled
  7412. * for @timeout_base_ms and if this times out for another 50 ms with
  7413. * preemption disabled.
  7414. *
  7415. * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
  7416. * other error as reported by PCODE.
  7417. */
  7418. int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
  7419. u32 reply_mask, u32 reply, int timeout_base_ms)
  7420. {
  7421. u32 status;
  7422. int ret;
  7423. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7424. #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
  7425. &status)
  7426. /*
  7427. * Prime the PCODE by doing a request first. Normally it guarantees
  7428. * that a subsequent request, at most @timeout_base_ms later, succeeds.
  7429. * _wait_for() doesn't guarantee when its passed condition is evaluated
  7430. * first, so send the first request explicitly.
  7431. */
  7432. if (COND) {
  7433. ret = 0;
  7434. goto out;
  7435. }
  7436. ret = _wait_for(COND, timeout_base_ms * 1000, 10);
  7437. if (!ret)
  7438. goto out;
  7439. /*
  7440. * The above can time out if the number of requests was low (2 in the
  7441. * worst case) _and_ PCODE was busy for some reason even after a
  7442. * (queued) request and @timeout_base_ms delay. As a workaround retry
  7443. * the poll with preemption disabled to maximize the number of
  7444. * requests. Increase the timeout from @timeout_base_ms to 50ms to
  7445. * account for interrupts that could reduce the number of these
  7446. * requests, and for any quirks of the PCODE firmware that delays
  7447. * the request completion.
  7448. */
  7449. DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
  7450. WARN_ON_ONCE(timeout_base_ms > 3);
  7451. preempt_disable();
  7452. ret = wait_for_atomic(COND, 50);
  7453. preempt_enable();
  7454. out:
  7455. return ret ? ret : status;
  7456. #undef COND
  7457. }
  7458. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7459. {
  7460. /*
  7461. * N = val - 0xb7
  7462. * Slow = Fast = GPLL ref * N
  7463. */
  7464. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
  7465. }
  7466. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7467. {
  7468. return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
  7469. }
  7470. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7471. {
  7472. /*
  7473. * N = val / 2
  7474. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  7475. */
  7476. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
  7477. }
  7478. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7479. {
  7480. /* CHV needs even values */
  7481. return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
  7482. }
  7483. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7484. {
  7485. if (INTEL_GEN(dev_priv) >= 9)
  7486. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  7487. GEN9_FREQ_SCALER);
  7488. else if (IS_CHERRYVIEW(dev_priv))
  7489. return chv_gpu_freq(dev_priv, val);
  7490. else if (IS_VALLEYVIEW(dev_priv))
  7491. return byt_gpu_freq(dev_priv, val);
  7492. else
  7493. return val * GT_FREQUENCY_MULTIPLIER;
  7494. }
  7495. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7496. {
  7497. if (INTEL_GEN(dev_priv) >= 9)
  7498. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  7499. GT_FREQUENCY_MULTIPLIER);
  7500. else if (IS_CHERRYVIEW(dev_priv))
  7501. return chv_freq_opcode(dev_priv, val);
  7502. else if (IS_VALLEYVIEW(dev_priv))
  7503. return byt_freq_opcode(dev_priv, val);
  7504. else
  7505. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  7506. }
  7507. struct request_boost {
  7508. struct work_struct work;
  7509. struct drm_i915_gem_request *req;
  7510. };
  7511. static void __intel_rps_boost_work(struct work_struct *work)
  7512. {
  7513. struct request_boost *boost = container_of(work, struct request_boost, work);
  7514. struct drm_i915_gem_request *req = boost->req;
  7515. if (!i915_gem_request_completed(req))
  7516. gen6_rps_boost(req, NULL);
  7517. i915_gem_request_put(req);
  7518. kfree(boost);
  7519. }
  7520. void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
  7521. {
  7522. struct request_boost *boost;
  7523. if (req == NULL || INTEL_GEN(req->i915) < 6)
  7524. return;
  7525. if (i915_gem_request_completed(req))
  7526. return;
  7527. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  7528. if (boost == NULL)
  7529. return;
  7530. boost->req = i915_gem_request_get(req);
  7531. INIT_WORK(&boost->work, __intel_rps_boost_work);
  7532. queue_work(req->i915->wq, &boost->work);
  7533. }
  7534. void intel_pm_setup(struct drm_i915_private *dev_priv)
  7535. {
  7536. mutex_init(&dev_priv->rps.hw_lock);
  7537. INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
  7538. __intel_autoenable_gt_powersave);
  7539. atomic_set(&dev_priv->rps.num_waiters, 0);
  7540. dev_priv->pm.suspended = false;
  7541. atomic_set(&dev_priv->pm.wakeref_count, 0);
  7542. }
  7543. static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
  7544. const i915_reg_t reg)
  7545. {
  7546. u32 lower, upper, tmp;
  7547. int loop = 2;
  7548. /* The register accessed do not need forcewake. We borrow
  7549. * uncore lock to prevent concurrent access to range reg.
  7550. */
  7551. spin_lock_irq(&dev_priv->uncore.lock);
  7552. /* vlv and chv residency counters are 40 bits in width.
  7553. * With a control bit, we can choose between upper or lower
  7554. * 32bit window into this counter.
  7555. *
  7556. * Although we always use the counter in high-range mode elsewhere,
  7557. * userspace may attempt to read the value before rc6 is initialised,
  7558. * before we have set the default VLV_COUNTER_CONTROL value. So always
  7559. * set the high bit to be safe.
  7560. */
  7561. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7562. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7563. upper = I915_READ_FW(reg);
  7564. do {
  7565. tmp = upper;
  7566. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7567. _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
  7568. lower = I915_READ_FW(reg);
  7569. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7570. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7571. upper = I915_READ_FW(reg);
  7572. } while (upper != tmp && --loop);
  7573. /* Everywhere else we always use VLV_COUNTER_CONTROL with the
  7574. * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
  7575. * now.
  7576. */
  7577. spin_unlock_irq(&dev_priv->uncore.lock);
  7578. return lower | (u64)upper << 8;
  7579. }
  7580. u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
  7581. const i915_reg_t reg)
  7582. {
  7583. u64 time_hw, units, div;
  7584. if (!intel_enable_rc6())
  7585. return 0;
  7586. intel_runtime_pm_get(dev_priv);
  7587. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  7588. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7589. units = 1000;
  7590. div = dev_priv->czclk_freq;
  7591. time_hw = vlv_residency_raw(dev_priv, reg);
  7592. } else if (IS_GEN9_LP(dev_priv)) {
  7593. units = 1000;
  7594. div = 1200; /* 833.33ns */
  7595. time_hw = I915_READ(reg);
  7596. } else {
  7597. units = 128000; /* 1.28us */
  7598. div = 100000;
  7599. time_hw = I915_READ(reg);
  7600. }
  7601. intel_runtime_pm_put(dev_priv);
  7602. return DIV_ROUND_UP_ULL(time_hw * units, div);
  7603. }