file.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. struct dnode_of_data dn;
  35. int err;
  36. f2fs_balance_fs(sbi);
  37. sb_start_pagefault(inode->i_sb);
  38. /* block allocation */
  39. f2fs_lock_op(sbi);
  40. set_new_dnode(&dn, inode, NULL, NULL, 0);
  41. err = f2fs_reserve_block(&dn, page->index);
  42. f2fs_unlock_op(sbi);
  43. if (err)
  44. goto out;
  45. file_update_time(vma->vm_file);
  46. lock_page(page);
  47. if (unlikely(page->mapping != inode->i_mapping ||
  48. page_offset(page) > i_size_read(inode) ||
  49. !PageUptodate(page))) {
  50. unlock_page(page);
  51. err = -EFAULT;
  52. goto out;
  53. }
  54. /*
  55. * check to see if the page is mapped already (no holes)
  56. */
  57. if (PageMappedToDisk(page))
  58. goto mapped;
  59. /* page is wholly or partially inside EOF */
  60. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  61. unsigned offset;
  62. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  63. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  64. }
  65. set_page_dirty(page);
  66. SetPageUptodate(page);
  67. trace_f2fs_vm_page_mkwrite(page, DATA);
  68. mapped:
  69. /* fill the page */
  70. wait_on_page_writeback(page);
  71. out:
  72. sb_end_pagefault(inode->i_sb);
  73. return block_page_mkwrite_return(err);
  74. }
  75. static const struct vm_operations_struct f2fs_file_vm_ops = {
  76. .fault = filemap_fault,
  77. .page_mkwrite = f2fs_vm_page_mkwrite,
  78. .remap_pages = generic_file_remap_pages,
  79. };
  80. static int get_parent_ino(struct inode *inode, nid_t *pino)
  81. {
  82. struct dentry *dentry;
  83. inode = igrab(inode);
  84. dentry = d_find_any_alias(inode);
  85. iput(inode);
  86. if (!dentry)
  87. return 0;
  88. if (update_dent_inode(inode, &dentry->d_name)) {
  89. dput(dentry);
  90. return 0;
  91. }
  92. *pino = parent_ino(dentry);
  93. dput(dentry);
  94. return 1;
  95. }
  96. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  97. {
  98. struct inode *inode = file->f_mapping->host;
  99. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  100. int ret = 0;
  101. bool need_cp = false;
  102. struct writeback_control wbc = {
  103. .sync_mode = WB_SYNC_NONE,
  104. .nr_to_write = LONG_MAX,
  105. .for_reclaim = 0,
  106. };
  107. if (unlikely(f2fs_readonly(inode->i_sb)))
  108. return 0;
  109. trace_f2fs_sync_file_enter(inode);
  110. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  111. if (ret) {
  112. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  113. return ret;
  114. }
  115. /* guarantee free sections for fsync */
  116. f2fs_balance_fs(sbi);
  117. mutex_lock(&inode->i_mutex);
  118. /*
  119. * Both of fdatasync() and fsync() are able to be recovered from
  120. * sudden-power-off.
  121. */
  122. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  123. need_cp = true;
  124. else if (file_wrong_pino(inode))
  125. need_cp = true;
  126. else if (!space_for_roll_forward(sbi))
  127. need_cp = true;
  128. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  129. need_cp = true;
  130. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  131. need_cp = true;
  132. if (need_cp) {
  133. nid_t pino;
  134. F2FS_I(inode)->xattr_ver = 0;
  135. /* all the dirty node pages should be flushed for POR */
  136. ret = f2fs_sync_fs(inode->i_sb, 1);
  137. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  138. get_parent_ino(inode, &pino)) {
  139. F2FS_I(inode)->i_pino = pino;
  140. file_got_pino(inode);
  141. mark_inode_dirty_sync(inode);
  142. ret = f2fs_write_inode(inode, NULL);
  143. if (ret)
  144. goto out;
  145. }
  146. } else {
  147. /* if there is no written node page, write its inode page */
  148. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  149. mark_inode_dirty_sync(inode);
  150. ret = f2fs_write_inode(inode, NULL);
  151. if (ret)
  152. goto out;
  153. }
  154. ret = wait_on_node_pages_writeback(sbi, inode->i_ino);
  155. if (ret)
  156. goto out;
  157. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  158. }
  159. out:
  160. mutex_unlock(&inode->i_mutex);
  161. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  162. return ret;
  163. }
  164. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  165. {
  166. file_accessed(file);
  167. vma->vm_ops = &f2fs_file_vm_ops;
  168. return 0;
  169. }
  170. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  171. {
  172. int nr_free = 0, ofs = dn->ofs_in_node;
  173. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  174. struct f2fs_node *raw_node;
  175. __le32 *addr;
  176. raw_node = F2FS_NODE(dn->node_page);
  177. addr = blkaddr_in_node(raw_node) + ofs;
  178. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  179. block_t blkaddr = le32_to_cpu(*addr);
  180. if (blkaddr == NULL_ADDR)
  181. continue;
  182. update_extent_cache(NULL_ADDR, dn);
  183. invalidate_blocks(sbi, blkaddr);
  184. nr_free++;
  185. }
  186. if (nr_free) {
  187. dec_valid_block_count(sbi, dn->inode, nr_free);
  188. set_page_dirty(dn->node_page);
  189. sync_inode_page(dn);
  190. }
  191. dn->ofs_in_node = ofs;
  192. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  193. dn->ofs_in_node, nr_free);
  194. return nr_free;
  195. }
  196. void truncate_data_blocks(struct dnode_of_data *dn)
  197. {
  198. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  199. }
  200. static void truncate_partial_data_page(struct inode *inode, u64 from)
  201. {
  202. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  203. struct page *page;
  204. if (!offset)
  205. return;
  206. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  207. if (IS_ERR(page))
  208. return;
  209. lock_page(page);
  210. if (unlikely(page->mapping != inode->i_mapping)) {
  211. f2fs_put_page(page, 1);
  212. return;
  213. }
  214. wait_on_page_writeback(page);
  215. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  216. set_page_dirty(page);
  217. f2fs_put_page(page, 1);
  218. }
  219. int truncate_blocks(struct inode *inode, u64 from)
  220. {
  221. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  222. unsigned int blocksize = inode->i_sb->s_blocksize;
  223. struct dnode_of_data dn;
  224. pgoff_t free_from;
  225. int count = 0, err = 0;
  226. trace_f2fs_truncate_blocks_enter(inode, from);
  227. if (f2fs_has_inline_data(inode))
  228. goto done;
  229. free_from = (pgoff_t)
  230. ((from + blocksize - 1) >> (sbi->log_blocksize));
  231. f2fs_lock_op(sbi);
  232. set_new_dnode(&dn, inode, NULL, NULL, 0);
  233. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  234. if (err) {
  235. if (err == -ENOENT)
  236. goto free_next;
  237. f2fs_unlock_op(sbi);
  238. trace_f2fs_truncate_blocks_exit(inode, err);
  239. return err;
  240. }
  241. if (IS_INODE(dn.node_page))
  242. count = ADDRS_PER_INODE(F2FS_I(inode));
  243. else
  244. count = ADDRS_PER_BLOCK;
  245. count -= dn.ofs_in_node;
  246. f2fs_bug_on(count < 0);
  247. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  248. truncate_data_blocks_range(&dn, count);
  249. free_from += count;
  250. }
  251. f2fs_put_dnode(&dn);
  252. free_next:
  253. err = truncate_inode_blocks(inode, free_from);
  254. f2fs_unlock_op(sbi);
  255. done:
  256. /* lastly zero out the first data page */
  257. truncate_partial_data_page(inode, from);
  258. trace_f2fs_truncate_blocks_exit(inode, err);
  259. return err;
  260. }
  261. void f2fs_truncate(struct inode *inode)
  262. {
  263. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  264. S_ISLNK(inode->i_mode)))
  265. return;
  266. trace_f2fs_truncate(inode);
  267. if (!truncate_blocks(inode, i_size_read(inode))) {
  268. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  269. mark_inode_dirty(inode);
  270. }
  271. }
  272. int f2fs_getattr(struct vfsmount *mnt,
  273. struct dentry *dentry, struct kstat *stat)
  274. {
  275. struct inode *inode = dentry->d_inode;
  276. generic_fillattr(inode, stat);
  277. stat->blocks <<= 3;
  278. return 0;
  279. }
  280. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  281. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  282. {
  283. struct f2fs_inode_info *fi = F2FS_I(inode);
  284. unsigned int ia_valid = attr->ia_valid;
  285. if (ia_valid & ATTR_UID)
  286. inode->i_uid = attr->ia_uid;
  287. if (ia_valid & ATTR_GID)
  288. inode->i_gid = attr->ia_gid;
  289. if (ia_valid & ATTR_ATIME)
  290. inode->i_atime = timespec_trunc(attr->ia_atime,
  291. inode->i_sb->s_time_gran);
  292. if (ia_valid & ATTR_MTIME)
  293. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  294. inode->i_sb->s_time_gran);
  295. if (ia_valid & ATTR_CTIME)
  296. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  297. inode->i_sb->s_time_gran);
  298. if (ia_valid & ATTR_MODE) {
  299. umode_t mode = attr->ia_mode;
  300. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  301. mode &= ~S_ISGID;
  302. set_acl_inode(fi, mode);
  303. }
  304. }
  305. #else
  306. #define __setattr_copy setattr_copy
  307. #endif
  308. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  309. {
  310. struct inode *inode = dentry->d_inode;
  311. struct f2fs_inode_info *fi = F2FS_I(inode);
  312. int err;
  313. err = inode_change_ok(inode, attr);
  314. if (err)
  315. return err;
  316. if ((attr->ia_valid & ATTR_SIZE) &&
  317. attr->ia_size != i_size_read(inode)) {
  318. err = f2fs_convert_inline_data(inode, attr->ia_size);
  319. if (err)
  320. return err;
  321. truncate_setsize(inode, attr->ia_size);
  322. f2fs_truncate(inode);
  323. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  324. }
  325. __setattr_copy(inode, attr);
  326. if (attr->ia_valid & ATTR_MODE) {
  327. err = posix_acl_chmod(inode, get_inode_mode(inode));
  328. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  329. inode->i_mode = fi->i_acl_mode;
  330. clear_inode_flag(fi, FI_ACL_MODE);
  331. }
  332. }
  333. mark_inode_dirty(inode);
  334. return err;
  335. }
  336. const struct inode_operations f2fs_file_inode_operations = {
  337. .getattr = f2fs_getattr,
  338. .setattr = f2fs_setattr,
  339. .get_acl = f2fs_get_acl,
  340. .set_acl = f2fs_set_acl,
  341. #ifdef CONFIG_F2FS_FS_XATTR
  342. .setxattr = generic_setxattr,
  343. .getxattr = generic_getxattr,
  344. .listxattr = f2fs_listxattr,
  345. .removexattr = generic_removexattr,
  346. #endif
  347. };
  348. static void fill_zero(struct inode *inode, pgoff_t index,
  349. loff_t start, loff_t len)
  350. {
  351. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  352. struct page *page;
  353. if (!len)
  354. return;
  355. f2fs_balance_fs(sbi);
  356. f2fs_lock_op(sbi);
  357. page = get_new_data_page(inode, NULL, index, false);
  358. f2fs_unlock_op(sbi);
  359. if (!IS_ERR(page)) {
  360. wait_on_page_writeback(page);
  361. zero_user(page, start, len);
  362. set_page_dirty(page);
  363. f2fs_put_page(page, 1);
  364. }
  365. }
  366. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  367. {
  368. pgoff_t index;
  369. int err;
  370. for (index = pg_start; index < pg_end; index++) {
  371. struct dnode_of_data dn;
  372. set_new_dnode(&dn, inode, NULL, NULL, 0);
  373. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  374. if (err) {
  375. if (err == -ENOENT)
  376. continue;
  377. return err;
  378. }
  379. if (dn.data_blkaddr != NULL_ADDR)
  380. truncate_data_blocks_range(&dn, 1);
  381. f2fs_put_dnode(&dn);
  382. }
  383. return 0;
  384. }
  385. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  386. {
  387. pgoff_t pg_start, pg_end;
  388. loff_t off_start, off_end;
  389. int ret = 0;
  390. ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1);
  391. if (ret)
  392. return ret;
  393. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  394. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  395. off_start = offset & (PAGE_CACHE_SIZE - 1);
  396. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  397. if (pg_start == pg_end) {
  398. fill_zero(inode, pg_start, off_start,
  399. off_end - off_start);
  400. } else {
  401. if (off_start)
  402. fill_zero(inode, pg_start++, off_start,
  403. PAGE_CACHE_SIZE - off_start);
  404. if (off_end)
  405. fill_zero(inode, pg_end, 0, off_end);
  406. if (pg_start < pg_end) {
  407. struct address_space *mapping = inode->i_mapping;
  408. loff_t blk_start, blk_end;
  409. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  410. f2fs_balance_fs(sbi);
  411. blk_start = pg_start << PAGE_CACHE_SHIFT;
  412. blk_end = pg_end << PAGE_CACHE_SHIFT;
  413. truncate_inode_pages_range(mapping, blk_start,
  414. blk_end - 1);
  415. f2fs_lock_op(sbi);
  416. ret = truncate_hole(inode, pg_start, pg_end);
  417. f2fs_unlock_op(sbi);
  418. }
  419. }
  420. return ret;
  421. }
  422. static int expand_inode_data(struct inode *inode, loff_t offset,
  423. loff_t len, int mode)
  424. {
  425. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  426. pgoff_t index, pg_start, pg_end;
  427. loff_t new_size = i_size_read(inode);
  428. loff_t off_start, off_end;
  429. int ret = 0;
  430. ret = inode_newsize_ok(inode, (len + offset));
  431. if (ret)
  432. return ret;
  433. ret = f2fs_convert_inline_data(inode, offset + len);
  434. if (ret)
  435. return ret;
  436. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  437. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  438. off_start = offset & (PAGE_CACHE_SIZE - 1);
  439. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  440. for (index = pg_start; index <= pg_end; index++) {
  441. struct dnode_of_data dn;
  442. f2fs_lock_op(sbi);
  443. set_new_dnode(&dn, inode, NULL, NULL, 0);
  444. ret = f2fs_reserve_block(&dn, index);
  445. f2fs_unlock_op(sbi);
  446. if (ret)
  447. break;
  448. if (pg_start == pg_end)
  449. new_size = offset + len;
  450. else if (index == pg_start && off_start)
  451. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  452. else if (index == pg_end)
  453. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  454. else
  455. new_size += PAGE_CACHE_SIZE;
  456. }
  457. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  458. i_size_read(inode) < new_size) {
  459. i_size_write(inode, new_size);
  460. mark_inode_dirty(inode);
  461. }
  462. return ret;
  463. }
  464. static long f2fs_fallocate(struct file *file, int mode,
  465. loff_t offset, loff_t len)
  466. {
  467. struct inode *inode = file_inode(file);
  468. long ret;
  469. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  470. return -EOPNOTSUPP;
  471. if (mode & FALLOC_FL_PUNCH_HOLE)
  472. ret = punch_hole(inode, offset, len);
  473. else
  474. ret = expand_inode_data(inode, offset, len, mode);
  475. if (!ret) {
  476. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  477. mark_inode_dirty(inode);
  478. }
  479. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  480. return ret;
  481. }
  482. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  483. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  484. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  485. {
  486. if (S_ISDIR(mode))
  487. return flags;
  488. else if (S_ISREG(mode))
  489. return flags & F2FS_REG_FLMASK;
  490. else
  491. return flags & F2FS_OTHER_FLMASK;
  492. }
  493. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  494. {
  495. struct inode *inode = file_inode(filp);
  496. struct f2fs_inode_info *fi = F2FS_I(inode);
  497. unsigned int flags;
  498. int ret;
  499. switch (cmd) {
  500. case F2FS_IOC_GETFLAGS:
  501. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  502. return put_user(flags, (int __user *) arg);
  503. case F2FS_IOC_SETFLAGS:
  504. {
  505. unsigned int oldflags;
  506. ret = mnt_want_write_file(filp);
  507. if (ret)
  508. return ret;
  509. if (!inode_owner_or_capable(inode)) {
  510. ret = -EACCES;
  511. goto out;
  512. }
  513. if (get_user(flags, (int __user *) arg)) {
  514. ret = -EFAULT;
  515. goto out;
  516. }
  517. flags = f2fs_mask_flags(inode->i_mode, flags);
  518. mutex_lock(&inode->i_mutex);
  519. oldflags = fi->i_flags;
  520. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  521. if (!capable(CAP_LINUX_IMMUTABLE)) {
  522. mutex_unlock(&inode->i_mutex);
  523. ret = -EPERM;
  524. goto out;
  525. }
  526. }
  527. flags = flags & FS_FL_USER_MODIFIABLE;
  528. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  529. fi->i_flags = flags;
  530. mutex_unlock(&inode->i_mutex);
  531. f2fs_set_inode_flags(inode);
  532. inode->i_ctime = CURRENT_TIME;
  533. mark_inode_dirty(inode);
  534. out:
  535. mnt_drop_write_file(filp);
  536. return ret;
  537. }
  538. default:
  539. return -ENOTTY;
  540. }
  541. }
  542. #ifdef CONFIG_COMPAT
  543. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  544. {
  545. switch (cmd) {
  546. case F2FS_IOC32_GETFLAGS:
  547. cmd = F2FS_IOC_GETFLAGS;
  548. break;
  549. case F2FS_IOC32_SETFLAGS:
  550. cmd = F2FS_IOC_SETFLAGS;
  551. break;
  552. default:
  553. return -ENOIOCTLCMD;
  554. }
  555. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  556. }
  557. #endif
  558. const struct file_operations f2fs_file_operations = {
  559. .llseek = generic_file_llseek,
  560. .read = do_sync_read,
  561. .write = do_sync_write,
  562. .aio_read = generic_file_aio_read,
  563. .aio_write = generic_file_aio_write,
  564. .open = generic_file_open,
  565. .mmap = f2fs_file_mmap,
  566. .fsync = f2fs_sync_file,
  567. .fallocate = f2fs_fallocate,
  568. .unlocked_ioctl = f2fs_ioctl,
  569. #ifdef CONFIG_COMPAT
  570. .compat_ioctl = f2fs_compat_ioctl,
  571. #endif
  572. .splice_read = generic_file_splice_read,
  573. .splice_write = generic_file_splice_write,
  574. };