fork.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_info(struct thread_info *ti)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE
  140. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  144. THREAD_SIZE_ORDER);
  145. if (page)
  146. memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
  147. 1 << THREAD_SIZE_ORDER);
  148. return page ? page_address(page) : NULL;
  149. }
  150. static inline void free_thread_info(struct thread_info *ti)
  151. {
  152. struct page *page = virt_to_page(ti);
  153. memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
  154. -(1 << THREAD_SIZE_ORDER));
  155. __free_kmem_pages(page, THREAD_SIZE_ORDER);
  156. }
  157. # else
  158. static struct kmem_cache *thread_info_cache;
  159. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  160. int node)
  161. {
  162. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  163. }
  164. static void free_thread_info(struct thread_info *ti)
  165. {
  166. kmem_cache_free(thread_info_cache, ti);
  167. }
  168. void thread_info_cache_init(void)
  169. {
  170. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  171. THREAD_SIZE, 0, NULL);
  172. BUG_ON(thread_info_cache == NULL);
  173. }
  174. # endif
  175. #endif
  176. /* SLAB cache for signal_struct structures (tsk->signal) */
  177. static struct kmem_cache *signal_cachep;
  178. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  179. struct kmem_cache *sighand_cachep;
  180. /* SLAB cache for files_struct structures (tsk->files) */
  181. struct kmem_cache *files_cachep;
  182. /* SLAB cache for fs_struct structures (tsk->fs) */
  183. struct kmem_cache *fs_cachep;
  184. /* SLAB cache for vm_area_struct structures */
  185. struct kmem_cache *vm_area_cachep;
  186. /* SLAB cache for mm_struct structures (tsk->mm) */
  187. static struct kmem_cache *mm_cachep;
  188. static void account_kernel_stack(struct thread_info *ti, int account)
  189. {
  190. struct zone *zone = page_zone(virt_to_page(ti));
  191. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  192. }
  193. void free_task(struct task_struct *tsk)
  194. {
  195. account_kernel_stack(tsk->stack, -1);
  196. arch_release_thread_info(tsk->stack);
  197. free_thread_info(tsk->stack);
  198. rt_mutex_debug_task_free(tsk);
  199. ftrace_graph_exit_task(tsk);
  200. put_seccomp_filter(tsk);
  201. arch_release_task_struct(tsk);
  202. free_task_struct(tsk);
  203. }
  204. EXPORT_SYMBOL(free_task);
  205. static inline void free_signal_struct(struct signal_struct *sig)
  206. {
  207. taskstats_tgid_free(sig);
  208. sched_autogroup_exit(sig);
  209. kmem_cache_free(signal_cachep, sig);
  210. }
  211. static inline void put_signal_struct(struct signal_struct *sig)
  212. {
  213. if (atomic_dec_and_test(&sig->sigcnt))
  214. free_signal_struct(sig);
  215. }
  216. void __put_task_struct(struct task_struct *tsk)
  217. {
  218. WARN_ON(!tsk->exit_state);
  219. WARN_ON(atomic_read(&tsk->usage));
  220. WARN_ON(tsk == current);
  221. cgroup_free(tsk);
  222. task_numa_free(tsk);
  223. security_task_free(tsk);
  224. exit_creds(tsk);
  225. delayacct_tsk_free(tsk);
  226. put_signal_struct(tsk->signal);
  227. if (!profile_handoff_task(tsk))
  228. free_task(tsk);
  229. }
  230. EXPORT_SYMBOL_GPL(__put_task_struct);
  231. void __init __weak arch_task_cache_init(void) { }
  232. /*
  233. * set_max_threads
  234. */
  235. static void set_max_threads(unsigned int max_threads_suggested)
  236. {
  237. u64 threads;
  238. /*
  239. * The number of threads shall be limited such that the thread
  240. * structures may only consume a small part of the available memory.
  241. */
  242. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  243. threads = MAX_THREADS;
  244. else
  245. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  246. (u64) THREAD_SIZE * 8UL);
  247. if (threads > max_threads_suggested)
  248. threads = max_threads_suggested;
  249. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  250. }
  251. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  252. /* Initialized by the architecture: */
  253. int arch_task_struct_size __read_mostly;
  254. #endif
  255. void __init fork_init(void)
  256. {
  257. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  258. #ifndef ARCH_MIN_TASKALIGN
  259. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  260. #endif
  261. /* create a slab on which task_structs can be allocated */
  262. task_struct_cachep = kmem_cache_create("task_struct",
  263. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  264. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  265. #endif
  266. /* do the arch specific task caches init */
  267. arch_task_cache_init();
  268. set_max_threads(MAX_THREADS);
  269. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  270. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  271. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  272. init_task.signal->rlim[RLIMIT_NPROC];
  273. }
  274. int __weak arch_dup_task_struct(struct task_struct *dst,
  275. struct task_struct *src)
  276. {
  277. *dst = *src;
  278. return 0;
  279. }
  280. void set_task_stack_end_magic(struct task_struct *tsk)
  281. {
  282. unsigned long *stackend;
  283. stackend = end_of_stack(tsk);
  284. *stackend = STACK_END_MAGIC; /* for overflow detection */
  285. }
  286. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  287. {
  288. struct task_struct *tsk;
  289. struct thread_info *ti;
  290. int err;
  291. if (node == NUMA_NO_NODE)
  292. node = tsk_fork_get_node(orig);
  293. tsk = alloc_task_struct_node(node);
  294. if (!tsk)
  295. return NULL;
  296. ti = alloc_thread_info_node(tsk, node);
  297. if (!ti)
  298. goto free_tsk;
  299. err = arch_dup_task_struct(tsk, orig);
  300. if (err)
  301. goto free_ti;
  302. tsk->stack = ti;
  303. #ifdef CONFIG_SECCOMP
  304. /*
  305. * We must handle setting up seccomp filters once we're under
  306. * the sighand lock in case orig has changed between now and
  307. * then. Until then, filter must be NULL to avoid messing up
  308. * the usage counts on the error path calling free_task.
  309. */
  310. tsk->seccomp.filter = NULL;
  311. #endif
  312. setup_thread_stack(tsk, orig);
  313. clear_user_return_notifier(tsk);
  314. clear_tsk_need_resched(tsk);
  315. set_task_stack_end_magic(tsk);
  316. #ifdef CONFIG_CC_STACKPROTECTOR
  317. tsk->stack_canary = get_random_int();
  318. #endif
  319. /*
  320. * One for us, one for whoever does the "release_task()" (usually
  321. * parent)
  322. */
  323. atomic_set(&tsk->usage, 2);
  324. #ifdef CONFIG_BLK_DEV_IO_TRACE
  325. tsk->btrace_seq = 0;
  326. #endif
  327. tsk->splice_pipe = NULL;
  328. tsk->task_frag.page = NULL;
  329. tsk->wake_q.next = NULL;
  330. account_kernel_stack(ti, 1);
  331. kcov_task_init(tsk);
  332. return tsk;
  333. free_ti:
  334. free_thread_info(ti);
  335. free_tsk:
  336. free_task_struct(tsk);
  337. return NULL;
  338. }
  339. #ifdef CONFIG_MMU
  340. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  341. {
  342. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  343. struct rb_node **rb_link, *rb_parent;
  344. int retval;
  345. unsigned long charge;
  346. uprobe_start_dup_mmap();
  347. if (down_write_killable(&oldmm->mmap_sem)) {
  348. retval = -EINTR;
  349. goto fail_uprobe_end;
  350. }
  351. flush_cache_dup_mm(oldmm);
  352. uprobe_dup_mmap(oldmm, mm);
  353. /*
  354. * Not linked in yet - no deadlock potential:
  355. */
  356. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  357. /* No ordering required: file already has been exposed. */
  358. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  359. mm->total_vm = oldmm->total_vm;
  360. mm->data_vm = oldmm->data_vm;
  361. mm->exec_vm = oldmm->exec_vm;
  362. mm->stack_vm = oldmm->stack_vm;
  363. rb_link = &mm->mm_rb.rb_node;
  364. rb_parent = NULL;
  365. pprev = &mm->mmap;
  366. retval = ksm_fork(mm, oldmm);
  367. if (retval)
  368. goto out;
  369. retval = khugepaged_fork(mm, oldmm);
  370. if (retval)
  371. goto out;
  372. prev = NULL;
  373. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  374. struct file *file;
  375. if (mpnt->vm_flags & VM_DONTCOPY) {
  376. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  377. continue;
  378. }
  379. charge = 0;
  380. if (mpnt->vm_flags & VM_ACCOUNT) {
  381. unsigned long len = vma_pages(mpnt);
  382. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  383. goto fail_nomem;
  384. charge = len;
  385. }
  386. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  387. if (!tmp)
  388. goto fail_nomem;
  389. *tmp = *mpnt;
  390. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  391. retval = vma_dup_policy(mpnt, tmp);
  392. if (retval)
  393. goto fail_nomem_policy;
  394. tmp->vm_mm = mm;
  395. if (anon_vma_fork(tmp, mpnt))
  396. goto fail_nomem_anon_vma_fork;
  397. tmp->vm_flags &=
  398. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  399. tmp->vm_next = tmp->vm_prev = NULL;
  400. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  401. file = tmp->vm_file;
  402. if (file) {
  403. struct inode *inode = file_inode(file);
  404. struct address_space *mapping = file->f_mapping;
  405. get_file(file);
  406. if (tmp->vm_flags & VM_DENYWRITE)
  407. atomic_dec(&inode->i_writecount);
  408. i_mmap_lock_write(mapping);
  409. if (tmp->vm_flags & VM_SHARED)
  410. atomic_inc(&mapping->i_mmap_writable);
  411. flush_dcache_mmap_lock(mapping);
  412. /* insert tmp into the share list, just after mpnt */
  413. vma_interval_tree_insert_after(tmp, mpnt,
  414. &mapping->i_mmap);
  415. flush_dcache_mmap_unlock(mapping);
  416. i_mmap_unlock_write(mapping);
  417. }
  418. /*
  419. * Clear hugetlb-related page reserves for children. This only
  420. * affects MAP_PRIVATE mappings. Faults generated by the child
  421. * are not guaranteed to succeed, even if read-only
  422. */
  423. if (is_vm_hugetlb_page(tmp))
  424. reset_vma_resv_huge_pages(tmp);
  425. /*
  426. * Link in the new vma and copy the page table entries.
  427. */
  428. *pprev = tmp;
  429. pprev = &tmp->vm_next;
  430. tmp->vm_prev = prev;
  431. prev = tmp;
  432. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  433. rb_link = &tmp->vm_rb.rb_right;
  434. rb_parent = &tmp->vm_rb;
  435. mm->map_count++;
  436. retval = copy_page_range(mm, oldmm, mpnt);
  437. if (tmp->vm_ops && tmp->vm_ops->open)
  438. tmp->vm_ops->open(tmp);
  439. if (retval)
  440. goto out;
  441. }
  442. /* a new mm has just been created */
  443. arch_dup_mmap(oldmm, mm);
  444. retval = 0;
  445. out:
  446. up_write(&mm->mmap_sem);
  447. flush_tlb_mm(oldmm);
  448. up_write(&oldmm->mmap_sem);
  449. fail_uprobe_end:
  450. uprobe_end_dup_mmap();
  451. return retval;
  452. fail_nomem_anon_vma_fork:
  453. mpol_put(vma_policy(tmp));
  454. fail_nomem_policy:
  455. kmem_cache_free(vm_area_cachep, tmp);
  456. fail_nomem:
  457. retval = -ENOMEM;
  458. vm_unacct_memory(charge);
  459. goto out;
  460. }
  461. static inline int mm_alloc_pgd(struct mm_struct *mm)
  462. {
  463. mm->pgd = pgd_alloc(mm);
  464. if (unlikely(!mm->pgd))
  465. return -ENOMEM;
  466. return 0;
  467. }
  468. static inline void mm_free_pgd(struct mm_struct *mm)
  469. {
  470. pgd_free(mm, mm->pgd);
  471. }
  472. #else
  473. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  474. {
  475. down_write(&oldmm->mmap_sem);
  476. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  477. up_write(&oldmm->mmap_sem);
  478. return 0;
  479. }
  480. #define mm_alloc_pgd(mm) (0)
  481. #define mm_free_pgd(mm)
  482. #endif /* CONFIG_MMU */
  483. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  484. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  485. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  486. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  487. static int __init coredump_filter_setup(char *s)
  488. {
  489. default_dump_filter =
  490. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  491. MMF_DUMP_FILTER_MASK;
  492. return 1;
  493. }
  494. __setup("coredump_filter=", coredump_filter_setup);
  495. #include <linux/init_task.h>
  496. static void mm_init_aio(struct mm_struct *mm)
  497. {
  498. #ifdef CONFIG_AIO
  499. spin_lock_init(&mm->ioctx_lock);
  500. mm->ioctx_table = NULL;
  501. #endif
  502. }
  503. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  504. {
  505. #ifdef CONFIG_MEMCG
  506. mm->owner = p;
  507. #endif
  508. }
  509. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  510. {
  511. mm->mmap = NULL;
  512. mm->mm_rb = RB_ROOT;
  513. mm->vmacache_seqnum = 0;
  514. atomic_set(&mm->mm_users, 1);
  515. atomic_set(&mm->mm_count, 1);
  516. init_rwsem(&mm->mmap_sem);
  517. INIT_LIST_HEAD(&mm->mmlist);
  518. mm->core_state = NULL;
  519. atomic_long_set(&mm->nr_ptes, 0);
  520. mm_nr_pmds_init(mm);
  521. mm->map_count = 0;
  522. mm->locked_vm = 0;
  523. mm->pinned_vm = 0;
  524. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  525. spin_lock_init(&mm->page_table_lock);
  526. mm_init_cpumask(mm);
  527. mm_init_aio(mm);
  528. mm_init_owner(mm, p);
  529. mmu_notifier_mm_init(mm);
  530. clear_tlb_flush_pending(mm);
  531. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  532. mm->pmd_huge_pte = NULL;
  533. #endif
  534. if (current->mm) {
  535. mm->flags = current->mm->flags & MMF_INIT_MASK;
  536. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  537. } else {
  538. mm->flags = default_dump_filter;
  539. mm->def_flags = 0;
  540. }
  541. if (mm_alloc_pgd(mm))
  542. goto fail_nopgd;
  543. if (init_new_context(p, mm))
  544. goto fail_nocontext;
  545. return mm;
  546. fail_nocontext:
  547. mm_free_pgd(mm);
  548. fail_nopgd:
  549. free_mm(mm);
  550. return NULL;
  551. }
  552. static void check_mm(struct mm_struct *mm)
  553. {
  554. int i;
  555. for (i = 0; i < NR_MM_COUNTERS; i++) {
  556. long x = atomic_long_read(&mm->rss_stat.count[i]);
  557. if (unlikely(x))
  558. printk(KERN_ALERT "BUG: Bad rss-counter state "
  559. "mm:%p idx:%d val:%ld\n", mm, i, x);
  560. }
  561. if (atomic_long_read(&mm->nr_ptes))
  562. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  563. atomic_long_read(&mm->nr_ptes));
  564. if (mm_nr_pmds(mm))
  565. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  566. mm_nr_pmds(mm));
  567. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  568. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  569. #endif
  570. }
  571. /*
  572. * Allocate and initialize an mm_struct.
  573. */
  574. struct mm_struct *mm_alloc(void)
  575. {
  576. struct mm_struct *mm;
  577. mm = allocate_mm();
  578. if (!mm)
  579. return NULL;
  580. memset(mm, 0, sizeof(*mm));
  581. return mm_init(mm, current);
  582. }
  583. /*
  584. * Called when the last reference to the mm
  585. * is dropped: either by a lazy thread or by
  586. * mmput. Free the page directory and the mm.
  587. */
  588. void __mmdrop(struct mm_struct *mm)
  589. {
  590. BUG_ON(mm == &init_mm);
  591. mm_free_pgd(mm);
  592. destroy_context(mm);
  593. mmu_notifier_mm_destroy(mm);
  594. check_mm(mm);
  595. free_mm(mm);
  596. }
  597. EXPORT_SYMBOL_GPL(__mmdrop);
  598. static inline void __mmput(struct mm_struct *mm)
  599. {
  600. VM_BUG_ON(atomic_read(&mm->mm_users));
  601. uprobe_clear_state(mm);
  602. exit_aio(mm);
  603. ksm_exit(mm);
  604. khugepaged_exit(mm); /* must run before exit_mmap */
  605. exit_mmap(mm);
  606. set_mm_exe_file(mm, NULL);
  607. if (!list_empty(&mm->mmlist)) {
  608. spin_lock(&mmlist_lock);
  609. list_del(&mm->mmlist);
  610. spin_unlock(&mmlist_lock);
  611. }
  612. if (mm->binfmt)
  613. module_put(mm->binfmt->module);
  614. mmdrop(mm);
  615. }
  616. /*
  617. * Decrement the use count and release all resources for an mm.
  618. */
  619. void mmput(struct mm_struct *mm)
  620. {
  621. might_sleep();
  622. if (atomic_dec_and_test(&mm->mm_users))
  623. __mmput(mm);
  624. }
  625. EXPORT_SYMBOL_GPL(mmput);
  626. #ifdef CONFIG_MMU
  627. static void mmput_async_fn(struct work_struct *work)
  628. {
  629. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  630. __mmput(mm);
  631. }
  632. void mmput_async(struct mm_struct *mm)
  633. {
  634. if (atomic_dec_and_test(&mm->mm_users)) {
  635. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  636. schedule_work(&mm->async_put_work);
  637. }
  638. }
  639. #endif
  640. /**
  641. * set_mm_exe_file - change a reference to the mm's executable file
  642. *
  643. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  644. *
  645. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  646. * invocations: in mmput() nobody alive left, in execve task is single
  647. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  648. * mm->exe_file, but does so without using set_mm_exe_file() in order
  649. * to do avoid the need for any locks.
  650. */
  651. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  652. {
  653. struct file *old_exe_file;
  654. /*
  655. * It is safe to dereference the exe_file without RCU as
  656. * this function is only called if nobody else can access
  657. * this mm -- see comment above for justification.
  658. */
  659. old_exe_file = rcu_dereference_raw(mm->exe_file);
  660. if (new_exe_file)
  661. get_file(new_exe_file);
  662. rcu_assign_pointer(mm->exe_file, new_exe_file);
  663. if (old_exe_file)
  664. fput(old_exe_file);
  665. }
  666. /**
  667. * get_mm_exe_file - acquire a reference to the mm's executable file
  668. *
  669. * Returns %NULL if mm has no associated executable file.
  670. * User must release file via fput().
  671. */
  672. struct file *get_mm_exe_file(struct mm_struct *mm)
  673. {
  674. struct file *exe_file;
  675. rcu_read_lock();
  676. exe_file = rcu_dereference(mm->exe_file);
  677. if (exe_file && !get_file_rcu(exe_file))
  678. exe_file = NULL;
  679. rcu_read_unlock();
  680. return exe_file;
  681. }
  682. EXPORT_SYMBOL(get_mm_exe_file);
  683. /**
  684. * get_task_mm - acquire a reference to the task's mm
  685. *
  686. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  687. * this kernel workthread has transiently adopted a user mm with use_mm,
  688. * to do its AIO) is not set and if so returns a reference to it, after
  689. * bumping up the use count. User must release the mm via mmput()
  690. * after use. Typically used by /proc and ptrace.
  691. */
  692. struct mm_struct *get_task_mm(struct task_struct *task)
  693. {
  694. struct mm_struct *mm;
  695. task_lock(task);
  696. mm = task->mm;
  697. if (mm) {
  698. if (task->flags & PF_KTHREAD)
  699. mm = NULL;
  700. else
  701. atomic_inc(&mm->mm_users);
  702. }
  703. task_unlock(task);
  704. return mm;
  705. }
  706. EXPORT_SYMBOL_GPL(get_task_mm);
  707. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  708. {
  709. struct mm_struct *mm;
  710. int err;
  711. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  712. if (err)
  713. return ERR_PTR(err);
  714. mm = get_task_mm(task);
  715. if (mm && mm != current->mm &&
  716. !ptrace_may_access(task, mode)) {
  717. mmput(mm);
  718. mm = ERR_PTR(-EACCES);
  719. }
  720. mutex_unlock(&task->signal->cred_guard_mutex);
  721. return mm;
  722. }
  723. static void complete_vfork_done(struct task_struct *tsk)
  724. {
  725. struct completion *vfork;
  726. task_lock(tsk);
  727. vfork = tsk->vfork_done;
  728. if (likely(vfork)) {
  729. tsk->vfork_done = NULL;
  730. complete(vfork);
  731. }
  732. task_unlock(tsk);
  733. }
  734. static int wait_for_vfork_done(struct task_struct *child,
  735. struct completion *vfork)
  736. {
  737. int killed;
  738. freezer_do_not_count();
  739. killed = wait_for_completion_killable(vfork);
  740. freezer_count();
  741. if (killed) {
  742. task_lock(child);
  743. child->vfork_done = NULL;
  744. task_unlock(child);
  745. }
  746. put_task_struct(child);
  747. return killed;
  748. }
  749. /* Please note the differences between mmput and mm_release.
  750. * mmput is called whenever we stop holding onto a mm_struct,
  751. * error success whatever.
  752. *
  753. * mm_release is called after a mm_struct has been removed
  754. * from the current process.
  755. *
  756. * This difference is important for error handling, when we
  757. * only half set up a mm_struct for a new process and need to restore
  758. * the old one. Because we mmput the new mm_struct before
  759. * restoring the old one. . .
  760. * Eric Biederman 10 January 1998
  761. */
  762. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  763. {
  764. /* Get rid of any futexes when releasing the mm */
  765. #ifdef CONFIG_FUTEX
  766. if (unlikely(tsk->robust_list)) {
  767. exit_robust_list(tsk);
  768. tsk->robust_list = NULL;
  769. }
  770. #ifdef CONFIG_COMPAT
  771. if (unlikely(tsk->compat_robust_list)) {
  772. compat_exit_robust_list(tsk);
  773. tsk->compat_robust_list = NULL;
  774. }
  775. #endif
  776. if (unlikely(!list_empty(&tsk->pi_state_list)))
  777. exit_pi_state_list(tsk);
  778. #endif
  779. uprobe_free_utask(tsk);
  780. /* Get rid of any cached register state */
  781. deactivate_mm(tsk, mm);
  782. /*
  783. * If we're exiting normally, clear a user-space tid field if
  784. * requested. We leave this alone when dying by signal, to leave
  785. * the value intact in a core dump, and to save the unnecessary
  786. * trouble, say, a killed vfork parent shouldn't touch this mm.
  787. * Userland only wants this done for a sys_exit.
  788. */
  789. if (tsk->clear_child_tid) {
  790. if (!(tsk->flags & PF_SIGNALED) &&
  791. atomic_read(&mm->mm_users) > 1) {
  792. /*
  793. * We don't check the error code - if userspace has
  794. * not set up a proper pointer then tough luck.
  795. */
  796. put_user(0, tsk->clear_child_tid);
  797. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  798. 1, NULL, NULL, 0);
  799. }
  800. tsk->clear_child_tid = NULL;
  801. }
  802. /*
  803. * All done, finally we can wake up parent and return this mm to him.
  804. * Also kthread_stop() uses this completion for synchronization.
  805. */
  806. if (tsk->vfork_done)
  807. complete_vfork_done(tsk);
  808. }
  809. /*
  810. * Allocate a new mm structure and copy contents from the
  811. * mm structure of the passed in task structure.
  812. */
  813. static struct mm_struct *dup_mm(struct task_struct *tsk)
  814. {
  815. struct mm_struct *mm, *oldmm = current->mm;
  816. int err;
  817. mm = allocate_mm();
  818. if (!mm)
  819. goto fail_nomem;
  820. memcpy(mm, oldmm, sizeof(*mm));
  821. if (!mm_init(mm, tsk))
  822. goto fail_nomem;
  823. err = dup_mmap(mm, oldmm);
  824. if (err)
  825. goto free_pt;
  826. mm->hiwater_rss = get_mm_rss(mm);
  827. mm->hiwater_vm = mm->total_vm;
  828. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  829. goto free_pt;
  830. return mm;
  831. free_pt:
  832. /* don't put binfmt in mmput, we haven't got module yet */
  833. mm->binfmt = NULL;
  834. mmput(mm);
  835. fail_nomem:
  836. return NULL;
  837. }
  838. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  839. {
  840. struct mm_struct *mm, *oldmm;
  841. int retval;
  842. tsk->min_flt = tsk->maj_flt = 0;
  843. tsk->nvcsw = tsk->nivcsw = 0;
  844. #ifdef CONFIG_DETECT_HUNG_TASK
  845. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  846. #endif
  847. tsk->mm = NULL;
  848. tsk->active_mm = NULL;
  849. /*
  850. * Are we cloning a kernel thread?
  851. *
  852. * We need to steal a active VM for that..
  853. */
  854. oldmm = current->mm;
  855. if (!oldmm)
  856. return 0;
  857. /* initialize the new vmacache entries */
  858. vmacache_flush(tsk);
  859. if (clone_flags & CLONE_VM) {
  860. atomic_inc(&oldmm->mm_users);
  861. mm = oldmm;
  862. goto good_mm;
  863. }
  864. retval = -ENOMEM;
  865. mm = dup_mm(tsk);
  866. if (!mm)
  867. goto fail_nomem;
  868. good_mm:
  869. tsk->mm = mm;
  870. tsk->active_mm = mm;
  871. return 0;
  872. fail_nomem:
  873. return retval;
  874. }
  875. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  876. {
  877. struct fs_struct *fs = current->fs;
  878. if (clone_flags & CLONE_FS) {
  879. /* tsk->fs is already what we want */
  880. spin_lock(&fs->lock);
  881. if (fs->in_exec) {
  882. spin_unlock(&fs->lock);
  883. return -EAGAIN;
  884. }
  885. fs->users++;
  886. spin_unlock(&fs->lock);
  887. return 0;
  888. }
  889. tsk->fs = copy_fs_struct(fs);
  890. if (!tsk->fs)
  891. return -ENOMEM;
  892. return 0;
  893. }
  894. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  895. {
  896. struct files_struct *oldf, *newf;
  897. int error = 0;
  898. /*
  899. * A background process may not have any files ...
  900. */
  901. oldf = current->files;
  902. if (!oldf)
  903. goto out;
  904. if (clone_flags & CLONE_FILES) {
  905. atomic_inc(&oldf->count);
  906. goto out;
  907. }
  908. newf = dup_fd(oldf, &error);
  909. if (!newf)
  910. goto out;
  911. tsk->files = newf;
  912. error = 0;
  913. out:
  914. return error;
  915. }
  916. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  917. {
  918. #ifdef CONFIG_BLOCK
  919. struct io_context *ioc = current->io_context;
  920. struct io_context *new_ioc;
  921. if (!ioc)
  922. return 0;
  923. /*
  924. * Share io context with parent, if CLONE_IO is set
  925. */
  926. if (clone_flags & CLONE_IO) {
  927. ioc_task_link(ioc);
  928. tsk->io_context = ioc;
  929. } else if (ioprio_valid(ioc->ioprio)) {
  930. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  931. if (unlikely(!new_ioc))
  932. return -ENOMEM;
  933. new_ioc->ioprio = ioc->ioprio;
  934. put_io_context(new_ioc);
  935. }
  936. #endif
  937. return 0;
  938. }
  939. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  940. {
  941. struct sighand_struct *sig;
  942. if (clone_flags & CLONE_SIGHAND) {
  943. atomic_inc(&current->sighand->count);
  944. return 0;
  945. }
  946. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  947. rcu_assign_pointer(tsk->sighand, sig);
  948. if (!sig)
  949. return -ENOMEM;
  950. atomic_set(&sig->count, 1);
  951. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  952. return 0;
  953. }
  954. void __cleanup_sighand(struct sighand_struct *sighand)
  955. {
  956. if (atomic_dec_and_test(&sighand->count)) {
  957. signalfd_cleanup(sighand);
  958. /*
  959. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  960. * without an RCU grace period, see __lock_task_sighand().
  961. */
  962. kmem_cache_free(sighand_cachep, sighand);
  963. }
  964. }
  965. /*
  966. * Initialize POSIX timer handling for a thread group.
  967. */
  968. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  969. {
  970. unsigned long cpu_limit;
  971. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  972. if (cpu_limit != RLIM_INFINITY) {
  973. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  974. sig->cputimer.running = true;
  975. }
  976. /* The timer lists. */
  977. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  978. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  979. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  980. }
  981. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  982. {
  983. struct signal_struct *sig;
  984. if (clone_flags & CLONE_THREAD)
  985. return 0;
  986. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  987. tsk->signal = sig;
  988. if (!sig)
  989. return -ENOMEM;
  990. sig->nr_threads = 1;
  991. atomic_set(&sig->live, 1);
  992. atomic_set(&sig->sigcnt, 1);
  993. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  994. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  995. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  996. init_waitqueue_head(&sig->wait_chldexit);
  997. sig->curr_target = tsk;
  998. init_sigpending(&sig->shared_pending);
  999. INIT_LIST_HEAD(&sig->posix_timers);
  1000. seqlock_init(&sig->stats_lock);
  1001. prev_cputime_init(&sig->prev_cputime);
  1002. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1003. sig->real_timer.function = it_real_fn;
  1004. task_lock(current->group_leader);
  1005. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1006. task_unlock(current->group_leader);
  1007. posix_cpu_timers_init_group(sig);
  1008. tty_audit_fork(sig);
  1009. sched_autogroup_fork(sig);
  1010. sig->oom_score_adj = current->signal->oom_score_adj;
  1011. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1012. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1013. current->signal->is_child_subreaper;
  1014. mutex_init(&sig->cred_guard_mutex);
  1015. return 0;
  1016. }
  1017. static void copy_seccomp(struct task_struct *p)
  1018. {
  1019. #ifdef CONFIG_SECCOMP
  1020. /*
  1021. * Must be called with sighand->lock held, which is common to
  1022. * all threads in the group. Holding cred_guard_mutex is not
  1023. * needed because this new task is not yet running and cannot
  1024. * be racing exec.
  1025. */
  1026. assert_spin_locked(&current->sighand->siglock);
  1027. /* Ref-count the new filter user, and assign it. */
  1028. get_seccomp_filter(current);
  1029. p->seccomp = current->seccomp;
  1030. /*
  1031. * Explicitly enable no_new_privs here in case it got set
  1032. * between the task_struct being duplicated and holding the
  1033. * sighand lock. The seccomp state and nnp must be in sync.
  1034. */
  1035. if (task_no_new_privs(current))
  1036. task_set_no_new_privs(p);
  1037. /*
  1038. * If the parent gained a seccomp mode after copying thread
  1039. * flags and between before we held the sighand lock, we have
  1040. * to manually enable the seccomp thread flag here.
  1041. */
  1042. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1043. set_tsk_thread_flag(p, TIF_SECCOMP);
  1044. #endif
  1045. }
  1046. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1047. {
  1048. current->clear_child_tid = tidptr;
  1049. return task_pid_vnr(current);
  1050. }
  1051. static void rt_mutex_init_task(struct task_struct *p)
  1052. {
  1053. raw_spin_lock_init(&p->pi_lock);
  1054. #ifdef CONFIG_RT_MUTEXES
  1055. p->pi_waiters = RB_ROOT;
  1056. p->pi_waiters_leftmost = NULL;
  1057. p->pi_blocked_on = NULL;
  1058. #endif
  1059. }
  1060. /*
  1061. * Initialize POSIX timer handling for a single task.
  1062. */
  1063. static void posix_cpu_timers_init(struct task_struct *tsk)
  1064. {
  1065. tsk->cputime_expires.prof_exp = 0;
  1066. tsk->cputime_expires.virt_exp = 0;
  1067. tsk->cputime_expires.sched_exp = 0;
  1068. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1069. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1070. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1071. }
  1072. static inline void
  1073. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1074. {
  1075. task->pids[type].pid = pid;
  1076. }
  1077. /*
  1078. * This creates a new process as a copy of the old one,
  1079. * but does not actually start it yet.
  1080. *
  1081. * It copies the registers, and all the appropriate
  1082. * parts of the process environment (as per the clone
  1083. * flags). The actual kick-off is left to the caller.
  1084. */
  1085. static struct task_struct *copy_process(unsigned long clone_flags,
  1086. unsigned long stack_start,
  1087. unsigned long stack_size,
  1088. int __user *child_tidptr,
  1089. struct pid *pid,
  1090. int trace,
  1091. unsigned long tls,
  1092. int node)
  1093. {
  1094. int retval;
  1095. struct task_struct *p;
  1096. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1097. return ERR_PTR(-EINVAL);
  1098. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1099. return ERR_PTR(-EINVAL);
  1100. /*
  1101. * Thread groups must share signals as well, and detached threads
  1102. * can only be started up within the thread group.
  1103. */
  1104. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1105. return ERR_PTR(-EINVAL);
  1106. /*
  1107. * Shared signal handlers imply shared VM. By way of the above,
  1108. * thread groups also imply shared VM. Blocking this case allows
  1109. * for various simplifications in other code.
  1110. */
  1111. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1112. return ERR_PTR(-EINVAL);
  1113. /*
  1114. * Siblings of global init remain as zombies on exit since they are
  1115. * not reaped by their parent (swapper). To solve this and to avoid
  1116. * multi-rooted process trees, prevent global and container-inits
  1117. * from creating siblings.
  1118. */
  1119. if ((clone_flags & CLONE_PARENT) &&
  1120. current->signal->flags & SIGNAL_UNKILLABLE)
  1121. return ERR_PTR(-EINVAL);
  1122. /*
  1123. * If the new process will be in a different pid or user namespace
  1124. * do not allow it to share a thread group with the forking task.
  1125. */
  1126. if (clone_flags & CLONE_THREAD) {
  1127. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1128. (task_active_pid_ns(current) !=
  1129. current->nsproxy->pid_ns_for_children))
  1130. return ERR_PTR(-EINVAL);
  1131. }
  1132. retval = security_task_create(clone_flags);
  1133. if (retval)
  1134. goto fork_out;
  1135. retval = -ENOMEM;
  1136. p = dup_task_struct(current, node);
  1137. if (!p)
  1138. goto fork_out;
  1139. ftrace_graph_init_task(p);
  1140. rt_mutex_init_task(p);
  1141. #ifdef CONFIG_PROVE_LOCKING
  1142. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1143. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1144. #endif
  1145. retval = -EAGAIN;
  1146. if (atomic_read(&p->real_cred->user->processes) >=
  1147. task_rlimit(p, RLIMIT_NPROC)) {
  1148. if (p->real_cred->user != INIT_USER &&
  1149. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1150. goto bad_fork_free;
  1151. }
  1152. current->flags &= ~PF_NPROC_EXCEEDED;
  1153. retval = copy_creds(p, clone_flags);
  1154. if (retval < 0)
  1155. goto bad_fork_free;
  1156. /*
  1157. * If multiple threads are within copy_process(), then this check
  1158. * triggers too late. This doesn't hurt, the check is only there
  1159. * to stop root fork bombs.
  1160. */
  1161. retval = -EAGAIN;
  1162. if (nr_threads >= max_threads)
  1163. goto bad_fork_cleanup_count;
  1164. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1165. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1166. p->flags |= PF_FORKNOEXEC;
  1167. INIT_LIST_HEAD(&p->children);
  1168. INIT_LIST_HEAD(&p->sibling);
  1169. rcu_copy_process(p);
  1170. p->vfork_done = NULL;
  1171. spin_lock_init(&p->alloc_lock);
  1172. init_sigpending(&p->pending);
  1173. p->utime = p->stime = p->gtime = 0;
  1174. p->utimescaled = p->stimescaled = 0;
  1175. prev_cputime_init(&p->prev_cputime);
  1176. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1177. seqcount_init(&p->vtime_seqcount);
  1178. p->vtime_snap = 0;
  1179. p->vtime_snap_whence = VTIME_INACTIVE;
  1180. #endif
  1181. #if defined(SPLIT_RSS_COUNTING)
  1182. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1183. #endif
  1184. p->default_timer_slack_ns = current->timer_slack_ns;
  1185. task_io_accounting_init(&p->ioac);
  1186. acct_clear_integrals(p);
  1187. posix_cpu_timers_init(p);
  1188. p->start_time = ktime_get_ns();
  1189. p->real_start_time = ktime_get_boot_ns();
  1190. p->io_context = NULL;
  1191. p->audit_context = NULL;
  1192. threadgroup_change_begin(current);
  1193. cgroup_fork(p);
  1194. #ifdef CONFIG_NUMA
  1195. p->mempolicy = mpol_dup(p->mempolicy);
  1196. if (IS_ERR(p->mempolicy)) {
  1197. retval = PTR_ERR(p->mempolicy);
  1198. p->mempolicy = NULL;
  1199. goto bad_fork_cleanup_threadgroup_lock;
  1200. }
  1201. #endif
  1202. #ifdef CONFIG_CPUSETS
  1203. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1204. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1205. seqcount_init(&p->mems_allowed_seq);
  1206. #endif
  1207. #ifdef CONFIG_TRACE_IRQFLAGS
  1208. p->irq_events = 0;
  1209. p->hardirqs_enabled = 0;
  1210. p->hardirq_enable_ip = 0;
  1211. p->hardirq_enable_event = 0;
  1212. p->hardirq_disable_ip = _THIS_IP_;
  1213. p->hardirq_disable_event = 0;
  1214. p->softirqs_enabled = 1;
  1215. p->softirq_enable_ip = _THIS_IP_;
  1216. p->softirq_enable_event = 0;
  1217. p->softirq_disable_ip = 0;
  1218. p->softirq_disable_event = 0;
  1219. p->hardirq_context = 0;
  1220. p->softirq_context = 0;
  1221. #endif
  1222. p->pagefault_disabled = 0;
  1223. #ifdef CONFIG_LOCKDEP
  1224. p->lockdep_depth = 0; /* no locks held yet */
  1225. p->curr_chain_key = 0;
  1226. p->lockdep_recursion = 0;
  1227. #endif
  1228. #ifdef CONFIG_DEBUG_MUTEXES
  1229. p->blocked_on = NULL; /* not blocked yet */
  1230. #endif
  1231. #ifdef CONFIG_BCACHE
  1232. p->sequential_io = 0;
  1233. p->sequential_io_avg = 0;
  1234. #endif
  1235. /* Perform scheduler related setup. Assign this task to a CPU. */
  1236. retval = sched_fork(clone_flags, p);
  1237. if (retval)
  1238. goto bad_fork_cleanup_policy;
  1239. retval = perf_event_init_task(p);
  1240. if (retval)
  1241. goto bad_fork_cleanup_policy;
  1242. retval = audit_alloc(p);
  1243. if (retval)
  1244. goto bad_fork_cleanup_perf;
  1245. /* copy all the process information */
  1246. shm_init_task(p);
  1247. retval = copy_semundo(clone_flags, p);
  1248. if (retval)
  1249. goto bad_fork_cleanup_audit;
  1250. retval = copy_files(clone_flags, p);
  1251. if (retval)
  1252. goto bad_fork_cleanup_semundo;
  1253. retval = copy_fs(clone_flags, p);
  1254. if (retval)
  1255. goto bad_fork_cleanup_files;
  1256. retval = copy_sighand(clone_flags, p);
  1257. if (retval)
  1258. goto bad_fork_cleanup_fs;
  1259. retval = copy_signal(clone_flags, p);
  1260. if (retval)
  1261. goto bad_fork_cleanup_sighand;
  1262. retval = copy_mm(clone_flags, p);
  1263. if (retval)
  1264. goto bad_fork_cleanup_signal;
  1265. retval = copy_namespaces(clone_flags, p);
  1266. if (retval)
  1267. goto bad_fork_cleanup_mm;
  1268. retval = copy_io(clone_flags, p);
  1269. if (retval)
  1270. goto bad_fork_cleanup_namespaces;
  1271. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1272. if (retval)
  1273. goto bad_fork_cleanup_io;
  1274. if (pid != &init_struct_pid) {
  1275. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1276. if (IS_ERR(pid)) {
  1277. retval = PTR_ERR(pid);
  1278. goto bad_fork_cleanup_thread;
  1279. }
  1280. }
  1281. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1282. /*
  1283. * Clear TID on mm_release()?
  1284. */
  1285. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1286. #ifdef CONFIG_BLOCK
  1287. p->plug = NULL;
  1288. #endif
  1289. #ifdef CONFIG_FUTEX
  1290. p->robust_list = NULL;
  1291. #ifdef CONFIG_COMPAT
  1292. p->compat_robust_list = NULL;
  1293. #endif
  1294. INIT_LIST_HEAD(&p->pi_state_list);
  1295. p->pi_state_cache = NULL;
  1296. #endif
  1297. /*
  1298. * sigaltstack should be cleared when sharing the same VM
  1299. */
  1300. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1301. sas_ss_reset(p);
  1302. /*
  1303. * Syscall tracing and stepping should be turned off in the
  1304. * child regardless of CLONE_PTRACE.
  1305. */
  1306. user_disable_single_step(p);
  1307. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1308. #ifdef TIF_SYSCALL_EMU
  1309. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1310. #endif
  1311. clear_all_latency_tracing(p);
  1312. /* ok, now we should be set up.. */
  1313. p->pid = pid_nr(pid);
  1314. if (clone_flags & CLONE_THREAD) {
  1315. p->exit_signal = -1;
  1316. p->group_leader = current->group_leader;
  1317. p->tgid = current->tgid;
  1318. } else {
  1319. if (clone_flags & CLONE_PARENT)
  1320. p->exit_signal = current->group_leader->exit_signal;
  1321. else
  1322. p->exit_signal = (clone_flags & CSIGNAL);
  1323. p->group_leader = p;
  1324. p->tgid = p->pid;
  1325. }
  1326. p->nr_dirtied = 0;
  1327. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1328. p->dirty_paused_when = 0;
  1329. p->pdeath_signal = 0;
  1330. INIT_LIST_HEAD(&p->thread_group);
  1331. p->task_works = NULL;
  1332. /*
  1333. * Ensure that the cgroup subsystem policies allow the new process to be
  1334. * forked. It should be noted the the new process's css_set can be changed
  1335. * between here and cgroup_post_fork() if an organisation operation is in
  1336. * progress.
  1337. */
  1338. retval = cgroup_can_fork(p);
  1339. if (retval)
  1340. goto bad_fork_free_pid;
  1341. /*
  1342. * Make it visible to the rest of the system, but dont wake it up yet.
  1343. * Need tasklist lock for parent etc handling!
  1344. */
  1345. write_lock_irq(&tasklist_lock);
  1346. /* CLONE_PARENT re-uses the old parent */
  1347. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1348. p->real_parent = current->real_parent;
  1349. p->parent_exec_id = current->parent_exec_id;
  1350. } else {
  1351. p->real_parent = current;
  1352. p->parent_exec_id = current->self_exec_id;
  1353. }
  1354. spin_lock(&current->sighand->siglock);
  1355. /*
  1356. * Copy seccomp details explicitly here, in case they were changed
  1357. * before holding sighand lock.
  1358. */
  1359. copy_seccomp(p);
  1360. /*
  1361. * Process group and session signals need to be delivered to just the
  1362. * parent before the fork or both the parent and the child after the
  1363. * fork. Restart if a signal comes in before we add the new process to
  1364. * it's process group.
  1365. * A fatal signal pending means that current will exit, so the new
  1366. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1367. */
  1368. recalc_sigpending();
  1369. if (signal_pending(current)) {
  1370. spin_unlock(&current->sighand->siglock);
  1371. write_unlock_irq(&tasklist_lock);
  1372. retval = -ERESTARTNOINTR;
  1373. goto bad_fork_cancel_cgroup;
  1374. }
  1375. if (likely(p->pid)) {
  1376. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1377. init_task_pid(p, PIDTYPE_PID, pid);
  1378. if (thread_group_leader(p)) {
  1379. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1380. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1381. if (is_child_reaper(pid)) {
  1382. ns_of_pid(pid)->child_reaper = p;
  1383. p->signal->flags |= SIGNAL_UNKILLABLE;
  1384. }
  1385. p->signal->leader_pid = pid;
  1386. p->signal->tty = tty_kref_get(current->signal->tty);
  1387. list_add_tail(&p->sibling, &p->real_parent->children);
  1388. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1389. attach_pid(p, PIDTYPE_PGID);
  1390. attach_pid(p, PIDTYPE_SID);
  1391. __this_cpu_inc(process_counts);
  1392. } else {
  1393. current->signal->nr_threads++;
  1394. atomic_inc(&current->signal->live);
  1395. atomic_inc(&current->signal->sigcnt);
  1396. list_add_tail_rcu(&p->thread_group,
  1397. &p->group_leader->thread_group);
  1398. list_add_tail_rcu(&p->thread_node,
  1399. &p->signal->thread_head);
  1400. }
  1401. attach_pid(p, PIDTYPE_PID);
  1402. nr_threads++;
  1403. }
  1404. total_forks++;
  1405. spin_unlock(&current->sighand->siglock);
  1406. syscall_tracepoint_update(p);
  1407. write_unlock_irq(&tasklist_lock);
  1408. proc_fork_connector(p);
  1409. cgroup_post_fork(p);
  1410. threadgroup_change_end(current);
  1411. perf_event_fork(p);
  1412. trace_task_newtask(p, clone_flags);
  1413. uprobe_copy_process(p, clone_flags);
  1414. return p;
  1415. bad_fork_cancel_cgroup:
  1416. cgroup_cancel_fork(p);
  1417. bad_fork_free_pid:
  1418. if (pid != &init_struct_pid)
  1419. free_pid(pid);
  1420. bad_fork_cleanup_thread:
  1421. exit_thread(p);
  1422. bad_fork_cleanup_io:
  1423. if (p->io_context)
  1424. exit_io_context(p);
  1425. bad_fork_cleanup_namespaces:
  1426. exit_task_namespaces(p);
  1427. bad_fork_cleanup_mm:
  1428. if (p->mm)
  1429. mmput(p->mm);
  1430. bad_fork_cleanup_signal:
  1431. if (!(clone_flags & CLONE_THREAD))
  1432. free_signal_struct(p->signal);
  1433. bad_fork_cleanup_sighand:
  1434. __cleanup_sighand(p->sighand);
  1435. bad_fork_cleanup_fs:
  1436. exit_fs(p); /* blocking */
  1437. bad_fork_cleanup_files:
  1438. exit_files(p); /* blocking */
  1439. bad_fork_cleanup_semundo:
  1440. exit_sem(p);
  1441. bad_fork_cleanup_audit:
  1442. audit_free(p);
  1443. bad_fork_cleanup_perf:
  1444. perf_event_free_task(p);
  1445. bad_fork_cleanup_policy:
  1446. #ifdef CONFIG_NUMA
  1447. mpol_put(p->mempolicy);
  1448. bad_fork_cleanup_threadgroup_lock:
  1449. #endif
  1450. threadgroup_change_end(current);
  1451. delayacct_tsk_free(p);
  1452. bad_fork_cleanup_count:
  1453. atomic_dec(&p->cred->user->processes);
  1454. exit_creds(p);
  1455. bad_fork_free:
  1456. free_task(p);
  1457. fork_out:
  1458. return ERR_PTR(retval);
  1459. }
  1460. static inline void init_idle_pids(struct pid_link *links)
  1461. {
  1462. enum pid_type type;
  1463. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1464. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1465. links[type].pid = &init_struct_pid;
  1466. }
  1467. }
  1468. struct task_struct *fork_idle(int cpu)
  1469. {
  1470. struct task_struct *task;
  1471. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1472. cpu_to_node(cpu));
  1473. if (!IS_ERR(task)) {
  1474. init_idle_pids(task->pids);
  1475. init_idle(task, cpu);
  1476. }
  1477. return task;
  1478. }
  1479. /*
  1480. * Ok, this is the main fork-routine.
  1481. *
  1482. * It copies the process, and if successful kick-starts
  1483. * it and waits for it to finish using the VM if required.
  1484. */
  1485. long _do_fork(unsigned long clone_flags,
  1486. unsigned long stack_start,
  1487. unsigned long stack_size,
  1488. int __user *parent_tidptr,
  1489. int __user *child_tidptr,
  1490. unsigned long tls)
  1491. {
  1492. struct task_struct *p;
  1493. int trace = 0;
  1494. long nr;
  1495. /*
  1496. * Determine whether and which event to report to ptracer. When
  1497. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1498. * requested, no event is reported; otherwise, report if the event
  1499. * for the type of forking is enabled.
  1500. */
  1501. if (!(clone_flags & CLONE_UNTRACED)) {
  1502. if (clone_flags & CLONE_VFORK)
  1503. trace = PTRACE_EVENT_VFORK;
  1504. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1505. trace = PTRACE_EVENT_CLONE;
  1506. else
  1507. trace = PTRACE_EVENT_FORK;
  1508. if (likely(!ptrace_event_enabled(current, trace)))
  1509. trace = 0;
  1510. }
  1511. p = copy_process(clone_flags, stack_start, stack_size,
  1512. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1513. /*
  1514. * Do this prior waking up the new thread - the thread pointer
  1515. * might get invalid after that point, if the thread exits quickly.
  1516. */
  1517. if (!IS_ERR(p)) {
  1518. struct completion vfork;
  1519. struct pid *pid;
  1520. trace_sched_process_fork(current, p);
  1521. pid = get_task_pid(p, PIDTYPE_PID);
  1522. nr = pid_vnr(pid);
  1523. if (clone_flags & CLONE_PARENT_SETTID)
  1524. put_user(nr, parent_tidptr);
  1525. if (clone_flags & CLONE_VFORK) {
  1526. p->vfork_done = &vfork;
  1527. init_completion(&vfork);
  1528. get_task_struct(p);
  1529. }
  1530. wake_up_new_task(p);
  1531. /* forking complete and child started to run, tell ptracer */
  1532. if (unlikely(trace))
  1533. ptrace_event_pid(trace, pid);
  1534. if (clone_flags & CLONE_VFORK) {
  1535. if (!wait_for_vfork_done(p, &vfork))
  1536. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1537. }
  1538. put_pid(pid);
  1539. } else {
  1540. nr = PTR_ERR(p);
  1541. }
  1542. return nr;
  1543. }
  1544. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1545. /* For compatibility with architectures that call do_fork directly rather than
  1546. * using the syscall entry points below. */
  1547. long do_fork(unsigned long clone_flags,
  1548. unsigned long stack_start,
  1549. unsigned long stack_size,
  1550. int __user *parent_tidptr,
  1551. int __user *child_tidptr)
  1552. {
  1553. return _do_fork(clone_flags, stack_start, stack_size,
  1554. parent_tidptr, child_tidptr, 0);
  1555. }
  1556. #endif
  1557. /*
  1558. * Create a kernel thread.
  1559. */
  1560. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1561. {
  1562. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1563. (unsigned long)arg, NULL, NULL, 0);
  1564. }
  1565. #ifdef __ARCH_WANT_SYS_FORK
  1566. SYSCALL_DEFINE0(fork)
  1567. {
  1568. #ifdef CONFIG_MMU
  1569. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1570. #else
  1571. /* can not support in nommu mode */
  1572. return -EINVAL;
  1573. #endif
  1574. }
  1575. #endif
  1576. #ifdef __ARCH_WANT_SYS_VFORK
  1577. SYSCALL_DEFINE0(vfork)
  1578. {
  1579. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1580. 0, NULL, NULL, 0);
  1581. }
  1582. #endif
  1583. #ifdef __ARCH_WANT_SYS_CLONE
  1584. #ifdef CONFIG_CLONE_BACKWARDS
  1585. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1586. int __user *, parent_tidptr,
  1587. unsigned long, tls,
  1588. int __user *, child_tidptr)
  1589. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1590. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1591. int __user *, parent_tidptr,
  1592. int __user *, child_tidptr,
  1593. unsigned long, tls)
  1594. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1595. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1596. int, stack_size,
  1597. int __user *, parent_tidptr,
  1598. int __user *, child_tidptr,
  1599. unsigned long, tls)
  1600. #else
  1601. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1602. int __user *, parent_tidptr,
  1603. int __user *, child_tidptr,
  1604. unsigned long, tls)
  1605. #endif
  1606. {
  1607. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1608. }
  1609. #endif
  1610. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1611. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1612. #endif
  1613. static void sighand_ctor(void *data)
  1614. {
  1615. struct sighand_struct *sighand = data;
  1616. spin_lock_init(&sighand->siglock);
  1617. init_waitqueue_head(&sighand->signalfd_wqh);
  1618. }
  1619. void __init proc_caches_init(void)
  1620. {
  1621. sighand_cachep = kmem_cache_create("sighand_cache",
  1622. sizeof(struct sighand_struct), 0,
  1623. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1624. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1625. signal_cachep = kmem_cache_create("signal_cache",
  1626. sizeof(struct signal_struct), 0,
  1627. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1628. NULL);
  1629. files_cachep = kmem_cache_create("files_cache",
  1630. sizeof(struct files_struct), 0,
  1631. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1632. NULL);
  1633. fs_cachep = kmem_cache_create("fs_cache",
  1634. sizeof(struct fs_struct), 0,
  1635. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1636. NULL);
  1637. /*
  1638. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1639. * whole struct cpumask for the OFFSTACK case. We could change
  1640. * this to *only* allocate as much of it as required by the
  1641. * maximum number of CPU's we can ever have. The cpumask_allocation
  1642. * is at the end of the structure, exactly for that reason.
  1643. */
  1644. mm_cachep = kmem_cache_create("mm_struct",
  1645. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1646. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1647. NULL);
  1648. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1649. mmap_init();
  1650. nsproxy_cache_init();
  1651. }
  1652. /*
  1653. * Check constraints on flags passed to the unshare system call.
  1654. */
  1655. static int check_unshare_flags(unsigned long unshare_flags)
  1656. {
  1657. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1658. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1659. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1660. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1661. return -EINVAL;
  1662. /*
  1663. * Not implemented, but pretend it works if there is nothing
  1664. * to unshare. Note that unsharing the address space or the
  1665. * signal handlers also need to unshare the signal queues (aka
  1666. * CLONE_THREAD).
  1667. */
  1668. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1669. if (!thread_group_empty(current))
  1670. return -EINVAL;
  1671. }
  1672. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1673. if (atomic_read(&current->sighand->count) > 1)
  1674. return -EINVAL;
  1675. }
  1676. if (unshare_flags & CLONE_VM) {
  1677. if (!current_is_single_threaded())
  1678. return -EINVAL;
  1679. }
  1680. return 0;
  1681. }
  1682. /*
  1683. * Unshare the filesystem structure if it is being shared
  1684. */
  1685. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1686. {
  1687. struct fs_struct *fs = current->fs;
  1688. if (!(unshare_flags & CLONE_FS) || !fs)
  1689. return 0;
  1690. /* don't need lock here; in the worst case we'll do useless copy */
  1691. if (fs->users == 1)
  1692. return 0;
  1693. *new_fsp = copy_fs_struct(fs);
  1694. if (!*new_fsp)
  1695. return -ENOMEM;
  1696. return 0;
  1697. }
  1698. /*
  1699. * Unshare file descriptor table if it is being shared
  1700. */
  1701. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1702. {
  1703. struct files_struct *fd = current->files;
  1704. int error = 0;
  1705. if ((unshare_flags & CLONE_FILES) &&
  1706. (fd && atomic_read(&fd->count) > 1)) {
  1707. *new_fdp = dup_fd(fd, &error);
  1708. if (!*new_fdp)
  1709. return error;
  1710. }
  1711. return 0;
  1712. }
  1713. /*
  1714. * unshare allows a process to 'unshare' part of the process
  1715. * context which was originally shared using clone. copy_*
  1716. * functions used by do_fork() cannot be used here directly
  1717. * because they modify an inactive task_struct that is being
  1718. * constructed. Here we are modifying the current, active,
  1719. * task_struct.
  1720. */
  1721. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1722. {
  1723. struct fs_struct *fs, *new_fs = NULL;
  1724. struct files_struct *fd, *new_fd = NULL;
  1725. struct cred *new_cred = NULL;
  1726. struct nsproxy *new_nsproxy = NULL;
  1727. int do_sysvsem = 0;
  1728. int err;
  1729. /*
  1730. * If unsharing a user namespace must also unshare the thread group
  1731. * and unshare the filesystem root and working directories.
  1732. */
  1733. if (unshare_flags & CLONE_NEWUSER)
  1734. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1735. /*
  1736. * If unsharing vm, must also unshare signal handlers.
  1737. */
  1738. if (unshare_flags & CLONE_VM)
  1739. unshare_flags |= CLONE_SIGHAND;
  1740. /*
  1741. * If unsharing a signal handlers, must also unshare the signal queues.
  1742. */
  1743. if (unshare_flags & CLONE_SIGHAND)
  1744. unshare_flags |= CLONE_THREAD;
  1745. /*
  1746. * If unsharing namespace, must also unshare filesystem information.
  1747. */
  1748. if (unshare_flags & CLONE_NEWNS)
  1749. unshare_flags |= CLONE_FS;
  1750. err = check_unshare_flags(unshare_flags);
  1751. if (err)
  1752. goto bad_unshare_out;
  1753. /*
  1754. * CLONE_NEWIPC must also detach from the undolist: after switching
  1755. * to a new ipc namespace, the semaphore arrays from the old
  1756. * namespace are unreachable.
  1757. */
  1758. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1759. do_sysvsem = 1;
  1760. err = unshare_fs(unshare_flags, &new_fs);
  1761. if (err)
  1762. goto bad_unshare_out;
  1763. err = unshare_fd(unshare_flags, &new_fd);
  1764. if (err)
  1765. goto bad_unshare_cleanup_fs;
  1766. err = unshare_userns(unshare_flags, &new_cred);
  1767. if (err)
  1768. goto bad_unshare_cleanup_fd;
  1769. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1770. new_cred, new_fs);
  1771. if (err)
  1772. goto bad_unshare_cleanup_cred;
  1773. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1774. if (do_sysvsem) {
  1775. /*
  1776. * CLONE_SYSVSEM is equivalent to sys_exit().
  1777. */
  1778. exit_sem(current);
  1779. }
  1780. if (unshare_flags & CLONE_NEWIPC) {
  1781. /* Orphan segments in old ns (see sem above). */
  1782. exit_shm(current);
  1783. shm_init_task(current);
  1784. }
  1785. if (new_nsproxy)
  1786. switch_task_namespaces(current, new_nsproxy);
  1787. task_lock(current);
  1788. if (new_fs) {
  1789. fs = current->fs;
  1790. spin_lock(&fs->lock);
  1791. current->fs = new_fs;
  1792. if (--fs->users)
  1793. new_fs = NULL;
  1794. else
  1795. new_fs = fs;
  1796. spin_unlock(&fs->lock);
  1797. }
  1798. if (new_fd) {
  1799. fd = current->files;
  1800. current->files = new_fd;
  1801. new_fd = fd;
  1802. }
  1803. task_unlock(current);
  1804. if (new_cred) {
  1805. /* Install the new user namespace */
  1806. commit_creds(new_cred);
  1807. new_cred = NULL;
  1808. }
  1809. }
  1810. bad_unshare_cleanup_cred:
  1811. if (new_cred)
  1812. put_cred(new_cred);
  1813. bad_unshare_cleanup_fd:
  1814. if (new_fd)
  1815. put_files_struct(new_fd);
  1816. bad_unshare_cleanup_fs:
  1817. if (new_fs)
  1818. free_fs_struct(new_fs);
  1819. bad_unshare_out:
  1820. return err;
  1821. }
  1822. /*
  1823. * Helper to unshare the files of the current task.
  1824. * We don't want to expose copy_files internals to
  1825. * the exec layer of the kernel.
  1826. */
  1827. int unshare_files(struct files_struct **displaced)
  1828. {
  1829. struct task_struct *task = current;
  1830. struct files_struct *copy = NULL;
  1831. int error;
  1832. error = unshare_fd(CLONE_FILES, &copy);
  1833. if (error || !copy) {
  1834. *displaced = NULL;
  1835. return error;
  1836. }
  1837. *displaced = task->files;
  1838. task_lock(task);
  1839. task->files = copy;
  1840. task_unlock(task);
  1841. return 0;
  1842. }
  1843. int sysctl_max_threads(struct ctl_table *table, int write,
  1844. void __user *buffer, size_t *lenp, loff_t *ppos)
  1845. {
  1846. struct ctl_table t;
  1847. int ret;
  1848. int threads = max_threads;
  1849. int min = MIN_THREADS;
  1850. int max = MAX_THREADS;
  1851. t = *table;
  1852. t.data = &threads;
  1853. t.extra1 = &min;
  1854. t.extra2 = &max;
  1855. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1856. if (ret || !write)
  1857. return ret;
  1858. set_max_threads(threads);
  1859. return 0;
  1860. }