fork.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <linux/aio.h>
  72. #include <asm/pgtable.h>
  73. #include <asm/pgalloc.h>
  74. #include <asm/uaccess.h>
  75. #include <asm/mmu_context.h>
  76. #include <asm/cacheflush.h>
  77. #include <asm/tlbflush.h>
  78. #include <trace/events/sched.h>
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/task.h>
  81. /*
  82. * Protected counters by write_lock_irq(&tasklist_lock)
  83. */
  84. unsigned long total_forks; /* Handle normal Linux uptimes. */
  85. int nr_threads; /* The idle threads do not count.. */
  86. int max_threads; /* tunable limit on nr_threads */
  87. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  89. #ifdef CONFIG_PROVE_RCU
  90. int lockdep_tasklist_lock_is_held(void)
  91. {
  92. return lockdep_is_held(&tasklist_lock);
  93. }
  94. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  95. #endif /* #ifdef CONFIG_PROVE_RCU */
  96. int nr_processes(void)
  97. {
  98. int cpu;
  99. int total = 0;
  100. for_each_possible_cpu(cpu)
  101. total += per_cpu(process_counts, cpu);
  102. return total;
  103. }
  104. void __weak arch_release_task_struct(struct task_struct *tsk)
  105. {
  106. }
  107. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  108. static struct kmem_cache *task_struct_cachep;
  109. static inline struct task_struct *alloc_task_struct_node(int node)
  110. {
  111. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  112. }
  113. static inline void free_task_struct(struct task_struct *tsk)
  114. {
  115. kmem_cache_free(task_struct_cachep, tsk);
  116. }
  117. #endif
  118. void __weak arch_release_thread_info(struct thread_info *ti)
  119. {
  120. }
  121. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  122. /*
  123. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  124. * kmemcache based allocator.
  125. */
  126. # if THREAD_SIZE >= PAGE_SIZE
  127. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  128. int node)
  129. {
  130. struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
  131. THREAD_SIZE_ORDER);
  132. return page ? page_address(page) : NULL;
  133. }
  134. static inline void free_thread_info(struct thread_info *ti)
  135. {
  136. free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  137. }
  138. # else
  139. static struct kmem_cache *thread_info_cache;
  140. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  144. }
  145. static void free_thread_info(struct thread_info *ti)
  146. {
  147. kmem_cache_free(thread_info_cache, ti);
  148. }
  149. void thread_info_cache_init(void)
  150. {
  151. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  152. THREAD_SIZE, 0, NULL);
  153. BUG_ON(thread_info_cache == NULL);
  154. }
  155. # endif
  156. #endif
  157. /* SLAB cache for signal_struct structures (tsk->signal) */
  158. static struct kmem_cache *signal_cachep;
  159. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  160. struct kmem_cache *sighand_cachep;
  161. /* SLAB cache for files_struct structures (tsk->files) */
  162. struct kmem_cache *files_cachep;
  163. /* SLAB cache for fs_struct structures (tsk->fs) */
  164. struct kmem_cache *fs_cachep;
  165. /* SLAB cache for vm_area_struct structures */
  166. struct kmem_cache *vm_area_cachep;
  167. /* SLAB cache for mm_struct structures (tsk->mm) */
  168. static struct kmem_cache *mm_cachep;
  169. static void account_kernel_stack(struct thread_info *ti, int account)
  170. {
  171. struct zone *zone = page_zone(virt_to_page(ti));
  172. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  173. }
  174. void free_task(struct task_struct *tsk)
  175. {
  176. account_kernel_stack(tsk->stack, -1);
  177. arch_release_thread_info(tsk->stack);
  178. free_thread_info(tsk->stack);
  179. rt_mutex_debug_task_free(tsk);
  180. ftrace_graph_exit_task(tsk);
  181. put_seccomp_filter(tsk);
  182. arch_release_task_struct(tsk);
  183. free_task_struct(tsk);
  184. }
  185. EXPORT_SYMBOL(free_task);
  186. static inline void free_signal_struct(struct signal_struct *sig)
  187. {
  188. taskstats_tgid_free(sig);
  189. sched_autogroup_exit(sig);
  190. kmem_cache_free(signal_cachep, sig);
  191. }
  192. static inline void put_signal_struct(struct signal_struct *sig)
  193. {
  194. if (atomic_dec_and_test(&sig->sigcnt))
  195. free_signal_struct(sig);
  196. }
  197. void __put_task_struct(struct task_struct *tsk)
  198. {
  199. WARN_ON(!tsk->exit_state);
  200. WARN_ON(atomic_read(&tsk->usage));
  201. WARN_ON(tsk == current);
  202. task_numa_free(tsk);
  203. security_task_free(tsk);
  204. exit_creds(tsk);
  205. delayacct_tsk_free(tsk);
  206. put_signal_struct(tsk->signal);
  207. if (!profile_handoff_task(tsk))
  208. free_task(tsk);
  209. }
  210. EXPORT_SYMBOL_GPL(__put_task_struct);
  211. void __init __weak arch_task_cache_init(void) { }
  212. void __init fork_init(unsigned long mempages)
  213. {
  214. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  215. #ifndef ARCH_MIN_TASKALIGN
  216. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  217. #endif
  218. /* create a slab on which task_structs can be allocated */
  219. task_struct_cachep =
  220. kmem_cache_create("task_struct", sizeof(struct task_struct),
  221. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  222. #endif
  223. /* do the arch specific task caches init */
  224. arch_task_cache_init();
  225. /*
  226. * The default maximum number of threads is set to a safe
  227. * value: the thread structures can take up at most half
  228. * of memory.
  229. */
  230. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  231. /*
  232. * we need to allow at least 20 threads to boot a system
  233. */
  234. if (max_threads < 20)
  235. max_threads = 20;
  236. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  237. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  238. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  239. init_task.signal->rlim[RLIMIT_NPROC];
  240. }
  241. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  242. struct task_struct *src)
  243. {
  244. *dst = *src;
  245. return 0;
  246. }
  247. static struct task_struct *dup_task_struct(struct task_struct *orig)
  248. {
  249. struct task_struct *tsk;
  250. struct thread_info *ti;
  251. unsigned long *stackend;
  252. int node = tsk_fork_get_node(orig);
  253. int err;
  254. tsk = alloc_task_struct_node(node);
  255. if (!tsk)
  256. return NULL;
  257. ti = alloc_thread_info_node(tsk, node);
  258. if (!ti)
  259. goto free_tsk;
  260. err = arch_dup_task_struct(tsk, orig);
  261. if (err)
  262. goto free_ti;
  263. tsk->stack = ti;
  264. setup_thread_stack(tsk, orig);
  265. clear_user_return_notifier(tsk);
  266. clear_tsk_need_resched(tsk);
  267. stackend = end_of_stack(tsk);
  268. *stackend = STACK_END_MAGIC; /* for overflow detection */
  269. #ifdef CONFIG_CC_STACKPROTECTOR
  270. tsk->stack_canary = get_random_int();
  271. #endif
  272. /*
  273. * One for us, one for whoever does the "release_task()" (usually
  274. * parent)
  275. */
  276. atomic_set(&tsk->usage, 2);
  277. #ifdef CONFIG_BLK_DEV_IO_TRACE
  278. tsk->btrace_seq = 0;
  279. #endif
  280. tsk->splice_pipe = NULL;
  281. tsk->task_frag.page = NULL;
  282. account_kernel_stack(ti, 1);
  283. return tsk;
  284. free_ti:
  285. free_thread_info(ti);
  286. free_tsk:
  287. free_task_struct(tsk);
  288. return NULL;
  289. }
  290. #ifdef CONFIG_MMU
  291. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  292. {
  293. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  294. struct rb_node **rb_link, *rb_parent;
  295. int retval;
  296. unsigned long charge;
  297. uprobe_start_dup_mmap();
  298. down_write(&oldmm->mmap_sem);
  299. flush_cache_dup_mm(oldmm);
  300. uprobe_dup_mmap(oldmm, mm);
  301. /*
  302. * Not linked in yet - no deadlock potential:
  303. */
  304. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  305. mm->locked_vm = 0;
  306. mm->mmap = NULL;
  307. mm->mmap_cache = NULL;
  308. mm->map_count = 0;
  309. cpumask_clear(mm_cpumask(mm));
  310. mm->mm_rb = RB_ROOT;
  311. rb_link = &mm->mm_rb.rb_node;
  312. rb_parent = NULL;
  313. pprev = &mm->mmap;
  314. retval = ksm_fork(mm, oldmm);
  315. if (retval)
  316. goto out;
  317. retval = khugepaged_fork(mm, oldmm);
  318. if (retval)
  319. goto out;
  320. prev = NULL;
  321. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  322. struct file *file;
  323. if (mpnt->vm_flags & VM_DONTCOPY) {
  324. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  325. -vma_pages(mpnt));
  326. continue;
  327. }
  328. charge = 0;
  329. if (mpnt->vm_flags & VM_ACCOUNT) {
  330. unsigned long len = vma_pages(mpnt);
  331. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  332. goto fail_nomem;
  333. charge = len;
  334. }
  335. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  336. if (!tmp)
  337. goto fail_nomem;
  338. *tmp = *mpnt;
  339. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  340. retval = vma_dup_policy(mpnt, tmp);
  341. if (retval)
  342. goto fail_nomem_policy;
  343. tmp->vm_mm = mm;
  344. if (anon_vma_fork(tmp, mpnt))
  345. goto fail_nomem_anon_vma_fork;
  346. tmp->vm_flags &= ~VM_LOCKED;
  347. tmp->vm_next = tmp->vm_prev = NULL;
  348. file = tmp->vm_file;
  349. if (file) {
  350. struct inode *inode = file_inode(file);
  351. struct address_space *mapping = file->f_mapping;
  352. get_file(file);
  353. if (tmp->vm_flags & VM_DENYWRITE)
  354. atomic_dec(&inode->i_writecount);
  355. mutex_lock(&mapping->i_mmap_mutex);
  356. if (tmp->vm_flags & VM_SHARED)
  357. mapping->i_mmap_writable++;
  358. flush_dcache_mmap_lock(mapping);
  359. /* insert tmp into the share list, just after mpnt */
  360. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  361. vma_nonlinear_insert(tmp,
  362. &mapping->i_mmap_nonlinear);
  363. else
  364. vma_interval_tree_insert_after(tmp, mpnt,
  365. &mapping->i_mmap);
  366. flush_dcache_mmap_unlock(mapping);
  367. mutex_unlock(&mapping->i_mmap_mutex);
  368. }
  369. /*
  370. * Clear hugetlb-related page reserves for children. This only
  371. * affects MAP_PRIVATE mappings. Faults generated by the child
  372. * are not guaranteed to succeed, even if read-only
  373. */
  374. if (is_vm_hugetlb_page(tmp))
  375. reset_vma_resv_huge_pages(tmp);
  376. /*
  377. * Link in the new vma and copy the page table entries.
  378. */
  379. *pprev = tmp;
  380. pprev = &tmp->vm_next;
  381. tmp->vm_prev = prev;
  382. prev = tmp;
  383. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  384. rb_link = &tmp->vm_rb.rb_right;
  385. rb_parent = &tmp->vm_rb;
  386. mm->map_count++;
  387. retval = copy_page_range(mm, oldmm, mpnt);
  388. if (tmp->vm_ops && tmp->vm_ops->open)
  389. tmp->vm_ops->open(tmp);
  390. if (retval)
  391. goto out;
  392. }
  393. /* a new mm has just been created */
  394. arch_dup_mmap(oldmm, mm);
  395. retval = 0;
  396. out:
  397. up_write(&mm->mmap_sem);
  398. flush_tlb_mm(oldmm);
  399. up_write(&oldmm->mmap_sem);
  400. uprobe_end_dup_mmap();
  401. return retval;
  402. fail_nomem_anon_vma_fork:
  403. mpol_put(vma_policy(tmp));
  404. fail_nomem_policy:
  405. kmem_cache_free(vm_area_cachep, tmp);
  406. fail_nomem:
  407. retval = -ENOMEM;
  408. vm_unacct_memory(charge);
  409. goto out;
  410. }
  411. static inline int mm_alloc_pgd(struct mm_struct *mm)
  412. {
  413. mm->pgd = pgd_alloc(mm);
  414. if (unlikely(!mm->pgd))
  415. return -ENOMEM;
  416. return 0;
  417. }
  418. static inline void mm_free_pgd(struct mm_struct *mm)
  419. {
  420. pgd_free(mm, mm->pgd);
  421. }
  422. #else
  423. #define dup_mmap(mm, oldmm) (0)
  424. #define mm_alloc_pgd(mm) (0)
  425. #define mm_free_pgd(mm)
  426. #endif /* CONFIG_MMU */
  427. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  428. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  429. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  430. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  431. static int __init coredump_filter_setup(char *s)
  432. {
  433. default_dump_filter =
  434. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  435. MMF_DUMP_FILTER_MASK;
  436. return 1;
  437. }
  438. __setup("coredump_filter=", coredump_filter_setup);
  439. #include <linux/init_task.h>
  440. static void mm_init_aio(struct mm_struct *mm)
  441. {
  442. #ifdef CONFIG_AIO
  443. spin_lock_init(&mm->ioctx_lock);
  444. mm->ioctx_table = NULL;
  445. #endif
  446. }
  447. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  448. {
  449. atomic_set(&mm->mm_users, 1);
  450. atomic_set(&mm->mm_count, 1);
  451. init_rwsem(&mm->mmap_sem);
  452. INIT_LIST_HEAD(&mm->mmlist);
  453. mm->flags = (current->mm) ?
  454. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  455. mm->core_state = NULL;
  456. atomic_long_set(&mm->nr_ptes, 0);
  457. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  458. spin_lock_init(&mm->page_table_lock);
  459. mm_init_aio(mm);
  460. mm_init_owner(mm, p);
  461. clear_tlb_flush_pending(mm);
  462. if (likely(!mm_alloc_pgd(mm))) {
  463. mm->def_flags = 0;
  464. mmu_notifier_mm_init(mm);
  465. return mm;
  466. }
  467. free_mm(mm);
  468. return NULL;
  469. }
  470. static void check_mm(struct mm_struct *mm)
  471. {
  472. int i;
  473. for (i = 0; i < NR_MM_COUNTERS; i++) {
  474. long x = atomic_long_read(&mm->rss_stat.count[i]);
  475. if (unlikely(x))
  476. printk(KERN_ALERT "BUG: Bad rss-counter state "
  477. "mm:%p idx:%d val:%ld\n", mm, i, x);
  478. }
  479. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  480. VM_BUG_ON(mm->pmd_huge_pte);
  481. #endif
  482. }
  483. /*
  484. * Allocate and initialize an mm_struct.
  485. */
  486. struct mm_struct *mm_alloc(void)
  487. {
  488. struct mm_struct *mm;
  489. mm = allocate_mm();
  490. if (!mm)
  491. return NULL;
  492. memset(mm, 0, sizeof(*mm));
  493. mm_init_cpumask(mm);
  494. return mm_init(mm, current);
  495. }
  496. /*
  497. * Called when the last reference to the mm
  498. * is dropped: either by a lazy thread or by
  499. * mmput. Free the page directory and the mm.
  500. */
  501. void __mmdrop(struct mm_struct *mm)
  502. {
  503. BUG_ON(mm == &init_mm);
  504. mm_free_pgd(mm);
  505. destroy_context(mm);
  506. mmu_notifier_mm_destroy(mm);
  507. check_mm(mm);
  508. free_mm(mm);
  509. }
  510. EXPORT_SYMBOL_GPL(__mmdrop);
  511. /*
  512. * Decrement the use count and release all resources for an mm.
  513. */
  514. void mmput(struct mm_struct *mm)
  515. {
  516. might_sleep();
  517. if (atomic_dec_and_test(&mm->mm_users)) {
  518. uprobe_clear_state(mm);
  519. exit_aio(mm);
  520. ksm_exit(mm);
  521. khugepaged_exit(mm); /* must run before exit_mmap */
  522. exit_mmap(mm);
  523. set_mm_exe_file(mm, NULL);
  524. if (!list_empty(&mm->mmlist)) {
  525. spin_lock(&mmlist_lock);
  526. list_del(&mm->mmlist);
  527. spin_unlock(&mmlist_lock);
  528. }
  529. if (mm->binfmt)
  530. module_put(mm->binfmt->module);
  531. mmdrop(mm);
  532. }
  533. }
  534. EXPORT_SYMBOL_GPL(mmput);
  535. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  536. {
  537. if (new_exe_file)
  538. get_file(new_exe_file);
  539. if (mm->exe_file)
  540. fput(mm->exe_file);
  541. mm->exe_file = new_exe_file;
  542. }
  543. struct file *get_mm_exe_file(struct mm_struct *mm)
  544. {
  545. struct file *exe_file;
  546. /* We need mmap_sem to protect against races with removal of exe_file */
  547. down_read(&mm->mmap_sem);
  548. exe_file = mm->exe_file;
  549. if (exe_file)
  550. get_file(exe_file);
  551. up_read(&mm->mmap_sem);
  552. return exe_file;
  553. }
  554. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  555. {
  556. /* It's safe to write the exe_file pointer without exe_file_lock because
  557. * this is called during fork when the task is not yet in /proc */
  558. newmm->exe_file = get_mm_exe_file(oldmm);
  559. }
  560. /**
  561. * get_task_mm - acquire a reference to the task's mm
  562. *
  563. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  564. * this kernel workthread has transiently adopted a user mm with use_mm,
  565. * to do its AIO) is not set and if so returns a reference to it, after
  566. * bumping up the use count. User must release the mm via mmput()
  567. * after use. Typically used by /proc and ptrace.
  568. */
  569. struct mm_struct *get_task_mm(struct task_struct *task)
  570. {
  571. struct mm_struct *mm;
  572. task_lock(task);
  573. mm = task->mm;
  574. if (mm) {
  575. if (task->flags & PF_KTHREAD)
  576. mm = NULL;
  577. else
  578. atomic_inc(&mm->mm_users);
  579. }
  580. task_unlock(task);
  581. return mm;
  582. }
  583. EXPORT_SYMBOL_GPL(get_task_mm);
  584. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  585. {
  586. struct mm_struct *mm;
  587. int err;
  588. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  589. if (err)
  590. return ERR_PTR(err);
  591. mm = get_task_mm(task);
  592. if (mm && mm != current->mm &&
  593. !ptrace_may_access(task, mode)) {
  594. mmput(mm);
  595. mm = ERR_PTR(-EACCES);
  596. }
  597. mutex_unlock(&task->signal->cred_guard_mutex);
  598. return mm;
  599. }
  600. static void complete_vfork_done(struct task_struct *tsk)
  601. {
  602. struct completion *vfork;
  603. task_lock(tsk);
  604. vfork = tsk->vfork_done;
  605. if (likely(vfork)) {
  606. tsk->vfork_done = NULL;
  607. complete(vfork);
  608. }
  609. task_unlock(tsk);
  610. }
  611. static int wait_for_vfork_done(struct task_struct *child,
  612. struct completion *vfork)
  613. {
  614. int killed;
  615. freezer_do_not_count();
  616. killed = wait_for_completion_killable(vfork);
  617. freezer_count();
  618. if (killed) {
  619. task_lock(child);
  620. child->vfork_done = NULL;
  621. task_unlock(child);
  622. }
  623. put_task_struct(child);
  624. return killed;
  625. }
  626. /* Please note the differences between mmput and mm_release.
  627. * mmput is called whenever we stop holding onto a mm_struct,
  628. * error success whatever.
  629. *
  630. * mm_release is called after a mm_struct has been removed
  631. * from the current process.
  632. *
  633. * This difference is important for error handling, when we
  634. * only half set up a mm_struct for a new process and need to restore
  635. * the old one. Because we mmput the new mm_struct before
  636. * restoring the old one. . .
  637. * Eric Biederman 10 January 1998
  638. */
  639. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  640. {
  641. /* Get rid of any futexes when releasing the mm */
  642. #ifdef CONFIG_FUTEX
  643. if (unlikely(tsk->robust_list)) {
  644. exit_robust_list(tsk);
  645. tsk->robust_list = NULL;
  646. }
  647. #ifdef CONFIG_COMPAT
  648. if (unlikely(tsk->compat_robust_list)) {
  649. compat_exit_robust_list(tsk);
  650. tsk->compat_robust_list = NULL;
  651. }
  652. #endif
  653. if (unlikely(!list_empty(&tsk->pi_state_list)))
  654. exit_pi_state_list(tsk);
  655. #endif
  656. uprobe_free_utask(tsk);
  657. /* Get rid of any cached register state */
  658. deactivate_mm(tsk, mm);
  659. /*
  660. * If we're exiting normally, clear a user-space tid field if
  661. * requested. We leave this alone when dying by signal, to leave
  662. * the value intact in a core dump, and to save the unnecessary
  663. * trouble, say, a killed vfork parent shouldn't touch this mm.
  664. * Userland only wants this done for a sys_exit.
  665. */
  666. if (tsk->clear_child_tid) {
  667. if (!(tsk->flags & PF_SIGNALED) &&
  668. atomic_read(&mm->mm_users) > 1) {
  669. /*
  670. * We don't check the error code - if userspace has
  671. * not set up a proper pointer then tough luck.
  672. */
  673. put_user(0, tsk->clear_child_tid);
  674. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  675. 1, NULL, NULL, 0);
  676. }
  677. tsk->clear_child_tid = NULL;
  678. }
  679. /*
  680. * All done, finally we can wake up parent and return this mm to him.
  681. * Also kthread_stop() uses this completion for synchronization.
  682. */
  683. if (tsk->vfork_done)
  684. complete_vfork_done(tsk);
  685. }
  686. /*
  687. * Allocate a new mm structure and copy contents from the
  688. * mm structure of the passed in task structure.
  689. */
  690. static struct mm_struct *dup_mm(struct task_struct *tsk)
  691. {
  692. struct mm_struct *mm, *oldmm = current->mm;
  693. int err;
  694. mm = allocate_mm();
  695. if (!mm)
  696. goto fail_nomem;
  697. memcpy(mm, oldmm, sizeof(*mm));
  698. mm_init_cpumask(mm);
  699. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  700. mm->pmd_huge_pte = NULL;
  701. #endif
  702. if (!mm_init(mm, tsk))
  703. goto fail_nomem;
  704. if (init_new_context(tsk, mm))
  705. goto fail_nocontext;
  706. dup_mm_exe_file(oldmm, mm);
  707. err = dup_mmap(mm, oldmm);
  708. if (err)
  709. goto free_pt;
  710. mm->hiwater_rss = get_mm_rss(mm);
  711. mm->hiwater_vm = mm->total_vm;
  712. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  713. goto free_pt;
  714. return mm;
  715. free_pt:
  716. /* don't put binfmt in mmput, we haven't got module yet */
  717. mm->binfmt = NULL;
  718. mmput(mm);
  719. fail_nomem:
  720. return NULL;
  721. fail_nocontext:
  722. /*
  723. * If init_new_context() failed, we cannot use mmput() to free the mm
  724. * because it calls destroy_context()
  725. */
  726. mm_free_pgd(mm);
  727. free_mm(mm);
  728. return NULL;
  729. }
  730. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  731. {
  732. struct mm_struct *mm, *oldmm;
  733. int retval;
  734. tsk->min_flt = tsk->maj_flt = 0;
  735. tsk->nvcsw = tsk->nivcsw = 0;
  736. #ifdef CONFIG_DETECT_HUNG_TASK
  737. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  738. #endif
  739. tsk->mm = NULL;
  740. tsk->active_mm = NULL;
  741. /*
  742. * Are we cloning a kernel thread?
  743. *
  744. * We need to steal a active VM for that..
  745. */
  746. oldmm = current->mm;
  747. if (!oldmm)
  748. return 0;
  749. if (clone_flags & CLONE_VM) {
  750. atomic_inc(&oldmm->mm_users);
  751. mm = oldmm;
  752. goto good_mm;
  753. }
  754. retval = -ENOMEM;
  755. mm = dup_mm(tsk);
  756. if (!mm)
  757. goto fail_nomem;
  758. good_mm:
  759. tsk->mm = mm;
  760. tsk->active_mm = mm;
  761. return 0;
  762. fail_nomem:
  763. return retval;
  764. }
  765. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  766. {
  767. struct fs_struct *fs = current->fs;
  768. if (clone_flags & CLONE_FS) {
  769. /* tsk->fs is already what we want */
  770. spin_lock(&fs->lock);
  771. if (fs->in_exec) {
  772. spin_unlock(&fs->lock);
  773. return -EAGAIN;
  774. }
  775. fs->users++;
  776. spin_unlock(&fs->lock);
  777. return 0;
  778. }
  779. tsk->fs = copy_fs_struct(fs);
  780. if (!tsk->fs)
  781. return -ENOMEM;
  782. return 0;
  783. }
  784. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  785. {
  786. struct files_struct *oldf, *newf;
  787. int error = 0;
  788. /*
  789. * A background process may not have any files ...
  790. */
  791. oldf = current->files;
  792. if (!oldf)
  793. goto out;
  794. if (clone_flags & CLONE_FILES) {
  795. atomic_inc(&oldf->count);
  796. goto out;
  797. }
  798. newf = dup_fd(oldf, &error);
  799. if (!newf)
  800. goto out;
  801. tsk->files = newf;
  802. error = 0;
  803. out:
  804. return error;
  805. }
  806. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  807. {
  808. #ifdef CONFIG_BLOCK
  809. struct io_context *ioc = current->io_context;
  810. struct io_context *new_ioc;
  811. if (!ioc)
  812. return 0;
  813. /*
  814. * Share io context with parent, if CLONE_IO is set
  815. */
  816. if (clone_flags & CLONE_IO) {
  817. ioc_task_link(ioc);
  818. tsk->io_context = ioc;
  819. } else if (ioprio_valid(ioc->ioprio)) {
  820. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  821. if (unlikely(!new_ioc))
  822. return -ENOMEM;
  823. new_ioc->ioprio = ioc->ioprio;
  824. put_io_context(new_ioc);
  825. }
  826. #endif
  827. return 0;
  828. }
  829. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  830. {
  831. struct sighand_struct *sig;
  832. if (clone_flags & CLONE_SIGHAND) {
  833. atomic_inc(&current->sighand->count);
  834. return 0;
  835. }
  836. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  837. rcu_assign_pointer(tsk->sighand, sig);
  838. if (!sig)
  839. return -ENOMEM;
  840. atomic_set(&sig->count, 1);
  841. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  842. return 0;
  843. }
  844. void __cleanup_sighand(struct sighand_struct *sighand)
  845. {
  846. if (atomic_dec_and_test(&sighand->count)) {
  847. signalfd_cleanup(sighand);
  848. kmem_cache_free(sighand_cachep, sighand);
  849. }
  850. }
  851. /*
  852. * Initialize POSIX timer handling for a thread group.
  853. */
  854. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  855. {
  856. unsigned long cpu_limit;
  857. /* Thread group counters. */
  858. thread_group_cputime_init(sig);
  859. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  860. if (cpu_limit != RLIM_INFINITY) {
  861. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  862. sig->cputimer.running = 1;
  863. }
  864. /* The timer lists. */
  865. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  866. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  867. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  868. }
  869. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  870. {
  871. struct signal_struct *sig;
  872. if (clone_flags & CLONE_THREAD)
  873. return 0;
  874. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  875. tsk->signal = sig;
  876. if (!sig)
  877. return -ENOMEM;
  878. sig->nr_threads = 1;
  879. atomic_set(&sig->live, 1);
  880. atomic_set(&sig->sigcnt, 1);
  881. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  882. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  883. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  884. init_waitqueue_head(&sig->wait_chldexit);
  885. sig->curr_target = tsk;
  886. init_sigpending(&sig->shared_pending);
  887. INIT_LIST_HEAD(&sig->posix_timers);
  888. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  889. sig->real_timer.function = it_real_fn;
  890. task_lock(current->group_leader);
  891. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  892. task_unlock(current->group_leader);
  893. posix_cpu_timers_init_group(sig);
  894. tty_audit_fork(sig);
  895. sched_autogroup_fork(sig);
  896. #ifdef CONFIG_CGROUPS
  897. init_rwsem(&sig->group_rwsem);
  898. #endif
  899. sig->oom_score_adj = current->signal->oom_score_adj;
  900. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  901. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  902. current->signal->is_child_subreaper;
  903. mutex_init(&sig->cred_guard_mutex);
  904. return 0;
  905. }
  906. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  907. {
  908. unsigned long new_flags = p->flags;
  909. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  910. new_flags |= PF_FORKNOEXEC;
  911. p->flags = new_flags;
  912. }
  913. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  914. {
  915. current->clear_child_tid = tidptr;
  916. return task_pid_vnr(current);
  917. }
  918. static void rt_mutex_init_task(struct task_struct *p)
  919. {
  920. raw_spin_lock_init(&p->pi_lock);
  921. #ifdef CONFIG_RT_MUTEXES
  922. p->pi_waiters = RB_ROOT;
  923. p->pi_waiters_leftmost = NULL;
  924. p->pi_blocked_on = NULL;
  925. p->pi_top_task = NULL;
  926. #endif
  927. }
  928. #ifdef CONFIG_MM_OWNER
  929. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  930. {
  931. mm->owner = p;
  932. }
  933. #endif /* CONFIG_MM_OWNER */
  934. /*
  935. * Initialize POSIX timer handling for a single task.
  936. */
  937. static void posix_cpu_timers_init(struct task_struct *tsk)
  938. {
  939. tsk->cputime_expires.prof_exp = 0;
  940. tsk->cputime_expires.virt_exp = 0;
  941. tsk->cputime_expires.sched_exp = 0;
  942. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  943. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  944. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  945. }
  946. static inline void
  947. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  948. {
  949. task->pids[type].pid = pid;
  950. }
  951. /*
  952. * This creates a new process as a copy of the old one,
  953. * but does not actually start it yet.
  954. *
  955. * It copies the registers, and all the appropriate
  956. * parts of the process environment (as per the clone
  957. * flags). The actual kick-off is left to the caller.
  958. */
  959. static struct task_struct *copy_process(unsigned long clone_flags,
  960. unsigned long stack_start,
  961. unsigned long stack_size,
  962. int __user *child_tidptr,
  963. struct pid *pid,
  964. int trace)
  965. {
  966. int retval;
  967. struct task_struct *p;
  968. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  969. return ERR_PTR(-EINVAL);
  970. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  971. return ERR_PTR(-EINVAL);
  972. /*
  973. * Thread groups must share signals as well, and detached threads
  974. * can only be started up within the thread group.
  975. */
  976. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  977. return ERR_PTR(-EINVAL);
  978. /*
  979. * Shared signal handlers imply shared VM. By way of the above,
  980. * thread groups also imply shared VM. Blocking this case allows
  981. * for various simplifications in other code.
  982. */
  983. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  984. return ERR_PTR(-EINVAL);
  985. /*
  986. * Siblings of global init remain as zombies on exit since they are
  987. * not reaped by their parent (swapper). To solve this and to avoid
  988. * multi-rooted process trees, prevent global and container-inits
  989. * from creating siblings.
  990. */
  991. if ((clone_flags & CLONE_PARENT) &&
  992. current->signal->flags & SIGNAL_UNKILLABLE)
  993. return ERR_PTR(-EINVAL);
  994. /*
  995. * If the new process will be in a different pid or user namespace
  996. * do not allow it to share a thread group or signal handlers or
  997. * parent with the forking task.
  998. */
  999. if (clone_flags & CLONE_SIGHAND) {
  1000. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1001. (task_active_pid_ns(current) !=
  1002. current->nsproxy->pid_ns_for_children))
  1003. return ERR_PTR(-EINVAL);
  1004. }
  1005. retval = security_task_create(clone_flags);
  1006. if (retval)
  1007. goto fork_out;
  1008. retval = -ENOMEM;
  1009. p = dup_task_struct(current);
  1010. if (!p)
  1011. goto fork_out;
  1012. ftrace_graph_init_task(p);
  1013. get_seccomp_filter(p);
  1014. rt_mutex_init_task(p);
  1015. #ifdef CONFIG_PROVE_LOCKING
  1016. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1017. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1018. #endif
  1019. retval = -EAGAIN;
  1020. if (atomic_read(&p->real_cred->user->processes) >=
  1021. task_rlimit(p, RLIMIT_NPROC)) {
  1022. if (p->real_cred->user != INIT_USER &&
  1023. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1024. goto bad_fork_free;
  1025. }
  1026. current->flags &= ~PF_NPROC_EXCEEDED;
  1027. retval = copy_creds(p, clone_flags);
  1028. if (retval < 0)
  1029. goto bad_fork_free;
  1030. /*
  1031. * If multiple threads are within copy_process(), then this check
  1032. * triggers too late. This doesn't hurt, the check is only there
  1033. * to stop root fork bombs.
  1034. */
  1035. retval = -EAGAIN;
  1036. if (nr_threads >= max_threads)
  1037. goto bad_fork_cleanup_count;
  1038. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1039. goto bad_fork_cleanup_count;
  1040. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1041. copy_flags(clone_flags, p);
  1042. INIT_LIST_HEAD(&p->children);
  1043. INIT_LIST_HEAD(&p->sibling);
  1044. rcu_copy_process(p);
  1045. p->vfork_done = NULL;
  1046. spin_lock_init(&p->alloc_lock);
  1047. init_sigpending(&p->pending);
  1048. p->utime = p->stime = p->gtime = 0;
  1049. p->utimescaled = p->stimescaled = 0;
  1050. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1051. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1052. #endif
  1053. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1054. seqlock_init(&p->vtime_seqlock);
  1055. p->vtime_snap = 0;
  1056. p->vtime_snap_whence = VTIME_SLEEPING;
  1057. #endif
  1058. #if defined(SPLIT_RSS_COUNTING)
  1059. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1060. #endif
  1061. p->default_timer_slack_ns = current->timer_slack_ns;
  1062. task_io_accounting_init(&p->ioac);
  1063. acct_clear_integrals(p);
  1064. posix_cpu_timers_init(p);
  1065. do_posix_clock_monotonic_gettime(&p->start_time);
  1066. p->real_start_time = p->start_time;
  1067. monotonic_to_bootbased(&p->real_start_time);
  1068. p->io_context = NULL;
  1069. p->audit_context = NULL;
  1070. if (clone_flags & CLONE_THREAD)
  1071. threadgroup_change_begin(current);
  1072. cgroup_fork(p);
  1073. #ifdef CONFIG_NUMA
  1074. p->mempolicy = mpol_dup(p->mempolicy);
  1075. if (IS_ERR(p->mempolicy)) {
  1076. retval = PTR_ERR(p->mempolicy);
  1077. p->mempolicy = NULL;
  1078. goto bad_fork_cleanup_cgroup;
  1079. }
  1080. mpol_fix_fork_child_flag(p);
  1081. #endif
  1082. #ifdef CONFIG_CPUSETS
  1083. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1084. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1085. seqcount_init(&p->mems_allowed_seq);
  1086. #endif
  1087. #ifdef CONFIG_TRACE_IRQFLAGS
  1088. p->irq_events = 0;
  1089. p->hardirqs_enabled = 0;
  1090. p->hardirq_enable_ip = 0;
  1091. p->hardirq_enable_event = 0;
  1092. p->hardirq_disable_ip = _THIS_IP_;
  1093. p->hardirq_disable_event = 0;
  1094. p->softirqs_enabled = 1;
  1095. p->softirq_enable_ip = _THIS_IP_;
  1096. p->softirq_enable_event = 0;
  1097. p->softirq_disable_ip = 0;
  1098. p->softirq_disable_event = 0;
  1099. p->hardirq_context = 0;
  1100. p->softirq_context = 0;
  1101. #endif
  1102. #ifdef CONFIG_LOCKDEP
  1103. p->lockdep_depth = 0; /* no locks held yet */
  1104. p->curr_chain_key = 0;
  1105. p->lockdep_recursion = 0;
  1106. #endif
  1107. #ifdef CONFIG_DEBUG_MUTEXES
  1108. p->blocked_on = NULL; /* not blocked yet */
  1109. #endif
  1110. #ifdef CONFIG_MEMCG
  1111. p->memcg_batch.do_batch = 0;
  1112. p->memcg_batch.memcg = NULL;
  1113. #endif
  1114. #ifdef CONFIG_BCACHE
  1115. p->sequential_io = 0;
  1116. p->sequential_io_avg = 0;
  1117. #endif
  1118. /* Perform scheduler related setup. Assign this task to a CPU. */
  1119. retval = sched_fork(clone_flags, p);
  1120. if (retval)
  1121. goto bad_fork_cleanup_policy;
  1122. retval = perf_event_init_task(p);
  1123. if (retval)
  1124. goto bad_fork_cleanup_policy;
  1125. retval = audit_alloc(p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_policy;
  1128. /* copy all the process information */
  1129. retval = copy_semundo(clone_flags, p);
  1130. if (retval)
  1131. goto bad_fork_cleanup_audit;
  1132. retval = copy_files(clone_flags, p);
  1133. if (retval)
  1134. goto bad_fork_cleanup_semundo;
  1135. retval = copy_fs(clone_flags, p);
  1136. if (retval)
  1137. goto bad_fork_cleanup_files;
  1138. retval = copy_sighand(clone_flags, p);
  1139. if (retval)
  1140. goto bad_fork_cleanup_fs;
  1141. retval = copy_signal(clone_flags, p);
  1142. if (retval)
  1143. goto bad_fork_cleanup_sighand;
  1144. retval = copy_mm(clone_flags, p);
  1145. if (retval)
  1146. goto bad_fork_cleanup_signal;
  1147. retval = copy_namespaces(clone_flags, p);
  1148. if (retval)
  1149. goto bad_fork_cleanup_mm;
  1150. retval = copy_io(clone_flags, p);
  1151. if (retval)
  1152. goto bad_fork_cleanup_namespaces;
  1153. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1154. if (retval)
  1155. goto bad_fork_cleanup_io;
  1156. if (pid != &init_struct_pid) {
  1157. retval = -ENOMEM;
  1158. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1159. if (!pid)
  1160. goto bad_fork_cleanup_io;
  1161. }
  1162. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1163. /*
  1164. * Clear TID on mm_release()?
  1165. */
  1166. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1167. #ifdef CONFIG_BLOCK
  1168. p->plug = NULL;
  1169. #endif
  1170. #ifdef CONFIG_FUTEX
  1171. p->robust_list = NULL;
  1172. #ifdef CONFIG_COMPAT
  1173. p->compat_robust_list = NULL;
  1174. #endif
  1175. INIT_LIST_HEAD(&p->pi_state_list);
  1176. p->pi_state_cache = NULL;
  1177. #endif
  1178. /*
  1179. * sigaltstack should be cleared when sharing the same VM
  1180. */
  1181. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1182. p->sas_ss_sp = p->sas_ss_size = 0;
  1183. /*
  1184. * Syscall tracing and stepping should be turned off in the
  1185. * child regardless of CLONE_PTRACE.
  1186. */
  1187. user_disable_single_step(p);
  1188. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1189. #ifdef TIF_SYSCALL_EMU
  1190. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1191. #endif
  1192. clear_all_latency_tracing(p);
  1193. /* ok, now we should be set up.. */
  1194. p->pid = pid_nr(pid);
  1195. if (clone_flags & CLONE_THREAD) {
  1196. p->exit_signal = -1;
  1197. p->group_leader = current->group_leader;
  1198. p->tgid = current->tgid;
  1199. } else {
  1200. if (clone_flags & CLONE_PARENT)
  1201. p->exit_signal = current->group_leader->exit_signal;
  1202. else
  1203. p->exit_signal = (clone_flags & CSIGNAL);
  1204. p->group_leader = p;
  1205. p->tgid = p->pid;
  1206. }
  1207. p->nr_dirtied = 0;
  1208. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1209. p->dirty_paused_when = 0;
  1210. p->pdeath_signal = 0;
  1211. INIT_LIST_HEAD(&p->thread_group);
  1212. p->task_works = NULL;
  1213. /*
  1214. * Make it visible to the rest of the system, but dont wake it up yet.
  1215. * Need tasklist lock for parent etc handling!
  1216. */
  1217. write_lock_irq(&tasklist_lock);
  1218. /* CLONE_PARENT re-uses the old parent */
  1219. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1220. p->real_parent = current->real_parent;
  1221. p->parent_exec_id = current->parent_exec_id;
  1222. } else {
  1223. p->real_parent = current;
  1224. p->parent_exec_id = current->self_exec_id;
  1225. }
  1226. spin_lock(&current->sighand->siglock);
  1227. /*
  1228. * Process group and session signals need to be delivered to just the
  1229. * parent before the fork or both the parent and the child after the
  1230. * fork. Restart if a signal comes in before we add the new process to
  1231. * it's process group.
  1232. * A fatal signal pending means that current will exit, so the new
  1233. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1234. */
  1235. recalc_sigpending();
  1236. if (signal_pending(current)) {
  1237. spin_unlock(&current->sighand->siglock);
  1238. write_unlock_irq(&tasklist_lock);
  1239. retval = -ERESTARTNOINTR;
  1240. goto bad_fork_free_pid;
  1241. }
  1242. if (likely(p->pid)) {
  1243. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1244. init_task_pid(p, PIDTYPE_PID, pid);
  1245. if (thread_group_leader(p)) {
  1246. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1247. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1248. if (is_child_reaper(pid)) {
  1249. ns_of_pid(pid)->child_reaper = p;
  1250. p->signal->flags |= SIGNAL_UNKILLABLE;
  1251. }
  1252. p->signal->leader_pid = pid;
  1253. p->signal->tty = tty_kref_get(current->signal->tty);
  1254. list_add_tail(&p->sibling, &p->real_parent->children);
  1255. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1256. attach_pid(p, PIDTYPE_PGID);
  1257. attach_pid(p, PIDTYPE_SID);
  1258. __this_cpu_inc(process_counts);
  1259. } else {
  1260. current->signal->nr_threads++;
  1261. atomic_inc(&current->signal->live);
  1262. atomic_inc(&current->signal->sigcnt);
  1263. list_add_tail_rcu(&p->thread_group,
  1264. &p->group_leader->thread_group);
  1265. list_add_tail_rcu(&p->thread_node,
  1266. &p->signal->thread_head);
  1267. }
  1268. attach_pid(p, PIDTYPE_PID);
  1269. nr_threads++;
  1270. }
  1271. total_forks++;
  1272. spin_unlock(&current->sighand->siglock);
  1273. write_unlock_irq(&tasklist_lock);
  1274. proc_fork_connector(p);
  1275. cgroup_post_fork(p);
  1276. if (clone_flags & CLONE_THREAD)
  1277. threadgroup_change_end(current);
  1278. perf_event_fork(p);
  1279. trace_task_newtask(p, clone_flags);
  1280. uprobe_copy_process(p, clone_flags);
  1281. return p;
  1282. bad_fork_free_pid:
  1283. if (pid != &init_struct_pid)
  1284. free_pid(pid);
  1285. bad_fork_cleanup_io:
  1286. if (p->io_context)
  1287. exit_io_context(p);
  1288. bad_fork_cleanup_namespaces:
  1289. exit_task_namespaces(p);
  1290. bad_fork_cleanup_mm:
  1291. if (p->mm)
  1292. mmput(p->mm);
  1293. bad_fork_cleanup_signal:
  1294. if (!(clone_flags & CLONE_THREAD))
  1295. free_signal_struct(p->signal);
  1296. bad_fork_cleanup_sighand:
  1297. __cleanup_sighand(p->sighand);
  1298. bad_fork_cleanup_fs:
  1299. exit_fs(p); /* blocking */
  1300. bad_fork_cleanup_files:
  1301. exit_files(p); /* blocking */
  1302. bad_fork_cleanup_semundo:
  1303. exit_sem(p);
  1304. bad_fork_cleanup_audit:
  1305. audit_free(p);
  1306. bad_fork_cleanup_policy:
  1307. perf_event_free_task(p);
  1308. #ifdef CONFIG_NUMA
  1309. mpol_put(p->mempolicy);
  1310. bad_fork_cleanup_cgroup:
  1311. #endif
  1312. if (clone_flags & CLONE_THREAD)
  1313. threadgroup_change_end(current);
  1314. cgroup_exit(p, 0);
  1315. delayacct_tsk_free(p);
  1316. module_put(task_thread_info(p)->exec_domain->module);
  1317. bad_fork_cleanup_count:
  1318. atomic_dec(&p->cred->user->processes);
  1319. exit_creds(p);
  1320. bad_fork_free:
  1321. free_task(p);
  1322. fork_out:
  1323. return ERR_PTR(retval);
  1324. }
  1325. static inline void init_idle_pids(struct pid_link *links)
  1326. {
  1327. enum pid_type type;
  1328. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1329. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1330. links[type].pid = &init_struct_pid;
  1331. }
  1332. }
  1333. struct task_struct *fork_idle(int cpu)
  1334. {
  1335. struct task_struct *task;
  1336. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1337. if (!IS_ERR(task)) {
  1338. init_idle_pids(task->pids);
  1339. init_idle(task, cpu);
  1340. }
  1341. return task;
  1342. }
  1343. /*
  1344. * Ok, this is the main fork-routine.
  1345. *
  1346. * It copies the process, and if successful kick-starts
  1347. * it and waits for it to finish using the VM if required.
  1348. */
  1349. long do_fork(unsigned long clone_flags,
  1350. unsigned long stack_start,
  1351. unsigned long stack_size,
  1352. int __user *parent_tidptr,
  1353. int __user *child_tidptr)
  1354. {
  1355. struct task_struct *p;
  1356. int trace = 0;
  1357. long nr;
  1358. /*
  1359. * Determine whether and which event to report to ptracer. When
  1360. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1361. * requested, no event is reported; otherwise, report if the event
  1362. * for the type of forking is enabled.
  1363. */
  1364. if (!(clone_flags & CLONE_UNTRACED)) {
  1365. if (clone_flags & CLONE_VFORK)
  1366. trace = PTRACE_EVENT_VFORK;
  1367. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1368. trace = PTRACE_EVENT_CLONE;
  1369. else
  1370. trace = PTRACE_EVENT_FORK;
  1371. if (likely(!ptrace_event_enabled(current, trace)))
  1372. trace = 0;
  1373. }
  1374. p = copy_process(clone_flags, stack_start, stack_size,
  1375. child_tidptr, NULL, trace);
  1376. /*
  1377. * Do this prior waking up the new thread - the thread pointer
  1378. * might get invalid after that point, if the thread exits quickly.
  1379. */
  1380. if (!IS_ERR(p)) {
  1381. struct completion vfork;
  1382. trace_sched_process_fork(current, p);
  1383. nr = task_pid_vnr(p);
  1384. if (clone_flags & CLONE_PARENT_SETTID)
  1385. put_user(nr, parent_tidptr);
  1386. if (clone_flags & CLONE_VFORK) {
  1387. p->vfork_done = &vfork;
  1388. init_completion(&vfork);
  1389. get_task_struct(p);
  1390. }
  1391. wake_up_new_task(p);
  1392. /* forking complete and child started to run, tell ptracer */
  1393. if (unlikely(trace))
  1394. ptrace_event(trace, nr);
  1395. if (clone_flags & CLONE_VFORK) {
  1396. if (!wait_for_vfork_done(p, &vfork))
  1397. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1398. }
  1399. } else {
  1400. nr = PTR_ERR(p);
  1401. }
  1402. return nr;
  1403. }
  1404. /*
  1405. * Create a kernel thread.
  1406. */
  1407. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1408. {
  1409. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1410. (unsigned long)arg, NULL, NULL);
  1411. }
  1412. #ifdef __ARCH_WANT_SYS_FORK
  1413. SYSCALL_DEFINE0(fork)
  1414. {
  1415. #ifdef CONFIG_MMU
  1416. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1417. #else
  1418. /* can not support in nommu mode */
  1419. return -EINVAL;
  1420. #endif
  1421. }
  1422. #endif
  1423. #ifdef __ARCH_WANT_SYS_VFORK
  1424. SYSCALL_DEFINE0(vfork)
  1425. {
  1426. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1427. 0, NULL, NULL);
  1428. }
  1429. #endif
  1430. #ifdef __ARCH_WANT_SYS_CLONE
  1431. #ifdef CONFIG_CLONE_BACKWARDS
  1432. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1433. int __user *, parent_tidptr,
  1434. int, tls_val,
  1435. int __user *, child_tidptr)
  1436. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1437. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1438. int __user *, parent_tidptr,
  1439. int __user *, child_tidptr,
  1440. int, tls_val)
  1441. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1442. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1443. int, stack_size,
  1444. int __user *, parent_tidptr,
  1445. int __user *, child_tidptr,
  1446. int, tls_val)
  1447. #else
  1448. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1449. int __user *, parent_tidptr,
  1450. int __user *, child_tidptr,
  1451. int, tls_val)
  1452. #endif
  1453. {
  1454. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1455. }
  1456. #endif
  1457. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1458. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1459. #endif
  1460. static void sighand_ctor(void *data)
  1461. {
  1462. struct sighand_struct *sighand = data;
  1463. spin_lock_init(&sighand->siglock);
  1464. init_waitqueue_head(&sighand->signalfd_wqh);
  1465. }
  1466. void __init proc_caches_init(void)
  1467. {
  1468. sighand_cachep = kmem_cache_create("sighand_cache",
  1469. sizeof(struct sighand_struct), 0,
  1470. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1471. SLAB_NOTRACK, sighand_ctor);
  1472. signal_cachep = kmem_cache_create("signal_cache",
  1473. sizeof(struct signal_struct), 0,
  1474. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1475. files_cachep = kmem_cache_create("files_cache",
  1476. sizeof(struct files_struct), 0,
  1477. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1478. fs_cachep = kmem_cache_create("fs_cache",
  1479. sizeof(struct fs_struct), 0,
  1480. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1481. /*
  1482. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1483. * whole struct cpumask for the OFFSTACK case. We could change
  1484. * this to *only* allocate as much of it as required by the
  1485. * maximum number of CPU's we can ever have. The cpumask_allocation
  1486. * is at the end of the structure, exactly for that reason.
  1487. */
  1488. mm_cachep = kmem_cache_create("mm_struct",
  1489. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1490. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1491. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1492. mmap_init();
  1493. nsproxy_cache_init();
  1494. }
  1495. /*
  1496. * Check constraints on flags passed to the unshare system call.
  1497. */
  1498. static int check_unshare_flags(unsigned long unshare_flags)
  1499. {
  1500. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1501. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1502. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1503. CLONE_NEWUSER|CLONE_NEWPID))
  1504. return -EINVAL;
  1505. /*
  1506. * Not implemented, but pretend it works if there is nothing to
  1507. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1508. * needs to unshare vm.
  1509. */
  1510. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1511. /* FIXME: get_task_mm() increments ->mm_users */
  1512. if (atomic_read(&current->mm->mm_users) > 1)
  1513. return -EINVAL;
  1514. }
  1515. return 0;
  1516. }
  1517. /*
  1518. * Unshare the filesystem structure if it is being shared
  1519. */
  1520. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1521. {
  1522. struct fs_struct *fs = current->fs;
  1523. if (!(unshare_flags & CLONE_FS) || !fs)
  1524. return 0;
  1525. /* don't need lock here; in the worst case we'll do useless copy */
  1526. if (fs->users == 1)
  1527. return 0;
  1528. *new_fsp = copy_fs_struct(fs);
  1529. if (!*new_fsp)
  1530. return -ENOMEM;
  1531. return 0;
  1532. }
  1533. /*
  1534. * Unshare file descriptor table if it is being shared
  1535. */
  1536. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1537. {
  1538. struct files_struct *fd = current->files;
  1539. int error = 0;
  1540. if ((unshare_flags & CLONE_FILES) &&
  1541. (fd && atomic_read(&fd->count) > 1)) {
  1542. *new_fdp = dup_fd(fd, &error);
  1543. if (!*new_fdp)
  1544. return error;
  1545. }
  1546. return 0;
  1547. }
  1548. /*
  1549. * unshare allows a process to 'unshare' part of the process
  1550. * context which was originally shared using clone. copy_*
  1551. * functions used by do_fork() cannot be used here directly
  1552. * because they modify an inactive task_struct that is being
  1553. * constructed. Here we are modifying the current, active,
  1554. * task_struct.
  1555. */
  1556. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1557. {
  1558. struct fs_struct *fs, *new_fs = NULL;
  1559. struct files_struct *fd, *new_fd = NULL;
  1560. struct cred *new_cred = NULL;
  1561. struct nsproxy *new_nsproxy = NULL;
  1562. int do_sysvsem = 0;
  1563. int err;
  1564. /*
  1565. * If unsharing a user namespace must also unshare the thread.
  1566. */
  1567. if (unshare_flags & CLONE_NEWUSER)
  1568. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1569. /*
  1570. * If unsharing a thread from a thread group, must also unshare vm.
  1571. */
  1572. if (unshare_flags & CLONE_THREAD)
  1573. unshare_flags |= CLONE_VM;
  1574. /*
  1575. * If unsharing vm, must also unshare signal handlers.
  1576. */
  1577. if (unshare_flags & CLONE_VM)
  1578. unshare_flags |= CLONE_SIGHAND;
  1579. /*
  1580. * If unsharing namespace, must also unshare filesystem information.
  1581. */
  1582. if (unshare_flags & CLONE_NEWNS)
  1583. unshare_flags |= CLONE_FS;
  1584. err = check_unshare_flags(unshare_flags);
  1585. if (err)
  1586. goto bad_unshare_out;
  1587. /*
  1588. * CLONE_NEWIPC must also detach from the undolist: after switching
  1589. * to a new ipc namespace, the semaphore arrays from the old
  1590. * namespace are unreachable.
  1591. */
  1592. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1593. do_sysvsem = 1;
  1594. err = unshare_fs(unshare_flags, &new_fs);
  1595. if (err)
  1596. goto bad_unshare_out;
  1597. err = unshare_fd(unshare_flags, &new_fd);
  1598. if (err)
  1599. goto bad_unshare_cleanup_fs;
  1600. err = unshare_userns(unshare_flags, &new_cred);
  1601. if (err)
  1602. goto bad_unshare_cleanup_fd;
  1603. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1604. new_cred, new_fs);
  1605. if (err)
  1606. goto bad_unshare_cleanup_cred;
  1607. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1608. if (do_sysvsem) {
  1609. /*
  1610. * CLONE_SYSVSEM is equivalent to sys_exit().
  1611. */
  1612. exit_sem(current);
  1613. }
  1614. if (new_nsproxy)
  1615. switch_task_namespaces(current, new_nsproxy);
  1616. task_lock(current);
  1617. if (new_fs) {
  1618. fs = current->fs;
  1619. spin_lock(&fs->lock);
  1620. current->fs = new_fs;
  1621. if (--fs->users)
  1622. new_fs = NULL;
  1623. else
  1624. new_fs = fs;
  1625. spin_unlock(&fs->lock);
  1626. }
  1627. if (new_fd) {
  1628. fd = current->files;
  1629. current->files = new_fd;
  1630. new_fd = fd;
  1631. }
  1632. task_unlock(current);
  1633. if (new_cred) {
  1634. /* Install the new user namespace */
  1635. commit_creds(new_cred);
  1636. new_cred = NULL;
  1637. }
  1638. }
  1639. bad_unshare_cleanup_cred:
  1640. if (new_cred)
  1641. put_cred(new_cred);
  1642. bad_unshare_cleanup_fd:
  1643. if (new_fd)
  1644. put_files_struct(new_fd);
  1645. bad_unshare_cleanup_fs:
  1646. if (new_fs)
  1647. free_fs_struct(new_fs);
  1648. bad_unshare_out:
  1649. return err;
  1650. }
  1651. /*
  1652. * Helper to unshare the files of the current task.
  1653. * We don't want to expose copy_files internals to
  1654. * the exec layer of the kernel.
  1655. */
  1656. int unshare_files(struct files_struct **displaced)
  1657. {
  1658. struct task_struct *task = current;
  1659. struct files_struct *copy = NULL;
  1660. int error;
  1661. error = unshare_fd(CLONE_FILES, &copy);
  1662. if (error || !copy) {
  1663. *displaced = NULL;
  1664. return error;
  1665. }
  1666. *displaced = task->files;
  1667. task_lock(task);
  1668. task->files = copy;
  1669. task_unlock(task);
  1670. return 0;
  1671. }