ipv6.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854
  1. /*
  2. * Linux INET6 implementation
  3. *
  4. * Authors:
  5. * Pedro Roque <roque@di.fc.ul.pt>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _NET_IPV6_H
  13. #define _NET_IPV6_H
  14. #include <linux/ipv6.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/jhash.h>
  17. #include <net/if_inet6.h>
  18. #include <net/ndisc.h>
  19. #include <net/flow.h>
  20. #include <net/snmp.h>
  21. #define SIN6_LEN_RFC2133 24
  22. #define IPV6_MAXPLEN 65535
  23. /*
  24. * NextHeader field of IPv6 header
  25. */
  26. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  27. #define NEXTHDR_TCP 6 /* TCP segment. */
  28. #define NEXTHDR_UDP 17 /* UDP message. */
  29. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  30. #define NEXTHDR_ROUTING 43 /* Routing header. */
  31. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  32. #define NEXTHDR_GRE 47 /* GRE header. */
  33. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  34. #define NEXTHDR_AUTH 51 /* Authentication header. */
  35. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  36. #define NEXTHDR_NONE 59 /* No next header */
  37. #define NEXTHDR_DEST 60 /* Destination options header. */
  38. #define NEXTHDR_SCTP 132 /* SCTP message. */
  39. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  40. #define NEXTHDR_MAX 255
  41. #define IPV6_DEFAULT_HOPLIMIT 64
  42. #define IPV6_DEFAULT_MCASTHOPS 1
  43. /*
  44. * Addr type
  45. *
  46. * type - unicast | multicast
  47. * scope - local | site | global
  48. * v4 - compat
  49. * v4mapped
  50. * any
  51. * loopback
  52. */
  53. #define IPV6_ADDR_ANY 0x0000U
  54. #define IPV6_ADDR_UNICAST 0x0001U
  55. #define IPV6_ADDR_MULTICAST 0x0002U
  56. #define IPV6_ADDR_LOOPBACK 0x0010U
  57. #define IPV6_ADDR_LINKLOCAL 0x0020U
  58. #define IPV6_ADDR_SITELOCAL 0x0040U
  59. #define IPV6_ADDR_COMPATv4 0x0080U
  60. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  61. #define IPV6_ADDR_MAPPED 0x1000U
  62. /*
  63. * Addr scopes
  64. */
  65. #define IPV6_ADDR_MC_SCOPE(a) \
  66. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  67. #define __IPV6_ADDR_SCOPE_INVALID -1
  68. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  69. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  70. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  71. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  72. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  73. /*
  74. * Addr flags
  75. */
  76. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  77. ((a)->s6_addr[1] & 0x10)
  78. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  79. ((a)->s6_addr[1] & 0x20)
  80. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  81. ((a)->s6_addr[1] & 0x40)
  82. /*
  83. * fragmentation header
  84. */
  85. struct frag_hdr {
  86. __u8 nexthdr;
  87. __u8 reserved;
  88. __be16 frag_off;
  89. __be32 identification;
  90. };
  91. #define IP6_MF 0x0001
  92. #define IP6_OFFSET 0xFFF8
  93. #include <net/sock.h>
  94. /* sysctls */
  95. extern int sysctl_mld_max_msf;
  96. #define _DEVINC(net, statname, modifier, idev, field) \
  97. ({ \
  98. struct inet6_dev *_idev = (idev); \
  99. if (likely(_idev != NULL)) \
  100. SNMP_INC_STATS##modifier((_idev)->stats.statname, (field)); \
  101. SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
  102. })
  103. /* per device counters are atomic_long_t */
  104. #define _DEVINCATOMIC(net, statname, modifier, idev, field) \
  105. ({ \
  106. struct inet6_dev *_idev = (idev); \
  107. if (likely(_idev != NULL)) \
  108. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  109. SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
  110. })
  111. /* per device and per net counters are atomic_long_t */
  112. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  113. ({ \
  114. struct inet6_dev *_idev = (idev); \
  115. if (likely(_idev != NULL)) \
  116. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  117. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  118. })
  119. #define _DEVADD(net, statname, modifier, idev, field, val) \
  120. ({ \
  121. struct inet6_dev *_idev = (idev); \
  122. if (likely(_idev != NULL)) \
  123. SNMP_ADD_STATS##modifier((_idev)->stats.statname, (field), (val)); \
  124. SNMP_ADD_STATS##modifier((net)->mib.statname##_statistics, (field), (val));\
  125. })
  126. #define _DEVUPD(net, statname, modifier, idev, field, val) \
  127. ({ \
  128. struct inet6_dev *_idev = (idev); \
  129. if (likely(_idev != NULL)) \
  130. SNMP_UPD_PO_STATS##modifier((_idev)->stats.statname, field, (val)); \
  131. SNMP_UPD_PO_STATS##modifier((net)->mib.statname##_statistics, field, (val));\
  132. })
  133. /* MIBs */
  134. #define IP6_INC_STATS(net, idev,field) \
  135. _DEVINC(net, ipv6, 64, idev, field)
  136. #define IP6_INC_STATS_BH(net, idev,field) \
  137. _DEVINC(net, ipv6, 64_BH, idev, field)
  138. #define IP6_ADD_STATS(net, idev,field,val) \
  139. _DEVADD(net, ipv6, 64, idev, field, val)
  140. #define IP6_ADD_STATS_BH(net, idev,field,val) \
  141. _DEVADD(net, ipv6, 64_BH, idev, field, val)
  142. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  143. _DEVUPD(net, ipv6, 64, idev, field, val)
  144. #define IP6_UPD_PO_STATS_BH(net, idev,field,val) \
  145. _DEVUPD(net, ipv6, 64_BH, idev, field, val)
  146. #define ICMP6_INC_STATS(net, idev, field) \
  147. _DEVINCATOMIC(net, icmpv6, , idev, field)
  148. #define ICMP6_INC_STATS_BH(net, idev, field) \
  149. _DEVINCATOMIC(net, icmpv6, _BH, idev, field)
  150. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  151. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  152. #define ICMP6MSGOUT_INC_STATS_BH(net, idev, field) \
  153. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  154. #define ICMP6MSGIN_INC_STATS_BH(net, idev, field) \
  155. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  156. struct ip6_ra_chain {
  157. struct ip6_ra_chain *next;
  158. struct sock *sk;
  159. int sel;
  160. void (*destructor)(struct sock *);
  161. };
  162. extern struct ip6_ra_chain *ip6_ra_chain;
  163. extern rwlock_t ip6_ra_lock;
  164. /*
  165. This structure is prepared by protocol, when parsing
  166. ancillary data and passed to IPv6.
  167. */
  168. struct ipv6_txoptions {
  169. /* Length of this structure */
  170. int tot_len;
  171. /* length of extension headers */
  172. __u16 opt_flen; /* after fragment hdr */
  173. __u16 opt_nflen; /* before fragment hdr */
  174. struct ipv6_opt_hdr *hopopt;
  175. struct ipv6_opt_hdr *dst0opt;
  176. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  177. struct ipv6_opt_hdr *dst1opt;
  178. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  179. };
  180. struct ip6_flowlabel {
  181. struct ip6_flowlabel __rcu *next;
  182. __be32 label;
  183. atomic_t users;
  184. struct in6_addr dst;
  185. struct ipv6_txoptions *opt;
  186. unsigned long linger;
  187. struct rcu_head rcu;
  188. u8 share;
  189. union {
  190. struct pid *pid;
  191. kuid_t uid;
  192. } owner;
  193. unsigned long lastuse;
  194. unsigned long expires;
  195. struct net *fl_net;
  196. };
  197. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  198. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  199. #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
  200. #define IPV6_TCLASS_SHIFT 20
  201. struct ipv6_fl_socklist {
  202. struct ipv6_fl_socklist __rcu *next;
  203. struct ip6_flowlabel *fl;
  204. struct rcu_head rcu;
  205. };
  206. struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
  207. struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
  208. struct ip6_flowlabel *fl,
  209. struct ipv6_txoptions *fopt);
  210. void fl6_free_socklist(struct sock *sk);
  211. int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
  212. int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
  213. int flags);
  214. int ip6_flowlabel_init(void);
  215. void ip6_flowlabel_cleanup(void);
  216. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  217. {
  218. if (fl)
  219. atomic_dec(&fl->users);
  220. }
  221. void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  222. int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
  223. struct icmp6hdr *thdr, int len);
  224. int ip6_ra_control(struct sock *sk, int sel);
  225. int ipv6_parse_hopopts(struct sk_buff *skb);
  226. struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
  227. struct ipv6_txoptions *opt);
  228. struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
  229. struct ipv6_txoptions *opt,
  230. int newtype,
  231. struct ipv6_opt_hdr __user *newopt,
  232. int newoptlen);
  233. struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  234. struct ipv6_txoptions *opt);
  235. bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb);
  236. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  237. {
  238. /* If forwarding is enabled, RA are not accepted unless the special
  239. * hybrid mode (accept_ra=2) is enabled.
  240. */
  241. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  242. idev->cnf.accept_ra;
  243. }
  244. #if IS_ENABLED(CONFIG_IPV6)
  245. static inline int ip6_frag_nqueues(struct net *net)
  246. {
  247. return net->ipv6.frags.nqueues;
  248. }
  249. static inline int ip6_frag_mem(struct net *net)
  250. {
  251. return sum_frag_mem_limit(&net->ipv6.frags);
  252. }
  253. #endif
  254. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  255. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  256. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  257. int __ipv6_addr_type(const struct in6_addr *addr);
  258. static inline int ipv6_addr_type(const struct in6_addr *addr)
  259. {
  260. return __ipv6_addr_type(addr) & 0xffff;
  261. }
  262. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  263. {
  264. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  265. }
  266. static inline int __ipv6_addr_src_scope(int type)
  267. {
  268. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  269. }
  270. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  271. {
  272. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  273. }
  274. static inline bool __ipv6_addr_needs_scope_id(int type)
  275. {
  276. return type & IPV6_ADDR_LINKLOCAL ||
  277. (type & IPV6_ADDR_MULTICAST &&
  278. (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
  279. }
  280. static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
  281. {
  282. return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
  283. }
  284. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  285. {
  286. return memcmp(a1, a2, sizeof(struct in6_addr));
  287. }
  288. static inline bool
  289. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  290. const struct in6_addr *a2)
  291. {
  292. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  293. const unsigned long *ul1 = (const unsigned long *)a1;
  294. const unsigned long *ulm = (const unsigned long *)m;
  295. const unsigned long *ul2 = (const unsigned long *)a2;
  296. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  297. ((ul1[1] ^ ul2[1]) & ulm[1]));
  298. #else
  299. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  300. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  301. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  302. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  303. #endif
  304. }
  305. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  306. const struct in6_addr *addr,
  307. int plen)
  308. {
  309. /* caller must guarantee 0 <= plen <= 128 */
  310. int o = plen >> 3,
  311. b = plen & 0x7;
  312. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  313. memcpy(pfx->s6_addr, addr, o);
  314. if (b != 0)
  315. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  316. }
  317. static inline void __ipv6_addr_set_half(__be32 *addr,
  318. __be32 wh, __be32 wl)
  319. {
  320. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  321. #if defined(__BIG_ENDIAN)
  322. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  323. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  324. return;
  325. }
  326. #elif defined(__LITTLE_ENDIAN)
  327. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  328. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  329. return;
  330. }
  331. #endif
  332. #endif
  333. addr[0] = wh;
  334. addr[1] = wl;
  335. }
  336. static inline void ipv6_addr_set(struct in6_addr *addr,
  337. __be32 w1, __be32 w2,
  338. __be32 w3, __be32 w4)
  339. {
  340. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  341. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  342. }
  343. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  344. const struct in6_addr *a2)
  345. {
  346. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  347. const unsigned long *ul1 = (const unsigned long *)a1;
  348. const unsigned long *ul2 = (const unsigned long *)a2;
  349. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  350. #else
  351. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  352. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  353. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  354. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  355. #endif
  356. }
  357. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  358. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  359. const __be64 *a2,
  360. unsigned int len)
  361. {
  362. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  363. return false;
  364. return true;
  365. }
  366. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  367. const struct in6_addr *addr2,
  368. unsigned int prefixlen)
  369. {
  370. const __be64 *a1 = (const __be64 *)addr1;
  371. const __be64 *a2 = (const __be64 *)addr2;
  372. if (prefixlen >= 64) {
  373. if (a1[0] ^ a2[0])
  374. return false;
  375. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  376. }
  377. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  378. }
  379. #else
  380. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  381. const struct in6_addr *addr2,
  382. unsigned int prefixlen)
  383. {
  384. const __be32 *a1 = addr1->s6_addr32;
  385. const __be32 *a2 = addr2->s6_addr32;
  386. unsigned int pdw, pbi;
  387. /* check complete u32 in prefix */
  388. pdw = prefixlen >> 5;
  389. if (pdw && memcmp(a1, a2, pdw << 2))
  390. return false;
  391. /* check incomplete u32 in prefix */
  392. pbi = prefixlen & 0x1f;
  393. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  394. return false;
  395. return true;
  396. }
  397. #endif
  398. struct inet_frag_queue;
  399. enum ip6_defrag_users {
  400. IP6_DEFRAG_LOCAL_DELIVER,
  401. IP6_DEFRAG_CONNTRACK_IN,
  402. __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
  403. IP6_DEFRAG_CONNTRACK_OUT,
  404. __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
  405. IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
  406. __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
  407. };
  408. struct ip6_create_arg {
  409. __be32 id;
  410. u32 user;
  411. const struct in6_addr *src;
  412. const struct in6_addr *dst;
  413. u8 ecn;
  414. };
  415. void ip6_frag_init(struct inet_frag_queue *q, void *a);
  416. bool ip6_frag_match(struct inet_frag_queue *q, void *a);
  417. /*
  418. * Equivalent of ipv4 struct ip
  419. */
  420. struct frag_queue {
  421. struct inet_frag_queue q;
  422. __be32 id; /* fragment id */
  423. u32 user;
  424. struct in6_addr saddr;
  425. struct in6_addr daddr;
  426. int iif;
  427. unsigned int csum;
  428. __u16 nhoffset;
  429. u8 ecn;
  430. };
  431. void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
  432. struct inet_frags *frags);
  433. static inline bool ipv6_addr_any(const struct in6_addr *a)
  434. {
  435. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  436. const unsigned long *ul = (const unsigned long *)a;
  437. return (ul[0] | ul[1]) == 0UL;
  438. #else
  439. return (a->s6_addr32[0] | a->s6_addr32[1] |
  440. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  441. #endif
  442. }
  443. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  444. {
  445. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  446. const unsigned long *ul = (const unsigned long *)a;
  447. unsigned long x = ul[0] ^ ul[1];
  448. return (u32)(x ^ (x >> 32));
  449. #else
  450. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  451. a->s6_addr32[2] ^ a->s6_addr32[3]);
  452. #endif
  453. }
  454. /* more secured version of ipv6_addr_hash() */
  455. static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
  456. {
  457. u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
  458. return jhash_3words(v,
  459. (__force u32)a->s6_addr32[2],
  460. (__force u32)a->s6_addr32[3],
  461. initval);
  462. }
  463. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  464. {
  465. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  466. const unsigned long *ul = (const unsigned long *)a;
  467. return (ul[0] | (ul[1] ^ cpu_to_be64(1))) == 0UL;
  468. #else
  469. return (a->s6_addr32[0] | a->s6_addr32[1] |
  470. a->s6_addr32[2] | (a->s6_addr32[3] ^ htonl(1))) == 0;
  471. #endif
  472. }
  473. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  474. {
  475. return (
  476. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  477. *(__be64 *)a |
  478. #else
  479. (a->s6_addr32[0] | a->s6_addr32[1]) |
  480. #endif
  481. (a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
  482. }
  483. /*
  484. * Check for a RFC 4843 ORCHID address
  485. * (Overlay Routable Cryptographic Hash Identifiers)
  486. */
  487. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  488. {
  489. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  490. }
  491. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  492. struct in6_addr *v4mapped)
  493. {
  494. ipv6_addr_set(v4mapped,
  495. 0, 0,
  496. htonl(0x0000FFFF),
  497. addr);
  498. }
  499. /*
  500. * find the first different bit between two addresses
  501. * length of address must be a multiple of 32bits
  502. */
  503. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  504. {
  505. const __be32 *a1 = token1, *a2 = token2;
  506. int i;
  507. addrlen >>= 2;
  508. for (i = 0; i < addrlen; i++) {
  509. __be32 xb = a1[i] ^ a2[i];
  510. if (xb)
  511. return i * 32 + 31 - __fls(ntohl(xb));
  512. }
  513. /*
  514. * we should *never* get to this point since that
  515. * would mean the addrs are equal
  516. *
  517. * However, we do get to it 8) And exacly, when
  518. * addresses are equal 8)
  519. *
  520. * ip route add 1111::/128 via ...
  521. * ip route add 1111::/64 via ...
  522. * and we are here.
  523. *
  524. * Ideally, this function should stop comparison
  525. * at prefix length. It does not, but it is still OK,
  526. * if returned value is greater than prefix length.
  527. * --ANK (980803)
  528. */
  529. return addrlen << 5;
  530. }
  531. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  532. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  533. {
  534. const __be64 *a1 = token1, *a2 = token2;
  535. int i;
  536. addrlen >>= 3;
  537. for (i = 0; i < addrlen; i++) {
  538. __be64 xb = a1[i] ^ a2[i];
  539. if (xb)
  540. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  541. }
  542. return addrlen << 6;
  543. }
  544. #endif
  545. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  546. {
  547. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  548. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  549. return __ipv6_addr_diff64(token1, token2, addrlen);
  550. #endif
  551. return __ipv6_addr_diff32(token1, token2, addrlen);
  552. }
  553. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  554. {
  555. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  556. }
  557. void ipv6_select_ident(struct frag_hdr *fhdr, struct rt6_info *rt);
  558. int ip6_dst_hoplimit(struct dst_entry *dst);
  559. /*
  560. * Header manipulation
  561. */
  562. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  563. __be32 flowlabel)
  564. {
  565. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  566. }
  567. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  568. {
  569. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  570. }
  571. static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
  572. {
  573. return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
  574. }
  575. static inline u8 ip6_tclass(__be32 flowinfo)
  576. {
  577. return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
  578. }
  579. /*
  580. * Prototypes exported by ipv6
  581. */
  582. /*
  583. * rcv function (called from netdevice level)
  584. */
  585. int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
  586. struct packet_type *pt, struct net_device *orig_dev);
  587. int ip6_rcv_finish(struct sk_buff *skb);
  588. /*
  589. * upper-layer output functions
  590. */
  591. int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
  592. struct ipv6_txoptions *opt, int tclass);
  593. int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  594. int ip6_append_data(struct sock *sk,
  595. int getfrag(void *from, char *to, int offset, int len,
  596. int odd, struct sk_buff *skb),
  597. void *from, int length, int transhdrlen, int hlimit,
  598. int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6,
  599. struct rt6_info *rt, unsigned int flags, int dontfrag);
  600. int ip6_push_pending_frames(struct sock *sk);
  601. void ip6_flush_pending_frames(struct sock *sk);
  602. int ip6_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6);
  603. struct dst_entry *ip6_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  604. const struct in6_addr *final_dst);
  605. struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  606. const struct in6_addr *final_dst);
  607. struct dst_entry *ip6_blackhole_route(struct net *net,
  608. struct dst_entry *orig_dst);
  609. /*
  610. * skb processing functions
  611. */
  612. int ip6_output(struct sk_buff *skb);
  613. int ip6_forward(struct sk_buff *skb);
  614. int ip6_input(struct sk_buff *skb);
  615. int ip6_mc_input(struct sk_buff *skb);
  616. int __ip6_local_out(struct sk_buff *skb);
  617. int ip6_local_out(struct sk_buff *skb);
  618. /*
  619. * Extension header (options) processing
  620. */
  621. void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  622. u8 *proto, struct in6_addr **daddr_p);
  623. void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  624. u8 *proto);
  625. int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
  626. __be16 *frag_offp);
  627. bool ipv6_ext_hdr(u8 nexthdr);
  628. enum {
  629. IP6_FH_F_FRAG = (1 << 0),
  630. IP6_FH_F_AUTH = (1 << 1),
  631. IP6_FH_F_SKIP_RH = (1 << 2),
  632. };
  633. /* find specified header and get offset to it */
  634. int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
  635. unsigned short *fragoff, int *fragflg);
  636. int ipv6_find_tlv(struct sk_buff *skb, int offset, int type);
  637. struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  638. const struct ipv6_txoptions *opt,
  639. struct in6_addr *orig);
  640. /*
  641. * socket options (ipv6_sockglue.c)
  642. */
  643. int ipv6_setsockopt(struct sock *sk, int level, int optname,
  644. char __user *optval, unsigned int optlen);
  645. int ipv6_getsockopt(struct sock *sk, int level, int optname,
  646. char __user *optval, int __user *optlen);
  647. int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
  648. char __user *optval, unsigned int optlen);
  649. int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
  650. char __user *optval, int __user *optlen);
  651. int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
  652. int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
  653. int addr_len);
  654. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
  655. int *addr_len);
  656. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  657. int *addr_len);
  658. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  659. u32 info, u8 *payload);
  660. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  661. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  662. int inet6_release(struct socket *sock);
  663. int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
  664. int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
  665. int peer);
  666. int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
  667. int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  668. struct sock *sk);
  669. /*
  670. * reassembly.c
  671. */
  672. extern const struct proto_ops inet6_stream_ops;
  673. extern const struct proto_ops inet6_dgram_ops;
  674. struct group_source_req;
  675. struct group_filter;
  676. int ip6_mc_source(int add, int omode, struct sock *sk,
  677. struct group_source_req *pgsr);
  678. int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
  679. int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  680. struct group_filter __user *optval, int __user *optlen);
  681. #ifdef CONFIG_PROC_FS
  682. int ac6_proc_init(struct net *net);
  683. void ac6_proc_exit(struct net *net);
  684. int raw6_proc_init(void);
  685. void raw6_proc_exit(void);
  686. int tcp6_proc_init(struct net *net);
  687. void tcp6_proc_exit(struct net *net);
  688. int udp6_proc_init(struct net *net);
  689. void udp6_proc_exit(struct net *net);
  690. int udplite6_proc_init(void);
  691. void udplite6_proc_exit(void);
  692. int ipv6_misc_proc_init(void);
  693. void ipv6_misc_proc_exit(void);
  694. int snmp6_register_dev(struct inet6_dev *idev);
  695. int snmp6_unregister_dev(struct inet6_dev *idev);
  696. #else
  697. static inline int ac6_proc_init(struct net *net) { return 0; }
  698. static inline void ac6_proc_exit(struct net *net) { }
  699. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  700. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  701. #endif
  702. #ifdef CONFIG_SYSCTL
  703. extern struct ctl_table ipv6_route_table_template[];
  704. struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  705. struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  706. int ipv6_sysctl_register(void);
  707. void ipv6_sysctl_unregister(void);
  708. #endif
  709. #endif /* _NET_IPV6_H */