segment.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * fs/f2fs/segment.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/blkdev.h>
  12. /* constant macro */
  13. #define NULL_SEGNO ((unsigned int)(~0))
  14. #define NULL_SECNO ((unsigned int)(~0))
  15. #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
  16. /* L: Logical segment # in volume, R: Relative segment # in main area */
  17. #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
  18. #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
  19. #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
  20. #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
  21. #define IS_CURSEG(sbi, seg) \
  22. ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
  23. (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
  24. (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
  25. (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
  26. (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
  27. (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  28. #define IS_CURSEC(sbi, secno) \
  29. ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
  30. sbi->segs_per_sec) || \
  31. (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
  32. sbi->segs_per_sec) || \
  33. (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
  34. sbi->segs_per_sec) || \
  35. (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
  36. sbi->segs_per_sec) || \
  37. (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
  38. sbi->segs_per_sec) || \
  39. (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
  40. sbi->segs_per_sec)) \
  41. #define START_BLOCK(sbi, segno) \
  42. (SM_I(sbi)->seg0_blkaddr + \
  43. (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  44. #define NEXT_FREE_BLKADDR(sbi, curseg) \
  45. (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  46. #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
  47. #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
  48. ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
  49. #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
  50. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  51. #define GET_SEGNO(sbi, blk_addr) \
  52. (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
  53. NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
  54. GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  55. #define GET_SECNO(sbi, segno) \
  56. ((segno) / sbi->segs_per_sec)
  57. #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
  58. ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  59. #define GET_SUM_BLOCK(sbi, segno) \
  60. ((sbi->sm_info->ssa_blkaddr) + segno)
  61. #define GET_SUM_TYPE(footer) ((footer)->entry_type)
  62. #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  63. #define SIT_ENTRY_OFFSET(sit_i, segno) \
  64. (segno % sit_i->sents_per_block)
  65. #define SIT_BLOCK_OFFSET(sit_i, segno) \
  66. (segno / SIT_ENTRY_PER_BLOCK)
  67. #define START_SEGNO(sit_i, segno) \
  68. (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
  69. #define SIT_BLK_CNT(sbi) \
  70. ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
  71. #define f2fs_bitmap_size(nr) \
  72. (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  73. #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
  74. #define TOTAL_SECS(sbi) (sbi->total_sections)
  75. #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
  76. (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
  77. #define SECTOR_TO_BLOCK(sbi, sectors) \
  78. (sectors >> (sbi)->log_sectors_per_block)
  79. #define MAX_BIO_BLOCKS(max_hw_blocks) \
  80. (min((int)max_hw_blocks, BIO_MAX_PAGES))
  81. /*
  82. * indicate a block allocation direction: RIGHT and LEFT.
  83. * RIGHT means allocating new sections towards the end of volume.
  84. * LEFT means the opposite direction.
  85. */
  86. enum {
  87. ALLOC_RIGHT = 0,
  88. ALLOC_LEFT
  89. };
  90. /*
  91. * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
  92. * LFS writes data sequentially with cleaning operations.
  93. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
  94. */
  95. enum {
  96. LFS = 0,
  97. SSR
  98. };
  99. /*
  100. * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
  101. * GC_CB is based on cost-benefit algorithm.
  102. * GC_GREEDY is based on greedy algorithm.
  103. */
  104. enum {
  105. GC_CB = 0,
  106. GC_GREEDY
  107. };
  108. /*
  109. * BG_GC means the background cleaning job.
  110. * FG_GC means the on-demand cleaning job.
  111. */
  112. enum {
  113. BG_GC = 0,
  114. FG_GC
  115. };
  116. /* for a function parameter to select a victim segment */
  117. struct victim_sel_policy {
  118. int alloc_mode; /* LFS or SSR */
  119. int gc_mode; /* GC_CB or GC_GREEDY */
  120. unsigned long *dirty_segmap; /* dirty segment bitmap */
  121. unsigned int max_search; /* maximum # of segments to search */
  122. unsigned int offset; /* last scanned bitmap offset */
  123. unsigned int ofs_unit; /* bitmap search unit */
  124. unsigned int min_cost; /* minimum cost */
  125. unsigned int min_segno; /* segment # having min. cost */
  126. };
  127. struct seg_entry {
  128. unsigned short valid_blocks; /* # of valid blocks */
  129. unsigned char *cur_valid_map; /* validity bitmap of blocks */
  130. /*
  131. * # of valid blocks and the validity bitmap stored in the the last
  132. * checkpoint pack. This information is used by the SSR mode.
  133. */
  134. unsigned short ckpt_valid_blocks;
  135. unsigned char *ckpt_valid_map;
  136. unsigned char type; /* segment type like CURSEG_XXX_TYPE */
  137. unsigned long long mtime; /* modification time of the segment */
  138. };
  139. struct sec_entry {
  140. unsigned int valid_blocks; /* # of valid blocks in a section */
  141. };
  142. struct segment_allocation {
  143. void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
  144. };
  145. struct sit_info {
  146. const struct segment_allocation *s_ops;
  147. block_t sit_base_addr; /* start block address of SIT area */
  148. block_t sit_blocks; /* # of blocks used by SIT area */
  149. block_t written_valid_blocks; /* # of valid blocks in main area */
  150. char *sit_bitmap; /* SIT bitmap pointer */
  151. unsigned int bitmap_size; /* SIT bitmap size */
  152. unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
  153. unsigned int dirty_sentries; /* # of dirty sentries */
  154. unsigned int sents_per_block; /* # of SIT entries per block */
  155. struct mutex sentry_lock; /* to protect SIT cache */
  156. struct seg_entry *sentries; /* SIT segment-level cache */
  157. struct sec_entry *sec_entries; /* SIT section-level cache */
  158. /* for cost-benefit algorithm in cleaning procedure */
  159. unsigned long long elapsed_time; /* elapsed time after mount */
  160. unsigned long long mounted_time; /* mount time */
  161. unsigned long long min_mtime; /* min. modification time */
  162. unsigned long long max_mtime; /* max. modification time */
  163. };
  164. struct free_segmap_info {
  165. unsigned int start_segno; /* start segment number logically */
  166. unsigned int free_segments; /* # of free segments */
  167. unsigned int free_sections; /* # of free sections */
  168. rwlock_t segmap_lock; /* free segmap lock */
  169. unsigned long *free_segmap; /* free segment bitmap */
  170. unsigned long *free_secmap; /* free section bitmap */
  171. };
  172. /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
  173. enum dirty_type {
  174. DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
  175. DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
  176. DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
  177. DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
  178. DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
  179. DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
  180. DIRTY, /* to count # of dirty segments */
  181. PRE, /* to count # of entirely obsolete segments */
  182. NR_DIRTY_TYPE
  183. };
  184. struct dirty_seglist_info {
  185. const struct victim_selection *v_ops; /* victim selction operation */
  186. unsigned long *dirty_segmap[NR_DIRTY_TYPE];
  187. struct mutex seglist_lock; /* lock for segment bitmaps */
  188. int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
  189. unsigned long *victim_secmap; /* background GC victims */
  190. };
  191. /* victim selection function for cleaning and SSR */
  192. struct victim_selection {
  193. int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
  194. int, int, char);
  195. };
  196. /* for active log information */
  197. struct curseg_info {
  198. struct mutex curseg_mutex; /* lock for consistency */
  199. struct f2fs_summary_block *sum_blk; /* cached summary block */
  200. unsigned char alloc_type; /* current allocation type */
  201. unsigned int segno; /* current segment number */
  202. unsigned short next_blkoff; /* next block offset to write */
  203. unsigned int zone; /* current zone number */
  204. unsigned int next_segno; /* preallocated segment */
  205. };
  206. /*
  207. * inline functions
  208. */
  209. static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
  210. {
  211. return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
  212. }
  213. static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
  214. unsigned int segno)
  215. {
  216. struct sit_info *sit_i = SIT_I(sbi);
  217. return &sit_i->sentries[segno];
  218. }
  219. static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
  220. unsigned int segno)
  221. {
  222. struct sit_info *sit_i = SIT_I(sbi);
  223. return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
  224. }
  225. static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
  226. unsigned int segno, int section)
  227. {
  228. /*
  229. * In order to get # of valid blocks in a section instantly from many
  230. * segments, f2fs manages two counting structures separately.
  231. */
  232. if (section > 1)
  233. return get_sec_entry(sbi, segno)->valid_blocks;
  234. else
  235. return get_seg_entry(sbi, segno)->valid_blocks;
  236. }
  237. static inline void seg_info_from_raw_sit(struct seg_entry *se,
  238. struct f2fs_sit_entry *rs)
  239. {
  240. se->valid_blocks = GET_SIT_VBLOCKS(rs);
  241. se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
  242. memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  243. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  244. se->type = GET_SIT_TYPE(rs);
  245. se->mtime = le64_to_cpu(rs->mtime);
  246. }
  247. static inline void seg_info_to_raw_sit(struct seg_entry *se,
  248. struct f2fs_sit_entry *rs)
  249. {
  250. unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
  251. se->valid_blocks;
  252. rs->vblocks = cpu_to_le16(raw_vblocks);
  253. memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
  254. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  255. se->ckpt_valid_blocks = se->valid_blocks;
  256. rs->mtime = cpu_to_le64(se->mtime);
  257. }
  258. static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
  259. unsigned int max, unsigned int segno)
  260. {
  261. unsigned int ret;
  262. read_lock(&free_i->segmap_lock);
  263. ret = find_next_bit(free_i->free_segmap, max, segno);
  264. read_unlock(&free_i->segmap_lock);
  265. return ret;
  266. }
  267. static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
  268. {
  269. struct free_segmap_info *free_i = FREE_I(sbi);
  270. unsigned int secno = segno / sbi->segs_per_sec;
  271. unsigned int start_segno = secno * sbi->segs_per_sec;
  272. unsigned int next;
  273. write_lock(&free_i->segmap_lock);
  274. clear_bit(segno, free_i->free_segmap);
  275. free_i->free_segments++;
  276. next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
  277. if (next >= start_segno + sbi->segs_per_sec) {
  278. clear_bit(secno, free_i->free_secmap);
  279. free_i->free_sections++;
  280. }
  281. write_unlock(&free_i->segmap_lock);
  282. }
  283. static inline void __set_inuse(struct f2fs_sb_info *sbi,
  284. unsigned int segno)
  285. {
  286. struct free_segmap_info *free_i = FREE_I(sbi);
  287. unsigned int secno = segno / sbi->segs_per_sec;
  288. set_bit(segno, free_i->free_segmap);
  289. free_i->free_segments--;
  290. if (!test_and_set_bit(secno, free_i->free_secmap))
  291. free_i->free_sections--;
  292. }
  293. static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
  294. unsigned int segno)
  295. {
  296. struct free_segmap_info *free_i = FREE_I(sbi);
  297. unsigned int secno = segno / sbi->segs_per_sec;
  298. unsigned int start_segno = secno * sbi->segs_per_sec;
  299. unsigned int next;
  300. write_lock(&free_i->segmap_lock);
  301. if (test_and_clear_bit(segno, free_i->free_segmap)) {
  302. free_i->free_segments++;
  303. next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
  304. start_segno);
  305. if (next >= start_segno + sbi->segs_per_sec) {
  306. if (test_and_clear_bit(secno, free_i->free_secmap))
  307. free_i->free_sections++;
  308. }
  309. }
  310. write_unlock(&free_i->segmap_lock);
  311. }
  312. static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
  313. unsigned int segno)
  314. {
  315. struct free_segmap_info *free_i = FREE_I(sbi);
  316. unsigned int secno = segno / sbi->segs_per_sec;
  317. write_lock(&free_i->segmap_lock);
  318. if (!test_and_set_bit(segno, free_i->free_segmap)) {
  319. free_i->free_segments--;
  320. if (!test_and_set_bit(secno, free_i->free_secmap))
  321. free_i->free_sections--;
  322. }
  323. write_unlock(&free_i->segmap_lock);
  324. }
  325. static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
  326. void *dst_addr)
  327. {
  328. struct sit_info *sit_i = SIT_I(sbi);
  329. memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
  330. }
  331. static inline block_t written_block_count(struct f2fs_sb_info *sbi)
  332. {
  333. struct sit_info *sit_i = SIT_I(sbi);
  334. block_t vblocks;
  335. mutex_lock(&sit_i->sentry_lock);
  336. vblocks = sit_i->written_valid_blocks;
  337. mutex_unlock(&sit_i->sentry_lock);
  338. return vblocks;
  339. }
  340. static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
  341. {
  342. struct free_segmap_info *free_i = FREE_I(sbi);
  343. unsigned int free_segs;
  344. read_lock(&free_i->segmap_lock);
  345. free_segs = free_i->free_segments;
  346. read_unlock(&free_i->segmap_lock);
  347. return free_segs;
  348. }
  349. static inline int reserved_segments(struct f2fs_sb_info *sbi)
  350. {
  351. return SM_I(sbi)->reserved_segments;
  352. }
  353. static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
  354. {
  355. struct free_segmap_info *free_i = FREE_I(sbi);
  356. unsigned int free_secs;
  357. read_lock(&free_i->segmap_lock);
  358. free_secs = free_i->free_sections;
  359. read_unlock(&free_i->segmap_lock);
  360. return free_secs;
  361. }
  362. static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
  363. {
  364. return DIRTY_I(sbi)->nr_dirty[PRE];
  365. }
  366. static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
  367. {
  368. return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
  369. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
  370. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
  371. DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
  372. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
  373. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
  374. }
  375. static inline int overprovision_segments(struct f2fs_sb_info *sbi)
  376. {
  377. return SM_I(sbi)->ovp_segments;
  378. }
  379. static inline int overprovision_sections(struct f2fs_sb_info *sbi)
  380. {
  381. return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
  382. }
  383. static inline int reserved_sections(struct f2fs_sb_info *sbi)
  384. {
  385. return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
  386. }
  387. static inline bool need_SSR(struct f2fs_sb_info *sbi)
  388. {
  389. return (prefree_segments(sbi) / sbi->segs_per_sec)
  390. + free_sections(sbi) < overprovision_sections(sbi);
  391. }
  392. static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
  393. {
  394. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  395. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  396. if (unlikely(sbi->por_doing))
  397. return false;
  398. return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
  399. reserved_sections(sbi));
  400. }
  401. static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
  402. {
  403. return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
  404. }
  405. static inline int utilization(struct f2fs_sb_info *sbi)
  406. {
  407. return div_u64((u64)valid_user_blocks(sbi) * 100,
  408. sbi->user_block_count);
  409. }
  410. /*
  411. * Sometimes f2fs may be better to drop out-of-place update policy.
  412. * And, users can control the policy through sysfs entries.
  413. * There are five policies with triggering conditions as follows.
  414. * F2FS_IPU_FORCE - all the time,
  415. * F2FS_IPU_SSR - if SSR mode is activated,
  416. * F2FS_IPU_UTIL - if FS utilization is over threashold,
  417. * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
  418. * threashold,
  419. * F2FS_IPUT_DISABLE - disable IPU. (=default option)
  420. */
  421. #define DEF_MIN_IPU_UTIL 70
  422. enum {
  423. F2FS_IPU_FORCE,
  424. F2FS_IPU_SSR,
  425. F2FS_IPU_UTIL,
  426. F2FS_IPU_SSR_UTIL,
  427. F2FS_IPU_DISABLE,
  428. };
  429. static inline bool need_inplace_update(struct inode *inode)
  430. {
  431. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  432. /* IPU can be done only for the user data */
  433. if (S_ISDIR(inode->i_mode))
  434. return false;
  435. switch (SM_I(sbi)->ipu_policy) {
  436. case F2FS_IPU_FORCE:
  437. return true;
  438. case F2FS_IPU_SSR:
  439. if (need_SSR(sbi))
  440. return true;
  441. break;
  442. case F2FS_IPU_UTIL:
  443. if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
  444. return true;
  445. break;
  446. case F2FS_IPU_SSR_UTIL:
  447. if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
  448. return true;
  449. break;
  450. case F2FS_IPU_DISABLE:
  451. break;
  452. }
  453. return false;
  454. }
  455. static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
  456. int type)
  457. {
  458. struct curseg_info *curseg = CURSEG_I(sbi, type);
  459. return curseg->segno;
  460. }
  461. static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
  462. int type)
  463. {
  464. struct curseg_info *curseg = CURSEG_I(sbi, type);
  465. return curseg->alloc_type;
  466. }
  467. static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
  468. {
  469. struct curseg_info *curseg = CURSEG_I(sbi, type);
  470. return curseg->next_blkoff;
  471. }
  472. #ifdef CONFIG_F2FS_CHECK_FS
  473. static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
  474. {
  475. unsigned int end_segno = SM_I(sbi)->segment_count - 1;
  476. BUG_ON(segno > end_segno);
  477. }
  478. static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
  479. {
  480. struct f2fs_sm_info *sm_info = SM_I(sbi);
  481. block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
  482. block_t start_addr = sm_info->seg0_blkaddr;
  483. block_t end_addr = start_addr + total_blks - 1;
  484. BUG_ON(blk_addr < start_addr);
  485. BUG_ON(blk_addr > end_addr);
  486. }
  487. /*
  488. * Summary block is always treated as invalid block
  489. */
  490. static inline void check_block_count(struct f2fs_sb_info *sbi,
  491. int segno, struct f2fs_sit_entry *raw_sit)
  492. {
  493. struct f2fs_sm_info *sm_info = SM_I(sbi);
  494. unsigned int end_segno = sm_info->segment_count - 1;
  495. bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
  496. int valid_blocks = 0;
  497. int cur_pos = 0, next_pos;
  498. /* check segment usage */
  499. BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
  500. /* check boundary of a given segment number */
  501. BUG_ON(segno > end_segno);
  502. /* check bitmap with valid block count */
  503. do {
  504. if (is_valid) {
  505. next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
  506. sbi->blocks_per_seg,
  507. cur_pos);
  508. valid_blocks += next_pos - cur_pos;
  509. } else
  510. next_pos = find_next_bit_le(&raw_sit->valid_map,
  511. sbi->blocks_per_seg,
  512. cur_pos);
  513. cur_pos = next_pos;
  514. is_valid = !is_valid;
  515. } while (cur_pos < sbi->blocks_per_seg);
  516. BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
  517. }
  518. #else
  519. #define check_seg_range(sbi, segno)
  520. #define verify_block_addr(sbi, blk_addr)
  521. #define check_block_count(sbi, segno, raw_sit)
  522. #endif
  523. static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
  524. unsigned int start)
  525. {
  526. struct sit_info *sit_i = SIT_I(sbi);
  527. unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
  528. block_t blk_addr = sit_i->sit_base_addr + offset;
  529. check_seg_range(sbi, start);
  530. /* calculate sit block address */
  531. if (f2fs_test_bit(offset, sit_i->sit_bitmap))
  532. blk_addr += sit_i->sit_blocks;
  533. return blk_addr;
  534. }
  535. static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
  536. pgoff_t block_addr)
  537. {
  538. struct sit_info *sit_i = SIT_I(sbi);
  539. block_addr -= sit_i->sit_base_addr;
  540. if (block_addr < sit_i->sit_blocks)
  541. block_addr += sit_i->sit_blocks;
  542. else
  543. block_addr -= sit_i->sit_blocks;
  544. return block_addr + sit_i->sit_base_addr;
  545. }
  546. static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
  547. {
  548. unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
  549. if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
  550. f2fs_clear_bit(block_off, sit_i->sit_bitmap);
  551. else
  552. f2fs_set_bit(block_off, sit_i->sit_bitmap);
  553. }
  554. static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
  555. {
  556. struct sit_info *sit_i = SIT_I(sbi);
  557. return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
  558. sit_i->mounted_time;
  559. }
  560. static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
  561. unsigned int ofs_in_node, unsigned char version)
  562. {
  563. sum->nid = cpu_to_le32(nid);
  564. sum->ofs_in_node = cpu_to_le16(ofs_in_node);
  565. sum->version = version;
  566. }
  567. static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
  568. {
  569. return __start_cp_addr(sbi) +
  570. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
  571. }
  572. static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
  573. {
  574. return __start_cp_addr(sbi) +
  575. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
  576. - (base + 1) + type;
  577. }
  578. static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
  579. {
  580. if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
  581. return true;
  582. return false;
  583. }
  584. static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
  585. {
  586. struct block_device *bdev = sbi->sb->s_bdev;
  587. struct request_queue *q = bdev_get_queue(bdev);
  588. return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
  589. }