panic.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * linux/kernel/panic.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * This function is used through-out the kernel (including mm and fs)
  8. * to indicate a major problem.
  9. */
  10. #include <linux/debug_locks.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/kmsg_dump.h>
  13. #include <linux/kallsyms.h>
  14. #include <linux/notifier.h>
  15. #include <linux/module.h>
  16. #include <linux/random.h>
  17. #include <linux/ftrace.h>
  18. #include <linux/reboot.h>
  19. #include <linux/delay.h>
  20. #include <linux/kexec.h>
  21. #include <linux/sched.h>
  22. #include <linux/sysrq.h>
  23. #include <linux/init.h>
  24. #include <linux/nmi.h>
  25. #include <linux/console.h>
  26. #include <linux/bug.h>
  27. #define PANIC_TIMER_STEP 100
  28. #define PANIC_BLINK_SPD 18
  29. int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
  30. static unsigned long tainted_mask;
  31. static int pause_on_oops;
  32. static int pause_on_oops_flag;
  33. static DEFINE_SPINLOCK(pause_on_oops_lock);
  34. bool crash_kexec_post_notifiers;
  35. int panic_on_warn __read_mostly;
  36. int panic_timeout = CONFIG_PANIC_TIMEOUT;
  37. EXPORT_SYMBOL_GPL(panic_timeout);
  38. ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
  39. EXPORT_SYMBOL(panic_notifier_list);
  40. static long no_blink(int state)
  41. {
  42. return 0;
  43. }
  44. /* Returns how long it waited in ms */
  45. long (*panic_blink)(int state);
  46. EXPORT_SYMBOL(panic_blink);
  47. /*
  48. * Stop ourself in panic -- architecture code may override this
  49. */
  50. void __weak panic_smp_self_stop(void)
  51. {
  52. while (1)
  53. cpu_relax();
  54. }
  55. /*
  56. * Stop ourselves in NMI context if another CPU has already panicked. Arch code
  57. * may override this to prepare for crash dumping, e.g. save regs info.
  58. */
  59. void __weak nmi_panic_self_stop(struct pt_regs *regs)
  60. {
  61. panic_smp_self_stop();
  62. }
  63. atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
  64. /*
  65. * A variant of panic() called from NMI context. We return if we've already
  66. * panicked on this CPU. If another CPU already panicked, loop in
  67. * nmi_panic_self_stop() which can provide architecture dependent code such
  68. * as saving register state for crash dump.
  69. */
  70. void nmi_panic(struct pt_regs *regs, const char *msg)
  71. {
  72. int old_cpu, cpu;
  73. cpu = raw_smp_processor_id();
  74. old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
  75. if (old_cpu == PANIC_CPU_INVALID)
  76. panic("%s", msg);
  77. else if (old_cpu != cpu)
  78. nmi_panic_self_stop(regs);
  79. }
  80. EXPORT_SYMBOL(nmi_panic);
  81. /**
  82. * panic - halt the system
  83. * @fmt: The text string to print
  84. *
  85. * Display a message, then perform cleanups.
  86. *
  87. * This function never returns.
  88. */
  89. void panic(const char *fmt, ...)
  90. {
  91. static char buf[1024];
  92. va_list args;
  93. long i, i_next = 0;
  94. int state = 0;
  95. int old_cpu, this_cpu;
  96. /*
  97. * Disable local interrupts. This will prevent panic_smp_self_stop
  98. * from deadlocking the first cpu that invokes the panic, since
  99. * there is nothing to prevent an interrupt handler (that runs
  100. * after setting panic_cpu) from invoking panic() again.
  101. */
  102. local_irq_disable();
  103. /*
  104. * It's possible to come here directly from a panic-assertion and
  105. * not have preempt disabled. Some functions called from here want
  106. * preempt to be disabled. No point enabling it later though...
  107. *
  108. * Only one CPU is allowed to execute the panic code from here. For
  109. * multiple parallel invocations of panic, all other CPUs either
  110. * stop themself or will wait until they are stopped by the 1st CPU
  111. * with smp_send_stop().
  112. *
  113. * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
  114. * comes here, so go ahead.
  115. * `old_cpu == this_cpu' means we came from nmi_panic() which sets
  116. * panic_cpu to this CPU. In this case, this is also the 1st CPU.
  117. */
  118. this_cpu = raw_smp_processor_id();
  119. old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
  120. if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
  121. panic_smp_self_stop();
  122. console_verbose();
  123. bust_spinlocks(1);
  124. va_start(args, fmt);
  125. vsnprintf(buf, sizeof(buf), fmt, args);
  126. va_end(args);
  127. pr_emerg("Kernel panic - not syncing: %s\n", buf);
  128. #ifdef CONFIG_DEBUG_BUGVERBOSE
  129. /*
  130. * Avoid nested stack-dumping if a panic occurs during oops processing
  131. */
  132. if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
  133. dump_stack();
  134. #endif
  135. /*
  136. * If we have crashed and we have a crash kernel loaded let it handle
  137. * everything else.
  138. * If we want to run this after calling panic_notifiers, pass
  139. * the "crash_kexec_post_notifiers" option to the kernel.
  140. *
  141. * Bypass the panic_cpu check and call __crash_kexec directly.
  142. */
  143. if (!crash_kexec_post_notifiers) {
  144. printk_nmi_flush_on_panic();
  145. __crash_kexec(NULL);
  146. }
  147. /*
  148. * Note smp_send_stop is the usual smp shutdown function, which
  149. * unfortunately means it may not be hardened to work in a panic
  150. * situation.
  151. */
  152. smp_send_stop();
  153. /*
  154. * Run any panic handlers, including those that might need to
  155. * add information to the kmsg dump output.
  156. */
  157. atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
  158. /* Call flush even twice. It tries harder with a single online CPU */
  159. printk_nmi_flush_on_panic();
  160. kmsg_dump(KMSG_DUMP_PANIC);
  161. /*
  162. * If you doubt kdump always works fine in any situation,
  163. * "crash_kexec_post_notifiers" offers you a chance to run
  164. * panic_notifiers and dumping kmsg before kdump.
  165. * Note: since some panic_notifiers can make crashed kernel
  166. * more unstable, it can increase risks of the kdump failure too.
  167. *
  168. * Bypass the panic_cpu check and call __crash_kexec directly.
  169. */
  170. if (crash_kexec_post_notifiers)
  171. __crash_kexec(NULL);
  172. bust_spinlocks(0);
  173. /*
  174. * We may have ended up stopping the CPU holding the lock (in
  175. * smp_send_stop()) while still having some valuable data in the console
  176. * buffer. Try to acquire the lock then release it regardless of the
  177. * result. The release will also print the buffers out. Locks debug
  178. * should be disabled to avoid reporting bad unlock balance when
  179. * panic() is not being callled from OOPS.
  180. */
  181. debug_locks_off();
  182. console_flush_on_panic();
  183. if (!panic_blink)
  184. panic_blink = no_blink;
  185. if (panic_timeout > 0) {
  186. /*
  187. * Delay timeout seconds before rebooting the machine.
  188. * We can't use the "normal" timers since we just panicked.
  189. */
  190. pr_emerg("Rebooting in %d seconds..", panic_timeout);
  191. for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
  192. touch_nmi_watchdog();
  193. if (i >= i_next) {
  194. i += panic_blink(state ^= 1);
  195. i_next = i + 3600 / PANIC_BLINK_SPD;
  196. }
  197. mdelay(PANIC_TIMER_STEP);
  198. }
  199. }
  200. if (panic_timeout != 0) {
  201. /*
  202. * This will not be a clean reboot, with everything
  203. * shutting down. But if there is a chance of
  204. * rebooting the system it will be rebooted.
  205. */
  206. emergency_restart();
  207. }
  208. #ifdef __sparc__
  209. {
  210. extern int stop_a_enabled;
  211. /* Make sure the user can actually press Stop-A (L1-A) */
  212. stop_a_enabled = 1;
  213. pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
  214. }
  215. #endif
  216. #if defined(CONFIG_S390)
  217. {
  218. unsigned long caller;
  219. caller = (unsigned long)__builtin_return_address(0);
  220. disabled_wait(caller);
  221. }
  222. #endif
  223. pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
  224. local_irq_enable();
  225. for (i = 0; ; i += PANIC_TIMER_STEP) {
  226. touch_softlockup_watchdog();
  227. if (i >= i_next) {
  228. i += panic_blink(state ^= 1);
  229. i_next = i + 3600 / PANIC_BLINK_SPD;
  230. }
  231. mdelay(PANIC_TIMER_STEP);
  232. }
  233. }
  234. EXPORT_SYMBOL(panic);
  235. struct tnt {
  236. u8 bit;
  237. char true;
  238. char false;
  239. };
  240. static const struct tnt tnts[] = {
  241. { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
  242. { TAINT_FORCED_MODULE, 'F', ' ' },
  243. { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' },
  244. { TAINT_FORCED_RMMOD, 'R', ' ' },
  245. { TAINT_MACHINE_CHECK, 'M', ' ' },
  246. { TAINT_BAD_PAGE, 'B', ' ' },
  247. { TAINT_USER, 'U', ' ' },
  248. { TAINT_DIE, 'D', ' ' },
  249. { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
  250. { TAINT_WARN, 'W', ' ' },
  251. { TAINT_CRAP, 'C', ' ' },
  252. { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' },
  253. { TAINT_OOT_MODULE, 'O', ' ' },
  254. { TAINT_UNSIGNED_MODULE, 'E', ' ' },
  255. { TAINT_SOFTLOCKUP, 'L', ' ' },
  256. { TAINT_LIVEPATCH, 'K', ' ' },
  257. };
  258. /**
  259. * print_tainted - return a string to represent the kernel taint state.
  260. *
  261. * 'P' - Proprietary module has been loaded.
  262. * 'F' - Module has been forcibly loaded.
  263. * 'S' - SMP with CPUs not designed for SMP.
  264. * 'R' - User forced a module unload.
  265. * 'M' - System experienced a machine check exception.
  266. * 'B' - System has hit bad_page.
  267. * 'U' - Userspace-defined naughtiness.
  268. * 'D' - Kernel has oopsed before
  269. * 'A' - ACPI table overridden.
  270. * 'W' - Taint on warning.
  271. * 'C' - modules from drivers/staging are loaded.
  272. * 'I' - Working around severe firmware bug.
  273. * 'O' - Out-of-tree module has been loaded.
  274. * 'E' - Unsigned module has been loaded.
  275. * 'L' - A soft lockup has previously occurred.
  276. * 'K' - Kernel has been live patched.
  277. *
  278. * The string is overwritten by the next call to print_tainted().
  279. */
  280. const char *print_tainted(void)
  281. {
  282. static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
  283. if (tainted_mask) {
  284. char *s;
  285. int i;
  286. s = buf + sprintf(buf, "Tainted: ");
  287. for (i = 0; i < ARRAY_SIZE(tnts); i++) {
  288. const struct tnt *t = &tnts[i];
  289. *s++ = test_bit(t->bit, &tainted_mask) ?
  290. t->true : t->false;
  291. }
  292. *s = 0;
  293. } else
  294. snprintf(buf, sizeof(buf), "Not tainted");
  295. return buf;
  296. }
  297. int test_taint(unsigned flag)
  298. {
  299. return test_bit(flag, &tainted_mask);
  300. }
  301. EXPORT_SYMBOL(test_taint);
  302. unsigned long get_taint(void)
  303. {
  304. return tainted_mask;
  305. }
  306. /**
  307. * add_taint: add a taint flag if not already set.
  308. * @flag: one of the TAINT_* constants.
  309. * @lockdep_ok: whether lock debugging is still OK.
  310. *
  311. * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
  312. * some notewortht-but-not-corrupting cases, it can be set to true.
  313. */
  314. void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
  315. {
  316. if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
  317. pr_warn("Disabling lock debugging due to kernel taint\n");
  318. set_bit(flag, &tainted_mask);
  319. }
  320. EXPORT_SYMBOL(add_taint);
  321. static void spin_msec(int msecs)
  322. {
  323. int i;
  324. for (i = 0; i < msecs; i++) {
  325. touch_nmi_watchdog();
  326. mdelay(1);
  327. }
  328. }
  329. /*
  330. * It just happens that oops_enter() and oops_exit() are identically
  331. * implemented...
  332. */
  333. static void do_oops_enter_exit(void)
  334. {
  335. unsigned long flags;
  336. static int spin_counter;
  337. if (!pause_on_oops)
  338. return;
  339. spin_lock_irqsave(&pause_on_oops_lock, flags);
  340. if (pause_on_oops_flag == 0) {
  341. /* This CPU may now print the oops message */
  342. pause_on_oops_flag = 1;
  343. } else {
  344. /* We need to stall this CPU */
  345. if (!spin_counter) {
  346. /* This CPU gets to do the counting */
  347. spin_counter = pause_on_oops;
  348. do {
  349. spin_unlock(&pause_on_oops_lock);
  350. spin_msec(MSEC_PER_SEC);
  351. spin_lock(&pause_on_oops_lock);
  352. } while (--spin_counter);
  353. pause_on_oops_flag = 0;
  354. } else {
  355. /* This CPU waits for a different one */
  356. while (spin_counter) {
  357. spin_unlock(&pause_on_oops_lock);
  358. spin_msec(1);
  359. spin_lock(&pause_on_oops_lock);
  360. }
  361. }
  362. }
  363. spin_unlock_irqrestore(&pause_on_oops_lock, flags);
  364. }
  365. /*
  366. * Return true if the calling CPU is allowed to print oops-related info.
  367. * This is a bit racy..
  368. */
  369. int oops_may_print(void)
  370. {
  371. return pause_on_oops_flag == 0;
  372. }
  373. /*
  374. * Called when the architecture enters its oops handler, before it prints
  375. * anything. If this is the first CPU to oops, and it's oopsing the first
  376. * time then let it proceed.
  377. *
  378. * This is all enabled by the pause_on_oops kernel boot option. We do all
  379. * this to ensure that oopses don't scroll off the screen. It has the
  380. * side-effect of preventing later-oopsing CPUs from mucking up the display,
  381. * too.
  382. *
  383. * It turns out that the CPU which is allowed to print ends up pausing for
  384. * the right duration, whereas all the other CPUs pause for twice as long:
  385. * once in oops_enter(), once in oops_exit().
  386. */
  387. void oops_enter(void)
  388. {
  389. tracing_off();
  390. /* can't trust the integrity of the kernel anymore: */
  391. debug_locks_off();
  392. do_oops_enter_exit();
  393. }
  394. /*
  395. * 64-bit random ID for oopses:
  396. */
  397. static u64 oops_id;
  398. static int init_oops_id(void)
  399. {
  400. if (!oops_id)
  401. get_random_bytes(&oops_id, sizeof(oops_id));
  402. else
  403. oops_id++;
  404. return 0;
  405. }
  406. late_initcall(init_oops_id);
  407. void print_oops_end_marker(void)
  408. {
  409. init_oops_id();
  410. pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
  411. }
  412. /*
  413. * Called when the architecture exits its oops handler, after printing
  414. * everything.
  415. */
  416. void oops_exit(void)
  417. {
  418. do_oops_enter_exit();
  419. print_oops_end_marker();
  420. kmsg_dump(KMSG_DUMP_OOPS);
  421. }
  422. struct warn_args {
  423. const char *fmt;
  424. va_list args;
  425. };
  426. void __warn(const char *file, int line, void *caller, unsigned taint,
  427. struct pt_regs *regs, struct warn_args *args)
  428. {
  429. disable_trace_on_warning();
  430. pr_warn("------------[ cut here ]------------\n");
  431. if (file)
  432. pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
  433. raw_smp_processor_id(), current->pid, file, line,
  434. caller);
  435. else
  436. pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
  437. raw_smp_processor_id(), current->pid, caller);
  438. if (args)
  439. vprintk(args->fmt, args->args);
  440. if (panic_on_warn) {
  441. /*
  442. * This thread may hit another WARN() in the panic path.
  443. * Resetting this prevents additional WARN() from panicking the
  444. * system on this thread. Other threads are blocked by the
  445. * panic_mutex in panic().
  446. */
  447. panic_on_warn = 0;
  448. panic("panic_on_warn set ...\n");
  449. }
  450. print_modules();
  451. if (regs)
  452. show_regs(regs);
  453. else
  454. dump_stack();
  455. print_oops_end_marker();
  456. /* Just a warning, don't kill lockdep. */
  457. add_taint(taint, LOCKDEP_STILL_OK);
  458. }
  459. #ifdef WANT_WARN_ON_SLOWPATH
  460. void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
  461. {
  462. struct warn_args args;
  463. args.fmt = fmt;
  464. va_start(args.args, fmt);
  465. __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
  466. &args);
  467. va_end(args.args);
  468. }
  469. EXPORT_SYMBOL(warn_slowpath_fmt);
  470. void warn_slowpath_fmt_taint(const char *file, int line,
  471. unsigned taint, const char *fmt, ...)
  472. {
  473. struct warn_args args;
  474. args.fmt = fmt;
  475. va_start(args.args, fmt);
  476. __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
  477. va_end(args.args);
  478. }
  479. EXPORT_SYMBOL(warn_slowpath_fmt_taint);
  480. void warn_slowpath_null(const char *file, int line)
  481. {
  482. __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
  483. }
  484. EXPORT_SYMBOL(warn_slowpath_null);
  485. #endif
  486. #ifdef CONFIG_CC_STACKPROTECTOR
  487. /*
  488. * Called when gcc's -fstack-protector feature is used, and
  489. * gcc detects corruption of the on-stack canary value
  490. */
  491. __visible void __stack_chk_fail(void)
  492. {
  493. panic("stack-protector: Kernel stack is corrupted in: %p\n",
  494. __builtin_return_address(0));
  495. }
  496. EXPORT_SYMBOL(__stack_chk_fail);
  497. #endif
  498. core_param(panic, panic_timeout, int, 0644);
  499. core_param(pause_on_oops, pause_on_oops, int, 0644);
  500. core_param(panic_on_warn, panic_on_warn, int, 0644);
  501. static int __init setup_crash_kexec_post_notifiers(char *s)
  502. {
  503. crash_kexec_post_notifiers = true;
  504. return 0;
  505. }
  506. early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
  507. static int __init oops_setup(char *s)
  508. {
  509. if (!s)
  510. return -EINVAL;
  511. if (!strcmp(s, "panic"))
  512. panic_on_oops = 1;
  513. return 0;
  514. }
  515. early_param("oops", oops_setup);