inline.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. bool f2fs_may_inline(struct inode *inode)
  14. {
  15. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  16. block_t nr_blocks;
  17. loff_t i_size;
  18. if (!test_opt(sbi, INLINE_DATA))
  19. return false;
  20. nr_blocks = F2FS_I(inode)->i_xattr_nid ? 3 : 2;
  21. if (inode->i_blocks > nr_blocks)
  22. return false;
  23. i_size = i_size_read(inode);
  24. if (i_size > MAX_INLINE_DATA)
  25. return false;
  26. return true;
  27. }
  28. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  29. {
  30. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  31. struct page *ipage;
  32. void *src_addr, *dst_addr;
  33. if (page->index) {
  34. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  35. goto out;
  36. }
  37. ipage = get_node_page(sbi, inode->i_ino);
  38. if (IS_ERR(ipage))
  39. return PTR_ERR(ipage);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. kunmap(page);
  46. f2fs_put_page(ipage, 1);
  47. out:
  48. SetPageUptodate(page);
  49. unlock_page(page);
  50. return 0;
  51. }
  52. static int __f2fs_convert_inline_data(struct inode *inode, struct page *page)
  53. {
  54. int err;
  55. struct page *ipage;
  56. struct dnode_of_data dn;
  57. void *src_addr, *dst_addr;
  58. block_t new_blk_addr;
  59. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  60. struct f2fs_io_info fio = {
  61. .type = DATA,
  62. .rw = WRITE_SYNC | REQ_PRIO,
  63. };
  64. f2fs_lock_op(sbi);
  65. ipage = get_node_page(sbi, inode->i_ino);
  66. if (IS_ERR(ipage))
  67. return PTR_ERR(ipage);
  68. /*
  69. * i_addr[0] is not used for inline data,
  70. * so reserving new block will not destroy inline data
  71. */
  72. set_new_dnode(&dn, inode, ipage, NULL, 0);
  73. err = f2fs_reserve_block(&dn, 0);
  74. if (err) {
  75. f2fs_unlock_op(sbi);
  76. return err;
  77. }
  78. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  79. /* Copy the whole inline data block */
  80. src_addr = inline_data_addr(ipage);
  81. dst_addr = kmap(page);
  82. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  83. kunmap(page);
  84. SetPageUptodate(page);
  85. /* write data page to try to make data consistent */
  86. set_page_writeback(page);
  87. write_data_page(page, &dn, &new_blk_addr, &fio);
  88. update_extent_cache(new_blk_addr, &dn);
  89. f2fs_wait_on_page_writeback(page, DATA);
  90. /* clear inline data and flag after data writeback */
  91. zero_user_segment(ipage, INLINE_DATA_OFFSET,
  92. INLINE_DATA_OFFSET + MAX_INLINE_DATA);
  93. clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  94. stat_dec_inline_inode(inode);
  95. sync_inode_page(&dn);
  96. f2fs_put_dnode(&dn);
  97. f2fs_unlock_op(sbi);
  98. return err;
  99. }
  100. int f2fs_convert_inline_data(struct inode *inode, pgoff_t to_size)
  101. {
  102. struct page *page;
  103. int err;
  104. if (!f2fs_has_inline_data(inode))
  105. return 0;
  106. else if (to_size <= MAX_INLINE_DATA)
  107. return 0;
  108. page = grab_cache_page_write_begin(inode->i_mapping, 0, AOP_FLAG_NOFS);
  109. if (!page)
  110. return -ENOMEM;
  111. err = __f2fs_convert_inline_data(inode, page);
  112. f2fs_put_page(page, 1);
  113. return err;
  114. }
  115. int f2fs_write_inline_data(struct inode *inode,
  116. struct page *page, unsigned size)
  117. {
  118. void *src_addr, *dst_addr;
  119. struct page *ipage;
  120. struct dnode_of_data dn;
  121. int err;
  122. set_new_dnode(&dn, inode, NULL, NULL, 0);
  123. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  124. if (err)
  125. return err;
  126. ipage = dn.inode_page;
  127. zero_user_segment(ipage, INLINE_DATA_OFFSET,
  128. INLINE_DATA_OFFSET + MAX_INLINE_DATA);
  129. src_addr = kmap(page);
  130. dst_addr = inline_data_addr(ipage);
  131. memcpy(dst_addr, src_addr, size);
  132. kunmap(page);
  133. /* Release the first data block if it is allocated */
  134. if (!f2fs_has_inline_data(inode)) {
  135. truncate_data_blocks_range(&dn, 1);
  136. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  137. stat_inc_inline_inode(inode);
  138. }
  139. sync_inode_page(&dn);
  140. f2fs_put_dnode(&dn);
  141. return 0;
  142. }
  143. int recover_inline_data(struct inode *inode, struct page *npage)
  144. {
  145. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  146. struct f2fs_inode *ri = NULL;
  147. void *src_addr, *dst_addr;
  148. struct page *ipage;
  149. /*
  150. * The inline_data recovery policy is as follows.
  151. * [prev.] [next] of inline_data flag
  152. * o o -> recover inline_data
  153. * o x -> remove inline_data, and then recover data blocks
  154. * x o -> remove inline_data, and then recover inline_data
  155. * x x -> recover data blocks
  156. */
  157. if (IS_INODE(npage))
  158. ri = F2FS_INODE(npage);
  159. if (f2fs_has_inline_data(inode) &&
  160. ri && ri->i_inline & F2FS_INLINE_DATA) {
  161. process_inline:
  162. ipage = get_node_page(sbi, inode->i_ino);
  163. f2fs_bug_on(IS_ERR(ipage));
  164. src_addr = inline_data_addr(npage);
  165. dst_addr = inline_data_addr(ipage);
  166. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  167. update_inode(inode, ipage);
  168. f2fs_put_page(ipage, 1);
  169. return -1;
  170. }
  171. if (f2fs_has_inline_data(inode)) {
  172. ipage = get_node_page(sbi, inode->i_ino);
  173. f2fs_bug_on(IS_ERR(ipage));
  174. zero_user_segment(ipage, INLINE_DATA_OFFSET,
  175. INLINE_DATA_OFFSET + MAX_INLINE_DATA);
  176. clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  177. update_inode(inode, ipage);
  178. f2fs_put_page(ipage, 1);
  179. } else if (ri && ri->i_inline & F2FS_INLINE_DATA) {
  180. truncate_blocks(inode, 0);
  181. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  182. goto process_inline;
  183. }
  184. return 0;
  185. }