data.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. static void f2fs_read_end_io(struct bio *bio, int err)
  26. {
  27. struct bio_vec *bvec;
  28. int i;
  29. bio_for_each_segment_all(bvec, bio, i) {
  30. struct page *page = bvec->bv_page;
  31. if (!err) {
  32. SetPageUptodate(page);
  33. } else {
  34. ClearPageUptodate(page);
  35. SetPageError(page);
  36. }
  37. unlock_page(page);
  38. }
  39. bio_put(bio);
  40. }
  41. static void f2fs_write_end_io(struct bio *bio, int err)
  42. {
  43. struct f2fs_sb_info *sbi = F2FS_SB(bio->bi_io_vec->bv_page->mapping->host->i_sb);
  44. struct bio_vec *bvec;
  45. int i;
  46. bio_for_each_segment_all(bvec, bio, i) {
  47. struct page *page = bvec->bv_page;
  48. if (unlikely(err)) {
  49. SetPageError(page);
  50. set_bit(AS_EIO, &page->mapping->flags);
  51. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  52. sbi->sb->s_flags |= MS_RDONLY;
  53. }
  54. end_page_writeback(page);
  55. dec_page_count(sbi, F2FS_WRITEBACK);
  56. }
  57. if (bio->bi_private)
  58. complete(bio->bi_private);
  59. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  60. !list_empty(&sbi->cp_wait.task_list))
  61. wake_up(&sbi->cp_wait);
  62. bio_put(bio);
  63. }
  64. /*
  65. * Low-level block read/write IO operations.
  66. */
  67. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  68. int npages, bool is_read)
  69. {
  70. struct bio *bio;
  71. /* No failure on bio allocation */
  72. bio = bio_alloc(GFP_NOIO, npages);
  73. bio->bi_bdev = sbi->sb->s_bdev;
  74. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  75. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  76. return bio;
  77. }
  78. static void __submit_merged_bio(struct f2fs_bio_info *io)
  79. {
  80. struct f2fs_io_info *fio = &io->fio;
  81. int rw;
  82. if (!io->bio)
  83. return;
  84. rw = fio->rw;
  85. if (is_read_io(rw)) {
  86. trace_f2fs_submit_read_bio(io->sbi->sb, rw,
  87. fio->type, io->bio);
  88. submit_bio(rw, io->bio);
  89. } else {
  90. trace_f2fs_submit_write_bio(io->sbi->sb, rw,
  91. fio->type, io->bio);
  92. /*
  93. * META_FLUSH is only from the checkpoint procedure, and we
  94. * should wait this metadata bio for FS consistency.
  95. */
  96. if (fio->type == META_FLUSH) {
  97. DECLARE_COMPLETION_ONSTACK(wait);
  98. io->bio->bi_private = &wait;
  99. submit_bio(rw, io->bio);
  100. wait_for_completion(&wait);
  101. } else {
  102. submit_bio(rw, io->bio);
  103. }
  104. }
  105. io->bio = NULL;
  106. }
  107. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  108. enum page_type type, int rw)
  109. {
  110. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  111. struct f2fs_bio_info *io;
  112. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  113. mutex_lock(&io->io_mutex);
  114. /* change META to META_FLUSH in the checkpoint procedure */
  115. if (type >= META_FLUSH) {
  116. io->fio.type = META_FLUSH;
  117. io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
  118. }
  119. __submit_merged_bio(io);
  120. mutex_unlock(&io->io_mutex);
  121. }
  122. /*
  123. * Fill the locked page with data located in the block address.
  124. * Return unlocked page.
  125. */
  126. int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
  127. block_t blk_addr, int rw)
  128. {
  129. struct bio *bio;
  130. trace_f2fs_submit_page_bio(page, blk_addr, rw);
  131. /* Allocate a new bio */
  132. bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
  133. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  134. bio_put(bio);
  135. f2fs_put_page(page, 1);
  136. return -EFAULT;
  137. }
  138. submit_bio(rw, bio);
  139. return 0;
  140. }
  141. void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
  142. block_t blk_addr, struct f2fs_io_info *fio)
  143. {
  144. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  145. struct f2fs_bio_info *io;
  146. bool is_read = is_read_io(fio->rw);
  147. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  148. verify_block_addr(sbi, blk_addr);
  149. mutex_lock(&io->io_mutex);
  150. if (!is_read)
  151. inc_page_count(sbi, F2FS_WRITEBACK);
  152. if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
  153. io->fio.rw != fio->rw))
  154. __submit_merged_bio(io);
  155. alloc_new:
  156. if (io->bio == NULL) {
  157. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  158. io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
  159. io->fio = *fio;
  160. }
  161. if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
  162. PAGE_CACHE_SIZE) {
  163. __submit_merged_bio(io);
  164. goto alloc_new;
  165. }
  166. io->last_block_in_bio = blk_addr;
  167. mutex_unlock(&io->io_mutex);
  168. trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
  169. }
  170. /*
  171. * Lock ordering for the change of data block address:
  172. * ->data_page
  173. * ->node_page
  174. * update block addresses in the node page
  175. */
  176. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  177. {
  178. struct f2fs_node *rn;
  179. __le32 *addr_array;
  180. struct page *node_page = dn->node_page;
  181. unsigned int ofs_in_node = dn->ofs_in_node;
  182. f2fs_wait_on_page_writeback(node_page, NODE);
  183. rn = F2FS_NODE(node_page);
  184. /* Get physical address of data block */
  185. addr_array = blkaddr_in_node(rn);
  186. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  187. set_page_dirty(node_page);
  188. }
  189. int reserve_new_block(struct dnode_of_data *dn)
  190. {
  191. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  192. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  193. return -EPERM;
  194. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  195. return -ENOSPC;
  196. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  197. __set_data_blkaddr(dn, NEW_ADDR);
  198. dn->data_blkaddr = NEW_ADDR;
  199. mark_inode_dirty(dn->inode);
  200. sync_inode_page(dn);
  201. return 0;
  202. }
  203. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  204. {
  205. bool need_put = dn->inode_page ? false : true;
  206. int err;
  207. /* if inode_page exists, index should be zero */
  208. f2fs_bug_on(!need_put && index);
  209. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  210. if (err)
  211. return err;
  212. if (dn->data_blkaddr == NULL_ADDR)
  213. err = reserve_new_block(dn);
  214. if (err || need_put)
  215. f2fs_put_dnode(dn);
  216. return err;
  217. }
  218. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  219. struct buffer_head *bh_result)
  220. {
  221. struct f2fs_inode_info *fi = F2FS_I(inode);
  222. pgoff_t start_fofs, end_fofs;
  223. block_t start_blkaddr;
  224. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  225. return 0;
  226. read_lock(&fi->ext.ext_lock);
  227. if (fi->ext.len == 0) {
  228. read_unlock(&fi->ext.ext_lock);
  229. return 0;
  230. }
  231. stat_inc_total_hit(inode->i_sb);
  232. start_fofs = fi->ext.fofs;
  233. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  234. start_blkaddr = fi->ext.blk_addr;
  235. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  236. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  237. size_t count;
  238. clear_buffer_new(bh_result);
  239. map_bh(bh_result, inode->i_sb,
  240. start_blkaddr + pgofs - start_fofs);
  241. count = end_fofs - pgofs + 1;
  242. if (count < (UINT_MAX >> blkbits))
  243. bh_result->b_size = (count << blkbits);
  244. else
  245. bh_result->b_size = UINT_MAX;
  246. stat_inc_read_hit(inode->i_sb);
  247. read_unlock(&fi->ext.ext_lock);
  248. return 1;
  249. }
  250. read_unlock(&fi->ext.ext_lock);
  251. return 0;
  252. }
  253. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  254. {
  255. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  256. pgoff_t fofs, start_fofs, end_fofs;
  257. block_t start_blkaddr, end_blkaddr;
  258. int need_update = true;
  259. f2fs_bug_on(blk_addr == NEW_ADDR);
  260. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  261. dn->ofs_in_node;
  262. /* Update the page address in the parent node */
  263. __set_data_blkaddr(dn, blk_addr);
  264. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  265. return;
  266. write_lock(&fi->ext.ext_lock);
  267. start_fofs = fi->ext.fofs;
  268. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  269. start_blkaddr = fi->ext.blk_addr;
  270. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  271. /* Drop and initialize the matched extent */
  272. if (fi->ext.len == 1 && fofs == start_fofs)
  273. fi->ext.len = 0;
  274. /* Initial extent */
  275. if (fi->ext.len == 0) {
  276. if (blk_addr != NULL_ADDR) {
  277. fi->ext.fofs = fofs;
  278. fi->ext.blk_addr = blk_addr;
  279. fi->ext.len = 1;
  280. }
  281. goto end_update;
  282. }
  283. /* Front merge */
  284. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  285. fi->ext.fofs--;
  286. fi->ext.blk_addr--;
  287. fi->ext.len++;
  288. goto end_update;
  289. }
  290. /* Back merge */
  291. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  292. fi->ext.len++;
  293. goto end_update;
  294. }
  295. /* Split the existing extent */
  296. if (fi->ext.len > 1 &&
  297. fofs >= start_fofs && fofs <= end_fofs) {
  298. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  299. fi->ext.len = fofs - start_fofs;
  300. } else {
  301. fi->ext.fofs = fofs + 1;
  302. fi->ext.blk_addr = start_blkaddr +
  303. fofs - start_fofs + 1;
  304. fi->ext.len -= fofs - start_fofs + 1;
  305. }
  306. } else {
  307. need_update = false;
  308. }
  309. /* Finally, if the extent is very fragmented, let's drop the cache. */
  310. if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
  311. fi->ext.len = 0;
  312. set_inode_flag(fi, FI_NO_EXTENT);
  313. need_update = true;
  314. }
  315. end_update:
  316. write_unlock(&fi->ext.ext_lock);
  317. if (need_update)
  318. sync_inode_page(dn);
  319. return;
  320. }
  321. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  322. {
  323. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  324. struct address_space *mapping = inode->i_mapping;
  325. struct dnode_of_data dn;
  326. struct page *page;
  327. int err;
  328. page = find_get_page(mapping, index);
  329. if (page && PageUptodate(page))
  330. return page;
  331. f2fs_put_page(page, 0);
  332. set_new_dnode(&dn, inode, NULL, NULL, 0);
  333. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  334. if (err)
  335. return ERR_PTR(err);
  336. f2fs_put_dnode(&dn);
  337. if (dn.data_blkaddr == NULL_ADDR)
  338. return ERR_PTR(-ENOENT);
  339. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  340. if (unlikely(dn.data_blkaddr == NEW_ADDR))
  341. return ERR_PTR(-EINVAL);
  342. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  343. if (!page)
  344. return ERR_PTR(-ENOMEM);
  345. if (PageUptodate(page)) {
  346. unlock_page(page);
  347. return page;
  348. }
  349. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  350. sync ? READ_SYNC : READA);
  351. if (err)
  352. return ERR_PTR(err);
  353. if (sync) {
  354. wait_on_page_locked(page);
  355. if (unlikely(!PageUptodate(page))) {
  356. f2fs_put_page(page, 0);
  357. return ERR_PTR(-EIO);
  358. }
  359. }
  360. return page;
  361. }
  362. /*
  363. * If it tries to access a hole, return an error.
  364. * Because, the callers, functions in dir.c and GC, should be able to know
  365. * whether this page exists or not.
  366. */
  367. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  368. {
  369. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  370. struct address_space *mapping = inode->i_mapping;
  371. struct dnode_of_data dn;
  372. struct page *page;
  373. int err;
  374. repeat:
  375. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  376. if (!page)
  377. return ERR_PTR(-ENOMEM);
  378. set_new_dnode(&dn, inode, NULL, NULL, 0);
  379. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  380. if (err) {
  381. f2fs_put_page(page, 1);
  382. return ERR_PTR(err);
  383. }
  384. f2fs_put_dnode(&dn);
  385. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  386. f2fs_put_page(page, 1);
  387. return ERR_PTR(-ENOENT);
  388. }
  389. if (PageUptodate(page))
  390. return page;
  391. /*
  392. * A new dentry page is allocated but not able to be written, since its
  393. * new inode page couldn't be allocated due to -ENOSPC.
  394. * In such the case, its blkaddr can be remained as NEW_ADDR.
  395. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  396. */
  397. if (dn.data_blkaddr == NEW_ADDR) {
  398. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  399. SetPageUptodate(page);
  400. return page;
  401. }
  402. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
  403. if (err)
  404. return ERR_PTR(err);
  405. lock_page(page);
  406. if (unlikely(!PageUptodate(page))) {
  407. f2fs_put_page(page, 1);
  408. return ERR_PTR(-EIO);
  409. }
  410. if (unlikely(page->mapping != mapping)) {
  411. f2fs_put_page(page, 1);
  412. goto repeat;
  413. }
  414. return page;
  415. }
  416. /*
  417. * Caller ensures that this data page is never allocated.
  418. * A new zero-filled data page is allocated in the page cache.
  419. *
  420. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  421. * f2fs_unlock_op().
  422. * Note that, ipage is set only by make_empty_dir.
  423. */
  424. struct page *get_new_data_page(struct inode *inode,
  425. struct page *ipage, pgoff_t index, bool new_i_size)
  426. {
  427. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  428. struct address_space *mapping = inode->i_mapping;
  429. struct page *page;
  430. struct dnode_of_data dn;
  431. int err;
  432. set_new_dnode(&dn, inode, ipage, NULL, 0);
  433. err = f2fs_reserve_block(&dn, index);
  434. if (err)
  435. return ERR_PTR(err);
  436. repeat:
  437. page = grab_cache_page(mapping, index);
  438. if (!page) {
  439. err = -ENOMEM;
  440. goto put_err;
  441. }
  442. if (PageUptodate(page))
  443. return page;
  444. if (dn.data_blkaddr == NEW_ADDR) {
  445. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  446. SetPageUptodate(page);
  447. } else {
  448. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  449. READ_SYNC);
  450. if (err)
  451. goto put_err;
  452. lock_page(page);
  453. if (unlikely(!PageUptodate(page))) {
  454. f2fs_put_page(page, 1);
  455. err = -EIO;
  456. goto put_err;
  457. }
  458. if (unlikely(page->mapping != mapping)) {
  459. f2fs_put_page(page, 1);
  460. goto repeat;
  461. }
  462. }
  463. if (new_i_size &&
  464. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  465. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  466. /* Only the directory inode sets new_i_size */
  467. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  468. }
  469. return page;
  470. put_err:
  471. f2fs_put_dnode(&dn);
  472. return ERR_PTR(err);
  473. }
  474. static int __allocate_data_block(struct dnode_of_data *dn)
  475. {
  476. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  477. struct f2fs_summary sum;
  478. block_t new_blkaddr;
  479. struct node_info ni;
  480. int type;
  481. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  482. return -EPERM;
  483. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  484. return -ENOSPC;
  485. __set_data_blkaddr(dn, NEW_ADDR);
  486. dn->data_blkaddr = NEW_ADDR;
  487. get_node_info(sbi, dn->nid, &ni);
  488. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  489. type = CURSEG_WARM_DATA;
  490. allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
  491. /* direct IO doesn't use extent cache to maximize the performance */
  492. set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  493. update_extent_cache(new_blkaddr, dn);
  494. clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  495. dn->data_blkaddr = new_blkaddr;
  496. return 0;
  497. }
  498. /*
  499. * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
  500. * If original data blocks are allocated, then give them to blockdev.
  501. * Otherwise,
  502. * a. preallocate requested block addresses
  503. * b. do not use extent cache for better performance
  504. * c. give the block addresses to blockdev
  505. */
  506. static int get_data_block(struct inode *inode, sector_t iblock,
  507. struct buffer_head *bh_result, int create)
  508. {
  509. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  510. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  511. unsigned maxblocks = bh_result->b_size >> blkbits;
  512. struct dnode_of_data dn;
  513. int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
  514. pgoff_t pgofs, end_offset;
  515. int err = 0, ofs = 1;
  516. bool allocated = false;
  517. /* Get the page offset from the block offset(iblock) */
  518. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  519. if (check_extent_cache(inode, pgofs, bh_result))
  520. goto out;
  521. if (create)
  522. f2fs_lock_op(sbi);
  523. /* When reading holes, we need its node page */
  524. set_new_dnode(&dn, inode, NULL, NULL, 0);
  525. err = get_dnode_of_data(&dn, pgofs, mode);
  526. if (err) {
  527. if (err == -ENOENT)
  528. err = 0;
  529. goto unlock_out;
  530. }
  531. if (dn.data_blkaddr == NEW_ADDR)
  532. goto put_out;
  533. if (dn.data_blkaddr != NULL_ADDR) {
  534. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  535. } else if (create) {
  536. err = __allocate_data_block(&dn);
  537. if (err)
  538. goto put_out;
  539. allocated = true;
  540. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  541. } else {
  542. goto put_out;
  543. }
  544. end_offset = IS_INODE(dn.node_page) ?
  545. ADDRS_PER_INODE(F2FS_I(inode)) : ADDRS_PER_BLOCK;
  546. bh_result->b_size = (((size_t)1) << blkbits);
  547. dn.ofs_in_node++;
  548. pgofs++;
  549. get_next:
  550. if (dn.ofs_in_node >= end_offset) {
  551. if (allocated)
  552. sync_inode_page(&dn);
  553. allocated = false;
  554. f2fs_put_dnode(&dn);
  555. set_new_dnode(&dn, inode, NULL, NULL, 0);
  556. err = get_dnode_of_data(&dn, pgofs, mode);
  557. if (err) {
  558. if (err == -ENOENT)
  559. err = 0;
  560. goto unlock_out;
  561. }
  562. if (dn.data_blkaddr == NEW_ADDR)
  563. goto put_out;
  564. end_offset = IS_INODE(dn.node_page) ?
  565. ADDRS_PER_INODE(F2FS_I(inode)) : ADDRS_PER_BLOCK;
  566. }
  567. if (maxblocks > (bh_result->b_size >> blkbits)) {
  568. block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  569. if (blkaddr == NULL_ADDR && create) {
  570. err = __allocate_data_block(&dn);
  571. if (err)
  572. goto sync_out;
  573. allocated = true;
  574. blkaddr = dn.data_blkaddr;
  575. }
  576. /* Give more consecutive addresses for the read ahead */
  577. if (blkaddr == (bh_result->b_blocknr + ofs)) {
  578. ofs++;
  579. dn.ofs_in_node++;
  580. pgofs++;
  581. bh_result->b_size += (((size_t)1) << blkbits);
  582. goto get_next;
  583. }
  584. }
  585. sync_out:
  586. if (allocated)
  587. sync_inode_page(&dn);
  588. put_out:
  589. f2fs_put_dnode(&dn);
  590. unlock_out:
  591. if (create)
  592. f2fs_unlock_op(sbi);
  593. out:
  594. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  595. return err;
  596. }
  597. static int f2fs_read_data_page(struct file *file, struct page *page)
  598. {
  599. struct inode *inode = page->mapping->host;
  600. int ret;
  601. /* If the file has inline data, try to read it directlly */
  602. if (f2fs_has_inline_data(inode))
  603. ret = f2fs_read_inline_data(inode, page);
  604. else
  605. ret = mpage_readpage(page, get_data_block);
  606. return ret;
  607. }
  608. static int f2fs_read_data_pages(struct file *file,
  609. struct address_space *mapping,
  610. struct list_head *pages, unsigned nr_pages)
  611. {
  612. struct inode *inode = file->f_mapping->host;
  613. /* If the file has inline data, skip readpages */
  614. if (f2fs_has_inline_data(inode))
  615. return 0;
  616. return mpage_readpages(mapping, pages, nr_pages, get_data_block);
  617. }
  618. int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
  619. {
  620. struct inode *inode = page->mapping->host;
  621. block_t old_blkaddr, new_blkaddr;
  622. struct dnode_of_data dn;
  623. int err = 0;
  624. set_new_dnode(&dn, inode, NULL, NULL, 0);
  625. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  626. if (err)
  627. return err;
  628. old_blkaddr = dn.data_blkaddr;
  629. /* This page is already truncated */
  630. if (old_blkaddr == NULL_ADDR)
  631. goto out_writepage;
  632. set_page_writeback(page);
  633. /*
  634. * If current allocation needs SSR,
  635. * it had better in-place writes for updated data.
  636. */
  637. if (unlikely(old_blkaddr != NEW_ADDR &&
  638. !is_cold_data(page) &&
  639. need_inplace_update(inode))) {
  640. rewrite_data_page(page, old_blkaddr, fio);
  641. } else {
  642. write_data_page(page, &dn, &new_blkaddr, fio);
  643. update_extent_cache(new_blkaddr, &dn);
  644. }
  645. out_writepage:
  646. f2fs_put_dnode(&dn);
  647. return err;
  648. }
  649. static int f2fs_write_data_page(struct page *page,
  650. struct writeback_control *wbc)
  651. {
  652. struct inode *inode = page->mapping->host;
  653. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  654. loff_t i_size = i_size_read(inode);
  655. const pgoff_t end_index = ((unsigned long long) i_size)
  656. >> PAGE_CACHE_SHIFT;
  657. unsigned offset = 0;
  658. bool need_balance_fs = false;
  659. int err = 0;
  660. struct f2fs_io_info fio = {
  661. .type = DATA,
  662. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  663. };
  664. if (page->index < end_index)
  665. goto write;
  666. /*
  667. * If the offset is out-of-range of file size,
  668. * this page does not have to be written to disk.
  669. */
  670. offset = i_size & (PAGE_CACHE_SIZE - 1);
  671. if ((page->index >= end_index + 1) || !offset) {
  672. if (S_ISDIR(inode->i_mode)) {
  673. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  674. inode_dec_dirty_dents(inode);
  675. }
  676. goto out;
  677. }
  678. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  679. write:
  680. if (unlikely(sbi->por_doing)) {
  681. err = AOP_WRITEPAGE_ACTIVATE;
  682. goto redirty_out;
  683. }
  684. /* Dentry blocks are controlled by checkpoint */
  685. if (S_ISDIR(inode->i_mode)) {
  686. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  687. inode_dec_dirty_dents(inode);
  688. err = do_write_data_page(page, &fio);
  689. } else {
  690. f2fs_lock_op(sbi);
  691. if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode)) {
  692. err = f2fs_write_inline_data(inode, page, offset);
  693. f2fs_unlock_op(sbi);
  694. goto out;
  695. } else {
  696. err = do_write_data_page(page, &fio);
  697. }
  698. f2fs_unlock_op(sbi);
  699. need_balance_fs = true;
  700. }
  701. if (err == -ENOENT)
  702. goto out;
  703. else if (err)
  704. goto redirty_out;
  705. if (wbc->for_reclaim) {
  706. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  707. need_balance_fs = false;
  708. }
  709. clear_cold_data(page);
  710. out:
  711. unlock_page(page);
  712. if (need_balance_fs)
  713. f2fs_balance_fs(sbi);
  714. return 0;
  715. redirty_out:
  716. wbc->pages_skipped++;
  717. set_page_dirty(page);
  718. return err;
  719. }
  720. #define MAX_DESIRED_PAGES_WP 4096
  721. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  722. void *data)
  723. {
  724. struct address_space *mapping = data;
  725. int ret = mapping->a_ops->writepage(page, wbc);
  726. mapping_set_error(mapping, ret);
  727. return ret;
  728. }
  729. static int f2fs_write_data_pages(struct address_space *mapping,
  730. struct writeback_control *wbc)
  731. {
  732. struct inode *inode = mapping->host;
  733. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  734. bool locked = false;
  735. int ret;
  736. long excess_nrtw = 0, desired_nrtw;
  737. /* deal with chardevs and other special file */
  738. if (!mapping->a_ops->writepage)
  739. return 0;
  740. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  741. desired_nrtw = MAX_DESIRED_PAGES_WP;
  742. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  743. wbc->nr_to_write = desired_nrtw;
  744. }
  745. if (!S_ISDIR(inode->i_mode)) {
  746. mutex_lock(&sbi->writepages);
  747. locked = true;
  748. }
  749. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  750. if (locked)
  751. mutex_unlock(&sbi->writepages);
  752. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  753. remove_dirty_dir_inode(inode);
  754. wbc->nr_to_write -= excess_nrtw;
  755. return ret;
  756. }
  757. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  758. loff_t pos, unsigned len, unsigned flags,
  759. struct page **pagep, void **fsdata)
  760. {
  761. struct inode *inode = mapping->host;
  762. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  763. struct page *page;
  764. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  765. struct dnode_of_data dn;
  766. int err = 0;
  767. f2fs_balance_fs(sbi);
  768. repeat:
  769. err = f2fs_convert_inline_data(inode, pos + len);
  770. if (err)
  771. return err;
  772. page = grab_cache_page_write_begin(mapping, index, flags);
  773. if (!page)
  774. return -ENOMEM;
  775. *pagep = page;
  776. if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
  777. goto inline_data;
  778. f2fs_lock_op(sbi);
  779. set_new_dnode(&dn, inode, NULL, NULL, 0);
  780. err = f2fs_reserve_block(&dn, index);
  781. f2fs_unlock_op(sbi);
  782. if (err) {
  783. f2fs_put_page(page, 1);
  784. return err;
  785. }
  786. inline_data:
  787. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  788. return 0;
  789. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  790. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  791. unsigned end = start + len;
  792. /* Reading beyond i_size is simple: memset to zero */
  793. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  794. goto out;
  795. }
  796. if (dn.data_blkaddr == NEW_ADDR) {
  797. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  798. } else {
  799. if (f2fs_has_inline_data(inode))
  800. err = f2fs_read_inline_data(inode, page);
  801. else
  802. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  803. READ_SYNC);
  804. if (err)
  805. return err;
  806. lock_page(page);
  807. if (unlikely(!PageUptodate(page))) {
  808. f2fs_put_page(page, 1);
  809. return -EIO;
  810. }
  811. if (unlikely(page->mapping != mapping)) {
  812. f2fs_put_page(page, 1);
  813. goto repeat;
  814. }
  815. }
  816. out:
  817. SetPageUptodate(page);
  818. clear_cold_data(page);
  819. return 0;
  820. }
  821. static int f2fs_write_end(struct file *file,
  822. struct address_space *mapping,
  823. loff_t pos, unsigned len, unsigned copied,
  824. struct page *page, void *fsdata)
  825. {
  826. struct inode *inode = page->mapping->host;
  827. SetPageUptodate(page);
  828. set_page_dirty(page);
  829. if (pos + copied > i_size_read(inode)) {
  830. i_size_write(inode, pos + copied);
  831. mark_inode_dirty(inode);
  832. update_inode_page(inode);
  833. }
  834. f2fs_put_page(page, 1);
  835. return copied;
  836. }
  837. static int check_direct_IO(struct inode *inode, int rw,
  838. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  839. {
  840. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  841. int i;
  842. if (rw == READ)
  843. return 0;
  844. if (offset & blocksize_mask)
  845. return -EINVAL;
  846. for (i = 0; i < nr_segs; i++)
  847. if (iov[i].iov_len & blocksize_mask)
  848. return -EINVAL;
  849. return 0;
  850. }
  851. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  852. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  853. {
  854. struct file *file = iocb->ki_filp;
  855. struct inode *inode = file->f_mapping->host;
  856. /* Let buffer I/O handle the inline data case. */
  857. if (f2fs_has_inline_data(inode))
  858. return 0;
  859. if (check_direct_IO(inode, rw, iov, offset, nr_segs))
  860. return 0;
  861. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  862. get_data_block);
  863. }
  864. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  865. unsigned int length)
  866. {
  867. struct inode *inode = page->mapping->host;
  868. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  869. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  870. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  871. inode_dec_dirty_dents(inode);
  872. }
  873. ClearPagePrivate(page);
  874. }
  875. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  876. {
  877. ClearPagePrivate(page);
  878. return 1;
  879. }
  880. static int f2fs_set_data_page_dirty(struct page *page)
  881. {
  882. struct address_space *mapping = page->mapping;
  883. struct inode *inode = mapping->host;
  884. trace_f2fs_set_page_dirty(page, DATA);
  885. SetPageUptodate(page);
  886. mark_inode_dirty(inode);
  887. if (!PageDirty(page)) {
  888. __set_page_dirty_nobuffers(page);
  889. set_dirty_dir_page(inode, page);
  890. return 1;
  891. }
  892. return 0;
  893. }
  894. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  895. {
  896. return generic_block_bmap(mapping, block, get_data_block);
  897. }
  898. const struct address_space_operations f2fs_dblock_aops = {
  899. .readpage = f2fs_read_data_page,
  900. .readpages = f2fs_read_data_pages,
  901. .writepage = f2fs_write_data_page,
  902. .writepages = f2fs_write_data_pages,
  903. .write_begin = f2fs_write_begin,
  904. .write_end = f2fs_write_end,
  905. .set_page_dirty = f2fs_set_data_page_dirty,
  906. .invalidatepage = f2fs_invalidate_data_page,
  907. .releasepage = f2fs_release_data_page,
  908. .direct_IO = f2fs_direct_IO,
  909. .bmap = f2fs_bmap,
  910. };