xfs_buf.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/gfp.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include "xfs_log_format.h"
  37. #include "xfs_trans_resv.h"
  38. #include "xfs_sb.h"
  39. #include "xfs_ag.h"
  40. #include "xfs_mount.h"
  41. #include "xfs_trace.h"
  42. #include "xfs_log.h"
  43. static kmem_zone_t *xfs_buf_zone;
  44. static struct workqueue_struct *xfslogd_workqueue;
  45. #ifdef XFS_BUF_LOCK_TRACKING
  46. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  47. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  48. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  49. #else
  50. # define XB_SET_OWNER(bp) do { } while (0)
  51. # define XB_CLEAR_OWNER(bp) do { } while (0)
  52. # define XB_GET_OWNER(bp) do { } while (0)
  53. #endif
  54. #define xb_to_gfp(flags) \
  55. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  56. static inline int
  57. xfs_buf_is_vmapped(
  58. struct xfs_buf *bp)
  59. {
  60. /*
  61. * Return true if the buffer is vmapped.
  62. *
  63. * b_addr is null if the buffer is not mapped, but the code is clever
  64. * enough to know it doesn't have to map a single page, so the check has
  65. * to be both for b_addr and bp->b_page_count > 1.
  66. */
  67. return bp->b_addr && bp->b_page_count > 1;
  68. }
  69. static inline int
  70. xfs_buf_vmap_len(
  71. struct xfs_buf *bp)
  72. {
  73. return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  74. }
  75. /*
  76. * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  77. * b_lru_ref count so that the buffer is freed immediately when the buffer
  78. * reference count falls to zero. If the buffer is already on the LRU, we need
  79. * to remove the reference that LRU holds on the buffer.
  80. *
  81. * This prevents build-up of stale buffers on the LRU.
  82. */
  83. void
  84. xfs_buf_stale(
  85. struct xfs_buf *bp)
  86. {
  87. ASSERT(xfs_buf_islocked(bp));
  88. bp->b_flags |= XBF_STALE;
  89. /*
  90. * Clear the delwri status so that a delwri queue walker will not
  91. * flush this buffer to disk now that it is stale. The delwri queue has
  92. * a reference to the buffer, so this is safe to do.
  93. */
  94. bp->b_flags &= ~_XBF_DELWRI_Q;
  95. spin_lock(&bp->b_lock);
  96. atomic_set(&bp->b_lru_ref, 0);
  97. if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
  98. (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
  99. atomic_dec(&bp->b_hold);
  100. ASSERT(atomic_read(&bp->b_hold) >= 1);
  101. spin_unlock(&bp->b_lock);
  102. }
  103. static int
  104. xfs_buf_get_maps(
  105. struct xfs_buf *bp,
  106. int map_count)
  107. {
  108. ASSERT(bp->b_maps == NULL);
  109. bp->b_map_count = map_count;
  110. if (map_count == 1) {
  111. bp->b_maps = &bp->__b_map;
  112. return 0;
  113. }
  114. bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
  115. KM_NOFS);
  116. if (!bp->b_maps)
  117. return ENOMEM;
  118. return 0;
  119. }
  120. /*
  121. * Frees b_pages if it was allocated.
  122. */
  123. static void
  124. xfs_buf_free_maps(
  125. struct xfs_buf *bp)
  126. {
  127. if (bp->b_maps != &bp->__b_map) {
  128. kmem_free(bp->b_maps);
  129. bp->b_maps = NULL;
  130. }
  131. }
  132. struct xfs_buf *
  133. _xfs_buf_alloc(
  134. struct xfs_buftarg *target,
  135. struct xfs_buf_map *map,
  136. int nmaps,
  137. xfs_buf_flags_t flags)
  138. {
  139. struct xfs_buf *bp;
  140. int error;
  141. int i;
  142. bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
  143. if (unlikely(!bp))
  144. return NULL;
  145. /*
  146. * We don't want certain flags to appear in b_flags unless they are
  147. * specifically set by later operations on the buffer.
  148. */
  149. flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
  150. atomic_set(&bp->b_hold, 1);
  151. atomic_set(&bp->b_lru_ref, 1);
  152. init_completion(&bp->b_iowait);
  153. INIT_LIST_HEAD(&bp->b_lru);
  154. INIT_LIST_HEAD(&bp->b_list);
  155. RB_CLEAR_NODE(&bp->b_rbnode);
  156. sema_init(&bp->b_sema, 0); /* held, no waiters */
  157. spin_lock_init(&bp->b_lock);
  158. XB_SET_OWNER(bp);
  159. bp->b_target = target;
  160. bp->b_flags = flags;
  161. /*
  162. * Set length and io_length to the same value initially.
  163. * I/O routines should use io_length, which will be the same in
  164. * most cases but may be reset (e.g. XFS recovery).
  165. */
  166. error = xfs_buf_get_maps(bp, nmaps);
  167. if (error) {
  168. kmem_zone_free(xfs_buf_zone, bp);
  169. return NULL;
  170. }
  171. bp->b_bn = map[0].bm_bn;
  172. bp->b_length = 0;
  173. for (i = 0; i < nmaps; i++) {
  174. bp->b_maps[i].bm_bn = map[i].bm_bn;
  175. bp->b_maps[i].bm_len = map[i].bm_len;
  176. bp->b_length += map[i].bm_len;
  177. }
  178. bp->b_io_length = bp->b_length;
  179. atomic_set(&bp->b_pin_count, 0);
  180. init_waitqueue_head(&bp->b_waiters);
  181. XFS_STATS_INC(xb_create);
  182. trace_xfs_buf_init(bp, _RET_IP_);
  183. return bp;
  184. }
  185. /*
  186. * Allocate a page array capable of holding a specified number
  187. * of pages, and point the page buf at it.
  188. */
  189. STATIC int
  190. _xfs_buf_get_pages(
  191. xfs_buf_t *bp,
  192. int page_count,
  193. xfs_buf_flags_t flags)
  194. {
  195. /* Make sure that we have a page list */
  196. if (bp->b_pages == NULL) {
  197. bp->b_page_count = page_count;
  198. if (page_count <= XB_PAGES) {
  199. bp->b_pages = bp->b_page_array;
  200. } else {
  201. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  202. page_count, KM_NOFS);
  203. if (bp->b_pages == NULL)
  204. return -ENOMEM;
  205. }
  206. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  207. }
  208. return 0;
  209. }
  210. /*
  211. * Frees b_pages if it was allocated.
  212. */
  213. STATIC void
  214. _xfs_buf_free_pages(
  215. xfs_buf_t *bp)
  216. {
  217. if (bp->b_pages != bp->b_page_array) {
  218. kmem_free(bp->b_pages);
  219. bp->b_pages = NULL;
  220. }
  221. }
  222. /*
  223. * Releases the specified buffer.
  224. *
  225. * The modification state of any associated pages is left unchanged.
  226. * The buffer must not be on any hash - use xfs_buf_rele instead for
  227. * hashed and refcounted buffers
  228. */
  229. void
  230. xfs_buf_free(
  231. xfs_buf_t *bp)
  232. {
  233. trace_xfs_buf_free(bp, _RET_IP_);
  234. ASSERT(list_empty(&bp->b_lru));
  235. if (bp->b_flags & _XBF_PAGES) {
  236. uint i;
  237. if (xfs_buf_is_vmapped(bp))
  238. vm_unmap_ram(bp->b_addr - bp->b_offset,
  239. bp->b_page_count);
  240. for (i = 0; i < bp->b_page_count; i++) {
  241. struct page *page = bp->b_pages[i];
  242. __free_page(page);
  243. }
  244. } else if (bp->b_flags & _XBF_KMEM)
  245. kmem_free(bp->b_addr);
  246. _xfs_buf_free_pages(bp);
  247. xfs_buf_free_maps(bp);
  248. kmem_zone_free(xfs_buf_zone, bp);
  249. }
  250. /*
  251. * Allocates all the pages for buffer in question and builds it's page list.
  252. */
  253. STATIC int
  254. xfs_buf_allocate_memory(
  255. xfs_buf_t *bp,
  256. uint flags)
  257. {
  258. size_t size;
  259. size_t nbytes, offset;
  260. gfp_t gfp_mask = xb_to_gfp(flags);
  261. unsigned short page_count, i;
  262. xfs_off_t start, end;
  263. int error;
  264. /*
  265. * for buffers that are contained within a single page, just allocate
  266. * the memory from the heap - there's no need for the complexity of
  267. * page arrays to keep allocation down to order 0.
  268. */
  269. size = BBTOB(bp->b_length);
  270. if (size < PAGE_SIZE) {
  271. bp->b_addr = kmem_alloc(size, KM_NOFS);
  272. if (!bp->b_addr) {
  273. /* low memory - use alloc_page loop instead */
  274. goto use_alloc_page;
  275. }
  276. if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
  277. ((unsigned long)bp->b_addr & PAGE_MASK)) {
  278. /* b_addr spans two pages - use alloc_page instead */
  279. kmem_free(bp->b_addr);
  280. bp->b_addr = NULL;
  281. goto use_alloc_page;
  282. }
  283. bp->b_offset = offset_in_page(bp->b_addr);
  284. bp->b_pages = bp->b_page_array;
  285. bp->b_pages[0] = virt_to_page(bp->b_addr);
  286. bp->b_page_count = 1;
  287. bp->b_flags |= _XBF_KMEM;
  288. return 0;
  289. }
  290. use_alloc_page:
  291. start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
  292. end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
  293. >> PAGE_SHIFT;
  294. page_count = end - start;
  295. error = _xfs_buf_get_pages(bp, page_count, flags);
  296. if (unlikely(error))
  297. return error;
  298. offset = bp->b_offset;
  299. bp->b_flags |= _XBF_PAGES;
  300. for (i = 0; i < bp->b_page_count; i++) {
  301. struct page *page;
  302. uint retries = 0;
  303. retry:
  304. page = alloc_page(gfp_mask);
  305. if (unlikely(page == NULL)) {
  306. if (flags & XBF_READ_AHEAD) {
  307. bp->b_page_count = i;
  308. error = ENOMEM;
  309. goto out_free_pages;
  310. }
  311. /*
  312. * This could deadlock.
  313. *
  314. * But until all the XFS lowlevel code is revamped to
  315. * handle buffer allocation failures we can't do much.
  316. */
  317. if (!(++retries % 100))
  318. xfs_err(NULL,
  319. "possible memory allocation deadlock in %s (mode:0x%x)",
  320. __func__, gfp_mask);
  321. XFS_STATS_INC(xb_page_retries);
  322. congestion_wait(BLK_RW_ASYNC, HZ/50);
  323. goto retry;
  324. }
  325. XFS_STATS_INC(xb_page_found);
  326. nbytes = min_t(size_t, size, PAGE_SIZE - offset);
  327. size -= nbytes;
  328. bp->b_pages[i] = page;
  329. offset = 0;
  330. }
  331. return 0;
  332. out_free_pages:
  333. for (i = 0; i < bp->b_page_count; i++)
  334. __free_page(bp->b_pages[i]);
  335. return error;
  336. }
  337. /*
  338. * Map buffer into kernel address-space if necessary.
  339. */
  340. STATIC int
  341. _xfs_buf_map_pages(
  342. xfs_buf_t *bp,
  343. uint flags)
  344. {
  345. ASSERT(bp->b_flags & _XBF_PAGES);
  346. if (bp->b_page_count == 1) {
  347. /* A single page buffer is always mappable */
  348. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  349. } else if (flags & XBF_UNMAPPED) {
  350. bp->b_addr = NULL;
  351. } else {
  352. int retried = 0;
  353. do {
  354. bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
  355. -1, PAGE_KERNEL);
  356. if (bp->b_addr)
  357. break;
  358. vm_unmap_aliases();
  359. } while (retried++ <= 1);
  360. if (!bp->b_addr)
  361. return -ENOMEM;
  362. bp->b_addr += bp->b_offset;
  363. }
  364. return 0;
  365. }
  366. /*
  367. * Finding and Reading Buffers
  368. */
  369. /*
  370. * Look up, and creates if absent, a lockable buffer for
  371. * a given range of an inode. The buffer is returned
  372. * locked. No I/O is implied by this call.
  373. */
  374. xfs_buf_t *
  375. _xfs_buf_find(
  376. struct xfs_buftarg *btp,
  377. struct xfs_buf_map *map,
  378. int nmaps,
  379. xfs_buf_flags_t flags,
  380. xfs_buf_t *new_bp)
  381. {
  382. size_t numbytes;
  383. struct xfs_perag *pag;
  384. struct rb_node **rbp;
  385. struct rb_node *parent;
  386. xfs_buf_t *bp;
  387. xfs_daddr_t blkno = map[0].bm_bn;
  388. xfs_daddr_t eofs;
  389. int numblks = 0;
  390. int i;
  391. for (i = 0; i < nmaps; i++)
  392. numblks += map[i].bm_len;
  393. numbytes = BBTOB(numblks);
  394. /* Check for IOs smaller than the sector size / not sector aligned */
  395. ASSERT(!(numbytes < btp->bt_meta_sectorsize));
  396. ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
  397. /*
  398. * Corrupted block numbers can get through to here, unfortunately, so we
  399. * have to check that the buffer falls within the filesystem bounds.
  400. */
  401. eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
  402. if (blkno >= eofs) {
  403. /*
  404. * XXX (dgc): we should really be returning EFSCORRUPTED here,
  405. * but none of the higher level infrastructure supports
  406. * returning a specific error on buffer lookup failures.
  407. */
  408. xfs_alert(btp->bt_mount,
  409. "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
  410. __func__, blkno, eofs);
  411. WARN_ON(1);
  412. return NULL;
  413. }
  414. /* get tree root */
  415. pag = xfs_perag_get(btp->bt_mount,
  416. xfs_daddr_to_agno(btp->bt_mount, blkno));
  417. /* walk tree */
  418. spin_lock(&pag->pag_buf_lock);
  419. rbp = &pag->pag_buf_tree.rb_node;
  420. parent = NULL;
  421. bp = NULL;
  422. while (*rbp) {
  423. parent = *rbp;
  424. bp = rb_entry(parent, struct xfs_buf, b_rbnode);
  425. if (blkno < bp->b_bn)
  426. rbp = &(*rbp)->rb_left;
  427. else if (blkno > bp->b_bn)
  428. rbp = &(*rbp)->rb_right;
  429. else {
  430. /*
  431. * found a block number match. If the range doesn't
  432. * match, the only way this is allowed is if the buffer
  433. * in the cache is stale and the transaction that made
  434. * it stale has not yet committed. i.e. we are
  435. * reallocating a busy extent. Skip this buffer and
  436. * continue searching to the right for an exact match.
  437. */
  438. if (bp->b_length != numblks) {
  439. ASSERT(bp->b_flags & XBF_STALE);
  440. rbp = &(*rbp)->rb_right;
  441. continue;
  442. }
  443. atomic_inc(&bp->b_hold);
  444. goto found;
  445. }
  446. }
  447. /* No match found */
  448. if (new_bp) {
  449. rb_link_node(&new_bp->b_rbnode, parent, rbp);
  450. rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
  451. /* the buffer keeps the perag reference until it is freed */
  452. new_bp->b_pag = pag;
  453. spin_unlock(&pag->pag_buf_lock);
  454. } else {
  455. XFS_STATS_INC(xb_miss_locked);
  456. spin_unlock(&pag->pag_buf_lock);
  457. xfs_perag_put(pag);
  458. }
  459. return new_bp;
  460. found:
  461. spin_unlock(&pag->pag_buf_lock);
  462. xfs_perag_put(pag);
  463. if (!xfs_buf_trylock(bp)) {
  464. if (flags & XBF_TRYLOCK) {
  465. xfs_buf_rele(bp);
  466. XFS_STATS_INC(xb_busy_locked);
  467. return NULL;
  468. }
  469. xfs_buf_lock(bp);
  470. XFS_STATS_INC(xb_get_locked_waited);
  471. }
  472. /*
  473. * if the buffer is stale, clear all the external state associated with
  474. * it. We need to keep flags such as how we allocated the buffer memory
  475. * intact here.
  476. */
  477. if (bp->b_flags & XBF_STALE) {
  478. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  479. ASSERT(bp->b_iodone == NULL);
  480. bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
  481. bp->b_ops = NULL;
  482. }
  483. trace_xfs_buf_find(bp, flags, _RET_IP_);
  484. XFS_STATS_INC(xb_get_locked);
  485. return bp;
  486. }
  487. /*
  488. * Assembles a buffer covering the specified range. The code is optimised for
  489. * cache hits, as metadata intensive workloads will see 3 orders of magnitude
  490. * more hits than misses.
  491. */
  492. struct xfs_buf *
  493. xfs_buf_get_map(
  494. struct xfs_buftarg *target,
  495. struct xfs_buf_map *map,
  496. int nmaps,
  497. xfs_buf_flags_t flags)
  498. {
  499. struct xfs_buf *bp;
  500. struct xfs_buf *new_bp;
  501. int error = 0;
  502. bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
  503. if (likely(bp))
  504. goto found;
  505. new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
  506. if (unlikely(!new_bp))
  507. return NULL;
  508. error = xfs_buf_allocate_memory(new_bp, flags);
  509. if (error) {
  510. xfs_buf_free(new_bp);
  511. return NULL;
  512. }
  513. bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
  514. if (!bp) {
  515. xfs_buf_free(new_bp);
  516. return NULL;
  517. }
  518. if (bp != new_bp)
  519. xfs_buf_free(new_bp);
  520. found:
  521. if (!bp->b_addr) {
  522. error = _xfs_buf_map_pages(bp, flags);
  523. if (unlikely(error)) {
  524. xfs_warn(target->bt_mount,
  525. "%s: failed to map pagesn", __func__);
  526. xfs_buf_relse(bp);
  527. return NULL;
  528. }
  529. }
  530. XFS_STATS_INC(xb_get);
  531. trace_xfs_buf_get(bp, flags, _RET_IP_);
  532. return bp;
  533. }
  534. STATIC int
  535. _xfs_buf_read(
  536. xfs_buf_t *bp,
  537. xfs_buf_flags_t flags)
  538. {
  539. ASSERT(!(flags & XBF_WRITE));
  540. ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
  541. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
  542. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
  543. xfs_buf_iorequest(bp);
  544. if (flags & XBF_ASYNC)
  545. return 0;
  546. return xfs_buf_iowait(bp);
  547. }
  548. xfs_buf_t *
  549. xfs_buf_read_map(
  550. struct xfs_buftarg *target,
  551. struct xfs_buf_map *map,
  552. int nmaps,
  553. xfs_buf_flags_t flags,
  554. const struct xfs_buf_ops *ops)
  555. {
  556. struct xfs_buf *bp;
  557. flags |= XBF_READ;
  558. bp = xfs_buf_get_map(target, map, nmaps, flags);
  559. if (bp) {
  560. trace_xfs_buf_read(bp, flags, _RET_IP_);
  561. if (!XFS_BUF_ISDONE(bp)) {
  562. XFS_STATS_INC(xb_get_read);
  563. bp->b_ops = ops;
  564. _xfs_buf_read(bp, flags);
  565. } else if (flags & XBF_ASYNC) {
  566. /*
  567. * Read ahead call which is already satisfied,
  568. * drop the buffer
  569. */
  570. xfs_buf_relse(bp);
  571. return NULL;
  572. } else {
  573. /* We do not want read in the flags */
  574. bp->b_flags &= ~XBF_READ;
  575. }
  576. }
  577. return bp;
  578. }
  579. /*
  580. * If we are not low on memory then do the readahead in a deadlock
  581. * safe manner.
  582. */
  583. void
  584. xfs_buf_readahead_map(
  585. struct xfs_buftarg *target,
  586. struct xfs_buf_map *map,
  587. int nmaps,
  588. const struct xfs_buf_ops *ops)
  589. {
  590. if (bdi_read_congested(target->bt_bdi))
  591. return;
  592. xfs_buf_read_map(target, map, nmaps,
  593. XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
  594. }
  595. /*
  596. * Read an uncached buffer from disk. Allocates and returns a locked
  597. * buffer containing the disk contents or nothing.
  598. */
  599. struct xfs_buf *
  600. xfs_buf_read_uncached(
  601. struct xfs_buftarg *target,
  602. xfs_daddr_t daddr,
  603. size_t numblks,
  604. int flags,
  605. const struct xfs_buf_ops *ops)
  606. {
  607. struct xfs_buf *bp;
  608. bp = xfs_buf_get_uncached(target, numblks, flags);
  609. if (!bp)
  610. return NULL;
  611. /* set up the buffer for a read IO */
  612. ASSERT(bp->b_map_count == 1);
  613. bp->b_bn = daddr;
  614. bp->b_maps[0].bm_bn = daddr;
  615. bp->b_flags |= XBF_READ;
  616. bp->b_ops = ops;
  617. if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
  618. xfs_buf_relse(bp);
  619. return NULL;
  620. }
  621. xfs_buf_iorequest(bp);
  622. xfs_buf_iowait(bp);
  623. return bp;
  624. }
  625. /*
  626. * Return a buffer allocated as an empty buffer and associated to external
  627. * memory via xfs_buf_associate_memory() back to it's empty state.
  628. */
  629. void
  630. xfs_buf_set_empty(
  631. struct xfs_buf *bp,
  632. size_t numblks)
  633. {
  634. if (bp->b_pages)
  635. _xfs_buf_free_pages(bp);
  636. bp->b_pages = NULL;
  637. bp->b_page_count = 0;
  638. bp->b_addr = NULL;
  639. bp->b_length = numblks;
  640. bp->b_io_length = numblks;
  641. ASSERT(bp->b_map_count == 1);
  642. bp->b_bn = XFS_BUF_DADDR_NULL;
  643. bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
  644. bp->b_maps[0].bm_len = bp->b_length;
  645. }
  646. static inline struct page *
  647. mem_to_page(
  648. void *addr)
  649. {
  650. if ((!is_vmalloc_addr(addr))) {
  651. return virt_to_page(addr);
  652. } else {
  653. return vmalloc_to_page(addr);
  654. }
  655. }
  656. int
  657. xfs_buf_associate_memory(
  658. xfs_buf_t *bp,
  659. void *mem,
  660. size_t len)
  661. {
  662. int rval;
  663. int i = 0;
  664. unsigned long pageaddr;
  665. unsigned long offset;
  666. size_t buflen;
  667. int page_count;
  668. pageaddr = (unsigned long)mem & PAGE_MASK;
  669. offset = (unsigned long)mem - pageaddr;
  670. buflen = PAGE_ALIGN(len + offset);
  671. page_count = buflen >> PAGE_SHIFT;
  672. /* Free any previous set of page pointers */
  673. if (bp->b_pages)
  674. _xfs_buf_free_pages(bp);
  675. bp->b_pages = NULL;
  676. bp->b_addr = mem;
  677. rval = _xfs_buf_get_pages(bp, page_count, 0);
  678. if (rval)
  679. return rval;
  680. bp->b_offset = offset;
  681. for (i = 0; i < bp->b_page_count; i++) {
  682. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  683. pageaddr += PAGE_SIZE;
  684. }
  685. bp->b_io_length = BTOBB(len);
  686. bp->b_length = BTOBB(buflen);
  687. return 0;
  688. }
  689. xfs_buf_t *
  690. xfs_buf_get_uncached(
  691. struct xfs_buftarg *target,
  692. size_t numblks,
  693. int flags)
  694. {
  695. unsigned long page_count;
  696. int error, i;
  697. struct xfs_buf *bp;
  698. DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
  699. bp = _xfs_buf_alloc(target, &map, 1, 0);
  700. if (unlikely(bp == NULL))
  701. goto fail;
  702. page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
  703. error = _xfs_buf_get_pages(bp, page_count, 0);
  704. if (error)
  705. goto fail_free_buf;
  706. for (i = 0; i < page_count; i++) {
  707. bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
  708. if (!bp->b_pages[i])
  709. goto fail_free_mem;
  710. }
  711. bp->b_flags |= _XBF_PAGES;
  712. error = _xfs_buf_map_pages(bp, 0);
  713. if (unlikely(error)) {
  714. xfs_warn(target->bt_mount,
  715. "%s: failed to map pages", __func__);
  716. goto fail_free_mem;
  717. }
  718. trace_xfs_buf_get_uncached(bp, _RET_IP_);
  719. return bp;
  720. fail_free_mem:
  721. while (--i >= 0)
  722. __free_page(bp->b_pages[i]);
  723. _xfs_buf_free_pages(bp);
  724. fail_free_buf:
  725. xfs_buf_free_maps(bp);
  726. kmem_zone_free(xfs_buf_zone, bp);
  727. fail:
  728. return NULL;
  729. }
  730. /*
  731. * Increment reference count on buffer, to hold the buffer concurrently
  732. * with another thread which may release (free) the buffer asynchronously.
  733. * Must hold the buffer already to call this function.
  734. */
  735. void
  736. xfs_buf_hold(
  737. xfs_buf_t *bp)
  738. {
  739. trace_xfs_buf_hold(bp, _RET_IP_);
  740. atomic_inc(&bp->b_hold);
  741. }
  742. /*
  743. * Releases a hold on the specified buffer. If the
  744. * the hold count is 1, calls xfs_buf_free.
  745. */
  746. void
  747. xfs_buf_rele(
  748. xfs_buf_t *bp)
  749. {
  750. struct xfs_perag *pag = bp->b_pag;
  751. trace_xfs_buf_rele(bp, _RET_IP_);
  752. if (!pag) {
  753. ASSERT(list_empty(&bp->b_lru));
  754. ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
  755. if (atomic_dec_and_test(&bp->b_hold))
  756. xfs_buf_free(bp);
  757. return;
  758. }
  759. ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
  760. ASSERT(atomic_read(&bp->b_hold) > 0);
  761. if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
  762. spin_lock(&bp->b_lock);
  763. if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
  764. /*
  765. * If the buffer is added to the LRU take a new
  766. * reference to the buffer for the LRU and clear the
  767. * (now stale) dispose list state flag
  768. */
  769. if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
  770. bp->b_state &= ~XFS_BSTATE_DISPOSE;
  771. atomic_inc(&bp->b_hold);
  772. }
  773. spin_unlock(&bp->b_lock);
  774. spin_unlock(&pag->pag_buf_lock);
  775. } else {
  776. /*
  777. * most of the time buffers will already be removed from
  778. * the LRU, so optimise that case by checking for the
  779. * XFS_BSTATE_DISPOSE flag indicating the last list the
  780. * buffer was on was the disposal list
  781. */
  782. if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
  783. list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
  784. } else {
  785. ASSERT(list_empty(&bp->b_lru));
  786. }
  787. spin_unlock(&bp->b_lock);
  788. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  789. rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
  790. spin_unlock(&pag->pag_buf_lock);
  791. xfs_perag_put(pag);
  792. xfs_buf_free(bp);
  793. }
  794. }
  795. }
  796. /*
  797. * Lock a buffer object, if it is not already locked.
  798. *
  799. * If we come across a stale, pinned, locked buffer, we know that we are
  800. * being asked to lock a buffer that has been reallocated. Because it is
  801. * pinned, we know that the log has not been pushed to disk and hence it
  802. * will still be locked. Rather than continuing to have trylock attempts
  803. * fail until someone else pushes the log, push it ourselves before
  804. * returning. This means that the xfsaild will not get stuck trying
  805. * to push on stale inode buffers.
  806. */
  807. int
  808. xfs_buf_trylock(
  809. struct xfs_buf *bp)
  810. {
  811. int locked;
  812. locked = down_trylock(&bp->b_sema) == 0;
  813. if (locked)
  814. XB_SET_OWNER(bp);
  815. trace_xfs_buf_trylock(bp, _RET_IP_);
  816. return locked;
  817. }
  818. /*
  819. * Lock a buffer object.
  820. *
  821. * If we come across a stale, pinned, locked buffer, we know that we
  822. * are being asked to lock a buffer that has been reallocated. Because
  823. * it is pinned, we know that the log has not been pushed to disk and
  824. * hence it will still be locked. Rather than sleeping until someone
  825. * else pushes the log, push it ourselves before trying to get the lock.
  826. */
  827. void
  828. xfs_buf_lock(
  829. struct xfs_buf *bp)
  830. {
  831. trace_xfs_buf_lock(bp, _RET_IP_);
  832. if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  833. xfs_log_force(bp->b_target->bt_mount, 0);
  834. down(&bp->b_sema);
  835. XB_SET_OWNER(bp);
  836. trace_xfs_buf_lock_done(bp, _RET_IP_);
  837. }
  838. void
  839. xfs_buf_unlock(
  840. struct xfs_buf *bp)
  841. {
  842. XB_CLEAR_OWNER(bp);
  843. up(&bp->b_sema);
  844. trace_xfs_buf_unlock(bp, _RET_IP_);
  845. }
  846. STATIC void
  847. xfs_buf_wait_unpin(
  848. xfs_buf_t *bp)
  849. {
  850. DECLARE_WAITQUEUE (wait, current);
  851. if (atomic_read(&bp->b_pin_count) == 0)
  852. return;
  853. add_wait_queue(&bp->b_waiters, &wait);
  854. for (;;) {
  855. set_current_state(TASK_UNINTERRUPTIBLE);
  856. if (atomic_read(&bp->b_pin_count) == 0)
  857. break;
  858. io_schedule();
  859. }
  860. remove_wait_queue(&bp->b_waiters, &wait);
  861. set_current_state(TASK_RUNNING);
  862. }
  863. /*
  864. * Buffer Utility Routines
  865. */
  866. STATIC void
  867. xfs_buf_iodone_work(
  868. struct work_struct *work)
  869. {
  870. struct xfs_buf *bp =
  871. container_of(work, xfs_buf_t, b_iodone_work);
  872. bool read = !!(bp->b_flags & XBF_READ);
  873. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  874. /* only validate buffers that were read without errors */
  875. if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
  876. bp->b_ops->verify_read(bp);
  877. if (bp->b_iodone)
  878. (*(bp->b_iodone))(bp);
  879. else if (bp->b_flags & XBF_ASYNC)
  880. xfs_buf_relse(bp);
  881. else {
  882. ASSERT(read && bp->b_ops);
  883. complete(&bp->b_iowait);
  884. }
  885. }
  886. void
  887. xfs_buf_ioend(
  888. struct xfs_buf *bp,
  889. int schedule)
  890. {
  891. bool read = !!(bp->b_flags & XBF_READ);
  892. trace_xfs_buf_iodone(bp, _RET_IP_);
  893. if (bp->b_error == 0)
  894. bp->b_flags |= XBF_DONE;
  895. if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
  896. if (schedule) {
  897. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  898. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  899. } else {
  900. xfs_buf_iodone_work(&bp->b_iodone_work);
  901. }
  902. } else {
  903. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  904. complete(&bp->b_iowait);
  905. }
  906. }
  907. void
  908. xfs_buf_ioerror(
  909. xfs_buf_t *bp,
  910. int error)
  911. {
  912. ASSERT(error >= 0 && error <= 0xffff);
  913. bp->b_error = (unsigned short)error;
  914. trace_xfs_buf_ioerror(bp, error, _RET_IP_);
  915. }
  916. void
  917. xfs_buf_ioerror_alert(
  918. struct xfs_buf *bp,
  919. const char *func)
  920. {
  921. xfs_alert(bp->b_target->bt_mount,
  922. "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
  923. (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
  924. }
  925. /*
  926. * Called when we want to stop a buffer from getting written or read.
  927. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
  928. * so that the proper iodone callbacks get called.
  929. */
  930. STATIC int
  931. xfs_bioerror(
  932. xfs_buf_t *bp)
  933. {
  934. #ifdef XFSERRORDEBUG
  935. ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
  936. #endif
  937. /*
  938. * No need to wait until the buffer is unpinned, we aren't flushing it.
  939. */
  940. xfs_buf_ioerror(bp, EIO);
  941. /*
  942. * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
  943. */
  944. XFS_BUF_UNREAD(bp);
  945. XFS_BUF_UNDONE(bp);
  946. xfs_buf_stale(bp);
  947. xfs_buf_ioend(bp, 0);
  948. return EIO;
  949. }
  950. /*
  951. * Same as xfs_bioerror, except that we are releasing the buffer
  952. * here ourselves, and avoiding the xfs_buf_ioend call.
  953. * This is meant for userdata errors; metadata bufs come with
  954. * iodone functions attached, so that we can track down errors.
  955. */
  956. int
  957. xfs_bioerror_relse(
  958. struct xfs_buf *bp)
  959. {
  960. int64_t fl = bp->b_flags;
  961. /*
  962. * No need to wait until the buffer is unpinned.
  963. * We aren't flushing it.
  964. *
  965. * chunkhold expects B_DONE to be set, whether
  966. * we actually finish the I/O or not. We don't want to
  967. * change that interface.
  968. */
  969. XFS_BUF_UNREAD(bp);
  970. XFS_BUF_DONE(bp);
  971. xfs_buf_stale(bp);
  972. bp->b_iodone = NULL;
  973. if (!(fl & XBF_ASYNC)) {
  974. /*
  975. * Mark b_error and B_ERROR _both_.
  976. * Lot's of chunkcache code assumes that.
  977. * There's no reason to mark error for
  978. * ASYNC buffers.
  979. */
  980. xfs_buf_ioerror(bp, EIO);
  981. complete(&bp->b_iowait);
  982. } else {
  983. xfs_buf_relse(bp);
  984. }
  985. return EIO;
  986. }
  987. STATIC int
  988. xfs_bdstrat_cb(
  989. struct xfs_buf *bp)
  990. {
  991. if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  992. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  993. /*
  994. * Metadata write that didn't get logged but
  995. * written delayed anyway. These aren't associated
  996. * with a transaction, and can be ignored.
  997. */
  998. if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
  999. return xfs_bioerror_relse(bp);
  1000. else
  1001. return xfs_bioerror(bp);
  1002. }
  1003. xfs_buf_iorequest(bp);
  1004. return 0;
  1005. }
  1006. int
  1007. xfs_bwrite(
  1008. struct xfs_buf *bp)
  1009. {
  1010. int error;
  1011. ASSERT(xfs_buf_islocked(bp));
  1012. bp->b_flags |= XBF_WRITE;
  1013. bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
  1014. xfs_bdstrat_cb(bp);
  1015. error = xfs_buf_iowait(bp);
  1016. if (error) {
  1017. xfs_force_shutdown(bp->b_target->bt_mount,
  1018. SHUTDOWN_META_IO_ERROR);
  1019. }
  1020. return error;
  1021. }
  1022. STATIC void
  1023. _xfs_buf_ioend(
  1024. xfs_buf_t *bp,
  1025. int schedule)
  1026. {
  1027. if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
  1028. xfs_buf_ioend(bp, schedule);
  1029. }
  1030. STATIC void
  1031. xfs_buf_bio_end_io(
  1032. struct bio *bio,
  1033. int error)
  1034. {
  1035. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  1036. /*
  1037. * don't overwrite existing errors - otherwise we can lose errors on
  1038. * buffers that require multiple bios to complete.
  1039. */
  1040. if (!bp->b_error)
  1041. xfs_buf_ioerror(bp, -error);
  1042. if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
  1043. invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
  1044. _xfs_buf_ioend(bp, 1);
  1045. bio_put(bio);
  1046. }
  1047. static void
  1048. xfs_buf_ioapply_map(
  1049. struct xfs_buf *bp,
  1050. int map,
  1051. int *buf_offset,
  1052. int *count,
  1053. int rw)
  1054. {
  1055. int page_index;
  1056. int total_nr_pages = bp->b_page_count;
  1057. int nr_pages;
  1058. struct bio *bio;
  1059. sector_t sector = bp->b_maps[map].bm_bn;
  1060. int size;
  1061. int offset;
  1062. total_nr_pages = bp->b_page_count;
  1063. /* skip the pages in the buffer before the start offset */
  1064. page_index = 0;
  1065. offset = *buf_offset;
  1066. while (offset >= PAGE_SIZE) {
  1067. page_index++;
  1068. offset -= PAGE_SIZE;
  1069. }
  1070. /*
  1071. * Limit the IO size to the length of the current vector, and update the
  1072. * remaining IO count for the next time around.
  1073. */
  1074. size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
  1075. *count -= size;
  1076. *buf_offset += size;
  1077. next_chunk:
  1078. atomic_inc(&bp->b_io_remaining);
  1079. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1080. if (nr_pages > total_nr_pages)
  1081. nr_pages = total_nr_pages;
  1082. bio = bio_alloc(GFP_NOIO, nr_pages);
  1083. bio->bi_bdev = bp->b_target->bt_bdev;
  1084. bio->bi_iter.bi_sector = sector;
  1085. bio->bi_end_io = xfs_buf_bio_end_io;
  1086. bio->bi_private = bp;
  1087. for (; size && nr_pages; nr_pages--, page_index++) {
  1088. int rbytes, nbytes = PAGE_SIZE - offset;
  1089. if (nbytes > size)
  1090. nbytes = size;
  1091. rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
  1092. offset);
  1093. if (rbytes < nbytes)
  1094. break;
  1095. offset = 0;
  1096. sector += BTOBB(nbytes);
  1097. size -= nbytes;
  1098. total_nr_pages--;
  1099. }
  1100. if (likely(bio->bi_iter.bi_size)) {
  1101. if (xfs_buf_is_vmapped(bp)) {
  1102. flush_kernel_vmap_range(bp->b_addr,
  1103. xfs_buf_vmap_len(bp));
  1104. }
  1105. submit_bio(rw, bio);
  1106. if (size)
  1107. goto next_chunk;
  1108. } else {
  1109. /*
  1110. * This is guaranteed not to be the last io reference count
  1111. * because the caller (xfs_buf_iorequest) holds a count itself.
  1112. */
  1113. atomic_dec(&bp->b_io_remaining);
  1114. xfs_buf_ioerror(bp, EIO);
  1115. bio_put(bio);
  1116. }
  1117. }
  1118. STATIC void
  1119. _xfs_buf_ioapply(
  1120. struct xfs_buf *bp)
  1121. {
  1122. struct blk_plug plug;
  1123. int rw;
  1124. int offset;
  1125. int size;
  1126. int i;
  1127. /*
  1128. * Make sure we capture only current IO errors rather than stale errors
  1129. * left over from previous use of the buffer (e.g. failed readahead).
  1130. */
  1131. bp->b_error = 0;
  1132. if (bp->b_flags & XBF_WRITE) {
  1133. if (bp->b_flags & XBF_SYNCIO)
  1134. rw = WRITE_SYNC;
  1135. else
  1136. rw = WRITE;
  1137. if (bp->b_flags & XBF_FUA)
  1138. rw |= REQ_FUA;
  1139. if (bp->b_flags & XBF_FLUSH)
  1140. rw |= REQ_FLUSH;
  1141. /*
  1142. * Run the write verifier callback function if it exists. If
  1143. * this function fails it will mark the buffer with an error and
  1144. * the IO should not be dispatched.
  1145. */
  1146. if (bp->b_ops) {
  1147. bp->b_ops->verify_write(bp);
  1148. if (bp->b_error) {
  1149. xfs_force_shutdown(bp->b_target->bt_mount,
  1150. SHUTDOWN_CORRUPT_INCORE);
  1151. return;
  1152. }
  1153. }
  1154. } else if (bp->b_flags & XBF_READ_AHEAD) {
  1155. rw = READA;
  1156. } else {
  1157. rw = READ;
  1158. }
  1159. /* we only use the buffer cache for meta-data */
  1160. rw |= REQ_META;
  1161. /*
  1162. * Walk all the vectors issuing IO on them. Set up the initial offset
  1163. * into the buffer and the desired IO size before we start -
  1164. * _xfs_buf_ioapply_vec() will modify them appropriately for each
  1165. * subsequent call.
  1166. */
  1167. offset = bp->b_offset;
  1168. size = BBTOB(bp->b_io_length);
  1169. blk_start_plug(&plug);
  1170. for (i = 0; i < bp->b_map_count; i++) {
  1171. xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
  1172. if (bp->b_error)
  1173. break;
  1174. if (size <= 0)
  1175. break; /* all done */
  1176. }
  1177. blk_finish_plug(&plug);
  1178. }
  1179. void
  1180. xfs_buf_iorequest(
  1181. xfs_buf_t *bp)
  1182. {
  1183. trace_xfs_buf_iorequest(bp, _RET_IP_);
  1184. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  1185. if (bp->b_flags & XBF_WRITE)
  1186. xfs_buf_wait_unpin(bp);
  1187. xfs_buf_hold(bp);
  1188. /* Set the count to 1 initially, this will stop an I/O
  1189. * completion callout which happens before we have started
  1190. * all the I/O from calling xfs_buf_ioend too early.
  1191. */
  1192. atomic_set(&bp->b_io_remaining, 1);
  1193. _xfs_buf_ioapply(bp);
  1194. _xfs_buf_ioend(bp, 1);
  1195. xfs_buf_rele(bp);
  1196. }
  1197. /*
  1198. * Waits for I/O to complete on the buffer supplied. It returns immediately if
  1199. * no I/O is pending or there is already a pending error on the buffer. It
  1200. * returns the I/O error code, if any, or 0 if there was no error.
  1201. */
  1202. int
  1203. xfs_buf_iowait(
  1204. xfs_buf_t *bp)
  1205. {
  1206. trace_xfs_buf_iowait(bp, _RET_IP_);
  1207. if (!bp->b_error)
  1208. wait_for_completion(&bp->b_iowait);
  1209. trace_xfs_buf_iowait_done(bp, _RET_IP_);
  1210. return bp->b_error;
  1211. }
  1212. xfs_caddr_t
  1213. xfs_buf_offset(
  1214. xfs_buf_t *bp,
  1215. size_t offset)
  1216. {
  1217. struct page *page;
  1218. if (bp->b_addr)
  1219. return bp->b_addr + offset;
  1220. offset += bp->b_offset;
  1221. page = bp->b_pages[offset >> PAGE_SHIFT];
  1222. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
  1223. }
  1224. /*
  1225. * Move data into or out of a buffer.
  1226. */
  1227. void
  1228. xfs_buf_iomove(
  1229. xfs_buf_t *bp, /* buffer to process */
  1230. size_t boff, /* starting buffer offset */
  1231. size_t bsize, /* length to copy */
  1232. void *data, /* data address */
  1233. xfs_buf_rw_t mode) /* read/write/zero flag */
  1234. {
  1235. size_t bend;
  1236. bend = boff + bsize;
  1237. while (boff < bend) {
  1238. struct page *page;
  1239. int page_index, page_offset, csize;
  1240. page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
  1241. page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
  1242. page = bp->b_pages[page_index];
  1243. csize = min_t(size_t, PAGE_SIZE - page_offset,
  1244. BBTOB(bp->b_io_length) - boff);
  1245. ASSERT((csize + page_offset) <= PAGE_SIZE);
  1246. switch (mode) {
  1247. case XBRW_ZERO:
  1248. memset(page_address(page) + page_offset, 0, csize);
  1249. break;
  1250. case XBRW_READ:
  1251. memcpy(data, page_address(page) + page_offset, csize);
  1252. break;
  1253. case XBRW_WRITE:
  1254. memcpy(page_address(page) + page_offset, data, csize);
  1255. }
  1256. boff += csize;
  1257. data += csize;
  1258. }
  1259. }
  1260. /*
  1261. * Handling of buffer targets (buftargs).
  1262. */
  1263. /*
  1264. * Wait for any bufs with callbacks that have been submitted but have not yet
  1265. * returned. These buffers will have an elevated hold count, so wait on those
  1266. * while freeing all the buffers only held by the LRU.
  1267. */
  1268. static enum lru_status
  1269. xfs_buftarg_wait_rele(
  1270. struct list_head *item,
  1271. spinlock_t *lru_lock,
  1272. void *arg)
  1273. {
  1274. struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
  1275. struct list_head *dispose = arg;
  1276. if (atomic_read(&bp->b_hold) > 1) {
  1277. /* need to wait, so skip it this pass */
  1278. trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
  1279. return LRU_SKIP;
  1280. }
  1281. if (!spin_trylock(&bp->b_lock))
  1282. return LRU_SKIP;
  1283. /*
  1284. * clear the LRU reference count so the buffer doesn't get
  1285. * ignored in xfs_buf_rele().
  1286. */
  1287. atomic_set(&bp->b_lru_ref, 0);
  1288. bp->b_state |= XFS_BSTATE_DISPOSE;
  1289. list_move(item, dispose);
  1290. spin_unlock(&bp->b_lock);
  1291. return LRU_REMOVED;
  1292. }
  1293. void
  1294. xfs_wait_buftarg(
  1295. struct xfs_buftarg *btp)
  1296. {
  1297. LIST_HEAD(dispose);
  1298. int loop = 0;
  1299. /* loop until there is nothing left on the lru list. */
  1300. while (list_lru_count(&btp->bt_lru)) {
  1301. list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
  1302. &dispose, LONG_MAX);
  1303. while (!list_empty(&dispose)) {
  1304. struct xfs_buf *bp;
  1305. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1306. list_del_init(&bp->b_lru);
  1307. if (bp->b_flags & XBF_WRITE_FAIL) {
  1308. xfs_alert(btp->bt_mount,
  1309. "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
  1310. "Please run xfs_repair to determine the extent of the problem.",
  1311. (long long)bp->b_bn);
  1312. }
  1313. xfs_buf_rele(bp);
  1314. }
  1315. if (loop++ != 0)
  1316. delay(100);
  1317. }
  1318. }
  1319. static enum lru_status
  1320. xfs_buftarg_isolate(
  1321. struct list_head *item,
  1322. spinlock_t *lru_lock,
  1323. void *arg)
  1324. {
  1325. struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
  1326. struct list_head *dispose = arg;
  1327. /*
  1328. * we are inverting the lru lock/bp->b_lock here, so use a trylock.
  1329. * If we fail to get the lock, just skip it.
  1330. */
  1331. if (!spin_trylock(&bp->b_lock))
  1332. return LRU_SKIP;
  1333. /*
  1334. * Decrement the b_lru_ref count unless the value is already
  1335. * zero. If the value is already zero, we need to reclaim the
  1336. * buffer, otherwise it gets another trip through the LRU.
  1337. */
  1338. if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
  1339. spin_unlock(&bp->b_lock);
  1340. return LRU_ROTATE;
  1341. }
  1342. bp->b_state |= XFS_BSTATE_DISPOSE;
  1343. list_move(item, dispose);
  1344. spin_unlock(&bp->b_lock);
  1345. return LRU_REMOVED;
  1346. }
  1347. static unsigned long
  1348. xfs_buftarg_shrink_scan(
  1349. struct shrinker *shrink,
  1350. struct shrink_control *sc)
  1351. {
  1352. struct xfs_buftarg *btp = container_of(shrink,
  1353. struct xfs_buftarg, bt_shrinker);
  1354. LIST_HEAD(dispose);
  1355. unsigned long freed;
  1356. unsigned long nr_to_scan = sc->nr_to_scan;
  1357. freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
  1358. &dispose, &nr_to_scan);
  1359. while (!list_empty(&dispose)) {
  1360. struct xfs_buf *bp;
  1361. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1362. list_del_init(&bp->b_lru);
  1363. xfs_buf_rele(bp);
  1364. }
  1365. return freed;
  1366. }
  1367. static unsigned long
  1368. xfs_buftarg_shrink_count(
  1369. struct shrinker *shrink,
  1370. struct shrink_control *sc)
  1371. {
  1372. struct xfs_buftarg *btp = container_of(shrink,
  1373. struct xfs_buftarg, bt_shrinker);
  1374. return list_lru_count_node(&btp->bt_lru, sc->nid);
  1375. }
  1376. void
  1377. xfs_free_buftarg(
  1378. struct xfs_mount *mp,
  1379. struct xfs_buftarg *btp)
  1380. {
  1381. unregister_shrinker(&btp->bt_shrinker);
  1382. list_lru_destroy(&btp->bt_lru);
  1383. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1384. xfs_blkdev_issue_flush(btp);
  1385. kmem_free(btp);
  1386. }
  1387. int
  1388. xfs_setsize_buftarg(
  1389. xfs_buftarg_t *btp,
  1390. unsigned int blocksize,
  1391. unsigned int sectorsize)
  1392. {
  1393. /* Set up metadata sector size info */
  1394. btp->bt_meta_sectorsize = sectorsize;
  1395. btp->bt_meta_sectormask = sectorsize - 1;
  1396. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1397. char name[BDEVNAME_SIZE];
  1398. bdevname(btp->bt_bdev, name);
  1399. xfs_warn(btp->bt_mount,
  1400. "Cannot set_blocksize to %u on device %s",
  1401. sectorsize, name);
  1402. return EINVAL;
  1403. }
  1404. /* Set up device logical sector size mask */
  1405. btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
  1406. btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
  1407. return 0;
  1408. }
  1409. /*
  1410. * When allocating the initial buffer target we have not yet
  1411. * read in the superblock, so don't know what sized sectors
  1412. * are being used at this early stage. Play safe.
  1413. */
  1414. STATIC int
  1415. xfs_setsize_buftarg_early(
  1416. xfs_buftarg_t *btp,
  1417. struct block_device *bdev)
  1418. {
  1419. return xfs_setsize_buftarg(btp, PAGE_SIZE,
  1420. bdev_logical_block_size(bdev));
  1421. }
  1422. xfs_buftarg_t *
  1423. xfs_alloc_buftarg(
  1424. struct xfs_mount *mp,
  1425. struct block_device *bdev,
  1426. int external,
  1427. const char *fsname)
  1428. {
  1429. xfs_buftarg_t *btp;
  1430. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
  1431. btp->bt_mount = mp;
  1432. btp->bt_dev = bdev->bd_dev;
  1433. btp->bt_bdev = bdev;
  1434. btp->bt_bdi = blk_get_backing_dev_info(bdev);
  1435. if (!btp->bt_bdi)
  1436. goto error;
  1437. if (xfs_setsize_buftarg_early(btp, bdev))
  1438. goto error;
  1439. if (list_lru_init(&btp->bt_lru))
  1440. goto error;
  1441. btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
  1442. btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
  1443. btp->bt_shrinker.seeks = DEFAULT_SEEKS;
  1444. btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
  1445. register_shrinker(&btp->bt_shrinker);
  1446. return btp;
  1447. error:
  1448. kmem_free(btp);
  1449. return NULL;
  1450. }
  1451. /*
  1452. * Add a buffer to the delayed write list.
  1453. *
  1454. * This queues a buffer for writeout if it hasn't already been. Note that
  1455. * neither this routine nor the buffer list submission functions perform
  1456. * any internal synchronization. It is expected that the lists are thread-local
  1457. * to the callers.
  1458. *
  1459. * Returns true if we queued up the buffer, or false if it already had
  1460. * been on the buffer list.
  1461. */
  1462. bool
  1463. xfs_buf_delwri_queue(
  1464. struct xfs_buf *bp,
  1465. struct list_head *list)
  1466. {
  1467. ASSERT(xfs_buf_islocked(bp));
  1468. ASSERT(!(bp->b_flags & XBF_READ));
  1469. /*
  1470. * If the buffer is already marked delwri it already is queued up
  1471. * by someone else for imediate writeout. Just ignore it in that
  1472. * case.
  1473. */
  1474. if (bp->b_flags & _XBF_DELWRI_Q) {
  1475. trace_xfs_buf_delwri_queued(bp, _RET_IP_);
  1476. return false;
  1477. }
  1478. trace_xfs_buf_delwri_queue(bp, _RET_IP_);
  1479. /*
  1480. * If a buffer gets written out synchronously or marked stale while it
  1481. * is on a delwri list we lazily remove it. To do this, the other party
  1482. * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
  1483. * It remains referenced and on the list. In a rare corner case it
  1484. * might get readded to a delwri list after the synchronous writeout, in
  1485. * which case we need just need to re-add the flag here.
  1486. */
  1487. bp->b_flags |= _XBF_DELWRI_Q;
  1488. if (list_empty(&bp->b_list)) {
  1489. atomic_inc(&bp->b_hold);
  1490. list_add_tail(&bp->b_list, list);
  1491. }
  1492. return true;
  1493. }
  1494. /*
  1495. * Compare function is more complex than it needs to be because
  1496. * the return value is only 32 bits and we are doing comparisons
  1497. * on 64 bit values
  1498. */
  1499. static int
  1500. xfs_buf_cmp(
  1501. void *priv,
  1502. struct list_head *a,
  1503. struct list_head *b)
  1504. {
  1505. struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
  1506. struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
  1507. xfs_daddr_t diff;
  1508. diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
  1509. if (diff < 0)
  1510. return -1;
  1511. if (diff > 0)
  1512. return 1;
  1513. return 0;
  1514. }
  1515. static int
  1516. __xfs_buf_delwri_submit(
  1517. struct list_head *buffer_list,
  1518. struct list_head *io_list,
  1519. bool wait)
  1520. {
  1521. struct blk_plug plug;
  1522. struct xfs_buf *bp, *n;
  1523. int pinned = 0;
  1524. list_for_each_entry_safe(bp, n, buffer_list, b_list) {
  1525. if (!wait) {
  1526. if (xfs_buf_ispinned(bp)) {
  1527. pinned++;
  1528. continue;
  1529. }
  1530. if (!xfs_buf_trylock(bp))
  1531. continue;
  1532. } else {
  1533. xfs_buf_lock(bp);
  1534. }
  1535. /*
  1536. * Someone else might have written the buffer synchronously or
  1537. * marked it stale in the meantime. In that case only the
  1538. * _XBF_DELWRI_Q flag got cleared, and we have to drop the
  1539. * reference and remove it from the list here.
  1540. */
  1541. if (!(bp->b_flags & _XBF_DELWRI_Q)) {
  1542. list_del_init(&bp->b_list);
  1543. xfs_buf_relse(bp);
  1544. continue;
  1545. }
  1546. list_move_tail(&bp->b_list, io_list);
  1547. trace_xfs_buf_delwri_split(bp, _RET_IP_);
  1548. }
  1549. list_sort(NULL, io_list, xfs_buf_cmp);
  1550. blk_start_plug(&plug);
  1551. list_for_each_entry_safe(bp, n, io_list, b_list) {
  1552. bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
  1553. bp->b_flags |= XBF_WRITE;
  1554. if (!wait) {
  1555. bp->b_flags |= XBF_ASYNC;
  1556. list_del_init(&bp->b_list);
  1557. }
  1558. xfs_bdstrat_cb(bp);
  1559. }
  1560. blk_finish_plug(&plug);
  1561. return pinned;
  1562. }
  1563. /*
  1564. * Write out a buffer list asynchronously.
  1565. *
  1566. * This will take the @buffer_list, write all non-locked and non-pinned buffers
  1567. * out and not wait for I/O completion on any of the buffers. This interface
  1568. * is only safely useable for callers that can track I/O completion by higher
  1569. * level means, e.g. AIL pushing as the @buffer_list is consumed in this
  1570. * function.
  1571. */
  1572. int
  1573. xfs_buf_delwri_submit_nowait(
  1574. struct list_head *buffer_list)
  1575. {
  1576. LIST_HEAD (io_list);
  1577. return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
  1578. }
  1579. /*
  1580. * Write out a buffer list synchronously.
  1581. *
  1582. * This will take the @buffer_list, write all buffers out and wait for I/O
  1583. * completion on all of the buffers. @buffer_list is consumed by the function,
  1584. * so callers must have some other way of tracking buffers if they require such
  1585. * functionality.
  1586. */
  1587. int
  1588. xfs_buf_delwri_submit(
  1589. struct list_head *buffer_list)
  1590. {
  1591. LIST_HEAD (io_list);
  1592. int error = 0, error2;
  1593. struct xfs_buf *bp;
  1594. __xfs_buf_delwri_submit(buffer_list, &io_list, true);
  1595. /* Wait for IO to complete. */
  1596. while (!list_empty(&io_list)) {
  1597. bp = list_first_entry(&io_list, struct xfs_buf, b_list);
  1598. list_del_init(&bp->b_list);
  1599. error2 = xfs_buf_iowait(bp);
  1600. xfs_buf_relse(bp);
  1601. if (!error)
  1602. error = error2;
  1603. }
  1604. return error;
  1605. }
  1606. int __init
  1607. xfs_buf_init(void)
  1608. {
  1609. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1610. KM_ZONE_HWALIGN, NULL);
  1611. if (!xfs_buf_zone)
  1612. goto out;
  1613. xfslogd_workqueue = alloc_workqueue("xfslogd",
  1614. WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
  1615. if (!xfslogd_workqueue)
  1616. goto out_free_buf_zone;
  1617. return 0;
  1618. out_free_buf_zone:
  1619. kmem_zone_destroy(xfs_buf_zone);
  1620. out:
  1621. return -ENOMEM;
  1622. }
  1623. void
  1624. xfs_buf_terminate(void)
  1625. {
  1626. destroy_workqueue(xfslogd_workqueue);
  1627. kmem_zone_destroy(xfs_buf_zone);
  1628. }