bio.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/uio.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/slab.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/export.h>
  28. #include <linux/mempool.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/cgroup.h>
  31. #include <scsi/sg.h> /* for struct sg_iovec */
  32. #include <trace/events/block.h>
  33. /*
  34. * Test patch to inline a certain number of bi_io_vec's inside the bio
  35. * itself, to shrink a bio data allocation from two mempool calls to one
  36. */
  37. #define BIO_INLINE_VECS 4
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. EXPORT_SYMBOL(fs_bio_set);
  54. /*
  55. * Our slab pool management
  56. */
  57. struct bio_slab {
  58. struct kmem_cache *slab;
  59. unsigned int slab_ref;
  60. unsigned int slab_size;
  61. char name[8];
  62. };
  63. static DEFINE_MUTEX(bio_slab_lock);
  64. static struct bio_slab *bio_slabs;
  65. static unsigned int bio_slab_nr, bio_slab_max;
  66. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  67. {
  68. unsigned int sz = sizeof(struct bio) + extra_size;
  69. struct kmem_cache *slab = NULL;
  70. struct bio_slab *bslab, *new_bio_slabs;
  71. unsigned int new_bio_slab_max;
  72. unsigned int i, entry = -1;
  73. mutex_lock(&bio_slab_lock);
  74. i = 0;
  75. while (i < bio_slab_nr) {
  76. bslab = &bio_slabs[i];
  77. if (!bslab->slab && entry == -1)
  78. entry = i;
  79. else if (bslab->slab_size == sz) {
  80. slab = bslab->slab;
  81. bslab->slab_ref++;
  82. break;
  83. }
  84. i++;
  85. }
  86. if (slab)
  87. goto out_unlock;
  88. if (bio_slab_nr == bio_slab_max && entry == -1) {
  89. new_bio_slab_max = bio_slab_max << 1;
  90. new_bio_slabs = krealloc(bio_slabs,
  91. new_bio_slab_max * sizeof(struct bio_slab),
  92. GFP_KERNEL);
  93. if (!new_bio_slabs)
  94. goto out_unlock;
  95. bio_slab_max = new_bio_slab_max;
  96. bio_slabs = new_bio_slabs;
  97. }
  98. if (entry == -1)
  99. entry = bio_slab_nr++;
  100. bslab = &bio_slabs[entry];
  101. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  102. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  103. if (!slab)
  104. goto out_unlock;
  105. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  106. bslab->slab = slab;
  107. bslab->slab_ref = 1;
  108. bslab->slab_size = sz;
  109. out_unlock:
  110. mutex_unlock(&bio_slab_lock);
  111. return slab;
  112. }
  113. static void bio_put_slab(struct bio_set *bs)
  114. {
  115. struct bio_slab *bslab = NULL;
  116. unsigned int i;
  117. mutex_lock(&bio_slab_lock);
  118. for (i = 0; i < bio_slab_nr; i++) {
  119. if (bs->bio_slab == bio_slabs[i].slab) {
  120. bslab = &bio_slabs[i];
  121. break;
  122. }
  123. }
  124. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  125. goto out;
  126. WARN_ON(!bslab->slab_ref);
  127. if (--bslab->slab_ref)
  128. goto out;
  129. kmem_cache_destroy(bslab->slab);
  130. bslab->slab = NULL;
  131. out:
  132. mutex_unlock(&bio_slab_lock);
  133. }
  134. unsigned int bvec_nr_vecs(unsigned short idx)
  135. {
  136. return bvec_slabs[idx].nr_vecs;
  137. }
  138. void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
  139. {
  140. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  141. if (idx == BIOVEC_MAX_IDX)
  142. mempool_free(bv, pool);
  143. else {
  144. struct biovec_slab *bvs = bvec_slabs + idx;
  145. kmem_cache_free(bvs->slab, bv);
  146. }
  147. }
  148. struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
  149. mempool_t *pool)
  150. {
  151. struct bio_vec *bvl;
  152. /*
  153. * see comment near bvec_array define!
  154. */
  155. switch (nr) {
  156. case 1:
  157. *idx = 0;
  158. break;
  159. case 2 ... 4:
  160. *idx = 1;
  161. break;
  162. case 5 ... 16:
  163. *idx = 2;
  164. break;
  165. case 17 ... 64:
  166. *idx = 3;
  167. break;
  168. case 65 ... 128:
  169. *idx = 4;
  170. break;
  171. case 129 ... BIO_MAX_PAGES:
  172. *idx = 5;
  173. break;
  174. default:
  175. return NULL;
  176. }
  177. /*
  178. * idx now points to the pool we want to allocate from. only the
  179. * 1-vec entry pool is mempool backed.
  180. */
  181. if (*idx == BIOVEC_MAX_IDX) {
  182. fallback:
  183. bvl = mempool_alloc(pool, gfp_mask);
  184. } else {
  185. struct biovec_slab *bvs = bvec_slabs + *idx;
  186. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  187. /*
  188. * Make this allocation restricted and don't dump info on
  189. * allocation failures, since we'll fallback to the mempool
  190. * in case of failure.
  191. */
  192. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  193. /*
  194. * Try a slab allocation. If this fails and __GFP_WAIT
  195. * is set, retry with the 1-entry mempool
  196. */
  197. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  198. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  199. *idx = BIOVEC_MAX_IDX;
  200. goto fallback;
  201. }
  202. }
  203. return bvl;
  204. }
  205. static void __bio_free(struct bio *bio)
  206. {
  207. bio_disassociate_task(bio);
  208. if (bio_integrity(bio))
  209. bio_integrity_free(bio);
  210. }
  211. static void bio_free(struct bio *bio)
  212. {
  213. struct bio_set *bs = bio->bi_pool;
  214. void *p;
  215. __bio_free(bio);
  216. if (bs) {
  217. if (bio_flagged(bio, BIO_OWNS_VEC))
  218. bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
  219. /*
  220. * If we have front padding, adjust the bio pointer before freeing
  221. */
  222. p = bio;
  223. p -= bs->front_pad;
  224. mempool_free(p, bs->bio_pool);
  225. } else {
  226. /* Bio was allocated by bio_kmalloc() */
  227. kfree(bio);
  228. }
  229. }
  230. void bio_init(struct bio *bio)
  231. {
  232. memset(bio, 0, sizeof(*bio));
  233. bio->bi_flags = 1 << BIO_UPTODATE;
  234. atomic_set(&bio->bi_remaining, 1);
  235. atomic_set(&bio->bi_cnt, 1);
  236. }
  237. EXPORT_SYMBOL(bio_init);
  238. /**
  239. * bio_reset - reinitialize a bio
  240. * @bio: bio to reset
  241. *
  242. * Description:
  243. * After calling bio_reset(), @bio will be in the same state as a freshly
  244. * allocated bio returned bio bio_alloc_bioset() - the only fields that are
  245. * preserved are the ones that are initialized by bio_alloc_bioset(). See
  246. * comment in struct bio.
  247. */
  248. void bio_reset(struct bio *bio)
  249. {
  250. unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
  251. __bio_free(bio);
  252. memset(bio, 0, BIO_RESET_BYTES);
  253. bio->bi_flags = flags|(1 << BIO_UPTODATE);
  254. atomic_set(&bio->bi_remaining, 1);
  255. }
  256. EXPORT_SYMBOL(bio_reset);
  257. static void bio_chain_endio(struct bio *bio, int error)
  258. {
  259. bio_endio(bio->bi_private, error);
  260. bio_put(bio);
  261. }
  262. /**
  263. * bio_chain - chain bio completions
  264. *
  265. * The caller won't have a bi_end_io called when @bio completes - instead,
  266. * @parent's bi_end_io won't be called until both @parent and @bio have
  267. * completed; the chained bio will also be freed when it completes.
  268. *
  269. * The caller must not set bi_private or bi_end_io in @bio.
  270. */
  271. void bio_chain(struct bio *bio, struct bio *parent)
  272. {
  273. BUG_ON(bio->bi_private || bio->bi_end_io);
  274. bio->bi_private = parent;
  275. bio->bi_end_io = bio_chain_endio;
  276. atomic_inc(&parent->bi_remaining);
  277. }
  278. EXPORT_SYMBOL(bio_chain);
  279. static void bio_alloc_rescue(struct work_struct *work)
  280. {
  281. struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
  282. struct bio *bio;
  283. while (1) {
  284. spin_lock(&bs->rescue_lock);
  285. bio = bio_list_pop(&bs->rescue_list);
  286. spin_unlock(&bs->rescue_lock);
  287. if (!bio)
  288. break;
  289. generic_make_request(bio);
  290. }
  291. }
  292. static void punt_bios_to_rescuer(struct bio_set *bs)
  293. {
  294. struct bio_list punt, nopunt;
  295. struct bio *bio;
  296. /*
  297. * In order to guarantee forward progress we must punt only bios that
  298. * were allocated from this bio_set; otherwise, if there was a bio on
  299. * there for a stacking driver higher up in the stack, processing it
  300. * could require allocating bios from this bio_set, and doing that from
  301. * our own rescuer would be bad.
  302. *
  303. * Since bio lists are singly linked, pop them all instead of trying to
  304. * remove from the middle of the list:
  305. */
  306. bio_list_init(&punt);
  307. bio_list_init(&nopunt);
  308. while ((bio = bio_list_pop(current->bio_list)))
  309. bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
  310. *current->bio_list = nopunt;
  311. spin_lock(&bs->rescue_lock);
  312. bio_list_merge(&bs->rescue_list, &punt);
  313. spin_unlock(&bs->rescue_lock);
  314. queue_work(bs->rescue_workqueue, &bs->rescue_work);
  315. }
  316. /**
  317. * bio_alloc_bioset - allocate a bio for I/O
  318. * @gfp_mask: the GFP_ mask given to the slab allocator
  319. * @nr_iovecs: number of iovecs to pre-allocate
  320. * @bs: the bio_set to allocate from.
  321. *
  322. * Description:
  323. * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
  324. * backed by the @bs's mempool.
  325. *
  326. * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
  327. * able to allocate a bio. This is due to the mempool guarantees. To make this
  328. * work, callers must never allocate more than 1 bio at a time from this pool.
  329. * Callers that need to allocate more than 1 bio must always submit the
  330. * previously allocated bio for IO before attempting to allocate a new one.
  331. * Failure to do so can cause deadlocks under memory pressure.
  332. *
  333. * Note that when running under generic_make_request() (i.e. any block
  334. * driver), bios are not submitted until after you return - see the code in
  335. * generic_make_request() that converts recursion into iteration, to prevent
  336. * stack overflows.
  337. *
  338. * This would normally mean allocating multiple bios under
  339. * generic_make_request() would be susceptible to deadlocks, but we have
  340. * deadlock avoidance code that resubmits any blocked bios from a rescuer
  341. * thread.
  342. *
  343. * However, we do not guarantee forward progress for allocations from other
  344. * mempools. Doing multiple allocations from the same mempool under
  345. * generic_make_request() should be avoided - instead, use bio_set's front_pad
  346. * for per bio allocations.
  347. *
  348. * RETURNS:
  349. * Pointer to new bio on success, NULL on failure.
  350. */
  351. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  352. {
  353. gfp_t saved_gfp = gfp_mask;
  354. unsigned front_pad;
  355. unsigned inline_vecs;
  356. unsigned long idx = BIO_POOL_NONE;
  357. struct bio_vec *bvl = NULL;
  358. struct bio *bio;
  359. void *p;
  360. if (!bs) {
  361. if (nr_iovecs > UIO_MAXIOV)
  362. return NULL;
  363. p = kmalloc(sizeof(struct bio) +
  364. nr_iovecs * sizeof(struct bio_vec),
  365. gfp_mask);
  366. front_pad = 0;
  367. inline_vecs = nr_iovecs;
  368. } else {
  369. /*
  370. * generic_make_request() converts recursion to iteration; this
  371. * means if we're running beneath it, any bios we allocate and
  372. * submit will not be submitted (and thus freed) until after we
  373. * return.
  374. *
  375. * This exposes us to a potential deadlock if we allocate
  376. * multiple bios from the same bio_set() while running
  377. * underneath generic_make_request(). If we were to allocate
  378. * multiple bios (say a stacking block driver that was splitting
  379. * bios), we would deadlock if we exhausted the mempool's
  380. * reserve.
  381. *
  382. * We solve this, and guarantee forward progress, with a rescuer
  383. * workqueue per bio_set. If we go to allocate and there are
  384. * bios on current->bio_list, we first try the allocation
  385. * without __GFP_WAIT; if that fails, we punt those bios we
  386. * would be blocking to the rescuer workqueue before we retry
  387. * with the original gfp_flags.
  388. */
  389. if (current->bio_list && !bio_list_empty(current->bio_list))
  390. gfp_mask &= ~__GFP_WAIT;
  391. p = mempool_alloc(bs->bio_pool, gfp_mask);
  392. if (!p && gfp_mask != saved_gfp) {
  393. punt_bios_to_rescuer(bs);
  394. gfp_mask = saved_gfp;
  395. p = mempool_alloc(bs->bio_pool, gfp_mask);
  396. }
  397. front_pad = bs->front_pad;
  398. inline_vecs = BIO_INLINE_VECS;
  399. }
  400. if (unlikely(!p))
  401. return NULL;
  402. bio = p + front_pad;
  403. bio_init(bio);
  404. if (nr_iovecs > inline_vecs) {
  405. bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
  406. if (!bvl && gfp_mask != saved_gfp) {
  407. punt_bios_to_rescuer(bs);
  408. gfp_mask = saved_gfp;
  409. bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
  410. }
  411. if (unlikely(!bvl))
  412. goto err_free;
  413. bio->bi_flags |= 1 << BIO_OWNS_VEC;
  414. } else if (nr_iovecs) {
  415. bvl = bio->bi_inline_vecs;
  416. }
  417. bio->bi_pool = bs;
  418. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  419. bio->bi_max_vecs = nr_iovecs;
  420. bio->bi_io_vec = bvl;
  421. return bio;
  422. err_free:
  423. mempool_free(p, bs->bio_pool);
  424. return NULL;
  425. }
  426. EXPORT_SYMBOL(bio_alloc_bioset);
  427. void zero_fill_bio(struct bio *bio)
  428. {
  429. unsigned long flags;
  430. struct bio_vec bv;
  431. struct bvec_iter iter;
  432. bio_for_each_segment(bv, bio, iter) {
  433. char *data = bvec_kmap_irq(&bv, &flags);
  434. memset(data, 0, bv.bv_len);
  435. flush_dcache_page(bv.bv_page);
  436. bvec_kunmap_irq(data, &flags);
  437. }
  438. }
  439. EXPORT_SYMBOL(zero_fill_bio);
  440. /**
  441. * bio_put - release a reference to a bio
  442. * @bio: bio to release reference to
  443. *
  444. * Description:
  445. * Put a reference to a &struct bio, either one you have gotten with
  446. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  447. **/
  448. void bio_put(struct bio *bio)
  449. {
  450. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  451. /*
  452. * last put frees it
  453. */
  454. if (atomic_dec_and_test(&bio->bi_cnt))
  455. bio_free(bio);
  456. }
  457. EXPORT_SYMBOL(bio_put);
  458. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  459. {
  460. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  461. blk_recount_segments(q, bio);
  462. return bio->bi_phys_segments;
  463. }
  464. EXPORT_SYMBOL(bio_phys_segments);
  465. /**
  466. * __bio_clone_fast - clone a bio that shares the original bio's biovec
  467. * @bio: destination bio
  468. * @bio_src: bio to clone
  469. *
  470. * Clone a &bio. Caller will own the returned bio, but not
  471. * the actual data it points to. Reference count of returned
  472. * bio will be one.
  473. *
  474. * Caller must ensure that @bio_src is not freed before @bio.
  475. */
  476. void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
  477. {
  478. BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
  479. /*
  480. * most users will be overriding ->bi_bdev with a new target,
  481. * so we don't set nor calculate new physical/hw segment counts here
  482. */
  483. bio->bi_bdev = bio_src->bi_bdev;
  484. bio->bi_flags |= 1 << BIO_CLONED;
  485. bio->bi_rw = bio_src->bi_rw;
  486. bio->bi_iter = bio_src->bi_iter;
  487. bio->bi_io_vec = bio_src->bi_io_vec;
  488. }
  489. EXPORT_SYMBOL(__bio_clone_fast);
  490. /**
  491. * bio_clone_fast - clone a bio that shares the original bio's biovec
  492. * @bio: bio to clone
  493. * @gfp_mask: allocation priority
  494. * @bs: bio_set to allocate from
  495. *
  496. * Like __bio_clone_fast, only also allocates the returned bio
  497. */
  498. struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
  499. {
  500. struct bio *b;
  501. b = bio_alloc_bioset(gfp_mask, 0, bs);
  502. if (!b)
  503. return NULL;
  504. __bio_clone_fast(b, bio);
  505. if (bio_integrity(bio)) {
  506. int ret;
  507. ret = bio_integrity_clone(b, bio, gfp_mask);
  508. if (ret < 0) {
  509. bio_put(b);
  510. return NULL;
  511. }
  512. }
  513. return b;
  514. }
  515. EXPORT_SYMBOL(bio_clone_fast);
  516. /**
  517. * bio_clone_bioset - clone a bio
  518. * @bio_src: bio to clone
  519. * @gfp_mask: allocation priority
  520. * @bs: bio_set to allocate from
  521. *
  522. * Clone bio. Caller will own the returned bio, but not the actual data it
  523. * points to. Reference count of returned bio will be one.
  524. */
  525. struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
  526. struct bio_set *bs)
  527. {
  528. unsigned nr_iovecs = 0;
  529. struct bvec_iter iter;
  530. struct bio_vec bv;
  531. struct bio *bio;
  532. /*
  533. * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
  534. * bio_src->bi_io_vec to bio->bi_io_vec.
  535. *
  536. * We can't do that anymore, because:
  537. *
  538. * - The point of cloning the biovec is to produce a bio with a biovec
  539. * the caller can modify: bi_idx and bi_bvec_done should be 0.
  540. *
  541. * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
  542. * we tried to clone the whole thing bio_alloc_bioset() would fail.
  543. * But the clone should succeed as long as the number of biovecs we
  544. * actually need to allocate is fewer than BIO_MAX_PAGES.
  545. *
  546. * - Lastly, bi_vcnt should not be looked at or relied upon by code
  547. * that does not own the bio - reason being drivers don't use it for
  548. * iterating over the biovec anymore, so expecting it to be kept up
  549. * to date (i.e. for clones that share the parent biovec) is just
  550. * asking for trouble and would force extra work on
  551. * __bio_clone_fast() anyways.
  552. */
  553. bio_for_each_segment(bv, bio_src, iter)
  554. nr_iovecs++;
  555. bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
  556. if (!bio)
  557. return NULL;
  558. bio->bi_bdev = bio_src->bi_bdev;
  559. bio->bi_rw = bio_src->bi_rw;
  560. bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
  561. bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
  562. bio_for_each_segment(bv, bio_src, iter)
  563. bio->bi_io_vec[bio->bi_vcnt++] = bv;
  564. if (bio_integrity(bio_src)) {
  565. int ret;
  566. ret = bio_integrity_clone(bio, bio_src, gfp_mask);
  567. if (ret < 0) {
  568. bio_put(bio);
  569. return NULL;
  570. }
  571. }
  572. return bio;
  573. }
  574. EXPORT_SYMBOL(bio_clone_bioset);
  575. /**
  576. * bio_get_nr_vecs - return approx number of vecs
  577. * @bdev: I/O target
  578. *
  579. * Return the approximate number of pages we can send to this target.
  580. * There's no guarantee that you will be able to fit this number of pages
  581. * into a bio, it does not account for dynamic restrictions that vary
  582. * on offset.
  583. */
  584. int bio_get_nr_vecs(struct block_device *bdev)
  585. {
  586. struct request_queue *q = bdev_get_queue(bdev);
  587. int nr_pages;
  588. nr_pages = min_t(unsigned,
  589. queue_max_segments(q),
  590. queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  591. return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
  592. }
  593. EXPORT_SYMBOL(bio_get_nr_vecs);
  594. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  595. *page, unsigned int len, unsigned int offset,
  596. unsigned int max_sectors)
  597. {
  598. int retried_segments = 0;
  599. struct bio_vec *bvec;
  600. /*
  601. * cloned bio must not modify vec list
  602. */
  603. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  604. return 0;
  605. if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
  606. return 0;
  607. /*
  608. * For filesystems with a blocksize smaller than the pagesize
  609. * we will often be called with the same page as last time and
  610. * a consecutive offset. Optimize this special case.
  611. */
  612. if (bio->bi_vcnt > 0) {
  613. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  614. if (page == prev->bv_page &&
  615. offset == prev->bv_offset + prev->bv_len) {
  616. unsigned int prev_bv_len = prev->bv_len;
  617. prev->bv_len += len;
  618. if (q->merge_bvec_fn) {
  619. struct bvec_merge_data bvm = {
  620. /* prev_bvec is already charged in
  621. bi_size, discharge it in order to
  622. simulate merging updated prev_bvec
  623. as new bvec. */
  624. .bi_bdev = bio->bi_bdev,
  625. .bi_sector = bio->bi_iter.bi_sector,
  626. .bi_size = bio->bi_iter.bi_size -
  627. prev_bv_len,
  628. .bi_rw = bio->bi_rw,
  629. };
  630. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  631. prev->bv_len -= len;
  632. return 0;
  633. }
  634. }
  635. goto done;
  636. }
  637. }
  638. if (bio->bi_vcnt >= bio->bi_max_vecs)
  639. return 0;
  640. /*
  641. * we might lose a segment or two here, but rather that than
  642. * make this too complex.
  643. */
  644. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  645. if (retried_segments)
  646. return 0;
  647. retried_segments = 1;
  648. blk_recount_segments(q, bio);
  649. }
  650. /*
  651. * setup the new entry, we might clear it again later if we
  652. * cannot add the page
  653. */
  654. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  655. bvec->bv_page = page;
  656. bvec->bv_len = len;
  657. bvec->bv_offset = offset;
  658. /*
  659. * if queue has other restrictions (eg varying max sector size
  660. * depending on offset), it can specify a merge_bvec_fn in the
  661. * queue to get further control
  662. */
  663. if (q->merge_bvec_fn) {
  664. struct bvec_merge_data bvm = {
  665. .bi_bdev = bio->bi_bdev,
  666. .bi_sector = bio->bi_iter.bi_sector,
  667. .bi_size = bio->bi_iter.bi_size,
  668. .bi_rw = bio->bi_rw,
  669. };
  670. /*
  671. * merge_bvec_fn() returns number of bytes it can accept
  672. * at this offset
  673. */
  674. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  675. bvec->bv_page = NULL;
  676. bvec->bv_len = 0;
  677. bvec->bv_offset = 0;
  678. return 0;
  679. }
  680. }
  681. /* If we may be able to merge these biovecs, force a recount */
  682. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  683. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  684. bio->bi_vcnt++;
  685. bio->bi_phys_segments++;
  686. done:
  687. bio->bi_iter.bi_size += len;
  688. return len;
  689. }
  690. /**
  691. * bio_add_pc_page - attempt to add page to bio
  692. * @q: the target queue
  693. * @bio: destination bio
  694. * @page: page to add
  695. * @len: vec entry length
  696. * @offset: vec entry offset
  697. *
  698. * Attempt to add a page to the bio_vec maplist. This can fail for a
  699. * number of reasons, such as the bio being full or target block device
  700. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  701. * so it is always possible to add a single page to an empty bio.
  702. *
  703. * This should only be used by REQ_PC bios.
  704. */
  705. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  706. unsigned int len, unsigned int offset)
  707. {
  708. return __bio_add_page(q, bio, page, len, offset,
  709. queue_max_hw_sectors(q));
  710. }
  711. EXPORT_SYMBOL(bio_add_pc_page);
  712. /**
  713. * bio_add_page - attempt to add page to bio
  714. * @bio: destination bio
  715. * @page: page to add
  716. * @len: vec entry length
  717. * @offset: vec entry offset
  718. *
  719. * Attempt to add a page to the bio_vec maplist. This can fail for a
  720. * number of reasons, such as the bio being full or target block device
  721. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  722. * so it is always possible to add a single page to an empty bio.
  723. */
  724. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  725. unsigned int offset)
  726. {
  727. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  728. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  729. }
  730. EXPORT_SYMBOL(bio_add_page);
  731. struct submit_bio_ret {
  732. struct completion event;
  733. int error;
  734. };
  735. static void submit_bio_wait_endio(struct bio *bio, int error)
  736. {
  737. struct submit_bio_ret *ret = bio->bi_private;
  738. ret->error = error;
  739. complete(&ret->event);
  740. }
  741. /**
  742. * submit_bio_wait - submit a bio, and wait until it completes
  743. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  744. * @bio: The &struct bio which describes the I/O
  745. *
  746. * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
  747. * bio_endio() on failure.
  748. */
  749. int submit_bio_wait(int rw, struct bio *bio)
  750. {
  751. struct submit_bio_ret ret;
  752. rw |= REQ_SYNC;
  753. init_completion(&ret.event);
  754. bio->bi_private = &ret;
  755. bio->bi_end_io = submit_bio_wait_endio;
  756. submit_bio(rw, bio);
  757. wait_for_completion(&ret.event);
  758. return ret.error;
  759. }
  760. EXPORT_SYMBOL(submit_bio_wait);
  761. /**
  762. * bio_advance - increment/complete a bio by some number of bytes
  763. * @bio: bio to advance
  764. * @bytes: number of bytes to complete
  765. *
  766. * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
  767. * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
  768. * be updated on the last bvec as well.
  769. *
  770. * @bio will then represent the remaining, uncompleted portion of the io.
  771. */
  772. void bio_advance(struct bio *bio, unsigned bytes)
  773. {
  774. if (bio_integrity(bio))
  775. bio_integrity_advance(bio, bytes);
  776. bio_advance_iter(bio, &bio->bi_iter, bytes);
  777. }
  778. EXPORT_SYMBOL(bio_advance);
  779. /**
  780. * bio_alloc_pages - allocates a single page for each bvec in a bio
  781. * @bio: bio to allocate pages for
  782. * @gfp_mask: flags for allocation
  783. *
  784. * Allocates pages up to @bio->bi_vcnt.
  785. *
  786. * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
  787. * freed.
  788. */
  789. int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
  790. {
  791. int i;
  792. struct bio_vec *bv;
  793. bio_for_each_segment_all(bv, bio, i) {
  794. bv->bv_page = alloc_page(gfp_mask);
  795. if (!bv->bv_page) {
  796. while (--bv >= bio->bi_io_vec)
  797. __free_page(bv->bv_page);
  798. return -ENOMEM;
  799. }
  800. }
  801. return 0;
  802. }
  803. EXPORT_SYMBOL(bio_alloc_pages);
  804. /**
  805. * bio_copy_data - copy contents of data buffers from one chain of bios to
  806. * another
  807. * @src: source bio list
  808. * @dst: destination bio list
  809. *
  810. * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
  811. * @src and @dst as linked lists of bios.
  812. *
  813. * Stops when it reaches the end of either @src or @dst - that is, copies
  814. * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
  815. */
  816. void bio_copy_data(struct bio *dst, struct bio *src)
  817. {
  818. struct bvec_iter src_iter, dst_iter;
  819. struct bio_vec src_bv, dst_bv;
  820. void *src_p, *dst_p;
  821. unsigned bytes;
  822. src_iter = src->bi_iter;
  823. dst_iter = dst->bi_iter;
  824. while (1) {
  825. if (!src_iter.bi_size) {
  826. src = src->bi_next;
  827. if (!src)
  828. break;
  829. src_iter = src->bi_iter;
  830. }
  831. if (!dst_iter.bi_size) {
  832. dst = dst->bi_next;
  833. if (!dst)
  834. break;
  835. dst_iter = dst->bi_iter;
  836. }
  837. src_bv = bio_iter_iovec(src, src_iter);
  838. dst_bv = bio_iter_iovec(dst, dst_iter);
  839. bytes = min(src_bv.bv_len, dst_bv.bv_len);
  840. src_p = kmap_atomic(src_bv.bv_page);
  841. dst_p = kmap_atomic(dst_bv.bv_page);
  842. memcpy(dst_p + dst_bv.bv_offset,
  843. src_p + src_bv.bv_offset,
  844. bytes);
  845. kunmap_atomic(dst_p);
  846. kunmap_atomic(src_p);
  847. bio_advance_iter(src, &src_iter, bytes);
  848. bio_advance_iter(dst, &dst_iter, bytes);
  849. }
  850. }
  851. EXPORT_SYMBOL(bio_copy_data);
  852. struct bio_map_data {
  853. int nr_sgvecs;
  854. int is_our_pages;
  855. struct sg_iovec sgvecs[];
  856. };
  857. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  858. struct sg_iovec *iov, int iov_count,
  859. int is_our_pages)
  860. {
  861. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  862. bmd->nr_sgvecs = iov_count;
  863. bmd->is_our_pages = is_our_pages;
  864. bio->bi_private = bmd;
  865. }
  866. static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  867. unsigned int iov_count,
  868. gfp_t gfp_mask)
  869. {
  870. if (iov_count > UIO_MAXIOV)
  871. return NULL;
  872. return kmalloc(sizeof(struct bio_map_data) +
  873. sizeof(struct sg_iovec) * iov_count, gfp_mask);
  874. }
  875. static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
  876. int to_user, int from_user, int do_free_page)
  877. {
  878. int ret = 0, i;
  879. struct bio_vec *bvec;
  880. int iov_idx = 0;
  881. unsigned int iov_off = 0;
  882. bio_for_each_segment_all(bvec, bio, i) {
  883. char *bv_addr = page_address(bvec->bv_page);
  884. unsigned int bv_len = bvec->bv_len;
  885. while (bv_len && iov_idx < iov_count) {
  886. unsigned int bytes;
  887. char __user *iov_addr;
  888. bytes = min_t(unsigned int,
  889. iov[iov_idx].iov_len - iov_off, bv_len);
  890. iov_addr = iov[iov_idx].iov_base + iov_off;
  891. if (!ret) {
  892. if (to_user)
  893. ret = copy_to_user(iov_addr, bv_addr,
  894. bytes);
  895. if (from_user)
  896. ret = copy_from_user(bv_addr, iov_addr,
  897. bytes);
  898. if (ret)
  899. ret = -EFAULT;
  900. }
  901. bv_len -= bytes;
  902. bv_addr += bytes;
  903. iov_addr += bytes;
  904. iov_off += bytes;
  905. if (iov[iov_idx].iov_len == iov_off) {
  906. iov_idx++;
  907. iov_off = 0;
  908. }
  909. }
  910. if (do_free_page)
  911. __free_page(bvec->bv_page);
  912. }
  913. return ret;
  914. }
  915. /**
  916. * bio_uncopy_user - finish previously mapped bio
  917. * @bio: bio being terminated
  918. *
  919. * Free pages allocated from bio_copy_user() and write back data
  920. * to user space in case of a read.
  921. */
  922. int bio_uncopy_user(struct bio *bio)
  923. {
  924. struct bio_map_data *bmd = bio->bi_private;
  925. struct bio_vec *bvec;
  926. int ret = 0, i;
  927. if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
  928. /*
  929. * if we're in a workqueue, the request is orphaned, so
  930. * don't copy into a random user address space, just free.
  931. */
  932. if (current->mm)
  933. ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
  934. bio_data_dir(bio) == READ,
  935. 0, bmd->is_our_pages);
  936. else if (bmd->is_our_pages)
  937. bio_for_each_segment_all(bvec, bio, i)
  938. __free_page(bvec->bv_page);
  939. }
  940. kfree(bmd);
  941. bio_put(bio);
  942. return ret;
  943. }
  944. EXPORT_SYMBOL(bio_uncopy_user);
  945. /**
  946. * bio_copy_user_iov - copy user data to bio
  947. * @q: destination block queue
  948. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  949. * @iov: the iovec.
  950. * @iov_count: number of elements in the iovec
  951. * @write_to_vm: bool indicating writing to pages or not
  952. * @gfp_mask: memory allocation flags
  953. *
  954. * Prepares and returns a bio for indirect user io, bouncing data
  955. * to/from kernel pages as necessary. Must be paired with
  956. * call bio_uncopy_user() on io completion.
  957. */
  958. struct bio *bio_copy_user_iov(struct request_queue *q,
  959. struct rq_map_data *map_data,
  960. struct sg_iovec *iov, int iov_count,
  961. int write_to_vm, gfp_t gfp_mask)
  962. {
  963. struct bio_map_data *bmd;
  964. struct bio_vec *bvec;
  965. struct page *page;
  966. struct bio *bio;
  967. int i, ret;
  968. int nr_pages = 0;
  969. unsigned int len = 0;
  970. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  971. for (i = 0; i < iov_count; i++) {
  972. unsigned long uaddr;
  973. unsigned long end;
  974. unsigned long start;
  975. uaddr = (unsigned long)iov[i].iov_base;
  976. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  977. start = uaddr >> PAGE_SHIFT;
  978. /*
  979. * Overflow, abort
  980. */
  981. if (end < start)
  982. return ERR_PTR(-EINVAL);
  983. nr_pages += end - start;
  984. len += iov[i].iov_len;
  985. }
  986. if (offset)
  987. nr_pages++;
  988. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  989. if (!bmd)
  990. return ERR_PTR(-ENOMEM);
  991. ret = -ENOMEM;
  992. bio = bio_kmalloc(gfp_mask, nr_pages);
  993. if (!bio)
  994. goto out_bmd;
  995. if (!write_to_vm)
  996. bio->bi_rw |= REQ_WRITE;
  997. ret = 0;
  998. if (map_data) {
  999. nr_pages = 1 << map_data->page_order;
  1000. i = map_data->offset / PAGE_SIZE;
  1001. }
  1002. while (len) {
  1003. unsigned int bytes = PAGE_SIZE;
  1004. bytes -= offset;
  1005. if (bytes > len)
  1006. bytes = len;
  1007. if (map_data) {
  1008. if (i == map_data->nr_entries * nr_pages) {
  1009. ret = -ENOMEM;
  1010. break;
  1011. }
  1012. page = map_data->pages[i / nr_pages];
  1013. page += (i % nr_pages);
  1014. i++;
  1015. } else {
  1016. page = alloc_page(q->bounce_gfp | gfp_mask);
  1017. if (!page) {
  1018. ret = -ENOMEM;
  1019. break;
  1020. }
  1021. }
  1022. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  1023. break;
  1024. len -= bytes;
  1025. offset = 0;
  1026. }
  1027. if (ret)
  1028. goto cleanup;
  1029. /*
  1030. * success
  1031. */
  1032. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  1033. (map_data && map_data->from_user)) {
  1034. ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
  1035. if (ret)
  1036. goto cleanup;
  1037. }
  1038. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  1039. return bio;
  1040. cleanup:
  1041. if (!map_data)
  1042. bio_for_each_segment_all(bvec, bio, i)
  1043. __free_page(bvec->bv_page);
  1044. bio_put(bio);
  1045. out_bmd:
  1046. kfree(bmd);
  1047. return ERR_PTR(ret);
  1048. }
  1049. /**
  1050. * bio_copy_user - copy user data to bio
  1051. * @q: destination block queue
  1052. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  1053. * @uaddr: start of user address
  1054. * @len: length in bytes
  1055. * @write_to_vm: bool indicating writing to pages or not
  1056. * @gfp_mask: memory allocation flags
  1057. *
  1058. * Prepares and returns a bio for indirect user io, bouncing data
  1059. * to/from kernel pages as necessary. Must be paired with
  1060. * call bio_uncopy_user() on io completion.
  1061. */
  1062. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  1063. unsigned long uaddr, unsigned int len,
  1064. int write_to_vm, gfp_t gfp_mask)
  1065. {
  1066. struct sg_iovec iov;
  1067. iov.iov_base = (void __user *)uaddr;
  1068. iov.iov_len = len;
  1069. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  1070. }
  1071. EXPORT_SYMBOL(bio_copy_user);
  1072. static struct bio *__bio_map_user_iov(struct request_queue *q,
  1073. struct block_device *bdev,
  1074. struct sg_iovec *iov, int iov_count,
  1075. int write_to_vm, gfp_t gfp_mask)
  1076. {
  1077. int i, j;
  1078. int nr_pages = 0;
  1079. struct page **pages;
  1080. struct bio *bio;
  1081. int cur_page = 0;
  1082. int ret, offset;
  1083. for (i = 0; i < iov_count; i++) {
  1084. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  1085. unsigned long len = iov[i].iov_len;
  1086. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1087. unsigned long start = uaddr >> PAGE_SHIFT;
  1088. /*
  1089. * Overflow, abort
  1090. */
  1091. if (end < start)
  1092. return ERR_PTR(-EINVAL);
  1093. nr_pages += end - start;
  1094. /*
  1095. * buffer must be aligned to at least hardsector size for now
  1096. */
  1097. if (uaddr & queue_dma_alignment(q))
  1098. return ERR_PTR(-EINVAL);
  1099. }
  1100. if (!nr_pages)
  1101. return ERR_PTR(-EINVAL);
  1102. bio = bio_kmalloc(gfp_mask, nr_pages);
  1103. if (!bio)
  1104. return ERR_PTR(-ENOMEM);
  1105. ret = -ENOMEM;
  1106. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  1107. if (!pages)
  1108. goto out;
  1109. for (i = 0; i < iov_count; i++) {
  1110. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  1111. unsigned long len = iov[i].iov_len;
  1112. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1113. unsigned long start = uaddr >> PAGE_SHIFT;
  1114. const int local_nr_pages = end - start;
  1115. const int page_limit = cur_page + local_nr_pages;
  1116. ret = get_user_pages_fast(uaddr, local_nr_pages,
  1117. write_to_vm, &pages[cur_page]);
  1118. if (ret < local_nr_pages) {
  1119. ret = -EFAULT;
  1120. goto out_unmap;
  1121. }
  1122. offset = uaddr & ~PAGE_MASK;
  1123. for (j = cur_page; j < page_limit; j++) {
  1124. unsigned int bytes = PAGE_SIZE - offset;
  1125. if (len <= 0)
  1126. break;
  1127. if (bytes > len)
  1128. bytes = len;
  1129. /*
  1130. * sorry...
  1131. */
  1132. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  1133. bytes)
  1134. break;
  1135. len -= bytes;
  1136. offset = 0;
  1137. }
  1138. cur_page = j;
  1139. /*
  1140. * release the pages we didn't map into the bio, if any
  1141. */
  1142. while (j < page_limit)
  1143. page_cache_release(pages[j++]);
  1144. }
  1145. kfree(pages);
  1146. /*
  1147. * set data direction, and check if mapped pages need bouncing
  1148. */
  1149. if (!write_to_vm)
  1150. bio->bi_rw |= REQ_WRITE;
  1151. bio->bi_bdev = bdev;
  1152. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  1153. return bio;
  1154. out_unmap:
  1155. for (i = 0; i < nr_pages; i++) {
  1156. if(!pages[i])
  1157. break;
  1158. page_cache_release(pages[i]);
  1159. }
  1160. out:
  1161. kfree(pages);
  1162. bio_put(bio);
  1163. return ERR_PTR(ret);
  1164. }
  1165. /**
  1166. * bio_map_user - map user address into bio
  1167. * @q: the struct request_queue for the bio
  1168. * @bdev: destination block device
  1169. * @uaddr: start of user address
  1170. * @len: length in bytes
  1171. * @write_to_vm: bool indicating writing to pages or not
  1172. * @gfp_mask: memory allocation flags
  1173. *
  1174. * Map the user space address into a bio suitable for io to a block
  1175. * device. Returns an error pointer in case of error.
  1176. */
  1177. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  1178. unsigned long uaddr, unsigned int len, int write_to_vm,
  1179. gfp_t gfp_mask)
  1180. {
  1181. struct sg_iovec iov;
  1182. iov.iov_base = (void __user *)uaddr;
  1183. iov.iov_len = len;
  1184. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  1185. }
  1186. EXPORT_SYMBOL(bio_map_user);
  1187. /**
  1188. * bio_map_user_iov - map user sg_iovec table into bio
  1189. * @q: the struct request_queue for the bio
  1190. * @bdev: destination block device
  1191. * @iov: the iovec.
  1192. * @iov_count: number of elements in the iovec
  1193. * @write_to_vm: bool indicating writing to pages or not
  1194. * @gfp_mask: memory allocation flags
  1195. *
  1196. * Map the user space address into a bio suitable for io to a block
  1197. * device. Returns an error pointer in case of error.
  1198. */
  1199. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  1200. struct sg_iovec *iov, int iov_count,
  1201. int write_to_vm, gfp_t gfp_mask)
  1202. {
  1203. struct bio *bio;
  1204. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  1205. gfp_mask);
  1206. if (IS_ERR(bio))
  1207. return bio;
  1208. /*
  1209. * subtle -- if __bio_map_user() ended up bouncing a bio,
  1210. * it would normally disappear when its bi_end_io is run.
  1211. * however, we need it for the unmap, so grab an extra
  1212. * reference to it
  1213. */
  1214. bio_get(bio);
  1215. return bio;
  1216. }
  1217. static void __bio_unmap_user(struct bio *bio)
  1218. {
  1219. struct bio_vec *bvec;
  1220. int i;
  1221. /*
  1222. * make sure we dirty pages we wrote to
  1223. */
  1224. bio_for_each_segment_all(bvec, bio, i) {
  1225. if (bio_data_dir(bio) == READ)
  1226. set_page_dirty_lock(bvec->bv_page);
  1227. page_cache_release(bvec->bv_page);
  1228. }
  1229. bio_put(bio);
  1230. }
  1231. /**
  1232. * bio_unmap_user - unmap a bio
  1233. * @bio: the bio being unmapped
  1234. *
  1235. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  1236. * a process context.
  1237. *
  1238. * bio_unmap_user() may sleep.
  1239. */
  1240. void bio_unmap_user(struct bio *bio)
  1241. {
  1242. __bio_unmap_user(bio);
  1243. bio_put(bio);
  1244. }
  1245. EXPORT_SYMBOL(bio_unmap_user);
  1246. static void bio_map_kern_endio(struct bio *bio, int err)
  1247. {
  1248. bio_put(bio);
  1249. }
  1250. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  1251. unsigned int len, gfp_t gfp_mask)
  1252. {
  1253. unsigned long kaddr = (unsigned long)data;
  1254. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1255. unsigned long start = kaddr >> PAGE_SHIFT;
  1256. const int nr_pages = end - start;
  1257. int offset, i;
  1258. struct bio *bio;
  1259. bio = bio_kmalloc(gfp_mask, nr_pages);
  1260. if (!bio)
  1261. return ERR_PTR(-ENOMEM);
  1262. offset = offset_in_page(kaddr);
  1263. for (i = 0; i < nr_pages; i++) {
  1264. unsigned int bytes = PAGE_SIZE - offset;
  1265. if (len <= 0)
  1266. break;
  1267. if (bytes > len)
  1268. bytes = len;
  1269. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1270. offset) < bytes)
  1271. break;
  1272. data += bytes;
  1273. len -= bytes;
  1274. offset = 0;
  1275. }
  1276. bio->bi_end_io = bio_map_kern_endio;
  1277. return bio;
  1278. }
  1279. /**
  1280. * bio_map_kern - map kernel address into bio
  1281. * @q: the struct request_queue for the bio
  1282. * @data: pointer to buffer to map
  1283. * @len: length in bytes
  1284. * @gfp_mask: allocation flags for bio allocation
  1285. *
  1286. * Map the kernel address into a bio suitable for io to a block
  1287. * device. Returns an error pointer in case of error.
  1288. */
  1289. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1290. gfp_t gfp_mask)
  1291. {
  1292. struct bio *bio;
  1293. bio = __bio_map_kern(q, data, len, gfp_mask);
  1294. if (IS_ERR(bio))
  1295. return bio;
  1296. if (bio->bi_iter.bi_size == len)
  1297. return bio;
  1298. /*
  1299. * Don't support partial mappings.
  1300. */
  1301. bio_put(bio);
  1302. return ERR_PTR(-EINVAL);
  1303. }
  1304. EXPORT_SYMBOL(bio_map_kern);
  1305. static void bio_copy_kern_endio(struct bio *bio, int err)
  1306. {
  1307. struct bio_vec *bvec;
  1308. const int read = bio_data_dir(bio) == READ;
  1309. struct bio_map_data *bmd = bio->bi_private;
  1310. int i;
  1311. char *p = bmd->sgvecs[0].iov_base;
  1312. bio_for_each_segment_all(bvec, bio, i) {
  1313. char *addr = page_address(bvec->bv_page);
  1314. if (read)
  1315. memcpy(p, addr, bvec->bv_len);
  1316. __free_page(bvec->bv_page);
  1317. p += bvec->bv_len;
  1318. }
  1319. kfree(bmd);
  1320. bio_put(bio);
  1321. }
  1322. /**
  1323. * bio_copy_kern - copy kernel address into bio
  1324. * @q: the struct request_queue for the bio
  1325. * @data: pointer to buffer to copy
  1326. * @len: length in bytes
  1327. * @gfp_mask: allocation flags for bio and page allocation
  1328. * @reading: data direction is READ
  1329. *
  1330. * copy the kernel address into a bio suitable for io to a block
  1331. * device. Returns an error pointer in case of error.
  1332. */
  1333. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1334. gfp_t gfp_mask, int reading)
  1335. {
  1336. struct bio *bio;
  1337. struct bio_vec *bvec;
  1338. int i;
  1339. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1340. if (IS_ERR(bio))
  1341. return bio;
  1342. if (!reading) {
  1343. void *p = data;
  1344. bio_for_each_segment_all(bvec, bio, i) {
  1345. char *addr = page_address(bvec->bv_page);
  1346. memcpy(addr, p, bvec->bv_len);
  1347. p += bvec->bv_len;
  1348. }
  1349. }
  1350. bio->bi_end_io = bio_copy_kern_endio;
  1351. return bio;
  1352. }
  1353. EXPORT_SYMBOL(bio_copy_kern);
  1354. /*
  1355. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1356. * for performing direct-IO in BIOs.
  1357. *
  1358. * The problem is that we cannot run set_page_dirty() from interrupt context
  1359. * because the required locks are not interrupt-safe. So what we can do is to
  1360. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1361. * check that the pages are still dirty. If so, fine. If not, redirty them
  1362. * in process context.
  1363. *
  1364. * We special-case compound pages here: normally this means reads into hugetlb
  1365. * pages. The logic in here doesn't really work right for compound pages
  1366. * because the VM does not uniformly chase down the head page in all cases.
  1367. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1368. * handle them at all. So we skip compound pages here at an early stage.
  1369. *
  1370. * Note that this code is very hard to test under normal circumstances because
  1371. * direct-io pins the pages with get_user_pages(). This makes
  1372. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1373. * But other code (eg, flusher threads) could clean the pages if they are mapped
  1374. * pagecache.
  1375. *
  1376. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1377. * deferred bio dirtying paths.
  1378. */
  1379. /*
  1380. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1381. */
  1382. void bio_set_pages_dirty(struct bio *bio)
  1383. {
  1384. struct bio_vec *bvec;
  1385. int i;
  1386. bio_for_each_segment_all(bvec, bio, i) {
  1387. struct page *page = bvec->bv_page;
  1388. if (page && !PageCompound(page))
  1389. set_page_dirty_lock(page);
  1390. }
  1391. }
  1392. static void bio_release_pages(struct bio *bio)
  1393. {
  1394. struct bio_vec *bvec;
  1395. int i;
  1396. bio_for_each_segment_all(bvec, bio, i) {
  1397. struct page *page = bvec->bv_page;
  1398. if (page)
  1399. put_page(page);
  1400. }
  1401. }
  1402. /*
  1403. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1404. * If they are, then fine. If, however, some pages are clean then they must
  1405. * have been written out during the direct-IO read. So we take another ref on
  1406. * the BIO and the offending pages and re-dirty the pages in process context.
  1407. *
  1408. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1409. * here on. It will run one page_cache_release() against each page and will
  1410. * run one bio_put() against the BIO.
  1411. */
  1412. static void bio_dirty_fn(struct work_struct *work);
  1413. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1414. static DEFINE_SPINLOCK(bio_dirty_lock);
  1415. static struct bio *bio_dirty_list;
  1416. /*
  1417. * This runs in process context
  1418. */
  1419. static void bio_dirty_fn(struct work_struct *work)
  1420. {
  1421. unsigned long flags;
  1422. struct bio *bio;
  1423. spin_lock_irqsave(&bio_dirty_lock, flags);
  1424. bio = bio_dirty_list;
  1425. bio_dirty_list = NULL;
  1426. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1427. while (bio) {
  1428. struct bio *next = bio->bi_private;
  1429. bio_set_pages_dirty(bio);
  1430. bio_release_pages(bio);
  1431. bio_put(bio);
  1432. bio = next;
  1433. }
  1434. }
  1435. void bio_check_pages_dirty(struct bio *bio)
  1436. {
  1437. struct bio_vec *bvec;
  1438. int nr_clean_pages = 0;
  1439. int i;
  1440. bio_for_each_segment_all(bvec, bio, i) {
  1441. struct page *page = bvec->bv_page;
  1442. if (PageDirty(page) || PageCompound(page)) {
  1443. page_cache_release(page);
  1444. bvec->bv_page = NULL;
  1445. } else {
  1446. nr_clean_pages++;
  1447. }
  1448. }
  1449. if (nr_clean_pages) {
  1450. unsigned long flags;
  1451. spin_lock_irqsave(&bio_dirty_lock, flags);
  1452. bio->bi_private = bio_dirty_list;
  1453. bio_dirty_list = bio;
  1454. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1455. schedule_work(&bio_dirty_work);
  1456. } else {
  1457. bio_put(bio);
  1458. }
  1459. }
  1460. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1461. void bio_flush_dcache_pages(struct bio *bi)
  1462. {
  1463. struct bio_vec bvec;
  1464. struct bvec_iter iter;
  1465. bio_for_each_segment(bvec, bi, iter)
  1466. flush_dcache_page(bvec.bv_page);
  1467. }
  1468. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1469. #endif
  1470. /**
  1471. * bio_endio - end I/O on a bio
  1472. * @bio: bio
  1473. * @error: error, if any
  1474. *
  1475. * Description:
  1476. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1477. * preferred way to end I/O on a bio, it takes care of clearing
  1478. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1479. * established -Exxxx (-EIO, for instance) error values in case
  1480. * something went wrong. No one should call bi_end_io() directly on a
  1481. * bio unless they own it and thus know that it has an end_io
  1482. * function.
  1483. **/
  1484. void bio_endio(struct bio *bio, int error)
  1485. {
  1486. while (bio) {
  1487. BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
  1488. if (error)
  1489. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1490. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1491. error = -EIO;
  1492. if (!atomic_dec_and_test(&bio->bi_remaining))
  1493. return;
  1494. /*
  1495. * Need to have a real endio function for chained bios,
  1496. * otherwise various corner cases will break (like stacking
  1497. * block devices that save/restore bi_end_io) - however, we want
  1498. * to avoid unbounded recursion and blowing the stack. Tail call
  1499. * optimization would handle this, but compiling with frame
  1500. * pointers also disables gcc's sibling call optimization.
  1501. */
  1502. if (bio->bi_end_io == bio_chain_endio) {
  1503. struct bio *parent = bio->bi_private;
  1504. bio_put(bio);
  1505. bio = parent;
  1506. } else {
  1507. if (bio->bi_end_io)
  1508. bio->bi_end_io(bio, error);
  1509. bio = NULL;
  1510. }
  1511. }
  1512. }
  1513. EXPORT_SYMBOL(bio_endio);
  1514. /**
  1515. * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
  1516. * @bio: bio
  1517. * @error: error, if any
  1518. *
  1519. * For code that has saved and restored bi_end_io; thing hard before using this
  1520. * function, probably you should've cloned the entire bio.
  1521. **/
  1522. void bio_endio_nodec(struct bio *bio, int error)
  1523. {
  1524. atomic_inc(&bio->bi_remaining);
  1525. bio_endio(bio, error);
  1526. }
  1527. EXPORT_SYMBOL(bio_endio_nodec);
  1528. /**
  1529. * bio_split - split a bio
  1530. * @bio: bio to split
  1531. * @sectors: number of sectors to split from the front of @bio
  1532. * @gfp: gfp mask
  1533. * @bs: bio set to allocate from
  1534. *
  1535. * Allocates and returns a new bio which represents @sectors from the start of
  1536. * @bio, and updates @bio to represent the remaining sectors.
  1537. *
  1538. * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
  1539. * responsibility to ensure that @bio is not freed before the split.
  1540. */
  1541. struct bio *bio_split(struct bio *bio, int sectors,
  1542. gfp_t gfp, struct bio_set *bs)
  1543. {
  1544. struct bio *split = NULL;
  1545. BUG_ON(sectors <= 0);
  1546. BUG_ON(sectors >= bio_sectors(bio));
  1547. split = bio_clone_fast(bio, gfp, bs);
  1548. if (!split)
  1549. return NULL;
  1550. split->bi_iter.bi_size = sectors << 9;
  1551. if (bio_integrity(split))
  1552. bio_integrity_trim(split, 0, sectors);
  1553. bio_advance(bio, split->bi_iter.bi_size);
  1554. return split;
  1555. }
  1556. EXPORT_SYMBOL(bio_split);
  1557. /**
  1558. * bio_trim - trim a bio
  1559. * @bio: bio to trim
  1560. * @offset: number of sectors to trim from the front of @bio
  1561. * @size: size we want to trim @bio to, in sectors
  1562. */
  1563. void bio_trim(struct bio *bio, int offset, int size)
  1564. {
  1565. /* 'bio' is a cloned bio which we need to trim to match
  1566. * the given offset and size.
  1567. */
  1568. size <<= 9;
  1569. if (offset == 0 && size == bio->bi_iter.bi_size)
  1570. return;
  1571. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  1572. bio_advance(bio, offset << 9);
  1573. bio->bi_iter.bi_size = size;
  1574. }
  1575. EXPORT_SYMBOL_GPL(bio_trim);
  1576. /*
  1577. * create memory pools for biovec's in a bio_set.
  1578. * use the global biovec slabs created for general use.
  1579. */
  1580. mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
  1581. {
  1582. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1583. return mempool_create_slab_pool(pool_entries, bp->slab);
  1584. }
  1585. void bioset_free(struct bio_set *bs)
  1586. {
  1587. if (bs->rescue_workqueue)
  1588. destroy_workqueue(bs->rescue_workqueue);
  1589. if (bs->bio_pool)
  1590. mempool_destroy(bs->bio_pool);
  1591. if (bs->bvec_pool)
  1592. mempool_destroy(bs->bvec_pool);
  1593. bioset_integrity_free(bs);
  1594. bio_put_slab(bs);
  1595. kfree(bs);
  1596. }
  1597. EXPORT_SYMBOL(bioset_free);
  1598. /**
  1599. * bioset_create - Create a bio_set
  1600. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1601. * @front_pad: Number of bytes to allocate in front of the returned bio
  1602. *
  1603. * Description:
  1604. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1605. * to ask for a number of bytes to be allocated in front of the bio.
  1606. * Front pad allocation is useful for embedding the bio inside
  1607. * another structure, to avoid allocating extra data to go with the bio.
  1608. * Note that the bio must be embedded at the END of that structure always,
  1609. * or things will break badly.
  1610. */
  1611. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1612. {
  1613. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1614. struct bio_set *bs;
  1615. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1616. if (!bs)
  1617. return NULL;
  1618. bs->front_pad = front_pad;
  1619. spin_lock_init(&bs->rescue_lock);
  1620. bio_list_init(&bs->rescue_list);
  1621. INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
  1622. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1623. if (!bs->bio_slab) {
  1624. kfree(bs);
  1625. return NULL;
  1626. }
  1627. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1628. if (!bs->bio_pool)
  1629. goto bad;
  1630. bs->bvec_pool = biovec_create_pool(bs, pool_size);
  1631. if (!bs->bvec_pool)
  1632. goto bad;
  1633. bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
  1634. if (!bs->rescue_workqueue)
  1635. goto bad;
  1636. return bs;
  1637. bad:
  1638. bioset_free(bs);
  1639. return NULL;
  1640. }
  1641. EXPORT_SYMBOL(bioset_create);
  1642. #ifdef CONFIG_BLK_CGROUP
  1643. /**
  1644. * bio_associate_current - associate a bio with %current
  1645. * @bio: target bio
  1646. *
  1647. * Associate @bio with %current if it hasn't been associated yet. Block
  1648. * layer will treat @bio as if it were issued by %current no matter which
  1649. * task actually issues it.
  1650. *
  1651. * This function takes an extra reference of @task's io_context and blkcg
  1652. * which will be put when @bio is released. The caller must own @bio,
  1653. * ensure %current->io_context exists, and is responsible for synchronizing
  1654. * calls to this function.
  1655. */
  1656. int bio_associate_current(struct bio *bio)
  1657. {
  1658. struct io_context *ioc;
  1659. struct cgroup_subsys_state *css;
  1660. if (bio->bi_ioc)
  1661. return -EBUSY;
  1662. ioc = current->io_context;
  1663. if (!ioc)
  1664. return -ENOENT;
  1665. /* acquire active ref on @ioc and associate */
  1666. get_io_context_active(ioc);
  1667. bio->bi_ioc = ioc;
  1668. /* associate blkcg if exists */
  1669. rcu_read_lock();
  1670. css = task_css(current, blkio_subsys_id);
  1671. if (css && css_tryget(css))
  1672. bio->bi_css = css;
  1673. rcu_read_unlock();
  1674. return 0;
  1675. }
  1676. /**
  1677. * bio_disassociate_task - undo bio_associate_current()
  1678. * @bio: target bio
  1679. */
  1680. void bio_disassociate_task(struct bio *bio)
  1681. {
  1682. if (bio->bi_ioc) {
  1683. put_io_context(bio->bi_ioc);
  1684. bio->bi_ioc = NULL;
  1685. }
  1686. if (bio->bi_css) {
  1687. css_put(bio->bi_css);
  1688. bio->bi_css = NULL;
  1689. }
  1690. }
  1691. #endif /* CONFIG_BLK_CGROUP */
  1692. static void __init biovec_init_slabs(void)
  1693. {
  1694. int i;
  1695. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1696. int size;
  1697. struct biovec_slab *bvs = bvec_slabs + i;
  1698. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1699. bvs->slab = NULL;
  1700. continue;
  1701. }
  1702. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1703. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1704. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1705. }
  1706. }
  1707. static int __init init_bio(void)
  1708. {
  1709. bio_slab_max = 2;
  1710. bio_slab_nr = 0;
  1711. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1712. if (!bio_slabs)
  1713. panic("bio: can't allocate bios\n");
  1714. bio_integrity_init();
  1715. biovec_init_slabs();
  1716. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1717. if (!fs_bio_set)
  1718. panic("bio: can't allocate bios\n");
  1719. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1720. panic("bio: can't create integrity pool\n");
  1721. return 0;
  1722. }
  1723. subsys_initcall(init_bio);