tcp_input.c 183 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 1000;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. #define REXMIT_NONE 0 /* no loss recovery to do */
  115. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  116. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  117. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  118. unsigned int len)
  119. {
  120. static bool __once __read_mostly;
  121. if (!__once) {
  122. struct net_device *dev;
  123. __once = true;
  124. rcu_read_lock();
  125. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  126. if (!dev || len >= dev->mtu)
  127. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  128. dev ? dev->name : "Unknown driver");
  129. rcu_read_unlock();
  130. }
  131. }
  132. /* Adapt the MSS value used to make delayed ack decision to the
  133. * real world.
  134. */
  135. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  139. unsigned int len;
  140. icsk->icsk_ack.last_seg_size = 0;
  141. /* skb->len may jitter because of SACKs, even if peer
  142. * sends good full-sized frames.
  143. */
  144. len = skb_shinfo(skb)->gso_size ? : skb->len;
  145. if (len >= icsk->icsk_ack.rcv_mss) {
  146. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  147. tcp_sk(sk)->advmss);
  148. /* Account for possibly-removed options */
  149. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  150. MAX_TCP_OPTION_SPACE))
  151. tcp_gro_dev_warn(sk, skb, len);
  152. } else {
  153. /* Otherwise, we make more careful check taking into account,
  154. * that SACKs block is variable.
  155. *
  156. * "len" is invariant segment length, including TCP header.
  157. */
  158. len += skb->data - skb_transport_header(skb);
  159. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  160. /* If PSH is not set, packet should be
  161. * full sized, provided peer TCP is not badly broken.
  162. * This observation (if it is correct 8)) allows
  163. * to handle super-low mtu links fairly.
  164. */
  165. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  166. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  167. /* Subtract also invariant (if peer is RFC compliant),
  168. * tcp header plus fixed timestamp option length.
  169. * Resulting "len" is MSS free of SACK jitter.
  170. */
  171. len -= tcp_sk(sk)->tcp_header_len;
  172. icsk->icsk_ack.last_seg_size = len;
  173. if (len == lss) {
  174. icsk->icsk_ack.rcv_mss = len;
  175. return;
  176. }
  177. }
  178. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  179. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  180. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  181. }
  182. }
  183. static void tcp_incr_quickack(struct sock *sk)
  184. {
  185. struct inet_connection_sock *icsk = inet_csk(sk);
  186. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  187. if (quickacks == 0)
  188. quickacks = 2;
  189. if (quickacks > icsk->icsk_ack.quick)
  190. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  191. }
  192. static void tcp_enter_quickack_mode(struct sock *sk)
  193. {
  194. struct inet_connection_sock *icsk = inet_csk(sk);
  195. tcp_incr_quickack(sk);
  196. icsk->icsk_ack.pingpong = 0;
  197. icsk->icsk_ack.ato = TCP_ATO_MIN;
  198. }
  199. /* Send ACKs quickly, if "quick" count is not exhausted
  200. * and the session is not interactive.
  201. */
  202. static bool tcp_in_quickack_mode(struct sock *sk)
  203. {
  204. const struct inet_connection_sock *icsk = inet_csk(sk);
  205. const struct dst_entry *dst = __sk_dst_get(sk);
  206. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  207. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  208. }
  209. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  210. {
  211. if (tp->ecn_flags & TCP_ECN_OK)
  212. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  213. }
  214. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  215. {
  216. if (tcp_hdr(skb)->cwr)
  217. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  218. }
  219. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  220. {
  221. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  222. }
  223. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  224. {
  225. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  226. case INET_ECN_NOT_ECT:
  227. /* Funny extension: if ECT is not set on a segment,
  228. * and we already seen ECT on a previous segment,
  229. * it is probably a retransmit.
  230. */
  231. if (tp->ecn_flags & TCP_ECN_SEEN)
  232. tcp_enter_quickack_mode((struct sock *)tp);
  233. break;
  234. case INET_ECN_CE:
  235. if (tcp_ca_needs_ecn((struct sock *)tp))
  236. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  237. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  238. /* Better not delay acks, sender can have a very low cwnd */
  239. tcp_enter_quickack_mode((struct sock *)tp);
  240. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  241. }
  242. tp->ecn_flags |= TCP_ECN_SEEN;
  243. break;
  244. default:
  245. if (tcp_ca_needs_ecn((struct sock *)tp))
  246. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  247. tp->ecn_flags |= TCP_ECN_SEEN;
  248. break;
  249. }
  250. }
  251. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  252. {
  253. if (tp->ecn_flags & TCP_ECN_OK)
  254. __tcp_ecn_check_ce(tp, skb);
  255. }
  256. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  257. {
  258. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  259. tp->ecn_flags &= ~TCP_ECN_OK;
  260. }
  261. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  262. {
  263. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  264. tp->ecn_flags &= ~TCP_ECN_OK;
  265. }
  266. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  267. {
  268. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  269. return true;
  270. return false;
  271. }
  272. /* Buffer size and advertised window tuning.
  273. *
  274. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  275. */
  276. static void tcp_sndbuf_expand(struct sock *sk)
  277. {
  278. const struct tcp_sock *tp = tcp_sk(sk);
  279. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  280. int sndmem, per_mss;
  281. u32 nr_segs;
  282. /* Worst case is non GSO/TSO : each frame consumes one skb
  283. * and skb->head is kmalloced using power of two area of memory
  284. */
  285. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  286. MAX_TCP_HEADER +
  287. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  288. per_mss = roundup_pow_of_two(per_mss) +
  289. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  290. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  291. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  292. /* Fast Recovery (RFC 5681 3.2) :
  293. * Cubic needs 1.7 factor, rounded to 2 to include
  294. * extra cushion (application might react slowly to POLLOUT)
  295. */
  296. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  297. sndmem *= nr_segs * per_mss;
  298. if (sk->sk_sndbuf < sndmem)
  299. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  300. }
  301. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  302. *
  303. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  304. * forward and advertised in receiver window (tp->rcv_wnd) and
  305. * "application buffer", required to isolate scheduling/application
  306. * latencies from network.
  307. * window_clamp is maximal advertised window. It can be less than
  308. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  309. * is reserved for "application" buffer. The less window_clamp is
  310. * the smoother our behaviour from viewpoint of network, but the lower
  311. * throughput and the higher sensitivity of the connection to losses. 8)
  312. *
  313. * rcv_ssthresh is more strict window_clamp used at "slow start"
  314. * phase to predict further behaviour of this connection.
  315. * It is used for two goals:
  316. * - to enforce header prediction at sender, even when application
  317. * requires some significant "application buffer". It is check #1.
  318. * - to prevent pruning of receive queue because of misprediction
  319. * of receiver window. Check #2.
  320. *
  321. * The scheme does not work when sender sends good segments opening
  322. * window and then starts to feed us spaghetti. But it should work
  323. * in common situations. Otherwise, we have to rely on queue collapsing.
  324. */
  325. /* Slow part of check#2. */
  326. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  327. {
  328. struct tcp_sock *tp = tcp_sk(sk);
  329. /* Optimize this! */
  330. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  331. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  332. while (tp->rcv_ssthresh <= window) {
  333. if (truesize <= skb->len)
  334. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  335. truesize >>= 1;
  336. window >>= 1;
  337. }
  338. return 0;
  339. }
  340. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  341. {
  342. struct tcp_sock *tp = tcp_sk(sk);
  343. /* Check #1 */
  344. if (tp->rcv_ssthresh < tp->window_clamp &&
  345. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  346. !tcp_under_memory_pressure(sk)) {
  347. int incr;
  348. /* Check #2. Increase window, if skb with such overhead
  349. * will fit to rcvbuf in future.
  350. */
  351. if (tcp_win_from_space(skb->truesize) <= skb->len)
  352. incr = 2 * tp->advmss;
  353. else
  354. incr = __tcp_grow_window(sk, skb);
  355. if (incr) {
  356. incr = max_t(int, incr, 2 * skb->len);
  357. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  358. tp->window_clamp);
  359. inet_csk(sk)->icsk_ack.quick |= 1;
  360. }
  361. }
  362. }
  363. /* 3. Tuning rcvbuf, when connection enters established state. */
  364. static void tcp_fixup_rcvbuf(struct sock *sk)
  365. {
  366. u32 mss = tcp_sk(sk)->advmss;
  367. int rcvmem;
  368. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  369. tcp_default_init_rwnd(mss);
  370. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  371. * Allow enough cushion so that sender is not limited by our window
  372. */
  373. if (sysctl_tcp_moderate_rcvbuf)
  374. rcvmem <<= 2;
  375. if (sk->sk_rcvbuf < rcvmem)
  376. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  377. }
  378. /* 4. Try to fixup all. It is made immediately after connection enters
  379. * established state.
  380. */
  381. void tcp_init_buffer_space(struct sock *sk)
  382. {
  383. struct tcp_sock *tp = tcp_sk(sk);
  384. int maxwin;
  385. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  386. tcp_fixup_rcvbuf(sk);
  387. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  388. tcp_sndbuf_expand(sk);
  389. tp->rcvq_space.space = tp->rcv_wnd;
  390. skb_mstamp_get(&tp->tcp_mstamp);
  391. tp->rcvq_space.time = tp->tcp_mstamp;
  392. tp->rcvq_space.seq = tp->copied_seq;
  393. maxwin = tcp_full_space(sk);
  394. if (tp->window_clamp >= maxwin) {
  395. tp->window_clamp = maxwin;
  396. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  397. tp->window_clamp = max(maxwin -
  398. (maxwin >> sysctl_tcp_app_win),
  399. 4 * tp->advmss);
  400. }
  401. /* Force reservation of one segment. */
  402. if (sysctl_tcp_app_win &&
  403. tp->window_clamp > 2 * tp->advmss &&
  404. tp->window_clamp + tp->advmss > maxwin)
  405. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  406. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  407. tp->snd_cwnd_stamp = tcp_time_stamp;
  408. }
  409. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  410. static void tcp_clamp_window(struct sock *sk)
  411. {
  412. struct tcp_sock *tp = tcp_sk(sk);
  413. struct inet_connection_sock *icsk = inet_csk(sk);
  414. icsk->icsk_ack.quick = 0;
  415. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  416. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  417. !tcp_under_memory_pressure(sk) &&
  418. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  419. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  420. sysctl_tcp_rmem[2]);
  421. }
  422. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  423. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  424. }
  425. /* Initialize RCV_MSS value.
  426. * RCV_MSS is an our guess about MSS used by the peer.
  427. * We haven't any direct information about the MSS.
  428. * It's better to underestimate the RCV_MSS rather than overestimate.
  429. * Overestimations make us ACKing less frequently than needed.
  430. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  431. */
  432. void tcp_initialize_rcv_mss(struct sock *sk)
  433. {
  434. const struct tcp_sock *tp = tcp_sk(sk);
  435. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  436. hint = min(hint, tp->rcv_wnd / 2);
  437. hint = min(hint, TCP_MSS_DEFAULT);
  438. hint = max(hint, TCP_MIN_MSS);
  439. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  440. }
  441. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  442. /* Receiver "autotuning" code.
  443. *
  444. * The algorithm for RTT estimation w/o timestamps is based on
  445. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  446. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  447. *
  448. * More detail on this code can be found at
  449. * <http://staff.psc.edu/jheffner/>,
  450. * though this reference is out of date. A new paper
  451. * is pending.
  452. */
  453. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  454. {
  455. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  456. long m = sample;
  457. if (m == 0)
  458. m = 1;
  459. if (new_sample != 0) {
  460. /* If we sample in larger samples in the non-timestamp
  461. * case, we could grossly overestimate the RTT especially
  462. * with chatty applications or bulk transfer apps which
  463. * are stalled on filesystem I/O.
  464. *
  465. * Also, since we are only going for a minimum in the
  466. * non-timestamp case, we do not smooth things out
  467. * else with timestamps disabled convergence takes too
  468. * long.
  469. */
  470. if (!win_dep) {
  471. m -= (new_sample >> 3);
  472. new_sample += m;
  473. } else {
  474. m <<= 3;
  475. if (m < new_sample)
  476. new_sample = m;
  477. }
  478. } else {
  479. /* No previous measure. */
  480. new_sample = m << 3;
  481. }
  482. tp->rcv_rtt_est.rtt_us = new_sample;
  483. }
  484. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  485. {
  486. u32 delta_us;
  487. if (tp->rcv_rtt_est.time.v64 == 0)
  488. goto new_measure;
  489. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  490. return;
  491. delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time);
  492. tcp_rcv_rtt_update(tp, delta_us, 1);
  493. new_measure:
  494. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  495. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  496. }
  497. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  498. const struct sk_buff *skb)
  499. {
  500. struct tcp_sock *tp = tcp_sk(sk);
  501. if (tp->rx_opt.rcv_tsecr &&
  502. (TCP_SKB_CB(skb)->end_seq -
  503. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  504. tcp_rcv_rtt_update(tp,
  505. jiffies_to_usecs(tcp_time_stamp -
  506. tp->rx_opt.rcv_tsecr),
  507. 0);
  508. }
  509. /*
  510. * This function should be called every time data is copied to user space.
  511. * It calculates the appropriate TCP receive buffer space.
  512. */
  513. void tcp_rcv_space_adjust(struct sock *sk)
  514. {
  515. struct tcp_sock *tp = tcp_sk(sk);
  516. int time;
  517. int copied;
  518. time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time);
  519. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  520. return;
  521. /* Number of bytes copied to user in last RTT */
  522. copied = tp->copied_seq - tp->rcvq_space.seq;
  523. if (copied <= tp->rcvq_space.space)
  524. goto new_measure;
  525. /* A bit of theory :
  526. * copied = bytes received in previous RTT, our base window
  527. * To cope with packet losses, we need a 2x factor
  528. * To cope with slow start, and sender growing its cwin by 100 %
  529. * every RTT, we need a 4x factor, because the ACK we are sending
  530. * now is for the next RTT, not the current one :
  531. * <prev RTT . ><current RTT .. ><next RTT .... >
  532. */
  533. if (sysctl_tcp_moderate_rcvbuf &&
  534. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  535. int rcvwin, rcvmem, rcvbuf;
  536. /* minimal window to cope with packet losses, assuming
  537. * steady state. Add some cushion because of small variations.
  538. */
  539. rcvwin = (copied << 1) + 16 * tp->advmss;
  540. /* If rate increased by 25%,
  541. * assume slow start, rcvwin = 3 * copied
  542. * If rate increased by 50%,
  543. * assume sender can use 2x growth, rcvwin = 4 * copied
  544. */
  545. if (copied >=
  546. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  547. if (copied >=
  548. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  549. rcvwin <<= 1;
  550. else
  551. rcvwin += (rcvwin >> 1);
  552. }
  553. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  554. while (tcp_win_from_space(rcvmem) < tp->advmss)
  555. rcvmem += 128;
  556. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  557. if (rcvbuf > sk->sk_rcvbuf) {
  558. sk->sk_rcvbuf = rcvbuf;
  559. /* Make the window clamp follow along. */
  560. tp->window_clamp = rcvwin;
  561. }
  562. }
  563. tp->rcvq_space.space = copied;
  564. new_measure:
  565. tp->rcvq_space.seq = tp->copied_seq;
  566. tp->rcvq_space.time = tp->tcp_mstamp;
  567. }
  568. /* There is something which you must keep in mind when you analyze the
  569. * behavior of the tp->ato delayed ack timeout interval. When a
  570. * connection starts up, we want to ack as quickly as possible. The
  571. * problem is that "good" TCP's do slow start at the beginning of data
  572. * transmission. The means that until we send the first few ACK's the
  573. * sender will sit on his end and only queue most of his data, because
  574. * he can only send snd_cwnd unacked packets at any given time. For
  575. * each ACK we send, he increments snd_cwnd and transmits more of his
  576. * queue. -DaveM
  577. */
  578. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  579. {
  580. struct tcp_sock *tp = tcp_sk(sk);
  581. struct inet_connection_sock *icsk = inet_csk(sk);
  582. u32 now;
  583. inet_csk_schedule_ack(sk);
  584. tcp_measure_rcv_mss(sk, skb);
  585. tcp_rcv_rtt_measure(tp);
  586. now = tcp_time_stamp;
  587. if (!icsk->icsk_ack.ato) {
  588. /* The _first_ data packet received, initialize
  589. * delayed ACK engine.
  590. */
  591. tcp_incr_quickack(sk);
  592. icsk->icsk_ack.ato = TCP_ATO_MIN;
  593. } else {
  594. int m = now - icsk->icsk_ack.lrcvtime;
  595. if (m <= TCP_ATO_MIN / 2) {
  596. /* The fastest case is the first. */
  597. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  598. } else if (m < icsk->icsk_ack.ato) {
  599. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  600. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  601. icsk->icsk_ack.ato = icsk->icsk_rto;
  602. } else if (m > icsk->icsk_rto) {
  603. /* Too long gap. Apparently sender failed to
  604. * restart window, so that we send ACKs quickly.
  605. */
  606. tcp_incr_quickack(sk);
  607. sk_mem_reclaim(sk);
  608. }
  609. }
  610. icsk->icsk_ack.lrcvtime = now;
  611. tcp_ecn_check_ce(tp, skb);
  612. if (skb->len >= 128)
  613. tcp_grow_window(sk, skb);
  614. }
  615. /* Called to compute a smoothed rtt estimate. The data fed to this
  616. * routine either comes from timestamps, or from segments that were
  617. * known _not_ to have been retransmitted [see Karn/Partridge
  618. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  619. * piece by Van Jacobson.
  620. * NOTE: the next three routines used to be one big routine.
  621. * To save cycles in the RFC 1323 implementation it was better to break
  622. * it up into three procedures. -- erics
  623. */
  624. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  625. {
  626. struct tcp_sock *tp = tcp_sk(sk);
  627. long m = mrtt_us; /* RTT */
  628. u32 srtt = tp->srtt_us;
  629. /* The following amusing code comes from Jacobson's
  630. * article in SIGCOMM '88. Note that rtt and mdev
  631. * are scaled versions of rtt and mean deviation.
  632. * This is designed to be as fast as possible
  633. * m stands for "measurement".
  634. *
  635. * On a 1990 paper the rto value is changed to:
  636. * RTO = rtt + 4 * mdev
  637. *
  638. * Funny. This algorithm seems to be very broken.
  639. * These formulae increase RTO, when it should be decreased, increase
  640. * too slowly, when it should be increased quickly, decrease too quickly
  641. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  642. * does not matter how to _calculate_ it. Seems, it was trap
  643. * that VJ failed to avoid. 8)
  644. */
  645. if (srtt != 0) {
  646. m -= (srtt >> 3); /* m is now error in rtt est */
  647. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  648. if (m < 0) {
  649. m = -m; /* m is now abs(error) */
  650. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  651. /* This is similar to one of Eifel findings.
  652. * Eifel blocks mdev updates when rtt decreases.
  653. * This solution is a bit different: we use finer gain
  654. * for mdev in this case (alpha*beta).
  655. * Like Eifel it also prevents growth of rto,
  656. * but also it limits too fast rto decreases,
  657. * happening in pure Eifel.
  658. */
  659. if (m > 0)
  660. m >>= 3;
  661. } else {
  662. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  663. }
  664. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  665. if (tp->mdev_us > tp->mdev_max_us) {
  666. tp->mdev_max_us = tp->mdev_us;
  667. if (tp->mdev_max_us > tp->rttvar_us)
  668. tp->rttvar_us = tp->mdev_max_us;
  669. }
  670. if (after(tp->snd_una, tp->rtt_seq)) {
  671. if (tp->mdev_max_us < tp->rttvar_us)
  672. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  673. tp->rtt_seq = tp->snd_nxt;
  674. tp->mdev_max_us = tcp_rto_min_us(sk);
  675. }
  676. } else {
  677. /* no previous measure. */
  678. srtt = m << 3; /* take the measured time to be rtt */
  679. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  680. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  681. tp->mdev_max_us = tp->rttvar_us;
  682. tp->rtt_seq = tp->snd_nxt;
  683. }
  684. tp->srtt_us = max(1U, srtt);
  685. }
  686. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  687. * Note: TCP stack does not yet implement pacing.
  688. * FQ packet scheduler can be used to implement cheap but effective
  689. * TCP pacing, to smooth the burst on large writes when packets
  690. * in flight is significantly lower than cwnd (or rwin)
  691. */
  692. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  693. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  694. static void tcp_update_pacing_rate(struct sock *sk)
  695. {
  696. const struct tcp_sock *tp = tcp_sk(sk);
  697. u64 rate;
  698. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  699. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  700. /* current rate is (cwnd * mss) / srtt
  701. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  702. * In Congestion Avoidance phase, set it to 120 % the current rate.
  703. *
  704. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  705. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  706. * end of slow start and should slow down.
  707. */
  708. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  709. rate *= sysctl_tcp_pacing_ss_ratio;
  710. else
  711. rate *= sysctl_tcp_pacing_ca_ratio;
  712. rate *= max(tp->snd_cwnd, tp->packets_out);
  713. if (likely(tp->srtt_us))
  714. do_div(rate, tp->srtt_us);
  715. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  716. * without any lock. We want to make sure compiler wont store
  717. * intermediate values in this location.
  718. */
  719. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  720. sk->sk_max_pacing_rate);
  721. }
  722. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  723. * routine referred to above.
  724. */
  725. static void tcp_set_rto(struct sock *sk)
  726. {
  727. const struct tcp_sock *tp = tcp_sk(sk);
  728. /* Old crap is replaced with new one. 8)
  729. *
  730. * More seriously:
  731. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  732. * It cannot be less due to utterly erratic ACK generation made
  733. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  734. * to do with delayed acks, because at cwnd>2 true delack timeout
  735. * is invisible. Actually, Linux-2.4 also generates erratic
  736. * ACKs in some circumstances.
  737. */
  738. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  739. /* 2. Fixups made earlier cannot be right.
  740. * If we do not estimate RTO correctly without them,
  741. * all the algo is pure shit and should be replaced
  742. * with correct one. It is exactly, which we pretend to do.
  743. */
  744. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  745. * guarantees that rto is higher.
  746. */
  747. tcp_bound_rto(sk);
  748. }
  749. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  750. {
  751. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  752. if (!cwnd)
  753. cwnd = TCP_INIT_CWND;
  754. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  755. }
  756. /*
  757. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  758. * disables it when reordering is detected
  759. */
  760. void tcp_disable_fack(struct tcp_sock *tp)
  761. {
  762. /* RFC3517 uses different metric in lost marker => reset on change */
  763. if (tcp_is_fack(tp))
  764. tp->lost_skb_hint = NULL;
  765. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  766. }
  767. /* Take a notice that peer is sending D-SACKs */
  768. static void tcp_dsack_seen(struct tcp_sock *tp)
  769. {
  770. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  771. }
  772. static void tcp_update_reordering(struct sock *sk, const int metric,
  773. const int ts)
  774. {
  775. struct tcp_sock *tp = tcp_sk(sk);
  776. int mib_idx;
  777. if (metric > tp->reordering) {
  778. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  779. #if FASTRETRANS_DEBUG > 1
  780. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  781. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  782. tp->reordering,
  783. tp->fackets_out,
  784. tp->sacked_out,
  785. tp->undo_marker ? tp->undo_retrans : 0);
  786. #endif
  787. tcp_disable_fack(tp);
  788. }
  789. tp->rack.reord = 1;
  790. /* This exciting event is worth to be remembered. 8) */
  791. if (ts)
  792. mib_idx = LINUX_MIB_TCPTSREORDER;
  793. else if (tcp_is_reno(tp))
  794. mib_idx = LINUX_MIB_TCPRENOREORDER;
  795. else if (tcp_is_fack(tp))
  796. mib_idx = LINUX_MIB_TCPFACKREORDER;
  797. else
  798. mib_idx = LINUX_MIB_TCPSACKREORDER;
  799. NET_INC_STATS(sock_net(sk), mib_idx);
  800. }
  801. /* This must be called before lost_out is incremented */
  802. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  803. {
  804. if (!tp->retransmit_skb_hint ||
  805. before(TCP_SKB_CB(skb)->seq,
  806. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  807. tp->retransmit_skb_hint = skb;
  808. }
  809. /* Sum the number of packets on the wire we have marked as lost.
  810. * There are two cases we care about here:
  811. * a) Packet hasn't been marked lost (nor retransmitted),
  812. * and this is the first loss.
  813. * b) Packet has been marked both lost and retransmitted,
  814. * and this means we think it was lost again.
  815. */
  816. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  817. {
  818. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  819. if (!(sacked & TCPCB_LOST) ||
  820. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  821. tp->lost += tcp_skb_pcount(skb);
  822. }
  823. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  824. {
  825. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  826. tcp_verify_retransmit_hint(tp, skb);
  827. tp->lost_out += tcp_skb_pcount(skb);
  828. tcp_sum_lost(tp, skb);
  829. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  830. }
  831. }
  832. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  833. {
  834. tcp_verify_retransmit_hint(tp, skb);
  835. tcp_sum_lost(tp, skb);
  836. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  837. tp->lost_out += tcp_skb_pcount(skb);
  838. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  839. }
  840. }
  841. /* This procedure tags the retransmission queue when SACKs arrive.
  842. *
  843. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  844. * Packets in queue with these bits set are counted in variables
  845. * sacked_out, retrans_out and lost_out, correspondingly.
  846. *
  847. * Valid combinations are:
  848. * Tag InFlight Description
  849. * 0 1 - orig segment is in flight.
  850. * S 0 - nothing flies, orig reached receiver.
  851. * L 0 - nothing flies, orig lost by net.
  852. * R 2 - both orig and retransmit are in flight.
  853. * L|R 1 - orig is lost, retransmit is in flight.
  854. * S|R 1 - orig reached receiver, retrans is still in flight.
  855. * (L|S|R is logically valid, it could occur when L|R is sacked,
  856. * but it is equivalent to plain S and code short-curcuits it to S.
  857. * L|S is logically invalid, it would mean -1 packet in flight 8))
  858. *
  859. * These 6 states form finite state machine, controlled by the following events:
  860. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  861. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  862. * 3. Loss detection event of two flavors:
  863. * A. Scoreboard estimator decided the packet is lost.
  864. * A'. Reno "three dupacks" marks head of queue lost.
  865. * A''. Its FACK modification, head until snd.fack is lost.
  866. * B. SACK arrives sacking SND.NXT at the moment, when the
  867. * segment was retransmitted.
  868. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  869. *
  870. * It is pleasant to note, that state diagram turns out to be commutative,
  871. * so that we are allowed not to be bothered by order of our actions,
  872. * when multiple events arrive simultaneously. (see the function below).
  873. *
  874. * Reordering detection.
  875. * --------------------
  876. * Reordering metric is maximal distance, which a packet can be displaced
  877. * in packet stream. With SACKs we can estimate it:
  878. *
  879. * 1. SACK fills old hole and the corresponding segment was not
  880. * ever retransmitted -> reordering. Alas, we cannot use it
  881. * when segment was retransmitted.
  882. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  883. * for retransmitted and already SACKed segment -> reordering..
  884. * Both of these heuristics are not used in Loss state, when we cannot
  885. * account for retransmits accurately.
  886. *
  887. * SACK block validation.
  888. * ----------------------
  889. *
  890. * SACK block range validation checks that the received SACK block fits to
  891. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  892. * Note that SND.UNA is not included to the range though being valid because
  893. * it means that the receiver is rather inconsistent with itself reporting
  894. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  895. * perfectly valid, however, in light of RFC2018 which explicitly states
  896. * that "SACK block MUST reflect the newest segment. Even if the newest
  897. * segment is going to be discarded ...", not that it looks very clever
  898. * in case of head skb. Due to potentional receiver driven attacks, we
  899. * choose to avoid immediate execution of a walk in write queue due to
  900. * reneging and defer head skb's loss recovery to standard loss recovery
  901. * procedure that will eventually trigger (nothing forbids us doing this).
  902. *
  903. * Implements also blockage to start_seq wrap-around. Problem lies in the
  904. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  905. * there's no guarantee that it will be before snd_nxt (n). The problem
  906. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  907. * wrap (s_w):
  908. *
  909. * <- outs wnd -> <- wrapzone ->
  910. * u e n u_w e_w s n_w
  911. * | | | | | | |
  912. * |<------------+------+----- TCP seqno space --------------+---------->|
  913. * ...-- <2^31 ->| |<--------...
  914. * ...---- >2^31 ------>| |<--------...
  915. *
  916. * Current code wouldn't be vulnerable but it's better still to discard such
  917. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  918. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  919. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  920. * equal to the ideal case (infinite seqno space without wrap caused issues).
  921. *
  922. * With D-SACK the lower bound is extended to cover sequence space below
  923. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  924. * again, D-SACK block must not to go across snd_una (for the same reason as
  925. * for the normal SACK blocks, explained above). But there all simplicity
  926. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  927. * fully below undo_marker they do not affect behavior in anyway and can
  928. * therefore be safely ignored. In rare cases (which are more or less
  929. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  930. * fragmentation and packet reordering past skb's retransmission. To consider
  931. * them correctly, the acceptable range must be extended even more though
  932. * the exact amount is rather hard to quantify. However, tp->max_window can
  933. * be used as an exaggerated estimate.
  934. */
  935. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  936. u32 start_seq, u32 end_seq)
  937. {
  938. /* Too far in future, or reversed (interpretation is ambiguous) */
  939. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  940. return false;
  941. /* Nasty start_seq wrap-around check (see comments above) */
  942. if (!before(start_seq, tp->snd_nxt))
  943. return false;
  944. /* In outstanding window? ...This is valid exit for D-SACKs too.
  945. * start_seq == snd_una is non-sensical (see comments above)
  946. */
  947. if (after(start_seq, tp->snd_una))
  948. return true;
  949. if (!is_dsack || !tp->undo_marker)
  950. return false;
  951. /* ...Then it's D-SACK, and must reside below snd_una completely */
  952. if (after(end_seq, tp->snd_una))
  953. return false;
  954. if (!before(start_seq, tp->undo_marker))
  955. return true;
  956. /* Too old */
  957. if (!after(end_seq, tp->undo_marker))
  958. return false;
  959. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  960. * start_seq < undo_marker and end_seq >= undo_marker.
  961. */
  962. return !before(start_seq, end_seq - tp->max_window);
  963. }
  964. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  965. struct tcp_sack_block_wire *sp, int num_sacks,
  966. u32 prior_snd_una)
  967. {
  968. struct tcp_sock *tp = tcp_sk(sk);
  969. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  970. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  971. bool dup_sack = false;
  972. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  973. dup_sack = true;
  974. tcp_dsack_seen(tp);
  975. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  976. } else if (num_sacks > 1) {
  977. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  978. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  979. if (!after(end_seq_0, end_seq_1) &&
  980. !before(start_seq_0, start_seq_1)) {
  981. dup_sack = true;
  982. tcp_dsack_seen(tp);
  983. NET_INC_STATS(sock_net(sk),
  984. LINUX_MIB_TCPDSACKOFORECV);
  985. }
  986. }
  987. /* D-SACK for already forgotten data... Do dumb counting. */
  988. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  989. !after(end_seq_0, prior_snd_una) &&
  990. after(end_seq_0, tp->undo_marker))
  991. tp->undo_retrans--;
  992. return dup_sack;
  993. }
  994. struct tcp_sacktag_state {
  995. int reord;
  996. int fack_count;
  997. /* Timestamps for earliest and latest never-retransmitted segment
  998. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  999. * but congestion control should still get an accurate delay signal.
  1000. */
  1001. struct skb_mstamp first_sackt;
  1002. struct skb_mstamp last_sackt;
  1003. struct rate_sample *rate;
  1004. int flag;
  1005. };
  1006. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1007. * the incoming SACK may not exactly match but we can find smaller MSS
  1008. * aligned portion of it that matches. Therefore we might need to fragment
  1009. * which may fail and creates some hassle (caller must handle error case
  1010. * returns).
  1011. *
  1012. * FIXME: this could be merged to shift decision code
  1013. */
  1014. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1015. u32 start_seq, u32 end_seq)
  1016. {
  1017. int err;
  1018. bool in_sack;
  1019. unsigned int pkt_len;
  1020. unsigned int mss;
  1021. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1022. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1023. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1024. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1025. mss = tcp_skb_mss(skb);
  1026. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1027. if (!in_sack) {
  1028. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1029. if (pkt_len < mss)
  1030. pkt_len = mss;
  1031. } else {
  1032. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1033. if (pkt_len < mss)
  1034. return -EINVAL;
  1035. }
  1036. /* Round if necessary so that SACKs cover only full MSSes
  1037. * and/or the remaining small portion (if present)
  1038. */
  1039. if (pkt_len > mss) {
  1040. unsigned int new_len = (pkt_len / mss) * mss;
  1041. if (!in_sack && new_len < pkt_len) {
  1042. new_len += mss;
  1043. if (new_len >= skb->len)
  1044. return 0;
  1045. }
  1046. pkt_len = new_len;
  1047. }
  1048. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1049. if (err < 0)
  1050. return err;
  1051. }
  1052. return in_sack;
  1053. }
  1054. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1055. static u8 tcp_sacktag_one(struct sock *sk,
  1056. struct tcp_sacktag_state *state, u8 sacked,
  1057. u32 start_seq, u32 end_seq,
  1058. int dup_sack, int pcount,
  1059. const struct skb_mstamp *xmit_time)
  1060. {
  1061. struct tcp_sock *tp = tcp_sk(sk);
  1062. int fack_count = state->fack_count;
  1063. /* Account D-SACK for retransmitted packet. */
  1064. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1065. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1066. after(end_seq, tp->undo_marker))
  1067. tp->undo_retrans--;
  1068. if (sacked & TCPCB_SACKED_ACKED)
  1069. state->reord = min(fack_count, state->reord);
  1070. }
  1071. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1072. if (!after(end_seq, tp->snd_una))
  1073. return sacked;
  1074. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1075. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1076. if (sacked & TCPCB_SACKED_RETRANS) {
  1077. /* If the segment is not tagged as lost,
  1078. * we do not clear RETRANS, believing
  1079. * that retransmission is still in flight.
  1080. */
  1081. if (sacked & TCPCB_LOST) {
  1082. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1083. tp->lost_out -= pcount;
  1084. tp->retrans_out -= pcount;
  1085. }
  1086. } else {
  1087. if (!(sacked & TCPCB_RETRANS)) {
  1088. /* New sack for not retransmitted frame,
  1089. * which was in hole. It is reordering.
  1090. */
  1091. if (before(start_seq,
  1092. tcp_highest_sack_seq(tp)))
  1093. state->reord = min(fack_count,
  1094. state->reord);
  1095. if (!after(end_seq, tp->high_seq))
  1096. state->flag |= FLAG_ORIG_SACK_ACKED;
  1097. if (state->first_sackt.v64 == 0)
  1098. state->first_sackt = *xmit_time;
  1099. state->last_sackt = *xmit_time;
  1100. }
  1101. if (sacked & TCPCB_LOST) {
  1102. sacked &= ~TCPCB_LOST;
  1103. tp->lost_out -= pcount;
  1104. }
  1105. }
  1106. sacked |= TCPCB_SACKED_ACKED;
  1107. state->flag |= FLAG_DATA_SACKED;
  1108. tp->sacked_out += pcount;
  1109. tp->delivered += pcount; /* Out-of-order packets delivered */
  1110. fack_count += pcount;
  1111. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1112. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1113. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1114. tp->lost_cnt_hint += pcount;
  1115. if (fack_count > tp->fackets_out)
  1116. tp->fackets_out = fack_count;
  1117. }
  1118. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1119. * frames and clear it. undo_retrans is decreased above, L|R frames
  1120. * are accounted above as well.
  1121. */
  1122. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1123. sacked &= ~TCPCB_SACKED_RETRANS;
  1124. tp->retrans_out -= pcount;
  1125. }
  1126. return sacked;
  1127. }
  1128. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1129. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1130. */
  1131. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1132. struct tcp_sacktag_state *state,
  1133. unsigned int pcount, int shifted, int mss,
  1134. bool dup_sack)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1138. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1139. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1140. BUG_ON(!pcount);
  1141. /* Adjust counters and hints for the newly sacked sequence
  1142. * range but discard the return value since prev is already
  1143. * marked. We must tag the range first because the seq
  1144. * advancement below implicitly advances
  1145. * tcp_highest_sack_seq() when skb is highest_sack.
  1146. */
  1147. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1148. start_seq, end_seq, dup_sack, pcount,
  1149. &skb->skb_mstamp);
  1150. tcp_rate_skb_delivered(sk, skb, state->rate);
  1151. if (skb == tp->lost_skb_hint)
  1152. tp->lost_cnt_hint += pcount;
  1153. TCP_SKB_CB(prev)->end_seq += shifted;
  1154. TCP_SKB_CB(skb)->seq += shifted;
  1155. tcp_skb_pcount_add(prev, pcount);
  1156. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1157. tcp_skb_pcount_add(skb, -pcount);
  1158. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1159. * in theory this shouldn't be necessary but as long as DSACK
  1160. * code can come after this skb later on it's better to keep
  1161. * setting gso_size to something.
  1162. */
  1163. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1164. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1165. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1166. if (tcp_skb_pcount(skb) <= 1)
  1167. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1168. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1169. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1170. if (skb->len > 0) {
  1171. BUG_ON(!tcp_skb_pcount(skb));
  1172. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1173. return false;
  1174. }
  1175. /* Whole SKB was eaten :-) */
  1176. if (skb == tp->retransmit_skb_hint)
  1177. tp->retransmit_skb_hint = prev;
  1178. if (skb == tp->lost_skb_hint) {
  1179. tp->lost_skb_hint = prev;
  1180. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1181. }
  1182. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1183. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1184. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1185. TCP_SKB_CB(prev)->end_seq++;
  1186. if (skb == tcp_highest_sack(sk))
  1187. tcp_advance_highest_sack(sk, skb);
  1188. tcp_skb_collapse_tstamp(prev, skb);
  1189. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
  1190. TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
  1191. tcp_unlink_write_queue(skb, sk);
  1192. sk_wmem_free_skb(sk, skb);
  1193. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1194. return true;
  1195. }
  1196. /* I wish gso_size would have a bit more sane initialization than
  1197. * something-or-zero which complicates things
  1198. */
  1199. static int tcp_skb_seglen(const struct sk_buff *skb)
  1200. {
  1201. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1202. }
  1203. /* Shifting pages past head area doesn't work */
  1204. static int skb_can_shift(const struct sk_buff *skb)
  1205. {
  1206. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1207. }
  1208. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1209. * skb.
  1210. */
  1211. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1212. struct tcp_sacktag_state *state,
  1213. u32 start_seq, u32 end_seq,
  1214. bool dup_sack)
  1215. {
  1216. struct tcp_sock *tp = tcp_sk(sk);
  1217. struct sk_buff *prev;
  1218. int mss;
  1219. int pcount = 0;
  1220. int len;
  1221. int in_sack;
  1222. if (!sk_can_gso(sk))
  1223. goto fallback;
  1224. /* Normally R but no L won't result in plain S */
  1225. if (!dup_sack &&
  1226. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1227. goto fallback;
  1228. if (!skb_can_shift(skb))
  1229. goto fallback;
  1230. /* This frame is about to be dropped (was ACKed). */
  1231. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1232. goto fallback;
  1233. /* Can only happen with delayed DSACK + discard craziness */
  1234. if (unlikely(skb == tcp_write_queue_head(sk)))
  1235. goto fallback;
  1236. prev = tcp_write_queue_prev(sk, skb);
  1237. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1238. goto fallback;
  1239. if (!tcp_skb_can_collapse_to(prev))
  1240. goto fallback;
  1241. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1242. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1243. if (in_sack) {
  1244. len = skb->len;
  1245. pcount = tcp_skb_pcount(skb);
  1246. mss = tcp_skb_seglen(skb);
  1247. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1248. * drop this restriction as unnecessary
  1249. */
  1250. if (mss != tcp_skb_seglen(prev))
  1251. goto fallback;
  1252. } else {
  1253. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1254. goto noop;
  1255. /* CHECKME: This is non-MSS split case only?, this will
  1256. * cause skipped skbs due to advancing loop btw, original
  1257. * has that feature too
  1258. */
  1259. if (tcp_skb_pcount(skb) <= 1)
  1260. goto noop;
  1261. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1262. if (!in_sack) {
  1263. /* TODO: head merge to next could be attempted here
  1264. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1265. * though it might not be worth of the additional hassle
  1266. *
  1267. * ...we can probably just fallback to what was done
  1268. * previously. We could try merging non-SACKed ones
  1269. * as well but it probably isn't going to buy off
  1270. * because later SACKs might again split them, and
  1271. * it would make skb timestamp tracking considerably
  1272. * harder problem.
  1273. */
  1274. goto fallback;
  1275. }
  1276. len = end_seq - TCP_SKB_CB(skb)->seq;
  1277. BUG_ON(len < 0);
  1278. BUG_ON(len > skb->len);
  1279. /* MSS boundaries should be honoured or else pcount will
  1280. * severely break even though it makes things bit trickier.
  1281. * Optimize common case to avoid most of the divides
  1282. */
  1283. mss = tcp_skb_mss(skb);
  1284. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1285. * drop this restriction as unnecessary
  1286. */
  1287. if (mss != tcp_skb_seglen(prev))
  1288. goto fallback;
  1289. if (len == mss) {
  1290. pcount = 1;
  1291. } else if (len < mss) {
  1292. goto noop;
  1293. } else {
  1294. pcount = len / mss;
  1295. len = pcount * mss;
  1296. }
  1297. }
  1298. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1299. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1300. goto fallback;
  1301. if (!skb_shift(prev, skb, len))
  1302. goto fallback;
  1303. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1304. goto out;
  1305. /* Hole filled allows collapsing with the next as well, this is very
  1306. * useful when hole on every nth skb pattern happens
  1307. */
  1308. if (prev == tcp_write_queue_tail(sk))
  1309. goto out;
  1310. skb = tcp_write_queue_next(sk, prev);
  1311. if (!skb_can_shift(skb) ||
  1312. (skb == tcp_send_head(sk)) ||
  1313. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1314. (mss != tcp_skb_seglen(skb)))
  1315. goto out;
  1316. len = skb->len;
  1317. if (skb_shift(prev, skb, len)) {
  1318. pcount += tcp_skb_pcount(skb);
  1319. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1320. }
  1321. out:
  1322. state->fack_count += pcount;
  1323. return prev;
  1324. noop:
  1325. return skb;
  1326. fallback:
  1327. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1328. return NULL;
  1329. }
  1330. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1331. struct tcp_sack_block *next_dup,
  1332. struct tcp_sacktag_state *state,
  1333. u32 start_seq, u32 end_seq,
  1334. bool dup_sack_in)
  1335. {
  1336. struct tcp_sock *tp = tcp_sk(sk);
  1337. struct sk_buff *tmp;
  1338. tcp_for_write_queue_from(skb, sk) {
  1339. int in_sack = 0;
  1340. bool dup_sack = dup_sack_in;
  1341. if (skb == tcp_send_head(sk))
  1342. break;
  1343. /* queue is in-order => we can short-circuit the walk early */
  1344. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1345. break;
  1346. if (next_dup &&
  1347. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1348. in_sack = tcp_match_skb_to_sack(sk, skb,
  1349. next_dup->start_seq,
  1350. next_dup->end_seq);
  1351. if (in_sack > 0)
  1352. dup_sack = true;
  1353. }
  1354. /* skb reference here is a bit tricky to get right, since
  1355. * shifting can eat and free both this skb and the next,
  1356. * so not even _safe variant of the loop is enough.
  1357. */
  1358. if (in_sack <= 0) {
  1359. tmp = tcp_shift_skb_data(sk, skb, state,
  1360. start_seq, end_seq, dup_sack);
  1361. if (tmp) {
  1362. if (tmp != skb) {
  1363. skb = tmp;
  1364. continue;
  1365. }
  1366. in_sack = 0;
  1367. } else {
  1368. in_sack = tcp_match_skb_to_sack(sk, skb,
  1369. start_seq,
  1370. end_seq);
  1371. }
  1372. }
  1373. if (unlikely(in_sack < 0))
  1374. break;
  1375. if (in_sack) {
  1376. TCP_SKB_CB(skb)->sacked =
  1377. tcp_sacktag_one(sk,
  1378. state,
  1379. TCP_SKB_CB(skb)->sacked,
  1380. TCP_SKB_CB(skb)->seq,
  1381. TCP_SKB_CB(skb)->end_seq,
  1382. dup_sack,
  1383. tcp_skb_pcount(skb),
  1384. &skb->skb_mstamp);
  1385. tcp_rate_skb_delivered(sk, skb, state->rate);
  1386. if (!before(TCP_SKB_CB(skb)->seq,
  1387. tcp_highest_sack_seq(tp)))
  1388. tcp_advance_highest_sack(sk, skb);
  1389. }
  1390. state->fack_count += tcp_skb_pcount(skb);
  1391. }
  1392. return skb;
  1393. }
  1394. /* Avoid all extra work that is being done by sacktag while walking in
  1395. * a normal way
  1396. */
  1397. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1398. struct tcp_sacktag_state *state,
  1399. u32 skip_to_seq)
  1400. {
  1401. tcp_for_write_queue_from(skb, sk) {
  1402. if (skb == tcp_send_head(sk))
  1403. break;
  1404. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1405. break;
  1406. state->fack_count += tcp_skb_pcount(skb);
  1407. }
  1408. return skb;
  1409. }
  1410. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1411. struct sock *sk,
  1412. struct tcp_sack_block *next_dup,
  1413. struct tcp_sacktag_state *state,
  1414. u32 skip_to_seq)
  1415. {
  1416. if (!next_dup)
  1417. return skb;
  1418. if (before(next_dup->start_seq, skip_to_seq)) {
  1419. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1420. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1421. next_dup->start_seq, next_dup->end_seq,
  1422. 1);
  1423. }
  1424. return skb;
  1425. }
  1426. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1427. {
  1428. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1429. }
  1430. static int
  1431. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1432. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1433. {
  1434. struct tcp_sock *tp = tcp_sk(sk);
  1435. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1436. TCP_SKB_CB(ack_skb)->sacked);
  1437. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1438. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1439. struct tcp_sack_block *cache;
  1440. struct sk_buff *skb;
  1441. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1442. int used_sacks;
  1443. bool found_dup_sack = false;
  1444. int i, j;
  1445. int first_sack_index;
  1446. state->flag = 0;
  1447. state->reord = tp->packets_out;
  1448. if (!tp->sacked_out) {
  1449. if (WARN_ON(tp->fackets_out))
  1450. tp->fackets_out = 0;
  1451. tcp_highest_sack_reset(sk);
  1452. }
  1453. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1454. num_sacks, prior_snd_una);
  1455. if (found_dup_sack) {
  1456. state->flag |= FLAG_DSACKING_ACK;
  1457. tp->delivered++; /* A spurious retransmission is delivered */
  1458. }
  1459. /* Eliminate too old ACKs, but take into
  1460. * account more or less fresh ones, they can
  1461. * contain valid SACK info.
  1462. */
  1463. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1464. return 0;
  1465. if (!tp->packets_out)
  1466. goto out;
  1467. used_sacks = 0;
  1468. first_sack_index = 0;
  1469. for (i = 0; i < num_sacks; i++) {
  1470. bool dup_sack = !i && found_dup_sack;
  1471. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1472. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1473. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1474. sp[used_sacks].start_seq,
  1475. sp[used_sacks].end_seq)) {
  1476. int mib_idx;
  1477. if (dup_sack) {
  1478. if (!tp->undo_marker)
  1479. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1480. else
  1481. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1482. } else {
  1483. /* Don't count olds caused by ACK reordering */
  1484. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1485. !after(sp[used_sacks].end_seq, tp->snd_una))
  1486. continue;
  1487. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1488. }
  1489. NET_INC_STATS(sock_net(sk), mib_idx);
  1490. if (i == 0)
  1491. first_sack_index = -1;
  1492. continue;
  1493. }
  1494. /* Ignore very old stuff early */
  1495. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1496. continue;
  1497. used_sacks++;
  1498. }
  1499. /* order SACK blocks to allow in order walk of the retrans queue */
  1500. for (i = used_sacks - 1; i > 0; i--) {
  1501. for (j = 0; j < i; j++) {
  1502. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1503. swap(sp[j], sp[j + 1]);
  1504. /* Track where the first SACK block goes to */
  1505. if (j == first_sack_index)
  1506. first_sack_index = j + 1;
  1507. }
  1508. }
  1509. }
  1510. skb = tcp_write_queue_head(sk);
  1511. state->fack_count = 0;
  1512. i = 0;
  1513. if (!tp->sacked_out) {
  1514. /* It's already past, so skip checking against it */
  1515. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1516. } else {
  1517. cache = tp->recv_sack_cache;
  1518. /* Skip empty blocks in at head of the cache */
  1519. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1520. !cache->end_seq)
  1521. cache++;
  1522. }
  1523. while (i < used_sacks) {
  1524. u32 start_seq = sp[i].start_seq;
  1525. u32 end_seq = sp[i].end_seq;
  1526. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1527. struct tcp_sack_block *next_dup = NULL;
  1528. if (found_dup_sack && ((i + 1) == first_sack_index))
  1529. next_dup = &sp[i + 1];
  1530. /* Skip too early cached blocks */
  1531. while (tcp_sack_cache_ok(tp, cache) &&
  1532. !before(start_seq, cache->end_seq))
  1533. cache++;
  1534. /* Can skip some work by looking recv_sack_cache? */
  1535. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1536. after(end_seq, cache->start_seq)) {
  1537. /* Head todo? */
  1538. if (before(start_seq, cache->start_seq)) {
  1539. skb = tcp_sacktag_skip(skb, sk, state,
  1540. start_seq);
  1541. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1542. state,
  1543. start_seq,
  1544. cache->start_seq,
  1545. dup_sack);
  1546. }
  1547. /* Rest of the block already fully processed? */
  1548. if (!after(end_seq, cache->end_seq))
  1549. goto advance_sp;
  1550. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1551. state,
  1552. cache->end_seq);
  1553. /* ...tail remains todo... */
  1554. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1555. /* ...but better entrypoint exists! */
  1556. skb = tcp_highest_sack(sk);
  1557. if (!skb)
  1558. break;
  1559. state->fack_count = tp->fackets_out;
  1560. cache++;
  1561. goto walk;
  1562. }
  1563. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1564. /* Check overlap against next cached too (past this one already) */
  1565. cache++;
  1566. continue;
  1567. }
  1568. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1569. skb = tcp_highest_sack(sk);
  1570. if (!skb)
  1571. break;
  1572. state->fack_count = tp->fackets_out;
  1573. }
  1574. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1575. walk:
  1576. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1577. start_seq, end_seq, dup_sack);
  1578. advance_sp:
  1579. i++;
  1580. }
  1581. /* Clear the head of the cache sack blocks so we can skip it next time */
  1582. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1583. tp->recv_sack_cache[i].start_seq = 0;
  1584. tp->recv_sack_cache[i].end_seq = 0;
  1585. }
  1586. for (j = 0; j < used_sacks; j++)
  1587. tp->recv_sack_cache[i++] = sp[j];
  1588. if ((state->reord < tp->fackets_out) &&
  1589. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1590. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1591. tcp_verify_left_out(tp);
  1592. out:
  1593. #if FASTRETRANS_DEBUG > 0
  1594. WARN_ON((int)tp->sacked_out < 0);
  1595. WARN_ON((int)tp->lost_out < 0);
  1596. WARN_ON((int)tp->retrans_out < 0);
  1597. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1598. #endif
  1599. return state->flag;
  1600. }
  1601. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1602. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1603. */
  1604. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1605. {
  1606. u32 holes;
  1607. holes = max(tp->lost_out, 1U);
  1608. holes = min(holes, tp->packets_out);
  1609. if ((tp->sacked_out + holes) > tp->packets_out) {
  1610. tp->sacked_out = tp->packets_out - holes;
  1611. return true;
  1612. }
  1613. return false;
  1614. }
  1615. /* If we receive more dupacks than we expected counting segments
  1616. * in assumption of absent reordering, interpret this as reordering.
  1617. * The only another reason could be bug in receiver TCP.
  1618. */
  1619. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1620. {
  1621. struct tcp_sock *tp = tcp_sk(sk);
  1622. if (tcp_limit_reno_sacked(tp))
  1623. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1624. }
  1625. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1626. static void tcp_add_reno_sack(struct sock *sk)
  1627. {
  1628. struct tcp_sock *tp = tcp_sk(sk);
  1629. u32 prior_sacked = tp->sacked_out;
  1630. tp->sacked_out++;
  1631. tcp_check_reno_reordering(sk, 0);
  1632. if (tp->sacked_out > prior_sacked)
  1633. tp->delivered++; /* Some out-of-order packet is delivered */
  1634. tcp_verify_left_out(tp);
  1635. }
  1636. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1637. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1638. {
  1639. struct tcp_sock *tp = tcp_sk(sk);
  1640. if (acked > 0) {
  1641. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1642. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1643. if (acked - 1 >= tp->sacked_out)
  1644. tp->sacked_out = 0;
  1645. else
  1646. tp->sacked_out -= acked - 1;
  1647. }
  1648. tcp_check_reno_reordering(sk, acked);
  1649. tcp_verify_left_out(tp);
  1650. }
  1651. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1652. {
  1653. tp->sacked_out = 0;
  1654. }
  1655. void tcp_clear_retrans(struct tcp_sock *tp)
  1656. {
  1657. tp->retrans_out = 0;
  1658. tp->lost_out = 0;
  1659. tp->undo_marker = 0;
  1660. tp->undo_retrans = -1;
  1661. tp->fackets_out = 0;
  1662. tp->sacked_out = 0;
  1663. }
  1664. static inline void tcp_init_undo(struct tcp_sock *tp)
  1665. {
  1666. tp->undo_marker = tp->snd_una;
  1667. /* Retransmission still in flight may cause DSACKs later. */
  1668. tp->undo_retrans = tp->retrans_out ? : -1;
  1669. }
  1670. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1671. * and reset tags completely, otherwise preserve SACKs. If receiver
  1672. * dropped its ofo queue, we will know this due to reneging detection.
  1673. */
  1674. void tcp_enter_loss(struct sock *sk)
  1675. {
  1676. const struct inet_connection_sock *icsk = inet_csk(sk);
  1677. struct tcp_sock *tp = tcp_sk(sk);
  1678. struct net *net = sock_net(sk);
  1679. struct sk_buff *skb;
  1680. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1681. bool is_reneg; /* is receiver reneging on SACKs? */
  1682. bool mark_lost;
  1683. /* Reduce ssthresh if it has not yet been made inside this window. */
  1684. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1685. !after(tp->high_seq, tp->snd_una) ||
  1686. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1687. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1688. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1689. tcp_ca_event(sk, CA_EVENT_LOSS);
  1690. tcp_init_undo(tp);
  1691. }
  1692. tp->snd_cwnd = 1;
  1693. tp->snd_cwnd_cnt = 0;
  1694. tp->snd_cwnd_stamp = tcp_time_stamp;
  1695. tp->retrans_out = 0;
  1696. tp->lost_out = 0;
  1697. if (tcp_is_reno(tp))
  1698. tcp_reset_reno_sack(tp);
  1699. skb = tcp_write_queue_head(sk);
  1700. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1701. if (is_reneg) {
  1702. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1703. tp->sacked_out = 0;
  1704. tp->fackets_out = 0;
  1705. }
  1706. tcp_clear_all_retrans_hints(tp);
  1707. tcp_for_write_queue(skb, sk) {
  1708. if (skb == tcp_send_head(sk))
  1709. break;
  1710. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1711. is_reneg);
  1712. if (mark_lost)
  1713. tcp_sum_lost(tp, skb);
  1714. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1715. if (mark_lost) {
  1716. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1717. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1718. tp->lost_out += tcp_skb_pcount(skb);
  1719. }
  1720. }
  1721. tcp_verify_left_out(tp);
  1722. /* Timeout in disordered state after receiving substantial DUPACKs
  1723. * suggests that the degree of reordering is over-estimated.
  1724. */
  1725. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1726. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1727. tp->reordering = min_t(unsigned int, tp->reordering,
  1728. net->ipv4.sysctl_tcp_reordering);
  1729. tcp_set_ca_state(sk, TCP_CA_Loss);
  1730. tp->high_seq = tp->snd_nxt;
  1731. tcp_ecn_queue_cwr(tp);
  1732. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1733. * loss recovery is underway except recurring timeout(s) on
  1734. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1735. *
  1736. * In theory F-RTO can be used repeatedly during loss recovery.
  1737. * In practice this interacts badly with broken middle-boxes that
  1738. * falsely raise the receive window, which results in repeated
  1739. * timeouts and stop-and-go behavior.
  1740. */
  1741. tp->frto = sysctl_tcp_frto &&
  1742. (new_recovery || icsk->icsk_retransmits) &&
  1743. !inet_csk(sk)->icsk_mtup.probe_size;
  1744. }
  1745. /* If ACK arrived pointing to a remembered SACK, it means that our
  1746. * remembered SACKs do not reflect real state of receiver i.e.
  1747. * receiver _host_ is heavily congested (or buggy).
  1748. *
  1749. * To avoid big spurious retransmission bursts due to transient SACK
  1750. * scoreboard oddities that look like reneging, we give the receiver a
  1751. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1752. * restore sanity to the SACK scoreboard. If the apparent reneging
  1753. * persists until this RTO then we'll clear the SACK scoreboard.
  1754. */
  1755. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1756. {
  1757. if (flag & FLAG_SACK_RENEGING) {
  1758. struct tcp_sock *tp = tcp_sk(sk);
  1759. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1760. msecs_to_jiffies(10));
  1761. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1762. delay, TCP_RTO_MAX);
  1763. return true;
  1764. }
  1765. return false;
  1766. }
  1767. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1768. {
  1769. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1770. }
  1771. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1772. * counter when SACK is enabled (without SACK, sacked_out is used for
  1773. * that purpose).
  1774. *
  1775. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1776. * segments up to the highest received SACK block so far and holes in
  1777. * between them.
  1778. *
  1779. * With reordering, holes may still be in flight, so RFC3517 recovery
  1780. * uses pure sacked_out (total number of SACKed segments) even though
  1781. * it violates the RFC that uses duplicate ACKs, often these are equal
  1782. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1783. * they differ. Since neither occurs due to loss, TCP should really
  1784. * ignore them.
  1785. */
  1786. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1787. {
  1788. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1789. }
  1790. /* Linux NewReno/SACK/FACK/ECN state machine.
  1791. * --------------------------------------
  1792. *
  1793. * "Open" Normal state, no dubious events, fast path.
  1794. * "Disorder" In all the respects it is "Open",
  1795. * but requires a bit more attention. It is entered when
  1796. * we see some SACKs or dupacks. It is split of "Open"
  1797. * mainly to move some processing from fast path to slow one.
  1798. * "CWR" CWND was reduced due to some Congestion Notification event.
  1799. * It can be ECN, ICMP source quench, local device congestion.
  1800. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1801. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1802. *
  1803. * tcp_fastretrans_alert() is entered:
  1804. * - each incoming ACK, if state is not "Open"
  1805. * - when arrived ACK is unusual, namely:
  1806. * * SACK
  1807. * * Duplicate ACK.
  1808. * * ECN ECE.
  1809. *
  1810. * Counting packets in flight is pretty simple.
  1811. *
  1812. * in_flight = packets_out - left_out + retrans_out
  1813. *
  1814. * packets_out is SND.NXT-SND.UNA counted in packets.
  1815. *
  1816. * retrans_out is number of retransmitted segments.
  1817. *
  1818. * left_out is number of segments left network, but not ACKed yet.
  1819. *
  1820. * left_out = sacked_out + lost_out
  1821. *
  1822. * sacked_out: Packets, which arrived to receiver out of order
  1823. * and hence not ACKed. With SACKs this number is simply
  1824. * amount of SACKed data. Even without SACKs
  1825. * it is easy to give pretty reliable estimate of this number,
  1826. * counting duplicate ACKs.
  1827. *
  1828. * lost_out: Packets lost by network. TCP has no explicit
  1829. * "loss notification" feedback from network (for now).
  1830. * It means that this number can be only _guessed_.
  1831. * Actually, it is the heuristics to predict lossage that
  1832. * distinguishes different algorithms.
  1833. *
  1834. * F.e. after RTO, when all the queue is considered as lost,
  1835. * lost_out = packets_out and in_flight = retrans_out.
  1836. *
  1837. * Essentially, we have now a few algorithms detecting
  1838. * lost packets.
  1839. *
  1840. * If the receiver supports SACK:
  1841. *
  1842. * RFC6675/3517: It is the conventional algorithm. A packet is
  1843. * considered lost if the number of higher sequence packets
  1844. * SACKed is greater than or equal the DUPACK thoreshold
  1845. * (reordering). This is implemented in tcp_mark_head_lost and
  1846. * tcp_update_scoreboard.
  1847. *
  1848. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1849. * (2017-) that checks timing instead of counting DUPACKs.
  1850. * Essentially a packet is considered lost if it's not S/ACKed
  1851. * after RTT + reordering_window, where both metrics are
  1852. * dynamically measured and adjusted. This is implemented in
  1853. * tcp_rack_mark_lost.
  1854. *
  1855. * FACK (Disabled by default. Subsumbed by RACK):
  1856. * It is the simplest heuristics. As soon as we decided
  1857. * that something is lost, we decide that _all_ not SACKed
  1858. * packets until the most forward SACK are lost. I.e.
  1859. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1860. * It is absolutely correct estimate, if network does not reorder
  1861. * packets. And it loses any connection to reality when reordering
  1862. * takes place. We use FACK by default until reordering
  1863. * is suspected on the path to this destination.
  1864. *
  1865. * If the receiver does not support SACK:
  1866. *
  1867. * NewReno (RFC6582): in Recovery we assume that one segment
  1868. * is lost (classic Reno). While we are in Recovery and
  1869. * a partial ACK arrives, we assume that one more packet
  1870. * is lost (NewReno). This heuristics are the same in NewReno
  1871. * and SACK.
  1872. *
  1873. * Really tricky (and requiring careful tuning) part of algorithm
  1874. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1875. * The first determines the moment _when_ we should reduce CWND and,
  1876. * hence, slow down forward transmission. In fact, it determines the moment
  1877. * when we decide that hole is caused by loss, rather than by a reorder.
  1878. *
  1879. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1880. * holes, caused by lost packets.
  1881. *
  1882. * And the most logically complicated part of algorithm is undo
  1883. * heuristics. We detect false retransmits due to both too early
  1884. * fast retransmit (reordering) and underestimated RTO, analyzing
  1885. * timestamps and D-SACKs. When we detect that some segments were
  1886. * retransmitted by mistake and CWND reduction was wrong, we undo
  1887. * window reduction and abort recovery phase. This logic is hidden
  1888. * inside several functions named tcp_try_undo_<something>.
  1889. */
  1890. /* This function decides, when we should leave Disordered state
  1891. * and enter Recovery phase, reducing congestion window.
  1892. *
  1893. * Main question: may we further continue forward transmission
  1894. * with the same cwnd?
  1895. */
  1896. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1897. {
  1898. struct tcp_sock *tp = tcp_sk(sk);
  1899. /* Trick#1: The loss is proven. */
  1900. if (tp->lost_out)
  1901. return true;
  1902. /* Not-A-Trick#2 : Classic rule... */
  1903. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1904. return true;
  1905. return false;
  1906. }
  1907. /* Detect loss in event "A" above by marking head of queue up as lost.
  1908. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1909. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1910. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1911. * the maximum SACKed segments to pass before reaching this limit.
  1912. */
  1913. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1914. {
  1915. struct tcp_sock *tp = tcp_sk(sk);
  1916. struct sk_buff *skb;
  1917. int cnt, oldcnt, lost;
  1918. unsigned int mss;
  1919. /* Use SACK to deduce losses of new sequences sent during recovery */
  1920. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1921. WARN_ON(packets > tp->packets_out);
  1922. if (tp->lost_skb_hint) {
  1923. skb = tp->lost_skb_hint;
  1924. cnt = tp->lost_cnt_hint;
  1925. /* Head already handled? */
  1926. if (mark_head && skb != tcp_write_queue_head(sk))
  1927. return;
  1928. } else {
  1929. skb = tcp_write_queue_head(sk);
  1930. cnt = 0;
  1931. }
  1932. tcp_for_write_queue_from(skb, sk) {
  1933. if (skb == tcp_send_head(sk))
  1934. break;
  1935. /* TODO: do this better */
  1936. /* this is not the most efficient way to do this... */
  1937. tp->lost_skb_hint = skb;
  1938. tp->lost_cnt_hint = cnt;
  1939. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1940. break;
  1941. oldcnt = cnt;
  1942. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1943. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1944. cnt += tcp_skb_pcount(skb);
  1945. if (cnt > packets) {
  1946. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1947. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1948. (oldcnt >= packets))
  1949. break;
  1950. mss = tcp_skb_mss(skb);
  1951. /* If needed, chop off the prefix to mark as lost. */
  1952. lost = (packets - oldcnt) * mss;
  1953. if (lost < skb->len &&
  1954. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1955. break;
  1956. cnt = packets;
  1957. }
  1958. tcp_skb_mark_lost(tp, skb);
  1959. if (mark_head)
  1960. break;
  1961. }
  1962. tcp_verify_left_out(tp);
  1963. }
  1964. /* Account newly detected lost packet(s) */
  1965. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1966. {
  1967. struct tcp_sock *tp = tcp_sk(sk);
  1968. if (tcp_is_reno(tp)) {
  1969. tcp_mark_head_lost(sk, 1, 1);
  1970. } else if (tcp_is_fack(tp)) {
  1971. int lost = tp->fackets_out - tp->reordering;
  1972. if (lost <= 0)
  1973. lost = 1;
  1974. tcp_mark_head_lost(sk, lost, 0);
  1975. } else {
  1976. int sacked_upto = tp->sacked_out - tp->reordering;
  1977. if (sacked_upto >= 0)
  1978. tcp_mark_head_lost(sk, sacked_upto, 0);
  1979. else if (fast_rexmit)
  1980. tcp_mark_head_lost(sk, 1, 1);
  1981. }
  1982. }
  1983. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1984. {
  1985. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1986. before(tp->rx_opt.rcv_tsecr, when);
  1987. }
  1988. /* skb is spurious retransmitted if the returned timestamp echo
  1989. * reply is prior to the skb transmission time
  1990. */
  1991. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1992. const struct sk_buff *skb)
  1993. {
  1994. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1995. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1996. }
  1997. /* Nothing was retransmitted or returned timestamp is less
  1998. * than timestamp of the first retransmission.
  1999. */
  2000. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2001. {
  2002. return !tp->retrans_stamp ||
  2003. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2004. }
  2005. /* Undo procedures. */
  2006. /* We can clear retrans_stamp when there are no retransmissions in the
  2007. * window. It would seem that it is trivially available for us in
  2008. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2009. * what will happen if errors occur when sending retransmission for the
  2010. * second time. ...It could the that such segment has only
  2011. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2012. * the head skb is enough except for some reneging corner cases that
  2013. * are not worth the effort.
  2014. *
  2015. * Main reason for all this complexity is the fact that connection dying
  2016. * time now depends on the validity of the retrans_stamp, in particular,
  2017. * that successive retransmissions of a segment must not advance
  2018. * retrans_stamp under any conditions.
  2019. */
  2020. static bool tcp_any_retrans_done(const struct sock *sk)
  2021. {
  2022. const struct tcp_sock *tp = tcp_sk(sk);
  2023. struct sk_buff *skb;
  2024. if (tp->retrans_out)
  2025. return true;
  2026. skb = tcp_write_queue_head(sk);
  2027. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2028. return true;
  2029. return false;
  2030. }
  2031. #if FASTRETRANS_DEBUG > 1
  2032. static void DBGUNDO(struct sock *sk, const char *msg)
  2033. {
  2034. struct tcp_sock *tp = tcp_sk(sk);
  2035. struct inet_sock *inet = inet_sk(sk);
  2036. if (sk->sk_family == AF_INET) {
  2037. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2038. msg,
  2039. &inet->inet_daddr, ntohs(inet->inet_dport),
  2040. tp->snd_cwnd, tcp_left_out(tp),
  2041. tp->snd_ssthresh, tp->prior_ssthresh,
  2042. tp->packets_out);
  2043. }
  2044. #if IS_ENABLED(CONFIG_IPV6)
  2045. else if (sk->sk_family == AF_INET6) {
  2046. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2047. msg,
  2048. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2049. tp->snd_cwnd, tcp_left_out(tp),
  2050. tp->snd_ssthresh, tp->prior_ssthresh,
  2051. tp->packets_out);
  2052. }
  2053. #endif
  2054. }
  2055. #else
  2056. #define DBGUNDO(x...) do { } while (0)
  2057. #endif
  2058. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2059. {
  2060. struct tcp_sock *tp = tcp_sk(sk);
  2061. if (unmark_loss) {
  2062. struct sk_buff *skb;
  2063. tcp_for_write_queue(skb, sk) {
  2064. if (skb == tcp_send_head(sk))
  2065. break;
  2066. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2067. }
  2068. tp->lost_out = 0;
  2069. tcp_clear_all_retrans_hints(tp);
  2070. }
  2071. if (tp->prior_ssthresh) {
  2072. const struct inet_connection_sock *icsk = inet_csk(sk);
  2073. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2074. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2075. tp->snd_ssthresh = tp->prior_ssthresh;
  2076. tcp_ecn_withdraw_cwr(tp);
  2077. }
  2078. }
  2079. tp->snd_cwnd_stamp = tcp_time_stamp;
  2080. tp->undo_marker = 0;
  2081. }
  2082. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2083. {
  2084. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2085. }
  2086. /* People celebrate: "We love our President!" */
  2087. static bool tcp_try_undo_recovery(struct sock *sk)
  2088. {
  2089. struct tcp_sock *tp = tcp_sk(sk);
  2090. if (tcp_may_undo(tp)) {
  2091. int mib_idx;
  2092. /* Happy end! We did not retransmit anything
  2093. * or our original transmission succeeded.
  2094. */
  2095. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2096. tcp_undo_cwnd_reduction(sk, false);
  2097. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2098. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2099. else
  2100. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2101. NET_INC_STATS(sock_net(sk), mib_idx);
  2102. }
  2103. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2104. /* Hold old state until something *above* high_seq
  2105. * is ACKed. For Reno it is MUST to prevent false
  2106. * fast retransmits (RFC2582). SACK TCP is safe. */
  2107. if (!tcp_any_retrans_done(sk))
  2108. tp->retrans_stamp = 0;
  2109. return true;
  2110. }
  2111. tcp_set_ca_state(sk, TCP_CA_Open);
  2112. return false;
  2113. }
  2114. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2115. static bool tcp_try_undo_dsack(struct sock *sk)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (tp->undo_marker && !tp->undo_retrans) {
  2119. DBGUNDO(sk, "D-SACK");
  2120. tcp_undo_cwnd_reduction(sk, false);
  2121. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2122. return true;
  2123. }
  2124. return false;
  2125. }
  2126. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2127. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2128. {
  2129. struct tcp_sock *tp = tcp_sk(sk);
  2130. if (frto_undo || tcp_may_undo(tp)) {
  2131. tcp_undo_cwnd_reduction(sk, true);
  2132. DBGUNDO(sk, "partial loss");
  2133. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2134. if (frto_undo)
  2135. NET_INC_STATS(sock_net(sk),
  2136. LINUX_MIB_TCPSPURIOUSRTOS);
  2137. inet_csk(sk)->icsk_retransmits = 0;
  2138. if (frto_undo || tcp_is_sack(tp))
  2139. tcp_set_ca_state(sk, TCP_CA_Open);
  2140. return true;
  2141. }
  2142. return false;
  2143. }
  2144. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2145. * It computes the number of packets to send (sndcnt) based on packets newly
  2146. * delivered:
  2147. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2148. * cwnd reductions across a full RTT.
  2149. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2150. * But when the retransmits are acked without further losses, PRR
  2151. * slow starts cwnd up to ssthresh to speed up the recovery.
  2152. */
  2153. static void tcp_init_cwnd_reduction(struct sock *sk)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. tp->high_seq = tp->snd_nxt;
  2157. tp->tlp_high_seq = 0;
  2158. tp->snd_cwnd_cnt = 0;
  2159. tp->prior_cwnd = tp->snd_cwnd;
  2160. tp->prr_delivered = 0;
  2161. tp->prr_out = 0;
  2162. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2163. tcp_ecn_queue_cwr(tp);
  2164. }
  2165. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2166. {
  2167. struct tcp_sock *tp = tcp_sk(sk);
  2168. int sndcnt = 0;
  2169. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2170. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2171. return;
  2172. tp->prr_delivered += newly_acked_sacked;
  2173. if (delta < 0) {
  2174. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2175. tp->prior_cwnd - 1;
  2176. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2177. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2178. !(flag & FLAG_LOST_RETRANS)) {
  2179. sndcnt = min_t(int, delta,
  2180. max_t(int, tp->prr_delivered - tp->prr_out,
  2181. newly_acked_sacked) + 1);
  2182. } else {
  2183. sndcnt = min(delta, newly_acked_sacked);
  2184. }
  2185. /* Force a fast retransmit upon entering fast recovery */
  2186. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2187. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2188. }
  2189. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2190. {
  2191. struct tcp_sock *tp = tcp_sk(sk);
  2192. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2193. return;
  2194. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2195. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2196. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2197. tp->snd_cwnd = tp->snd_ssthresh;
  2198. tp->snd_cwnd_stamp = tcp_time_stamp;
  2199. }
  2200. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2201. }
  2202. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2203. void tcp_enter_cwr(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. tp->prior_ssthresh = 0;
  2207. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2208. tp->undo_marker = 0;
  2209. tcp_init_cwnd_reduction(sk);
  2210. tcp_set_ca_state(sk, TCP_CA_CWR);
  2211. }
  2212. }
  2213. EXPORT_SYMBOL(tcp_enter_cwr);
  2214. static void tcp_try_keep_open(struct sock *sk)
  2215. {
  2216. struct tcp_sock *tp = tcp_sk(sk);
  2217. int state = TCP_CA_Open;
  2218. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2219. state = TCP_CA_Disorder;
  2220. if (inet_csk(sk)->icsk_ca_state != state) {
  2221. tcp_set_ca_state(sk, state);
  2222. tp->high_seq = tp->snd_nxt;
  2223. }
  2224. }
  2225. static void tcp_try_to_open(struct sock *sk, int flag)
  2226. {
  2227. struct tcp_sock *tp = tcp_sk(sk);
  2228. tcp_verify_left_out(tp);
  2229. if (!tcp_any_retrans_done(sk))
  2230. tp->retrans_stamp = 0;
  2231. if (flag & FLAG_ECE)
  2232. tcp_enter_cwr(sk);
  2233. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2234. tcp_try_keep_open(sk);
  2235. }
  2236. }
  2237. static void tcp_mtup_probe_failed(struct sock *sk)
  2238. {
  2239. struct inet_connection_sock *icsk = inet_csk(sk);
  2240. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2241. icsk->icsk_mtup.probe_size = 0;
  2242. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2243. }
  2244. static void tcp_mtup_probe_success(struct sock *sk)
  2245. {
  2246. struct tcp_sock *tp = tcp_sk(sk);
  2247. struct inet_connection_sock *icsk = inet_csk(sk);
  2248. /* FIXME: breaks with very large cwnd */
  2249. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2250. tp->snd_cwnd = tp->snd_cwnd *
  2251. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2252. icsk->icsk_mtup.probe_size;
  2253. tp->snd_cwnd_cnt = 0;
  2254. tp->snd_cwnd_stamp = tcp_time_stamp;
  2255. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2256. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2257. icsk->icsk_mtup.probe_size = 0;
  2258. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2259. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2260. }
  2261. /* Do a simple retransmit without using the backoff mechanisms in
  2262. * tcp_timer. This is used for path mtu discovery.
  2263. * The socket is already locked here.
  2264. */
  2265. void tcp_simple_retransmit(struct sock *sk)
  2266. {
  2267. const struct inet_connection_sock *icsk = inet_csk(sk);
  2268. struct tcp_sock *tp = tcp_sk(sk);
  2269. struct sk_buff *skb;
  2270. unsigned int mss = tcp_current_mss(sk);
  2271. u32 prior_lost = tp->lost_out;
  2272. tcp_for_write_queue(skb, sk) {
  2273. if (skb == tcp_send_head(sk))
  2274. break;
  2275. if (tcp_skb_seglen(skb) > mss &&
  2276. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2277. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2278. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2279. tp->retrans_out -= tcp_skb_pcount(skb);
  2280. }
  2281. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2282. }
  2283. }
  2284. tcp_clear_retrans_hints_partial(tp);
  2285. if (prior_lost == tp->lost_out)
  2286. return;
  2287. if (tcp_is_reno(tp))
  2288. tcp_limit_reno_sacked(tp);
  2289. tcp_verify_left_out(tp);
  2290. /* Don't muck with the congestion window here.
  2291. * Reason is that we do not increase amount of _data_
  2292. * in network, but units changed and effective
  2293. * cwnd/ssthresh really reduced now.
  2294. */
  2295. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2296. tp->high_seq = tp->snd_nxt;
  2297. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2298. tp->prior_ssthresh = 0;
  2299. tp->undo_marker = 0;
  2300. tcp_set_ca_state(sk, TCP_CA_Loss);
  2301. }
  2302. tcp_xmit_retransmit_queue(sk);
  2303. }
  2304. EXPORT_SYMBOL(tcp_simple_retransmit);
  2305. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2306. {
  2307. struct tcp_sock *tp = tcp_sk(sk);
  2308. int mib_idx;
  2309. if (tcp_is_reno(tp))
  2310. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2311. else
  2312. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2313. NET_INC_STATS(sock_net(sk), mib_idx);
  2314. tp->prior_ssthresh = 0;
  2315. tcp_init_undo(tp);
  2316. if (!tcp_in_cwnd_reduction(sk)) {
  2317. if (!ece_ack)
  2318. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2319. tcp_init_cwnd_reduction(sk);
  2320. }
  2321. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2322. }
  2323. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2324. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2325. */
  2326. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2327. int *rexmit)
  2328. {
  2329. struct tcp_sock *tp = tcp_sk(sk);
  2330. bool recovered = !before(tp->snd_una, tp->high_seq);
  2331. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2332. tcp_try_undo_loss(sk, false))
  2333. return;
  2334. /* The ACK (s)acks some never-retransmitted data meaning not all
  2335. * the data packets before the timeout were lost. Therefore we
  2336. * undo the congestion window and state. This is essentially
  2337. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2338. * a retransmitted skb is permantly marked, we can apply such an
  2339. * operation even if F-RTO was not used.
  2340. */
  2341. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2342. tcp_try_undo_loss(sk, tp->undo_marker))
  2343. return;
  2344. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2345. if (after(tp->snd_nxt, tp->high_seq)) {
  2346. if (flag & FLAG_DATA_SACKED || is_dupack)
  2347. tp->frto = 0; /* Step 3.a. loss was real */
  2348. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2349. tp->high_seq = tp->snd_nxt;
  2350. /* Step 2.b. Try send new data (but deferred until cwnd
  2351. * is updated in tcp_ack()). Otherwise fall back to
  2352. * the conventional recovery.
  2353. */
  2354. if (tcp_send_head(sk) &&
  2355. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2356. *rexmit = REXMIT_NEW;
  2357. return;
  2358. }
  2359. tp->frto = 0;
  2360. }
  2361. }
  2362. if (recovered) {
  2363. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2364. tcp_try_undo_recovery(sk);
  2365. return;
  2366. }
  2367. if (tcp_is_reno(tp)) {
  2368. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2369. * delivered. Lower inflight to clock out (re)tranmissions.
  2370. */
  2371. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2372. tcp_add_reno_sack(sk);
  2373. else if (flag & FLAG_SND_UNA_ADVANCED)
  2374. tcp_reset_reno_sack(tp);
  2375. }
  2376. *rexmit = REXMIT_LOST;
  2377. }
  2378. /* Undo during fast recovery after partial ACK. */
  2379. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2383. /* Plain luck! Hole if filled with delayed
  2384. * packet, rather than with a retransmit.
  2385. */
  2386. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2387. /* We are getting evidence that the reordering degree is higher
  2388. * than we realized. If there are no retransmits out then we
  2389. * can undo. Otherwise we clock out new packets but do not
  2390. * mark more packets lost or retransmit more.
  2391. */
  2392. if (tp->retrans_out)
  2393. return true;
  2394. if (!tcp_any_retrans_done(sk))
  2395. tp->retrans_stamp = 0;
  2396. DBGUNDO(sk, "partial recovery");
  2397. tcp_undo_cwnd_reduction(sk, true);
  2398. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2399. tcp_try_keep_open(sk);
  2400. return true;
  2401. }
  2402. return false;
  2403. }
  2404. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2405. {
  2406. struct tcp_sock *tp = tcp_sk(sk);
  2407. /* Use RACK to detect loss */
  2408. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2409. u32 prior_retrans = tp->retrans_out;
  2410. tcp_rack_mark_lost(sk);
  2411. if (prior_retrans > tp->retrans_out)
  2412. *ack_flag |= FLAG_LOST_RETRANS;
  2413. }
  2414. }
  2415. /* Process an event, which can update packets-in-flight not trivially.
  2416. * Main goal of this function is to calculate new estimate for left_out,
  2417. * taking into account both packets sitting in receiver's buffer and
  2418. * packets lost by network.
  2419. *
  2420. * Besides that it updates the congestion state when packet loss or ECN
  2421. * is detected. But it does not reduce the cwnd, it is done by the
  2422. * congestion control later.
  2423. *
  2424. * It does _not_ decide what to send, it is made in function
  2425. * tcp_xmit_retransmit_queue().
  2426. */
  2427. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2428. bool is_dupack, int *ack_flag, int *rexmit)
  2429. {
  2430. struct inet_connection_sock *icsk = inet_csk(sk);
  2431. struct tcp_sock *tp = tcp_sk(sk);
  2432. int fast_rexmit = 0, flag = *ack_flag;
  2433. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2434. (tcp_fackets_out(tp) > tp->reordering));
  2435. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2436. tp->sacked_out = 0;
  2437. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2438. tp->fackets_out = 0;
  2439. /* Now state machine starts.
  2440. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2441. if (flag & FLAG_ECE)
  2442. tp->prior_ssthresh = 0;
  2443. /* B. In all the states check for reneging SACKs. */
  2444. if (tcp_check_sack_reneging(sk, flag))
  2445. return;
  2446. /* C. Check consistency of the current state. */
  2447. tcp_verify_left_out(tp);
  2448. /* D. Check state exit conditions. State can be terminated
  2449. * when high_seq is ACKed. */
  2450. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2451. WARN_ON(tp->retrans_out != 0);
  2452. tp->retrans_stamp = 0;
  2453. } else if (!before(tp->snd_una, tp->high_seq)) {
  2454. switch (icsk->icsk_ca_state) {
  2455. case TCP_CA_CWR:
  2456. /* CWR is to be held something *above* high_seq
  2457. * is ACKed for CWR bit to reach receiver. */
  2458. if (tp->snd_una != tp->high_seq) {
  2459. tcp_end_cwnd_reduction(sk);
  2460. tcp_set_ca_state(sk, TCP_CA_Open);
  2461. }
  2462. break;
  2463. case TCP_CA_Recovery:
  2464. if (tcp_is_reno(tp))
  2465. tcp_reset_reno_sack(tp);
  2466. if (tcp_try_undo_recovery(sk))
  2467. return;
  2468. tcp_end_cwnd_reduction(sk);
  2469. break;
  2470. }
  2471. }
  2472. /* E. Process state. */
  2473. switch (icsk->icsk_ca_state) {
  2474. case TCP_CA_Recovery:
  2475. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2476. if (tcp_is_reno(tp) && is_dupack)
  2477. tcp_add_reno_sack(sk);
  2478. } else {
  2479. if (tcp_try_undo_partial(sk, acked))
  2480. return;
  2481. /* Partial ACK arrived. Force fast retransmit. */
  2482. do_lost = tcp_is_reno(tp) ||
  2483. tcp_fackets_out(tp) > tp->reordering;
  2484. }
  2485. if (tcp_try_undo_dsack(sk)) {
  2486. tcp_try_keep_open(sk);
  2487. return;
  2488. }
  2489. tcp_rack_identify_loss(sk, ack_flag);
  2490. break;
  2491. case TCP_CA_Loss:
  2492. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2493. tcp_rack_identify_loss(sk, ack_flag);
  2494. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2495. (*ack_flag & FLAG_LOST_RETRANS)))
  2496. return;
  2497. /* Change state if cwnd is undone or retransmits are lost */
  2498. default:
  2499. if (tcp_is_reno(tp)) {
  2500. if (flag & FLAG_SND_UNA_ADVANCED)
  2501. tcp_reset_reno_sack(tp);
  2502. if (is_dupack)
  2503. tcp_add_reno_sack(sk);
  2504. }
  2505. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2506. tcp_try_undo_dsack(sk);
  2507. tcp_rack_identify_loss(sk, ack_flag);
  2508. if (!tcp_time_to_recover(sk, flag)) {
  2509. tcp_try_to_open(sk, flag);
  2510. return;
  2511. }
  2512. /* MTU probe failure: don't reduce cwnd */
  2513. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2514. icsk->icsk_mtup.probe_size &&
  2515. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2516. tcp_mtup_probe_failed(sk);
  2517. /* Restores the reduction we did in tcp_mtup_probe() */
  2518. tp->snd_cwnd++;
  2519. tcp_simple_retransmit(sk);
  2520. return;
  2521. }
  2522. /* Otherwise enter Recovery state */
  2523. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2524. fast_rexmit = 1;
  2525. }
  2526. if (do_lost)
  2527. tcp_update_scoreboard(sk, fast_rexmit);
  2528. *rexmit = REXMIT_LOST;
  2529. }
  2530. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2531. {
  2532. struct tcp_sock *tp = tcp_sk(sk);
  2533. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2534. minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
  2535. rtt_us ? : jiffies_to_usecs(1));
  2536. }
  2537. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2538. long seq_rtt_us, long sack_rtt_us,
  2539. long ca_rtt_us)
  2540. {
  2541. const struct tcp_sock *tp = tcp_sk(sk);
  2542. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2543. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2544. * Karn's algorithm forbids taking RTT if some retransmitted data
  2545. * is acked (RFC6298).
  2546. */
  2547. if (seq_rtt_us < 0)
  2548. seq_rtt_us = sack_rtt_us;
  2549. /* RTTM Rule: A TSecr value received in a segment is used to
  2550. * update the averaged RTT measurement only if the segment
  2551. * acknowledges some new data, i.e., only if it advances the
  2552. * left edge of the send window.
  2553. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2554. */
  2555. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2556. flag & FLAG_ACKED)
  2557. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2558. tp->rx_opt.rcv_tsecr);
  2559. if (seq_rtt_us < 0)
  2560. return false;
  2561. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2562. * always taken together with ACK, SACK, or TS-opts. Any negative
  2563. * values will be skipped with the seq_rtt_us < 0 check above.
  2564. */
  2565. tcp_update_rtt_min(sk, ca_rtt_us);
  2566. tcp_rtt_estimator(sk, seq_rtt_us);
  2567. tcp_set_rto(sk);
  2568. /* RFC6298: only reset backoff on valid RTT measurement. */
  2569. inet_csk(sk)->icsk_backoff = 0;
  2570. return true;
  2571. }
  2572. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2573. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2574. {
  2575. long rtt_us = -1L;
  2576. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2577. struct skb_mstamp now;
  2578. skb_mstamp_get(&now);
  2579. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2580. }
  2581. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2582. }
  2583. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2584. {
  2585. const struct inet_connection_sock *icsk = inet_csk(sk);
  2586. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2587. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2588. }
  2589. /* Restart timer after forward progress on connection.
  2590. * RFC2988 recommends to restart timer to now+rto.
  2591. */
  2592. void tcp_rearm_rto(struct sock *sk)
  2593. {
  2594. const struct inet_connection_sock *icsk = inet_csk(sk);
  2595. struct tcp_sock *tp = tcp_sk(sk);
  2596. /* If the retrans timer is currently being used by Fast Open
  2597. * for SYN-ACK retrans purpose, stay put.
  2598. */
  2599. if (tp->fastopen_rsk)
  2600. return;
  2601. if (!tp->packets_out) {
  2602. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2603. } else {
  2604. u32 rto = inet_csk(sk)->icsk_rto;
  2605. /* Offset the time elapsed after installing regular RTO */
  2606. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2607. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2608. struct sk_buff *skb = tcp_write_queue_head(sk);
  2609. const u32 rto_time_stamp =
  2610. tcp_skb_timestamp(skb) + rto;
  2611. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2612. /* delta may not be positive if the socket is locked
  2613. * when the retrans timer fires and is rescheduled.
  2614. */
  2615. if (delta > 0)
  2616. rto = delta;
  2617. }
  2618. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2619. TCP_RTO_MAX);
  2620. }
  2621. }
  2622. /* If we get here, the whole TSO packet has not been acked. */
  2623. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2624. {
  2625. struct tcp_sock *tp = tcp_sk(sk);
  2626. u32 packets_acked;
  2627. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2628. packets_acked = tcp_skb_pcount(skb);
  2629. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2630. return 0;
  2631. packets_acked -= tcp_skb_pcount(skb);
  2632. if (packets_acked) {
  2633. BUG_ON(tcp_skb_pcount(skb) == 0);
  2634. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2635. }
  2636. return packets_acked;
  2637. }
  2638. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2639. u32 prior_snd_una)
  2640. {
  2641. const struct skb_shared_info *shinfo;
  2642. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2643. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2644. return;
  2645. shinfo = skb_shinfo(skb);
  2646. if (!before(shinfo->tskey, prior_snd_una) &&
  2647. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2648. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2649. }
  2650. /* Remove acknowledged frames from the retransmission queue. If our packet
  2651. * is before the ack sequence we can discard it as it's confirmed to have
  2652. * arrived at the other end.
  2653. */
  2654. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2655. u32 prior_snd_una, int *acked,
  2656. struct tcp_sacktag_state *sack)
  2657. {
  2658. const struct inet_connection_sock *icsk = inet_csk(sk);
  2659. struct skb_mstamp first_ackt, last_ackt;
  2660. struct tcp_sock *tp = tcp_sk(sk);
  2661. struct skb_mstamp *now = &tp->tcp_mstamp;
  2662. u32 prior_sacked = tp->sacked_out;
  2663. u32 reord = tp->packets_out;
  2664. bool fully_acked = true;
  2665. long sack_rtt_us = -1L;
  2666. long seq_rtt_us = -1L;
  2667. long ca_rtt_us = -1L;
  2668. struct sk_buff *skb;
  2669. u32 pkts_acked = 0;
  2670. u32 last_in_flight = 0;
  2671. bool rtt_update;
  2672. int flag = 0;
  2673. first_ackt.v64 = 0;
  2674. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2675. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2676. u8 sacked = scb->sacked;
  2677. u32 acked_pcount;
  2678. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2679. /* Determine how many packets and what bytes were acked, tso and else */
  2680. if (after(scb->end_seq, tp->snd_una)) {
  2681. if (tcp_skb_pcount(skb) == 1 ||
  2682. !after(tp->snd_una, scb->seq))
  2683. break;
  2684. acked_pcount = tcp_tso_acked(sk, skb);
  2685. if (!acked_pcount)
  2686. break;
  2687. fully_acked = false;
  2688. } else {
  2689. /* Speedup tcp_unlink_write_queue() and next loop */
  2690. prefetchw(skb->next);
  2691. acked_pcount = tcp_skb_pcount(skb);
  2692. }
  2693. if (unlikely(sacked & TCPCB_RETRANS)) {
  2694. if (sacked & TCPCB_SACKED_RETRANS)
  2695. tp->retrans_out -= acked_pcount;
  2696. flag |= FLAG_RETRANS_DATA_ACKED;
  2697. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2698. last_ackt = skb->skb_mstamp;
  2699. WARN_ON_ONCE(last_ackt.v64 == 0);
  2700. if (!first_ackt.v64)
  2701. first_ackt = last_ackt;
  2702. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2703. reord = min(pkts_acked, reord);
  2704. if (!after(scb->end_seq, tp->high_seq))
  2705. flag |= FLAG_ORIG_SACK_ACKED;
  2706. }
  2707. if (sacked & TCPCB_SACKED_ACKED) {
  2708. tp->sacked_out -= acked_pcount;
  2709. } else if (tcp_is_sack(tp)) {
  2710. tp->delivered += acked_pcount;
  2711. if (!tcp_skb_spurious_retrans(tp, skb))
  2712. tcp_rack_advance(tp, sacked, scb->end_seq,
  2713. &skb->skb_mstamp);
  2714. }
  2715. if (sacked & TCPCB_LOST)
  2716. tp->lost_out -= acked_pcount;
  2717. tp->packets_out -= acked_pcount;
  2718. pkts_acked += acked_pcount;
  2719. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2720. /* Initial outgoing SYN's get put onto the write_queue
  2721. * just like anything else we transmit. It is not
  2722. * true data, and if we misinform our callers that
  2723. * this ACK acks real data, we will erroneously exit
  2724. * connection startup slow start one packet too
  2725. * quickly. This is severely frowned upon behavior.
  2726. */
  2727. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2728. flag |= FLAG_DATA_ACKED;
  2729. } else {
  2730. flag |= FLAG_SYN_ACKED;
  2731. tp->retrans_stamp = 0;
  2732. }
  2733. if (!fully_acked)
  2734. break;
  2735. tcp_unlink_write_queue(skb, sk);
  2736. sk_wmem_free_skb(sk, skb);
  2737. if (unlikely(skb == tp->retransmit_skb_hint))
  2738. tp->retransmit_skb_hint = NULL;
  2739. if (unlikely(skb == tp->lost_skb_hint))
  2740. tp->lost_skb_hint = NULL;
  2741. }
  2742. if (!skb)
  2743. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2744. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2745. tp->snd_up = tp->snd_una;
  2746. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2747. flag |= FLAG_SACK_RENEGING;
  2748. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2749. seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
  2750. ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
  2751. }
  2752. if (sack->first_sackt.v64) {
  2753. sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
  2754. ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
  2755. }
  2756. sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
  2757. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2758. ca_rtt_us);
  2759. if (flag & FLAG_ACKED) {
  2760. tcp_rearm_rto(sk);
  2761. if (unlikely(icsk->icsk_mtup.probe_size &&
  2762. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2763. tcp_mtup_probe_success(sk);
  2764. }
  2765. if (tcp_is_reno(tp)) {
  2766. tcp_remove_reno_sacks(sk, pkts_acked);
  2767. } else {
  2768. int delta;
  2769. /* Non-retransmitted hole got filled? That's reordering */
  2770. if (reord < prior_fackets)
  2771. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2772. delta = tcp_is_fack(tp) ? pkts_acked :
  2773. prior_sacked - tp->sacked_out;
  2774. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2775. }
  2776. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2777. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2778. sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
  2779. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2780. * after when the head was last (re)transmitted. Otherwise the
  2781. * timeout may continue to extend in loss recovery.
  2782. */
  2783. tcp_rearm_rto(sk);
  2784. }
  2785. if (icsk->icsk_ca_ops->pkts_acked) {
  2786. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2787. .rtt_us = ca_rtt_us,
  2788. .in_flight = last_in_flight };
  2789. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2790. }
  2791. #if FASTRETRANS_DEBUG > 0
  2792. WARN_ON((int)tp->sacked_out < 0);
  2793. WARN_ON((int)tp->lost_out < 0);
  2794. WARN_ON((int)tp->retrans_out < 0);
  2795. if (!tp->packets_out && tcp_is_sack(tp)) {
  2796. icsk = inet_csk(sk);
  2797. if (tp->lost_out) {
  2798. pr_debug("Leak l=%u %d\n",
  2799. tp->lost_out, icsk->icsk_ca_state);
  2800. tp->lost_out = 0;
  2801. }
  2802. if (tp->sacked_out) {
  2803. pr_debug("Leak s=%u %d\n",
  2804. tp->sacked_out, icsk->icsk_ca_state);
  2805. tp->sacked_out = 0;
  2806. }
  2807. if (tp->retrans_out) {
  2808. pr_debug("Leak r=%u %d\n",
  2809. tp->retrans_out, icsk->icsk_ca_state);
  2810. tp->retrans_out = 0;
  2811. }
  2812. }
  2813. #endif
  2814. *acked = pkts_acked;
  2815. return flag;
  2816. }
  2817. static void tcp_ack_probe(struct sock *sk)
  2818. {
  2819. const struct tcp_sock *tp = tcp_sk(sk);
  2820. struct inet_connection_sock *icsk = inet_csk(sk);
  2821. /* Was it a usable window open? */
  2822. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2823. icsk->icsk_backoff = 0;
  2824. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2825. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2826. * This function is not for random using!
  2827. */
  2828. } else {
  2829. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2830. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2831. when, TCP_RTO_MAX);
  2832. }
  2833. }
  2834. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2835. {
  2836. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2837. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2838. }
  2839. /* Decide wheather to run the increase function of congestion control. */
  2840. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2841. {
  2842. /* If reordering is high then always grow cwnd whenever data is
  2843. * delivered regardless of its ordering. Otherwise stay conservative
  2844. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2845. * new SACK or ECE mark may first advance cwnd here and later reduce
  2846. * cwnd in tcp_fastretrans_alert() based on more states.
  2847. */
  2848. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2849. return flag & FLAG_FORWARD_PROGRESS;
  2850. return flag & FLAG_DATA_ACKED;
  2851. }
  2852. /* The "ultimate" congestion control function that aims to replace the rigid
  2853. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2854. * It's called toward the end of processing an ACK with precise rate
  2855. * information. All transmission or retransmission are delayed afterwards.
  2856. */
  2857. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2858. int flag, const struct rate_sample *rs)
  2859. {
  2860. const struct inet_connection_sock *icsk = inet_csk(sk);
  2861. if (icsk->icsk_ca_ops->cong_control) {
  2862. icsk->icsk_ca_ops->cong_control(sk, rs);
  2863. return;
  2864. }
  2865. if (tcp_in_cwnd_reduction(sk)) {
  2866. /* Reduce cwnd if state mandates */
  2867. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2868. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2869. /* Advance cwnd if state allows */
  2870. tcp_cong_avoid(sk, ack, acked_sacked);
  2871. }
  2872. tcp_update_pacing_rate(sk);
  2873. }
  2874. /* Check that window update is acceptable.
  2875. * The function assumes that snd_una<=ack<=snd_next.
  2876. */
  2877. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2878. const u32 ack, const u32 ack_seq,
  2879. const u32 nwin)
  2880. {
  2881. return after(ack, tp->snd_una) ||
  2882. after(ack_seq, tp->snd_wl1) ||
  2883. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2884. }
  2885. /* If we update tp->snd_una, also update tp->bytes_acked */
  2886. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2887. {
  2888. u32 delta = ack - tp->snd_una;
  2889. sock_owned_by_me((struct sock *)tp);
  2890. tp->bytes_acked += delta;
  2891. tp->snd_una = ack;
  2892. }
  2893. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2894. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2895. {
  2896. u32 delta = seq - tp->rcv_nxt;
  2897. sock_owned_by_me((struct sock *)tp);
  2898. tp->bytes_received += delta;
  2899. tp->rcv_nxt = seq;
  2900. }
  2901. /* Update our send window.
  2902. *
  2903. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2904. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2905. */
  2906. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2907. u32 ack_seq)
  2908. {
  2909. struct tcp_sock *tp = tcp_sk(sk);
  2910. int flag = 0;
  2911. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2912. if (likely(!tcp_hdr(skb)->syn))
  2913. nwin <<= tp->rx_opt.snd_wscale;
  2914. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2915. flag |= FLAG_WIN_UPDATE;
  2916. tcp_update_wl(tp, ack_seq);
  2917. if (tp->snd_wnd != nwin) {
  2918. tp->snd_wnd = nwin;
  2919. /* Note, it is the only place, where
  2920. * fast path is recovered for sending TCP.
  2921. */
  2922. tp->pred_flags = 0;
  2923. tcp_fast_path_check(sk);
  2924. if (tcp_send_head(sk))
  2925. tcp_slow_start_after_idle_check(sk);
  2926. if (nwin > tp->max_window) {
  2927. tp->max_window = nwin;
  2928. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2929. }
  2930. }
  2931. }
  2932. tcp_snd_una_update(tp, ack);
  2933. return flag;
  2934. }
  2935. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2936. u32 *last_oow_ack_time)
  2937. {
  2938. if (*last_oow_ack_time) {
  2939. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2940. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2941. NET_INC_STATS(net, mib_idx);
  2942. return true; /* rate-limited: don't send yet! */
  2943. }
  2944. }
  2945. *last_oow_ack_time = tcp_time_stamp;
  2946. return false; /* not rate-limited: go ahead, send dupack now! */
  2947. }
  2948. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2949. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2950. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2951. * attacks that send repeated SYNs or ACKs for the same connection. To
  2952. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2953. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2954. */
  2955. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2956. int mib_idx, u32 *last_oow_ack_time)
  2957. {
  2958. /* Data packets without SYNs are not likely part of an ACK loop. */
  2959. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2960. !tcp_hdr(skb)->syn)
  2961. return false;
  2962. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2963. }
  2964. /* RFC 5961 7 [ACK Throttling] */
  2965. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2966. {
  2967. /* unprotected vars, we dont care of overwrites */
  2968. static u32 challenge_timestamp;
  2969. static unsigned int challenge_count;
  2970. struct tcp_sock *tp = tcp_sk(sk);
  2971. u32 count, now;
  2972. /* First check our per-socket dupack rate limit. */
  2973. if (__tcp_oow_rate_limited(sock_net(sk),
  2974. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2975. &tp->last_oow_ack_time))
  2976. return;
  2977. /* Then check host-wide RFC 5961 rate limit. */
  2978. now = jiffies / HZ;
  2979. if (now != challenge_timestamp) {
  2980. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2981. challenge_timestamp = now;
  2982. WRITE_ONCE(challenge_count, half +
  2983. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2984. }
  2985. count = READ_ONCE(challenge_count);
  2986. if (count > 0) {
  2987. WRITE_ONCE(challenge_count, count - 1);
  2988. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2989. tcp_send_ack(sk);
  2990. }
  2991. }
  2992. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2993. {
  2994. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2995. tp->rx_opt.ts_recent_stamp = get_seconds();
  2996. }
  2997. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2998. {
  2999. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3000. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3001. * extra check below makes sure this can only happen
  3002. * for pure ACK frames. -DaveM
  3003. *
  3004. * Not only, also it occurs for expired timestamps.
  3005. */
  3006. if (tcp_paws_check(&tp->rx_opt, 0))
  3007. tcp_store_ts_recent(tp);
  3008. }
  3009. }
  3010. /* This routine deals with acks during a TLP episode.
  3011. * We mark the end of a TLP episode on receiving TLP dupack or when
  3012. * ack is after tlp_high_seq.
  3013. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3014. */
  3015. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3016. {
  3017. struct tcp_sock *tp = tcp_sk(sk);
  3018. if (before(ack, tp->tlp_high_seq))
  3019. return;
  3020. if (flag & FLAG_DSACKING_ACK) {
  3021. /* This DSACK means original and TLP probe arrived; no loss */
  3022. tp->tlp_high_seq = 0;
  3023. } else if (after(ack, tp->tlp_high_seq)) {
  3024. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3025. * tlp_high_seq in tcp_init_cwnd_reduction()
  3026. */
  3027. tcp_init_cwnd_reduction(sk);
  3028. tcp_set_ca_state(sk, TCP_CA_CWR);
  3029. tcp_end_cwnd_reduction(sk);
  3030. tcp_try_keep_open(sk);
  3031. NET_INC_STATS(sock_net(sk),
  3032. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3033. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3034. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3035. /* Pure dupack: original and TLP probe arrived; no loss */
  3036. tp->tlp_high_seq = 0;
  3037. }
  3038. }
  3039. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3040. {
  3041. const struct inet_connection_sock *icsk = inet_csk(sk);
  3042. if (icsk->icsk_ca_ops->in_ack_event)
  3043. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3044. }
  3045. /* Congestion control has updated the cwnd already. So if we're in
  3046. * loss recovery then now we do any new sends (for FRTO) or
  3047. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3048. */
  3049. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3050. {
  3051. struct tcp_sock *tp = tcp_sk(sk);
  3052. if (rexmit == REXMIT_NONE)
  3053. return;
  3054. if (unlikely(rexmit == 2)) {
  3055. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3056. TCP_NAGLE_OFF);
  3057. if (after(tp->snd_nxt, tp->high_seq))
  3058. return;
  3059. tp->frto = 0;
  3060. }
  3061. tcp_xmit_retransmit_queue(sk);
  3062. }
  3063. /* This routine deals with incoming acks, but not outgoing ones. */
  3064. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3065. {
  3066. struct inet_connection_sock *icsk = inet_csk(sk);
  3067. struct tcp_sock *tp = tcp_sk(sk);
  3068. struct tcp_sacktag_state sack_state;
  3069. struct rate_sample rs = { .prior_delivered = 0 };
  3070. u32 prior_snd_una = tp->snd_una;
  3071. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3072. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3073. bool is_dupack = false;
  3074. u32 prior_fackets;
  3075. int prior_packets = tp->packets_out;
  3076. u32 delivered = tp->delivered;
  3077. u32 lost = tp->lost;
  3078. int acked = 0; /* Number of packets newly acked */
  3079. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3080. sack_state.first_sackt.v64 = 0;
  3081. sack_state.rate = &rs;
  3082. /* We very likely will need to access write queue head. */
  3083. prefetchw(sk->sk_write_queue.next);
  3084. /* If the ack is older than previous acks
  3085. * then we can probably ignore it.
  3086. */
  3087. if (before(ack, prior_snd_una)) {
  3088. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3089. if (before(ack, prior_snd_una - tp->max_window)) {
  3090. tcp_send_challenge_ack(sk, skb);
  3091. return -1;
  3092. }
  3093. goto old_ack;
  3094. }
  3095. /* If the ack includes data we haven't sent yet, discard
  3096. * this segment (RFC793 Section 3.9).
  3097. */
  3098. if (after(ack, tp->snd_nxt))
  3099. goto invalid_ack;
  3100. if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3101. tcp_rearm_rto(sk);
  3102. if (after(ack, prior_snd_una)) {
  3103. flag |= FLAG_SND_UNA_ADVANCED;
  3104. icsk->icsk_retransmits = 0;
  3105. }
  3106. prior_fackets = tp->fackets_out;
  3107. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3108. /* ts_recent update must be made after we are sure that the packet
  3109. * is in window.
  3110. */
  3111. if (flag & FLAG_UPDATE_TS_RECENT)
  3112. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3113. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3114. /* Window is constant, pure forward advance.
  3115. * No more checks are required.
  3116. * Note, we use the fact that SND.UNA>=SND.WL2.
  3117. */
  3118. tcp_update_wl(tp, ack_seq);
  3119. tcp_snd_una_update(tp, ack);
  3120. flag |= FLAG_WIN_UPDATE;
  3121. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3122. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3123. } else {
  3124. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3125. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3126. flag |= FLAG_DATA;
  3127. else
  3128. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3129. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3130. if (TCP_SKB_CB(skb)->sacked)
  3131. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3132. &sack_state);
  3133. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3134. flag |= FLAG_ECE;
  3135. ack_ev_flags |= CA_ACK_ECE;
  3136. }
  3137. if (flag & FLAG_WIN_UPDATE)
  3138. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3139. tcp_in_ack_event(sk, ack_ev_flags);
  3140. }
  3141. /* We passed data and got it acked, remove any soft error
  3142. * log. Something worked...
  3143. */
  3144. sk->sk_err_soft = 0;
  3145. icsk->icsk_probes_out = 0;
  3146. tp->rcv_tstamp = tcp_time_stamp;
  3147. if (!prior_packets)
  3148. goto no_queue;
  3149. /* See if we can take anything off of the retransmit queue. */
  3150. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3151. &sack_state);
  3152. if (tcp_ack_is_dubious(sk, flag)) {
  3153. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3154. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3155. }
  3156. if (tp->tlp_high_seq)
  3157. tcp_process_tlp_ack(sk, ack, flag);
  3158. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3159. sk_dst_confirm(sk);
  3160. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3161. tcp_schedule_loss_probe(sk);
  3162. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3163. lost = tp->lost - lost; /* freshly marked lost */
  3164. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3165. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3166. tcp_xmit_recovery(sk, rexmit);
  3167. return 1;
  3168. no_queue:
  3169. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3170. if (flag & FLAG_DSACKING_ACK)
  3171. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3172. /* If this ack opens up a zero window, clear backoff. It was
  3173. * being used to time the probes, and is probably far higher than
  3174. * it needs to be for normal retransmission.
  3175. */
  3176. if (tcp_send_head(sk))
  3177. tcp_ack_probe(sk);
  3178. if (tp->tlp_high_seq)
  3179. tcp_process_tlp_ack(sk, ack, flag);
  3180. return 1;
  3181. invalid_ack:
  3182. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3183. return -1;
  3184. old_ack:
  3185. /* If data was SACKed, tag it and see if we should send more data.
  3186. * If data was DSACKed, see if we can undo a cwnd reduction.
  3187. */
  3188. if (TCP_SKB_CB(skb)->sacked) {
  3189. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3190. &sack_state);
  3191. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3192. tcp_xmit_recovery(sk, rexmit);
  3193. }
  3194. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3195. return 0;
  3196. }
  3197. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3198. bool syn, struct tcp_fastopen_cookie *foc,
  3199. bool exp_opt)
  3200. {
  3201. /* Valid only in SYN or SYN-ACK with an even length. */
  3202. if (!foc || !syn || len < 0 || (len & 1))
  3203. return;
  3204. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3205. len <= TCP_FASTOPEN_COOKIE_MAX)
  3206. memcpy(foc->val, cookie, len);
  3207. else if (len != 0)
  3208. len = -1;
  3209. foc->len = len;
  3210. foc->exp = exp_opt;
  3211. }
  3212. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3213. * But, this can also be called on packets in the established flow when
  3214. * the fast version below fails.
  3215. */
  3216. void tcp_parse_options(const struct sk_buff *skb,
  3217. struct tcp_options_received *opt_rx, int estab,
  3218. struct tcp_fastopen_cookie *foc)
  3219. {
  3220. const unsigned char *ptr;
  3221. const struct tcphdr *th = tcp_hdr(skb);
  3222. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3223. ptr = (const unsigned char *)(th + 1);
  3224. opt_rx->saw_tstamp = 0;
  3225. while (length > 0) {
  3226. int opcode = *ptr++;
  3227. int opsize;
  3228. switch (opcode) {
  3229. case TCPOPT_EOL:
  3230. return;
  3231. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3232. length--;
  3233. continue;
  3234. default:
  3235. opsize = *ptr++;
  3236. if (opsize < 2) /* "silly options" */
  3237. return;
  3238. if (opsize > length)
  3239. return; /* don't parse partial options */
  3240. switch (opcode) {
  3241. case TCPOPT_MSS:
  3242. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3243. u16 in_mss = get_unaligned_be16(ptr);
  3244. if (in_mss) {
  3245. if (opt_rx->user_mss &&
  3246. opt_rx->user_mss < in_mss)
  3247. in_mss = opt_rx->user_mss;
  3248. opt_rx->mss_clamp = in_mss;
  3249. }
  3250. }
  3251. break;
  3252. case TCPOPT_WINDOW:
  3253. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3254. !estab && sysctl_tcp_window_scaling) {
  3255. __u8 snd_wscale = *(__u8 *)ptr;
  3256. opt_rx->wscale_ok = 1;
  3257. if (snd_wscale > TCP_MAX_WSCALE) {
  3258. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3259. __func__,
  3260. snd_wscale,
  3261. TCP_MAX_WSCALE);
  3262. snd_wscale = TCP_MAX_WSCALE;
  3263. }
  3264. opt_rx->snd_wscale = snd_wscale;
  3265. }
  3266. break;
  3267. case TCPOPT_TIMESTAMP:
  3268. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3269. ((estab && opt_rx->tstamp_ok) ||
  3270. (!estab && sysctl_tcp_timestamps))) {
  3271. opt_rx->saw_tstamp = 1;
  3272. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3273. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3274. }
  3275. break;
  3276. case TCPOPT_SACK_PERM:
  3277. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3278. !estab && sysctl_tcp_sack) {
  3279. opt_rx->sack_ok = TCP_SACK_SEEN;
  3280. tcp_sack_reset(opt_rx);
  3281. }
  3282. break;
  3283. case TCPOPT_SACK:
  3284. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3285. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3286. opt_rx->sack_ok) {
  3287. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3288. }
  3289. break;
  3290. #ifdef CONFIG_TCP_MD5SIG
  3291. case TCPOPT_MD5SIG:
  3292. /*
  3293. * The MD5 Hash has already been
  3294. * checked (see tcp_v{4,6}_do_rcv()).
  3295. */
  3296. break;
  3297. #endif
  3298. case TCPOPT_FASTOPEN:
  3299. tcp_parse_fastopen_option(
  3300. opsize - TCPOLEN_FASTOPEN_BASE,
  3301. ptr, th->syn, foc, false);
  3302. break;
  3303. case TCPOPT_EXP:
  3304. /* Fast Open option shares code 254 using a
  3305. * 16 bits magic number.
  3306. */
  3307. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3308. get_unaligned_be16(ptr) ==
  3309. TCPOPT_FASTOPEN_MAGIC)
  3310. tcp_parse_fastopen_option(opsize -
  3311. TCPOLEN_EXP_FASTOPEN_BASE,
  3312. ptr + 2, th->syn, foc, true);
  3313. break;
  3314. }
  3315. ptr += opsize-2;
  3316. length -= opsize;
  3317. }
  3318. }
  3319. }
  3320. EXPORT_SYMBOL(tcp_parse_options);
  3321. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3322. {
  3323. const __be32 *ptr = (const __be32 *)(th + 1);
  3324. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3325. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3326. tp->rx_opt.saw_tstamp = 1;
  3327. ++ptr;
  3328. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3329. ++ptr;
  3330. if (*ptr)
  3331. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3332. else
  3333. tp->rx_opt.rcv_tsecr = 0;
  3334. return true;
  3335. }
  3336. return false;
  3337. }
  3338. /* Fast parse options. This hopes to only see timestamps.
  3339. * If it is wrong it falls back on tcp_parse_options().
  3340. */
  3341. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3342. const struct tcphdr *th, struct tcp_sock *tp)
  3343. {
  3344. /* In the spirit of fast parsing, compare doff directly to constant
  3345. * values. Because equality is used, short doff can be ignored here.
  3346. */
  3347. if (th->doff == (sizeof(*th) / 4)) {
  3348. tp->rx_opt.saw_tstamp = 0;
  3349. return false;
  3350. } else if (tp->rx_opt.tstamp_ok &&
  3351. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3352. if (tcp_parse_aligned_timestamp(tp, th))
  3353. return true;
  3354. }
  3355. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3356. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3357. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3358. return true;
  3359. }
  3360. #ifdef CONFIG_TCP_MD5SIG
  3361. /*
  3362. * Parse MD5 Signature option
  3363. */
  3364. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3365. {
  3366. int length = (th->doff << 2) - sizeof(*th);
  3367. const u8 *ptr = (const u8 *)(th + 1);
  3368. /* If the TCP option is too short, we can short cut */
  3369. if (length < TCPOLEN_MD5SIG)
  3370. return NULL;
  3371. while (length > 0) {
  3372. int opcode = *ptr++;
  3373. int opsize;
  3374. switch (opcode) {
  3375. case TCPOPT_EOL:
  3376. return NULL;
  3377. case TCPOPT_NOP:
  3378. length--;
  3379. continue;
  3380. default:
  3381. opsize = *ptr++;
  3382. if (opsize < 2 || opsize > length)
  3383. return NULL;
  3384. if (opcode == TCPOPT_MD5SIG)
  3385. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3386. }
  3387. ptr += opsize - 2;
  3388. length -= opsize;
  3389. }
  3390. return NULL;
  3391. }
  3392. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3393. #endif
  3394. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3395. *
  3396. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3397. * it can pass through stack. So, the following predicate verifies that
  3398. * this segment is not used for anything but congestion avoidance or
  3399. * fast retransmit. Moreover, we even are able to eliminate most of such
  3400. * second order effects, if we apply some small "replay" window (~RTO)
  3401. * to timestamp space.
  3402. *
  3403. * All these measures still do not guarantee that we reject wrapped ACKs
  3404. * on networks with high bandwidth, when sequence space is recycled fastly,
  3405. * but it guarantees that such events will be very rare and do not affect
  3406. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3407. * buggy extension.
  3408. *
  3409. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3410. * states that events when retransmit arrives after original data are rare.
  3411. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3412. * the biggest problem on large power networks even with minor reordering.
  3413. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3414. * up to bandwidth of 18Gigabit/sec. 8) ]
  3415. */
  3416. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3417. {
  3418. const struct tcp_sock *tp = tcp_sk(sk);
  3419. const struct tcphdr *th = tcp_hdr(skb);
  3420. u32 seq = TCP_SKB_CB(skb)->seq;
  3421. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3422. return (/* 1. Pure ACK with correct sequence number. */
  3423. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3424. /* 2. ... and duplicate ACK. */
  3425. ack == tp->snd_una &&
  3426. /* 3. ... and does not update window. */
  3427. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3428. /* 4. ... and sits in replay window. */
  3429. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3430. }
  3431. static inline bool tcp_paws_discard(const struct sock *sk,
  3432. const struct sk_buff *skb)
  3433. {
  3434. const struct tcp_sock *tp = tcp_sk(sk);
  3435. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3436. !tcp_disordered_ack(sk, skb);
  3437. }
  3438. /* Check segment sequence number for validity.
  3439. *
  3440. * Segment controls are considered valid, if the segment
  3441. * fits to the window after truncation to the window. Acceptability
  3442. * of data (and SYN, FIN, of course) is checked separately.
  3443. * See tcp_data_queue(), for example.
  3444. *
  3445. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3446. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3447. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3448. * (borrowed from freebsd)
  3449. */
  3450. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3451. {
  3452. return !before(end_seq, tp->rcv_wup) &&
  3453. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3454. }
  3455. /* When we get a reset we do this. */
  3456. void tcp_reset(struct sock *sk)
  3457. {
  3458. /* We want the right error as BSD sees it (and indeed as we do). */
  3459. switch (sk->sk_state) {
  3460. case TCP_SYN_SENT:
  3461. sk->sk_err = ECONNREFUSED;
  3462. break;
  3463. case TCP_CLOSE_WAIT:
  3464. sk->sk_err = EPIPE;
  3465. break;
  3466. case TCP_CLOSE:
  3467. return;
  3468. default:
  3469. sk->sk_err = ECONNRESET;
  3470. }
  3471. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3472. smp_wmb();
  3473. tcp_done(sk);
  3474. if (!sock_flag(sk, SOCK_DEAD))
  3475. sk->sk_error_report(sk);
  3476. }
  3477. /*
  3478. * Process the FIN bit. This now behaves as it is supposed to work
  3479. * and the FIN takes effect when it is validly part of sequence
  3480. * space. Not before when we get holes.
  3481. *
  3482. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3483. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3484. * TIME-WAIT)
  3485. *
  3486. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3487. * close and we go into CLOSING (and later onto TIME-WAIT)
  3488. *
  3489. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3490. */
  3491. void tcp_fin(struct sock *sk)
  3492. {
  3493. struct tcp_sock *tp = tcp_sk(sk);
  3494. inet_csk_schedule_ack(sk);
  3495. sk->sk_shutdown |= RCV_SHUTDOWN;
  3496. sock_set_flag(sk, SOCK_DONE);
  3497. switch (sk->sk_state) {
  3498. case TCP_SYN_RECV:
  3499. case TCP_ESTABLISHED:
  3500. /* Move to CLOSE_WAIT */
  3501. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3502. inet_csk(sk)->icsk_ack.pingpong = 1;
  3503. break;
  3504. case TCP_CLOSE_WAIT:
  3505. case TCP_CLOSING:
  3506. /* Received a retransmission of the FIN, do
  3507. * nothing.
  3508. */
  3509. break;
  3510. case TCP_LAST_ACK:
  3511. /* RFC793: Remain in the LAST-ACK state. */
  3512. break;
  3513. case TCP_FIN_WAIT1:
  3514. /* This case occurs when a simultaneous close
  3515. * happens, we must ack the received FIN and
  3516. * enter the CLOSING state.
  3517. */
  3518. tcp_send_ack(sk);
  3519. tcp_set_state(sk, TCP_CLOSING);
  3520. break;
  3521. case TCP_FIN_WAIT2:
  3522. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3523. tcp_send_ack(sk);
  3524. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3525. break;
  3526. default:
  3527. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3528. * cases we should never reach this piece of code.
  3529. */
  3530. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3531. __func__, sk->sk_state);
  3532. break;
  3533. }
  3534. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3535. * Probably, we should reset in this case. For now drop them.
  3536. */
  3537. skb_rbtree_purge(&tp->out_of_order_queue);
  3538. if (tcp_is_sack(tp))
  3539. tcp_sack_reset(&tp->rx_opt);
  3540. sk_mem_reclaim(sk);
  3541. if (!sock_flag(sk, SOCK_DEAD)) {
  3542. sk->sk_state_change(sk);
  3543. /* Do not send POLL_HUP for half duplex close. */
  3544. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3545. sk->sk_state == TCP_CLOSE)
  3546. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3547. else
  3548. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3549. }
  3550. }
  3551. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3552. u32 end_seq)
  3553. {
  3554. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3555. if (before(seq, sp->start_seq))
  3556. sp->start_seq = seq;
  3557. if (after(end_seq, sp->end_seq))
  3558. sp->end_seq = end_seq;
  3559. return true;
  3560. }
  3561. return false;
  3562. }
  3563. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3564. {
  3565. struct tcp_sock *tp = tcp_sk(sk);
  3566. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3567. int mib_idx;
  3568. if (before(seq, tp->rcv_nxt))
  3569. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3570. else
  3571. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3572. NET_INC_STATS(sock_net(sk), mib_idx);
  3573. tp->rx_opt.dsack = 1;
  3574. tp->duplicate_sack[0].start_seq = seq;
  3575. tp->duplicate_sack[0].end_seq = end_seq;
  3576. }
  3577. }
  3578. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3579. {
  3580. struct tcp_sock *tp = tcp_sk(sk);
  3581. if (!tp->rx_opt.dsack)
  3582. tcp_dsack_set(sk, seq, end_seq);
  3583. else
  3584. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3585. }
  3586. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3587. {
  3588. struct tcp_sock *tp = tcp_sk(sk);
  3589. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3590. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3591. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3592. tcp_enter_quickack_mode(sk);
  3593. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3594. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3595. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3596. end_seq = tp->rcv_nxt;
  3597. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3598. }
  3599. }
  3600. tcp_send_ack(sk);
  3601. }
  3602. /* These routines update the SACK block as out-of-order packets arrive or
  3603. * in-order packets close up the sequence space.
  3604. */
  3605. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3606. {
  3607. int this_sack;
  3608. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3609. struct tcp_sack_block *swalk = sp + 1;
  3610. /* See if the recent change to the first SACK eats into
  3611. * or hits the sequence space of other SACK blocks, if so coalesce.
  3612. */
  3613. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3614. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3615. int i;
  3616. /* Zap SWALK, by moving every further SACK up by one slot.
  3617. * Decrease num_sacks.
  3618. */
  3619. tp->rx_opt.num_sacks--;
  3620. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3621. sp[i] = sp[i + 1];
  3622. continue;
  3623. }
  3624. this_sack++, swalk++;
  3625. }
  3626. }
  3627. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3628. {
  3629. struct tcp_sock *tp = tcp_sk(sk);
  3630. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3631. int cur_sacks = tp->rx_opt.num_sacks;
  3632. int this_sack;
  3633. if (!cur_sacks)
  3634. goto new_sack;
  3635. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3636. if (tcp_sack_extend(sp, seq, end_seq)) {
  3637. /* Rotate this_sack to the first one. */
  3638. for (; this_sack > 0; this_sack--, sp--)
  3639. swap(*sp, *(sp - 1));
  3640. if (cur_sacks > 1)
  3641. tcp_sack_maybe_coalesce(tp);
  3642. return;
  3643. }
  3644. }
  3645. /* Could not find an adjacent existing SACK, build a new one,
  3646. * put it at the front, and shift everyone else down. We
  3647. * always know there is at least one SACK present already here.
  3648. *
  3649. * If the sack array is full, forget about the last one.
  3650. */
  3651. if (this_sack >= TCP_NUM_SACKS) {
  3652. this_sack--;
  3653. tp->rx_opt.num_sacks--;
  3654. sp--;
  3655. }
  3656. for (; this_sack > 0; this_sack--, sp--)
  3657. *sp = *(sp - 1);
  3658. new_sack:
  3659. /* Build the new head SACK, and we're done. */
  3660. sp->start_seq = seq;
  3661. sp->end_seq = end_seq;
  3662. tp->rx_opt.num_sacks++;
  3663. }
  3664. /* RCV.NXT advances, some SACKs should be eaten. */
  3665. static void tcp_sack_remove(struct tcp_sock *tp)
  3666. {
  3667. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3668. int num_sacks = tp->rx_opt.num_sacks;
  3669. int this_sack;
  3670. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3671. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3672. tp->rx_opt.num_sacks = 0;
  3673. return;
  3674. }
  3675. for (this_sack = 0; this_sack < num_sacks;) {
  3676. /* Check if the start of the sack is covered by RCV.NXT. */
  3677. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3678. int i;
  3679. /* RCV.NXT must cover all the block! */
  3680. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3681. /* Zap this SACK, by moving forward any other SACKS. */
  3682. for (i = this_sack+1; i < num_sacks; i++)
  3683. tp->selective_acks[i-1] = tp->selective_acks[i];
  3684. num_sacks--;
  3685. continue;
  3686. }
  3687. this_sack++;
  3688. sp++;
  3689. }
  3690. tp->rx_opt.num_sacks = num_sacks;
  3691. }
  3692. /**
  3693. * tcp_try_coalesce - try to merge skb to prior one
  3694. * @sk: socket
  3695. * @to: prior buffer
  3696. * @from: buffer to add in queue
  3697. * @fragstolen: pointer to boolean
  3698. *
  3699. * Before queueing skb @from after @to, try to merge them
  3700. * to reduce overall memory use and queue lengths, if cost is small.
  3701. * Packets in ofo or receive queues can stay a long time.
  3702. * Better try to coalesce them right now to avoid future collapses.
  3703. * Returns true if caller should free @from instead of queueing it
  3704. */
  3705. static bool tcp_try_coalesce(struct sock *sk,
  3706. struct sk_buff *to,
  3707. struct sk_buff *from,
  3708. bool *fragstolen)
  3709. {
  3710. int delta;
  3711. *fragstolen = false;
  3712. /* Its possible this segment overlaps with prior segment in queue */
  3713. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3714. return false;
  3715. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3716. return false;
  3717. atomic_add(delta, &sk->sk_rmem_alloc);
  3718. sk_mem_charge(sk, delta);
  3719. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3720. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3721. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3722. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3723. return true;
  3724. }
  3725. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3726. {
  3727. sk_drops_add(sk, skb);
  3728. __kfree_skb(skb);
  3729. }
  3730. /* This one checks to see if we can put data from the
  3731. * out_of_order queue into the receive_queue.
  3732. */
  3733. static void tcp_ofo_queue(struct sock *sk)
  3734. {
  3735. struct tcp_sock *tp = tcp_sk(sk);
  3736. __u32 dsack_high = tp->rcv_nxt;
  3737. bool fin, fragstolen, eaten;
  3738. struct sk_buff *skb, *tail;
  3739. struct rb_node *p;
  3740. p = rb_first(&tp->out_of_order_queue);
  3741. while (p) {
  3742. skb = rb_entry(p, struct sk_buff, rbnode);
  3743. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3744. break;
  3745. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3746. __u32 dsack = dsack_high;
  3747. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3748. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3749. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3750. }
  3751. p = rb_next(p);
  3752. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3753. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3754. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3755. tcp_drop(sk, skb);
  3756. continue;
  3757. }
  3758. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3759. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3760. TCP_SKB_CB(skb)->end_seq);
  3761. tail = skb_peek_tail(&sk->sk_receive_queue);
  3762. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3763. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3764. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3765. if (!eaten)
  3766. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3767. else
  3768. kfree_skb_partial(skb, fragstolen);
  3769. if (unlikely(fin)) {
  3770. tcp_fin(sk);
  3771. /* tcp_fin() purges tp->out_of_order_queue,
  3772. * so we must end this loop right now.
  3773. */
  3774. break;
  3775. }
  3776. }
  3777. }
  3778. static bool tcp_prune_ofo_queue(struct sock *sk);
  3779. static int tcp_prune_queue(struct sock *sk);
  3780. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3781. unsigned int size)
  3782. {
  3783. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3784. !sk_rmem_schedule(sk, skb, size)) {
  3785. if (tcp_prune_queue(sk) < 0)
  3786. return -1;
  3787. while (!sk_rmem_schedule(sk, skb, size)) {
  3788. if (!tcp_prune_ofo_queue(sk))
  3789. return -1;
  3790. }
  3791. }
  3792. return 0;
  3793. }
  3794. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3795. {
  3796. struct tcp_sock *tp = tcp_sk(sk);
  3797. struct rb_node **p, *q, *parent;
  3798. struct sk_buff *skb1;
  3799. u32 seq, end_seq;
  3800. bool fragstolen;
  3801. tcp_ecn_check_ce(tp, skb);
  3802. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3803. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3804. tcp_drop(sk, skb);
  3805. return;
  3806. }
  3807. /* Disable header prediction. */
  3808. tp->pred_flags = 0;
  3809. inet_csk_schedule_ack(sk);
  3810. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3811. seq = TCP_SKB_CB(skb)->seq;
  3812. end_seq = TCP_SKB_CB(skb)->end_seq;
  3813. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3814. tp->rcv_nxt, seq, end_seq);
  3815. p = &tp->out_of_order_queue.rb_node;
  3816. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3817. /* Initial out of order segment, build 1 SACK. */
  3818. if (tcp_is_sack(tp)) {
  3819. tp->rx_opt.num_sacks = 1;
  3820. tp->selective_acks[0].start_seq = seq;
  3821. tp->selective_acks[0].end_seq = end_seq;
  3822. }
  3823. rb_link_node(&skb->rbnode, NULL, p);
  3824. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3825. tp->ooo_last_skb = skb;
  3826. goto end;
  3827. }
  3828. /* In the typical case, we are adding an skb to the end of the list.
  3829. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3830. */
  3831. if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
  3832. coalesce_done:
  3833. tcp_grow_window(sk, skb);
  3834. kfree_skb_partial(skb, fragstolen);
  3835. skb = NULL;
  3836. goto add_sack;
  3837. }
  3838. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3839. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3840. parent = &tp->ooo_last_skb->rbnode;
  3841. p = &parent->rb_right;
  3842. goto insert;
  3843. }
  3844. /* Find place to insert this segment. Handle overlaps on the way. */
  3845. parent = NULL;
  3846. while (*p) {
  3847. parent = *p;
  3848. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3849. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3850. p = &parent->rb_left;
  3851. continue;
  3852. }
  3853. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3854. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3855. /* All the bits are present. Drop. */
  3856. NET_INC_STATS(sock_net(sk),
  3857. LINUX_MIB_TCPOFOMERGE);
  3858. __kfree_skb(skb);
  3859. skb = NULL;
  3860. tcp_dsack_set(sk, seq, end_seq);
  3861. goto add_sack;
  3862. }
  3863. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3864. /* Partial overlap. */
  3865. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3866. } else {
  3867. /* skb's seq == skb1's seq and skb covers skb1.
  3868. * Replace skb1 with skb.
  3869. */
  3870. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3871. &tp->out_of_order_queue);
  3872. tcp_dsack_extend(sk,
  3873. TCP_SKB_CB(skb1)->seq,
  3874. TCP_SKB_CB(skb1)->end_seq);
  3875. NET_INC_STATS(sock_net(sk),
  3876. LINUX_MIB_TCPOFOMERGE);
  3877. __kfree_skb(skb1);
  3878. goto merge_right;
  3879. }
  3880. } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3881. goto coalesce_done;
  3882. }
  3883. p = &parent->rb_right;
  3884. }
  3885. insert:
  3886. /* Insert segment into RB tree. */
  3887. rb_link_node(&skb->rbnode, parent, p);
  3888. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3889. merge_right:
  3890. /* Remove other segments covered by skb. */
  3891. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3892. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3893. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3894. break;
  3895. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3896. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3897. end_seq);
  3898. break;
  3899. }
  3900. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3901. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3902. TCP_SKB_CB(skb1)->end_seq);
  3903. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3904. tcp_drop(sk, skb1);
  3905. }
  3906. /* If there is no skb after us, we are the last_skb ! */
  3907. if (!q)
  3908. tp->ooo_last_skb = skb;
  3909. add_sack:
  3910. if (tcp_is_sack(tp))
  3911. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3912. end:
  3913. if (skb) {
  3914. tcp_grow_window(sk, skb);
  3915. skb_condense(skb);
  3916. skb_set_owner_r(skb, sk);
  3917. }
  3918. }
  3919. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3920. bool *fragstolen)
  3921. {
  3922. int eaten;
  3923. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3924. __skb_pull(skb, hdrlen);
  3925. eaten = (tail &&
  3926. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3927. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3928. if (!eaten) {
  3929. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3930. skb_set_owner_r(skb, sk);
  3931. }
  3932. return eaten;
  3933. }
  3934. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3935. {
  3936. struct sk_buff *skb;
  3937. int err = -ENOMEM;
  3938. int data_len = 0;
  3939. bool fragstolen;
  3940. if (size == 0)
  3941. return 0;
  3942. if (size > PAGE_SIZE) {
  3943. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3944. data_len = npages << PAGE_SHIFT;
  3945. size = data_len + (size & ~PAGE_MASK);
  3946. }
  3947. skb = alloc_skb_with_frags(size - data_len, data_len,
  3948. PAGE_ALLOC_COSTLY_ORDER,
  3949. &err, sk->sk_allocation);
  3950. if (!skb)
  3951. goto err;
  3952. skb_put(skb, size - data_len);
  3953. skb->data_len = data_len;
  3954. skb->len = size;
  3955. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3956. goto err_free;
  3957. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3958. if (err)
  3959. goto err_free;
  3960. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3961. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3962. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3963. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3964. WARN_ON_ONCE(fragstolen); /* should not happen */
  3965. __kfree_skb(skb);
  3966. }
  3967. return size;
  3968. err_free:
  3969. kfree_skb(skb);
  3970. err:
  3971. return err;
  3972. }
  3973. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3974. {
  3975. struct tcp_sock *tp = tcp_sk(sk);
  3976. bool fragstolen = false;
  3977. int eaten = -1;
  3978. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3979. __kfree_skb(skb);
  3980. return;
  3981. }
  3982. skb_dst_drop(skb);
  3983. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3984. tcp_ecn_accept_cwr(tp, skb);
  3985. tp->rx_opt.dsack = 0;
  3986. /* Queue data for delivery to the user.
  3987. * Packets in sequence go to the receive queue.
  3988. * Out of sequence packets to the out_of_order_queue.
  3989. */
  3990. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3991. if (tcp_receive_window(tp) == 0)
  3992. goto out_of_window;
  3993. /* Ok. In sequence. In window. */
  3994. if (tp->ucopy.task == current &&
  3995. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3996. sock_owned_by_user(sk) && !tp->urg_data) {
  3997. int chunk = min_t(unsigned int, skb->len,
  3998. tp->ucopy.len);
  3999. __set_current_state(TASK_RUNNING);
  4000. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  4001. tp->ucopy.len -= chunk;
  4002. tp->copied_seq += chunk;
  4003. eaten = (chunk == skb->len);
  4004. tcp_rcv_space_adjust(sk);
  4005. }
  4006. }
  4007. if (eaten <= 0) {
  4008. queue_and_out:
  4009. if (eaten < 0) {
  4010. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4011. sk_forced_mem_schedule(sk, skb->truesize);
  4012. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4013. goto drop;
  4014. }
  4015. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4016. }
  4017. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4018. if (skb->len)
  4019. tcp_event_data_recv(sk, skb);
  4020. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4021. tcp_fin(sk);
  4022. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4023. tcp_ofo_queue(sk);
  4024. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4025. * gap in queue is filled.
  4026. */
  4027. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4028. inet_csk(sk)->icsk_ack.pingpong = 0;
  4029. }
  4030. if (tp->rx_opt.num_sacks)
  4031. tcp_sack_remove(tp);
  4032. tcp_fast_path_check(sk);
  4033. if (eaten > 0)
  4034. kfree_skb_partial(skb, fragstolen);
  4035. if (!sock_flag(sk, SOCK_DEAD))
  4036. sk->sk_data_ready(sk);
  4037. return;
  4038. }
  4039. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4040. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4041. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4042. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4043. out_of_window:
  4044. tcp_enter_quickack_mode(sk);
  4045. inet_csk_schedule_ack(sk);
  4046. drop:
  4047. tcp_drop(sk, skb);
  4048. return;
  4049. }
  4050. /* Out of window. F.e. zero window probe. */
  4051. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4052. goto out_of_window;
  4053. tcp_enter_quickack_mode(sk);
  4054. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4055. /* Partial packet, seq < rcv_next < end_seq */
  4056. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4057. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4058. TCP_SKB_CB(skb)->end_seq);
  4059. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4060. /* If window is closed, drop tail of packet. But after
  4061. * remembering D-SACK for its head made in previous line.
  4062. */
  4063. if (!tcp_receive_window(tp))
  4064. goto out_of_window;
  4065. goto queue_and_out;
  4066. }
  4067. tcp_data_queue_ofo(sk, skb);
  4068. }
  4069. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4070. {
  4071. if (list)
  4072. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4073. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4074. }
  4075. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4076. struct sk_buff_head *list,
  4077. struct rb_root *root)
  4078. {
  4079. struct sk_buff *next = tcp_skb_next(skb, list);
  4080. if (list)
  4081. __skb_unlink(skb, list);
  4082. else
  4083. rb_erase(&skb->rbnode, root);
  4084. __kfree_skb(skb);
  4085. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4086. return next;
  4087. }
  4088. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4089. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4090. {
  4091. struct rb_node **p = &root->rb_node;
  4092. struct rb_node *parent = NULL;
  4093. struct sk_buff *skb1;
  4094. while (*p) {
  4095. parent = *p;
  4096. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4097. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4098. p = &parent->rb_left;
  4099. else
  4100. p = &parent->rb_right;
  4101. }
  4102. rb_link_node(&skb->rbnode, parent, p);
  4103. rb_insert_color(&skb->rbnode, root);
  4104. }
  4105. /* Collapse contiguous sequence of skbs head..tail with
  4106. * sequence numbers start..end.
  4107. *
  4108. * If tail is NULL, this means until the end of the queue.
  4109. *
  4110. * Segments with FIN/SYN are not collapsed (only because this
  4111. * simplifies code)
  4112. */
  4113. static void
  4114. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4115. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4116. {
  4117. struct sk_buff *skb = head, *n;
  4118. struct sk_buff_head tmp;
  4119. bool end_of_skbs;
  4120. /* First, check that queue is collapsible and find
  4121. * the point where collapsing can be useful.
  4122. */
  4123. restart:
  4124. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4125. n = tcp_skb_next(skb, list);
  4126. /* No new bits? It is possible on ofo queue. */
  4127. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4128. skb = tcp_collapse_one(sk, skb, list, root);
  4129. if (!skb)
  4130. break;
  4131. goto restart;
  4132. }
  4133. /* The first skb to collapse is:
  4134. * - not SYN/FIN and
  4135. * - bloated or contains data before "start" or
  4136. * overlaps to the next one.
  4137. */
  4138. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4139. (tcp_win_from_space(skb->truesize) > skb->len ||
  4140. before(TCP_SKB_CB(skb)->seq, start))) {
  4141. end_of_skbs = false;
  4142. break;
  4143. }
  4144. if (n && n != tail &&
  4145. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4146. end_of_skbs = false;
  4147. break;
  4148. }
  4149. /* Decided to skip this, advance start seq. */
  4150. start = TCP_SKB_CB(skb)->end_seq;
  4151. }
  4152. if (end_of_skbs ||
  4153. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4154. return;
  4155. __skb_queue_head_init(&tmp);
  4156. while (before(start, end)) {
  4157. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4158. struct sk_buff *nskb;
  4159. nskb = alloc_skb(copy, GFP_ATOMIC);
  4160. if (!nskb)
  4161. break;
  4162. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4163. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4164. if (list)
  4165. __skb_queue_before(list, skb, nskb);
  4166. else
  4167. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4168. skb_set_owner_r(nskb, sk);
  4169. /* Copy data, releasing collapsed skbs. */
  4170. while (copy > 0) {
  4171. int offset = start - TCP_SKB_CB(skb)->seq;
  4172. int size = TCP_SKB_CB(skb)->end_seq - start;
  4173. BUG_ON(offset < 0);
  4174. if (size > 0) {
  4175. size = min(copy, size);
  4176. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4177. BUG();
  4178. TCP_SKB_CB(nskb)->end_seq += size;
  4179. copy -= size;
  4180. start += size;
  4181. }
  4182. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4183. skb = tcp_collapse_one(sk, skb, list, root);
  4184. if (!skb ||
  4185. skb == tail ||
  4186. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4187. goto end;
  4188. }
  4189. }
  4190. }
  4191. end:
  4192. skb_queue_walk_safe(&tmp, skb, n)
  4193. tcp_rbtree_insert(root, skb);
  4194. }
  4195. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4196. * and tcp_collapse() them until all the queue is collapsed.
  4197. */
  4198. static void tcp_collapse_ofo_queue(struct sock *sk)
  4199. {
  4200. struct tcp_sock *tp = tcp_sk(sk);
  4201. struct sk_buff *skb, *head;
  4202. struct rb_node *p;
  4203. u32 start, end;
  4204. p = rb_first(&tp->out_of_order_queue);
  4205. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4206. new_range:
  4207. if (!skb) {
  4208. p = rb_last(&tp->out_of_order_queue);
  4209. /* Note: This is possible p is NULL here. We do not
  4210. * use rb_entry_safe(), as ooo_last_skb is valid only
  4211. * if rbtree is not empty.
  4212. */
  4213. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4214. return;
  4215. }
  4216. start = TCP_SKB_CB(skb)->seq;
  4217. end = TCP_SKB_CB(skb)->end_seq;
  4218. for (head = skb;;) {
  4219. skb = tcp_skb_next(skb, NULL);
  4220. /* Range is terminated when we see a gap or when
  4221. * we are at the queue end.
  4222. */
  4223. if (!skb ||
  4224. after(TCP_SKB_CB(skb)->seq, end) ||
  4225. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4226. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4227. head, skb, start, end);
  4228. goto new_range;
  4229. }
  4230. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4231. start = TCP_SKB_CB(skb)->seq;
  4232. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4233. end = TCP_SKB_CB(skb)->end_seq;
  4234. }
  4235. }
  4236. /*
  4237. * Clean the out-of-order queue to make room.
  4238. * We drop high sequences packets to :
  4239. * 1) Let a chance for holes to be filled.
  4240. * 2) not add too big latencies if thousands of packets sit there.
  4241. * (But if application shrinks SO_RCVBUF, we could still end up
  4242. * freeing whole queue here)
  4243. *
  4244. * Return true if queue has shrunk.
  4245. */
  4246. static bool tcp_prune_ofo_queue(struct sock *sk)
  4247. {
  4248. struct tcp_sock *tp = tcp_sk(sk);
  4249. struct rb_node *node, *prev;
  4250. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4251. return false;
  4252. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4253. node = &tp->ooo_last_skb->rbnode;
  4254. do {
  4255. prev = rb_prev(node);
  4256. rb_erase(node, &tp->out_of_order_queue);
  4257. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4258. sk_mem_reclaim(sk);
  4259. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4260. !tcp_under_memory_pressure(sk))
  4261. break;
  4262. node = prev;
  4263. } while (node);
  4264. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4265. /* Reset SACK state. A conforming SACK implementation will
  4266. * do the same at a timeout based retransmit. When a connection
  4267. * is in a sad state like this, we care only about integrity
  4268. * of the connection not performance.
  4269. */
  4270. if (tp->rx_opt.sack_ok)
  4271. tcp_sack_reset(&tp->rx_opt);
  4272. return true;
  4273. }
  4274. /* Reduce allocated memory if we can, trying to get
  4275. * the socket within its memory limits again.
  4276. *
  4277. * Return less than zero if we should start dropping frames
  4278. * until the socket owning process reads some of the data
  4279. * to stabilize the situation.
  4280. */
  4281. static int tcp_prune_queue(struct sock *sk)
  4282. {
  4283. struct tcp_sock *tp = tcp_sk(sk);
  4284. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4285. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4286. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4287. tcp_clamp_window(sk);
  4288. else if (tcp_under_memory_pressure(sk))
  4289. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4290. tcp_collapse_ofo_queue(sk);
  4291. if (!skb_queue_empty(&sk->sk_receive_queue))
  4292. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4293. skb_peek(&sk->sk_receive_queue),
  4294. NULL,
  4295. tp->copied_seq, tp->rcv_nxt);
  4296. sk_mem_reclaim(sk);
  4297. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4298. return 0;
  4299. /* Collapsing did not help, destructive actions follow.
  4300. * This must not ever occur. */
  4301. tcp_prune_ofo_queue(sk);
  4302. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4303. return 0;
  4304. /* If we are really being abused, tell the caller to silently
  4305. * drop receive data on the floor. It will get retransmitted
  4306. * and hopefully then we'll have sufficient space.
  4307. */
  4308. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4309. /* Massive buffer overcommit. */
  4310. tp->pred_flags = 0;
  4311. return -1;
  4312. }
  4313. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4314. {
  4315. const struct tcp_sock *tp = tcp_sk(sk);
  4316. /* If the user specified a specific send buffer setting, do
  4317. * not modify it.
  4318. */
  4319. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4320. return false;
  4321. /* If we are under global TCP memory pressure, do not expand. */
  4322. if (tcp_under_memory_pressure(sk))
  4323. return false;
  4324. /* If we are under soft global TCP memory pressure, do not expand. */
  4325. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4326. return false;
  4327. /* If we filled the congestion window, do not expand. */
  4328. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4329. return false;
  4330. return true;
  4331. }
  4332. /* When incoming ACK allowed to free some skb from write_queue,
  4333. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4334. * on the exit from tcp input handler.
  4335. *
  4336. * PROBLEM: sndbuf expansion does not work well with largesend.
  4337. */
  4338. static void tcp_new_space(struct sock *sk)
  4339. {
  4340. struct tcp_sock *tp = tcp_sk(sk);
  4341. if (tcp_should_expand_sndbuf(sk)) {
  4342. tcp_sndbuf_expand(sk);
  4343. tp->snd_cwnd_stamp = tcp_time_stamp;
  4344. }
  4345. sk->sk_write_space(sk);
  4346. }
  4347. static void tcp_check_space(struct sock *sk)
  4348. {
  4349. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4350. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4351. /* pairs with tcp_poll() */
  4352. smp_mb();
  4353. if (sk->sk_socket &&
  4354. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4355. tcp_new_space(sk);
  4356. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4357. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4358. }
  4359. }
  4360. }
  4361. static inline void tcp_data_snd_check(struct sock *sk)
  4362. {
  4363. tcp_push_pending_frames(sk);
  4364. tcp_check_space(sk);
  4365. }
  4366. /*
  4367. * Check if sending an ack is needed.
  4368. */
  4369. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4370. {
  4371. struct tcp_sock *tp = tcp_sk(sk);
  4372. /* More than one full frame received... */
  4373. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4374. /* ... and right edge of window advances far enough.
  4375. * (tcp_recvmsg() will send ACK otherwise). Or...
  4376. */
  4377. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4378. /* We ACK each frame or... */
  4379. tcp_in_quickack_mode(sk) ||
  4380. /* We have out of order data. */
  4381. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4382. /* Then ack it now */
  4383. tcp_send_ack(sk);
  4384. } else {
  4385. /* Else, send delayed ack. */
  4386. tcp_send_delayed_ack(sk);
  4387. }
  4388. }
  4389. static inline void tcp_ack_snd_check(struct sock *sk)
  4390. {
  4391. if (!inet_csk_ack_scheduled(sk)) {
  4392. /* We sent a data segment already. */
  4393. return;
  4394. }
  4395. __tcp_ack_snd_check(sk, 1);
  4396. }
  4397. /*
  4398. * This routine is only called when we have urgent data
  4399. * signaled. Its the 'slow' part of tcp_urg. It could be
  4400. * moved inline now as tcp_urg is only called from one
  4401. * place. We handle URGent data wrong. We have to - as
  4402. * BSD still doesn't use the correction from RFC961.
  4403. * For 1003.1g we should support a new option TCP_STDURG to permit
  4404. * either form (or just set the sysctl tcp_stdurg).
  4405. */
  4406. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4407. {
  4408. struct tcp_sock *tp = tcp_sk(sk);
  4409. u32 ptr = ntohs(th->urg_ptr);
  4410. if (ptr && !sysctl_tcp_stdurg)
  4411. ptr--;
  4412. ptr += ntohl(th->seq);
  4413. /* Ignore urgent data that we've already seen and read. */
  4414. if (after(tp->copied_seq, ptr))
  4415. return;
  4416. /* Do not replay urg ptr.
  4417. *
  4418. * NOTE: interesting situation not covered by specs.
  4419. * Misbehaving sender may send urg ptr, pointing to segment,
  4420. * which we already have in ofo queue. We are not able to fetch
  4421. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4422. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4423. * situations. But it is worth to think about possibility of some
  4424. * DoSes using some hypothetical application level deadlock.
  4425. */
  4426. if (before(ptr, tp->rcv_nxt))
  4427. return;
  4428. /* Do we already have a newer (or duplicate) urgent pointer? */
  4429. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4430. return;
  4431. /* Tell the world about our new urgent pointer. */
  4432. sk_send_sigurg(sk);
  4433. /* We may be adding urgent data when the last byte read was
  4434. * urgent. To do this requires some care. We cannot just ignore
  4435. * tp->copied_seq since we would read the last urgent byte again
  4436. * as data, nor can we alter copied_seq until this data arrives
  4437. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4438. *
  4439. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4440. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4441. * and expect that both A and B disappear from stream. This is _wrong_.
  4442. * Though this happens in BSD with high probability, this is occasional.
  4443. * Any application relying on this is buggy. Note also, that fix "works"
  4444. * only in this artificial test. Insert some normal data between A and B and we will
  4445. * decline of BSD again. Verdict: it is better to remove to trap
  4446. * buggy users.
  4447. */
  4448. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4449. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4450. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4451. tp->copied_seq++;
  4452. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4453. __skb_unlink(skb, &sk->sk_receive_queue);
  4454. __kfree_skb(skb);
  4455. }
  4456. }
  4457. tp->urg_data = TCP_URG_NOTYET;
  4458. tp->urg_seq = ptr;
  4459. /* Disable header prediction. */
  4460. tp->pred_flags = 0;
  4461. }
  4462. /* This is the 'fast' part of urgent handling. */
  4463. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4464. {
  4465. struct tcp_sock *tp = tcp_sk(sk);
  4466. /* Check if we get a new urgent pointer - normally not. */
  4467. if (th->urg)
  4468. tcp_check_urg(sk, th);
  4469. /* Do we wait for any urgent data? - normally not... */
  4470. if (tp->urg_data == TCP_URG_NOTYET) {
  4471. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4472. th->syn;
  4473. /* Is the urgent pointer pointing into this packet? */
  4474. if (ptr < skb->len) {
  4475. u8 tmp;
  4476. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4477. BUG();
  4478. tp->urg_data = TCP_URG_VALID | tmp;
  4479. if (!sock_flag(sk, SOCK_DEAD))
  4480. sk->sk_data_ready(sk);
  4481. }
  4482. }
  4483. }
  4484. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4485. {
  4486. struct tcp_sock *tp = tcp_sk(sk);
  4487. int chunk = skb->len - hlen;
  4488. int err;
  4489. if (skb_csum_unnecessary(skb))
  4490. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4491. else
  4492. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4493. if (!err) {
  4494. tp->ucopy.len -= chunk;
  4495. tp->copied_seq += chunk;
  4496. tcp_rcv_space_adjust(sk);
  4497. }
  4498. return err;
  4499. }
  4500. /* Accept RST for rcv_nxt - 1 after a FIN.
  4501. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4502. * FIN is sent followed by a RST packet. The RST is sent with the same
  4503. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4504. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4505. * ACKs on the closed socket. In addition middleboxes can drop either the
  4506. * challenge ACK or a subsequent RST.
  4507. */
  4508. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4509. {
  4510. struct tcp_sock *tp = tcp_sk(sk);
  4511. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4512. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4513. TCPF_CLOSING));
  4514. }
  4515. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4516. * play significant role here.
  4517. */
  4518. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4519. const struct tcphdr *th, int syn_inerr)
  4520. {
  4521. struct tcp_sock *tp = tcp_sk(sk);
  4522. bool rst_seq_match = false;
  4523. /* RFC1323: H1. Apply PAWS check first. */
  4524. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4525. tcp_paws_discard(sk, skb)) {
  4526. if (!th->rst) {
  4527. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4528. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4529. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4530. &tp->last_oow_ack_time))
  4531. tcp_send_dupack(sk, skb);
  4532. goto discard;
  4533. }
  4534. /* Reset is accepted even if it did not pass PAWS. */
  4535. }
  4536. /* Step 1: check sequence number */
  4537. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4538. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4539. * (RST) segments are validated by checking their SEQ-fields."
  4540. * And page 69: "If an incoming segment is not acceptable,
  4541. * an acknowledgment should be sent in reply (unless the RST
  4542. * bit is set, if so drop the segment and return)".
  4543. */
  4544. if (!th->rst) {
  4545. if (th->syn)
  4546. goto syn_challenge;
  4547. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4548. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4549. &tp->last_oow_ack_time))
  4550. tcp_send_dupack(sk, skb);
  4551. } else if (tcp_reset_check(sk, skb)) {
  4552. tcp_reset(sk);
  4553. }
  4554. goto discard;
  4555. }
  4556. /* Step 2: check RST bit */
  4557. if (th->rst) {
  4558. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4559. * FIN and SACK too if available):
  4560. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4561. * the right-most SACK block,
  4562. * then
  4563. * RESET the connection
  4564. * else
  4565. * Send a challenge ACK
  4566. */
  4567. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4568. tcp_reset_check(sk, skb)) {
  4569. rst_seq_match = true;
  4570. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4571. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4572. int max_sack = sp[0].end_seq;
  4573. int this_sack;
  4574. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4575. ++this_sack) {
  4576. max_sack = after(sp[this_sack].end_seq,
  4577. max_sack) ?
  4578. sp[this_sack].end_seq : max_sack;
  4579. }
  4580. if (TCP_SKB_CB(skb)->seq == max_sack)
  4581. rst_seq_match = true;
  4582. }
  4583. if (rst_seq_match)
  4584. tcp_reset(sk);
  4585. else {
  4586. /* Disable TFO if RST is out-of-order
  4587. * and no data has been received
  4588. * for current active TFO socket
  4589. */
  4590. if (tp->syn_fastopen && !tp->data_segs_in &&
  4591. sk->sk_state == TCP_ESTABLISHED)
  4592. tcp_fastopen_active_disable(sk);
  4593. tcp_send_challenge_ack(sk, skb);
  4594. }
  4595. goto discard;
  4596. }
  4597. /* step 3: check security and precedence [ignored] */
  4598. /* step 4: Check for a SYN
  4599. * RFC 5961 4.2 : Send a challenge ack
  4600. */
  4601. if (th->syn) {
  4602. syn_challenge:
  4603. if (syn_inerr)
  4604. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4605. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4606. tcp_send_challenge_ack(sk, skb);
  4607. goto discard;
  4608. }
  4609. return true;
  4610. discard:
  4611. tcp_drop(sk, skb);
  4612. return false;
  4613. }
  4614. /*
  4615. * TCP receive function for the ESTABLISHED state.
  4616. *
  4617. * It is split into a fast path and a slow path. The fast path is
  4618. * disabled when:
  4619. * - A zero window was announced from us - zero window probing
  4620. * is only handled properly in the slow path.
  4621. * - Out of order segments arrived.
  4622. * - Urgent data is expected.
  4623. * - There is no buffer space left
  4624. * - Unexpected TCP flags/window values/header lengths are received
  4625. * (detected by checking the TCP header against pred_flags)
  4626. * - Data is sent in both directions. Fast path only supports pure senders
  4627. * or pure receivers (this means either the sequence number or the ack
  4628. * value must stay constant)
  4629. * - Unexpected TCP option.
  4630. *
  4631. * When these conditions are not satisfied it drops into a standard
  4632. * receive procedure patterned after RFC793 to handle all cases.
  4633. * The first three cases are guaranteed by proper pred_flags setting,
  4634. * the rest is checked inline. Fast processing is turned on in
  4635. * tcp_data_queue when everything is OK.
  4636. */
  4637. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4638. const struct tcphdr *th, unsigned int len)
  4639. {
  4640. struct tcp_sock *tp = tcp_sk(sk);
  4641. skb_mstamp_get(&tp->tcp_mstamp);
  4642. if (unlikely(!sk->sk_rx_dst))
  4643. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4644. /*
  4645. * Header prediction.
  4646. * The code loosely follows the one in the famous
  4647. * "30 instruction TCP receive" Van Jacobson mail.
  4648. *
  4649. * Van's trick is to deposit buffers into socket queue
  4650. * on a device interrupt, to call tcp_recv function
  4651. * on the receive process context and checksum and copy
  4652. * the buffer to user space. smart...
  4653. *
  4654. * Our current scheme is not silly either but we take the
  4655. * extra cost of the net_bh soft interrupt processing...
  4656. * We do checksum and copy also but from device to kernel.
  4657. */
  4658. tp->rx_opt.saw_tstamp = 0;
  4659. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4660. * if header_prediction is to be made
  4661. * 'S' will always be tp->tcp_header_len >> 2
  4662. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4663. * turn it off (when there are holes in the receive
  4664. * space for instance)
  4665. * PSH flag is ignored.
  4666. */
  4667. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4668. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4669. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4670. int tcp_header_len = tp->tcp_header_len;
  4671. /* Timestamp header prediction: tcp_header_len
  4672. * is automatically equal to th->doff*4 due to pred_flags
  4673. * match.
  4674. */
  4675. /* Check timestamp */
  4676. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4677. /* No? Slow path! */
  4678. if (!tcp_parse_aligned_timestamp(tp, th))
  4679. goto slow_path;
  4680. /* If PAWS failed, check it more carefully in slow path */
  4681. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4682. goto slow_path;
  4683. /* DO NOT update ts_recent here, if checksum fails
  4684. * and timestamp was corrupted part, it will result
  4685. * in a hung connection since we will drop all
  4686. * future packets due to the PAWS test.
  4687. */
  4688. }
  4689. if (len <= tcp_header_len) {
  4690. /* Bulk data transfer: sender */
  4691. if (len == tcp_header_len) {
  4692. /* Predicted packet is in window by definition.
  4693. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4694. * Hence, check seq<=rcv_wup reduces to:
  4695. */
  4696. if (tcp_header_len ==
  4697. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4698. tp->rcv_nxt == tp->rcv_wup)
  4699. tcp_store_ts_recent(tp);
  4700. /* We know that such packets are checksummed
  4701. * on entry.
  4702. */
  4703. tcp_ack(sk, skb, 0);
  4704. __kfree_skb(skb);
  4705. tcp_data_snd_check(sk);
  4706. return;
  4707. } else { /* Header too small */
  4708. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4709. goto discard;
  4710. }
  4711. } else {
  4712. int eaten = 0;
  4713. bool fragstolen = false;
  4714. if (tp->ucopy.task == current &&
  4715. tp->copied_seq == tp->rcv_nxt &&
  4716. len - tcp_header_len <= tp->ucopy.len &&
  4717. sock_owned_by_user(sk)) {
  4718. __set_current_state(TASK_RUNNING);
  4719. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4720. /* Predicted packet is in window by definition.
  4721. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4722. * Hence, check seq<=rcv_wup reduces to:
  4723. */
  4724. if (tcp_header_len ==
  4725. (sizeof(struct tcphdr) +
  4726. TCPOLEN_TSTAMP_ALIGNED) &&
  4727. tp->rcv_nxt == tp->rcv_wup)
  4728. tcp_store_ts_recent(tp);
  4729. tcp_rcv_rtt_measure_ts(sk, skb);
  4730. __skb_pull(skb, tcp_header_len);
  4731. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4732. NET_INC_STATS(sock_net(sk),
  4733. LINUX_MIB_TCPHPHITSTOUSER);
  4734. eaten = 1;
  4735. }
  4736. }
  4737. if (!eaten) {
  4738. if (tcp_checksum_complete(skb))
  4739. goto csum_error;
  4740. if ((int)skb->truesize > sk->sk_forward_alloc)
  4741. goto step5;
  4742. /* Predicted packet is in window by definition.
  4743. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4744. * Hence, check seq<=rcv_wup reduces to:
  4745. */
  4746. if (tcp_header_len ==
  4747. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4748. tp->rcv_nxt == tp->rcv_wup)
  4749. tcp_store_ts_recent(tp);
  4750. tcp_rcv_rtt_measure_ts(sk, skb);
  4751. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4752. /* Bulk data transfer: receiver */
  4753. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4754. &fragstolen);
  4755. }
  4756. tcp_event_data_recv(sk, skb);
  4757. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4758. /* Well, only one small jumplet in fast path... */
  4759. tcp_ack(sk, skb, FLAG_DATA);
  4760. tcp_data_snd_check(sk);
  4761. if (!inet_csk_ack_scheduled(sk))
  4762. goto no_ack;
  4763. }
  4764. __tcp_ack_snd_check(sk, 0);
  4765. no_ack:
  4766. if (eaten)
  4767. kfree_skb_partial(skb, fragstolen);
  4768. sk->sk_data_ready(sk);
  4769. return;
  4770. }
  4771. }
  4772. slow_path:
  4773. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4774. goto csum_error;
  4775. if (!th->ack && !th->rst && !th->syn)
  4776. goto discard;
  4777. /*
  4778. * Standard slow path.
  4779. */
  4780. if (!tcp_validate_incoming(sk, skb, th, 1))
  4781. return;
  4782. step5:
  4783. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4784. goto discard;
  4785. tcp_rcv_rtt_measure_ts(sk, skb);
  4786. /* Process urgent data. */
  4787. tcp_urg(sk, skb, th);
  4788. /* step 7: process the segment text */
  4789. tcp_data_queue(sk, skb);
  4790. tcp_data_snd_check(sk);
  4791. tcp_ack_snd_check(sk);
  4792. return;
  4793. csum_error:
  4794. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4795. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4796. discard:
  4797. tcp_drop(sk, skb);
  4798. }
  4799. EXPORT_SYMBOL(tcp_rcv_established);
  4800. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4801. {
  4802. struct tcp_sock *tp = tcp_sk(sk);
  4803. struct inet_connection_sock *icsk = inet_csk(sk);
  4804. tcp_set_state(sk, TCP_ESTABLISHED);
  4805. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4806. if (skb) {
  4807. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4808. security_inet_conn_established(sk, skb);
  4809. }
  4810. /* Make sure socket is routed, for correct metrics. */
  4811. icsk->icsk_af_ops->rebuild_header(sk);
  4812. tcp_init_metrics(sk);
  4813. tcp_init_congestion_control(sk);
  4814. /* Prevent spurious tcp_cwnd_restart() on first data
  4815. * packet.
  4816. */
  4817. tp->lsndtime = tcp_time_stamp;
  4818. tcp_init_buffer_space(sk);
  4819. if (sock_flag(sk, SOCK_KEEPOPEN))
  4820. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4821. if (!tp->rx_opt.snd_wscale)
  4822. __tcp_fast_path_on(tp, tp->snd_wnd);
  4823. else
  4824. tp->pred_flags = 0;
  4825. }
  4826. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4827. struct tcp_fastopen_cookie *cookie)
  4828. {
  4829. struct tcp_sock *tp = tcp_sk(sk);
  4830. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4831. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4832. bool syn_drop = false;
  4833. if (mss == tp->rx_opt.user_mss) {
  4834. struct tcp_options_received opt;
  4835. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4836. tcp_clear_options(&opt);
  4837. opt.user_mss = opt.mss_clamp = 0;
  4838. tcp_parse_options(synack, &opt, 0, NULL);
  4839. mss = opt.mss_clamp;
  4840. }
  4841. if (!tp->syn_fastopen) {
  4842. /* Ignore an unsolicited cookie */
  4843. cookie->len = -1;
  4844. } else if (tp->total_retrans) {
  4845. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4846. * acknowledges data. Presumably the remote received only
  4847. * the retransmitted (regular) SYNs: either the original
  4848. * SYN-data or the corresponding SYN-ACK was dropped.
  4849. */
  4850. syn_drop = (cookie->len < 0 && data);
  4851. } else if (cookie->len < 0 && !tp->syn_data) {
  4852. /* We requested a cookie but didn't get it. If we did not use
  4853. * the (old) exp opt format then try so next time (try_exp=1).
  4854. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4855. */
  4856. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4857. }
  4858. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4859. if (data) { /* Retransmit unacked data in SYN */
  4860. tcp_for_write_queue_from(data, sk) {
  4861. if (data == tcp_send_head(sk) ||
  4862. __tcp_retransmit_skb(sk, data, 1))
  4863. break;
  4864. }
  4865. tcp_rearm_rto(sk);
  4866. NET_INC_STATS(sock_net(sk),
  4867. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4868. return true;
  4869. }
  4870. tp->syn_data_acked = tp->syn_data;
  4871. if (tp->syn_data_acked)
  4872. NET_INC_STATS(sock_net(sk),
  4873. LINUX_MIB_TCPFASTOPENACTIVE);
  4874. tcp_fastopen_add_skb(sk, synack);
  4875. return false;
  4876. }
  4877. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4878. const struct tcphdr *th)
  4879. {
  4880. struct inet_connection_sock *icsk = inet_csk(sk);
  4881. struct tcp_sock *tp = tcp_sk(sk);
  4882. struct tcp_fastopen_cookie foc = { .len = -1 };
  4883. int saved_clamp = tp->rx_opt.mss_clamp;
  4884. bool fastopen_fail;
  4885. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4886. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4887. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4888. if (th->ack) {
  4889. /* rfc793:
  4890. * "If the state is SYN-SENT then
  4891. * first check the ACK bit
  4892. * If the ACK bit is set
  4893. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4894. * a reset (unless the RST bit is set, if so drop
  4895. * the segment and return)"
  4896. */
  4897. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4898. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4899. goto reset_and_undo;
  4900. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4901. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4902. tcp_time_stamp)) {
  4903. NET_INC_STATS(sock_net(sk),
  4904. LINUX_MIB_PAWSACTIVEREJECTED);
  4905. goto reset_and_undo;
  4906. }
  4907. /* Now ACK is acceptable.
  4908. *
  4909. * "If the RST bit is set
  4910. * If the ACK was acceptable then signal the user "error:
  4911. * connection reset", drop the segment, enter CLOSED state,
  4912. * delete TCB, and return."
  4913. */
  4914. if (th->rst) {
  4915. tcp_reset(sk);
  4916. goto discard;
  4917. }
  4918. /* rfc793:
  4919. * "fifth, if neither of the SYN or RST bits is set then
  4920. * drop the segment and return."
  4921. *
  4922. * See note below!
  4923. * --ANK(990513)
  4924. */
  4925. if (!th->syn)
  4926. goto discard_and_undo;
  4927. /* rfc793:
  4928. * "If the SYN bit is on ...
  4929. * are acceptable then ...
  4930. * (our SYN has been ACKed), change the connection
  4931. * state to ESTABLISHED..."
  4932. */
  4933. tcp_ecn_rcv_synack(tp, th);
  4934. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4935. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4936. /* Ok.. it's good. Set up sequence numbers and
  4937. * move to established.
  4938. */
  4939. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4940. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4941. /* RFC1323: The window in SYN & SYN/ACK segments is
  4942. * never scaled.
  4943. */
  4944. tp->snd_wnd = ntohs(th->window);
  4945. if (!tp->rx_opt.wscale_ok) {
  4946. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4947. tp->window_clamp = min(tp->window_clamp, 65535U);
  4948. }
  4949. if (tp->rx_opt.saw_tstamp) {
  4950. tp->rx_opt.tstamp_ok = 1;
  4951. tp->tcp_header_len =
  4952. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4953. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4954. tcp_store_ts_recent(tp);
  4955. } else {
  4956. tp->tcp_header_len = sizeof(struct tcphdr);
  4957. }
  4958. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4959. tcp_enable_fack(tp);
  4960. tcp_mtup_init(sk);
  4961. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4962. tcp_initialize_rcv_mss(sk);
  4963. /* Remember, tcp_poll() does not lock socket!
  4964. * Change state from SYN-SENT only after copied_seq
  4965. * is initialized. */
  4966. tp->copied_seq = tp->rcv_nxt;
  4967. smp_mb();
  4968. tcp_finish_connect(sk, skb);
  4969. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4970. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4971. if (!sock_flag(sk, SOCK_DEAD)) {
  4972. sk->sk_state_change(sk);
  4973. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4974. }
  4975. if (fastopen_fail)
  4976. return -1;
  4977. if (sk->sk_write_pending ||
  4978. icsk->icsk_accept_queue.rskq_defer_accept ||
  4979. icsk->icsk_ack.pingpong) {
  4980. /* Save one ACK. Data will be ready after
  4981. * several ticks, if write_pending is set.
  4982. *
  4983. * It may be deleted, but with this feature tcpdumps
  4984. * look so _wonderfully_ clever, that I was not able
  4985. * to stand against the temptation 8) --ANK
  4986. */
  4987. inet_csk_schedule_ack(sk);
  4988. tcp_enter_quickack_mode(sk);
  4989. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4990. TCP_DELACK_MAX, TCP_RTO_MAX);
  4991. discard:
  4992. tcp_drop(sk, skb);
  4993. return 0;
  4994. } else {
  4995. tcp_send_ack(sk);
  4996. }
  4997. return -1;
  4998. }
  4999. /* No ACK in the segment */
  5000. if (th->rst) {
  5001. /* rfc793:
  5002. * "If the RST bit is set
  5003. *
  5004. * Otherwise (no ACK) drop the segment and return."
  5005. */
  5006. goto discard_and_undo;
  5007. }
  5008. /* PAWS check. */
  5009. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5010. tcp_paws_reject(&tp->rx_opt, 0))
  5011. goto discard_and_undo;
  5012. if (th->syn) {
  5013. /* We see SYN without ACK. It is attempt of
  5014. * simultaneous connect with crossed SYNs.
  5015. * Particularly, it can be connect to self.
  5016. */
  5017. tcp_set_state(sk, TCP_SYN_RECV);
  5018. if (tp->rx_opt.saw_tstamp) {
  5019. tp->rx_opt.tstamp_ok = 1;
  5020. tcp_store_ts_recent(tp);
  5021. tp->tcp_header_len =
  5022. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5023. } else {
  5024. tp->tcp_header_len = sizeof(struct tcphdr);
  5025. }
  5026. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5027. tp->copied_seq = tp->rcv_nxt;
  5028. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5029. /* RFC1323: The window in SYN & SYN/ACK segments is
  5030. * never scaled.
  5031. */
  5032. tp->snd_wnd = ntohs(th->window);
  5033. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5034. tp->max_window = tp->snd_wnd;
  5035. tcp_ecn_rcv_syn(tp, th);
  5036. tcp_mtup_init(sk);
  5037. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5038. tcp_initialize_rcv_mss(sk);
  5039. tcp_send_synack(sk);
  5040. #if 0
  5041. /* Note, we could accept data and URG from this segment.
  5042. * There are no obstacles to make this (except that we must
  5043. * either change tcp_recvmsg() to prevent it from returning data
  5044. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5045. *
  5046. * However, if we ignore data in ACKless segments sometimes,
  5047. * we have no reasons to accept it sometimes.
  5048. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5049. * is not flawless. So, discard packet for sanity.
  5050. * Uncomment this return to process the data.
  5051. */
  5052. return -1;
  5053. #else
  5054. goto discard;
  5055. #endif
  5056. }
  5057. /* "fifth, if neither of the SYN or RST bits is set then
  5058. * drop the segment and return."
  5059. */
  5060. discard_and_undo:
  5061. tcp_clear_options(&tp->rx_opt);
  5062. tp->rx_opt.mss_clamp = saved_clamp;
  5063. goto discard;
  5064. reset_and_undo:
  5065. tcp_clear_options(&tp->rx_opt);
  5066. tp->rx_opt.mss_clamp = saved_clamp;
  5067. return 1;
  5068. }
  5069. /*
  5070. * This function implements the receiving procedure of RFC 793 for
  5071. * all states except ESTABLISHED and TIME_WAIT.
  5072. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5073. * address independent.
  5074. */
  5075. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5076. {
  5077. struct tcp_sock *tp = tcp_sk(sk);
  5078. struct inet_connection_sock *icsk = inet_csk(sk);
  5079. const struct tcphdr *th = tcp_hdr(skb);
  5080. struct request_sock *req;
  5081. int queued = 0;
  5082. bool acceptable;
  5083. switch (sk->sk_state) {
  5084. case TCP_CLOSE:
  5085. goto discard;
  5086. case TCP_LISTEN:
  5087. if (th->ack)
  5088. return 1;
  5089. if (th->rst)
  5090. goto discard;
  5091. if (th->syn) {
  5092. if (th->fin)
  5093. goto discard;
  5094. /* It is possible that we process SYN packets from backlog,
  5095. * so we need to make sure to disable BH right there.
  5096. */
  5097. local_bh_disable();
  5098. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5099. local_bh_enable();
  5100. if (!acceptable)
  5101. return 1;
  5102. consume_skb(skb);
  5103. return 0;
  5104. }
  5105. goto discard;
  5106. case TCP_SYN_SENT:
  5107. tp->rx_opt.saw_tstamp = 0;
  5108. skb_mstamp_get(&tp->tcp_mstamp);
  5109. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5110. if (queued >= 0)
  5111. return queued;
  5112. /* Do step6 onward by hand. */
  5113. tcp_urg(sk, skb, th);
  5114. __kfree_skb(skb);
  5115. tcp_data_snd_check(sk);
  5116. return 0;
  5117. }
  5118. skb_mstamp_get(&tp->tcp_mstamp);
  5119. tp->rx_opt.saw_tstamp = 0;
  5120. req = tp->fastopen_rsk;
  5121. if (req) {
  5122. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5123. sk->sk_state != TCP_FIN_WAIT1);
  5124. if (!tcp_check_req(sk, skb, req, true))
  5125. goto discard;
  5126. }
  5127. if (!th->ack && !th->rst && !th->syn)
  5128. goto discard;
  5129. if (!tcp_validate_incoming(sk, skb, th, 0))
  5130. return 0;
  5131. /* step 5: check the ACK field */
  5132. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5133. FLAG_UPDATE_TS_RECENT) > 0;
  5134. switch (sk->sk_state) {
  5135. case TCP_SYN_RECV:
  5136. if (!acceptable)
  5137. return 1;
  5138. if (!tp->srtt_us)
  5139. tcp_synack_rtt_meas(sk, req);
  5140. /* Once we leave TCP_SYN_RECV, we no longer need req
  5141. * so release it.
  5142. */
  5143. if (req) {
  5144. inet_csk(sk)->icsk_retransmits = 0;
  5145. reqsk_fastopen_remove(sk, req, false);
  5146. } else {
  5147. /* Make sure socket is routed, for correct metrics. */
  5148. icsk->icsk_af_ops->rebuild_header(sk);
  5149. tcp_init_congestion_control(sk);
  5150. tcp_mtup_init(sk);
  5151. tp->copied_seq = tp->rcv_nxt;
  5152. tcp_init_buffer_space(sk);
  5153. }
  5154. smp_mb();
  5155. tcp_set_state(sk, TCP_ESTABLISHED);
  5156. sk->sk_state_change(sk);
  5157. /* Note, that this wakeup is only for marginal crossed SYN case.
  5158. * Passively open sockets are not waked up, because
  5159. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5160. */
  5161. if (sk->sk_socket)
  5162. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5163. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5164. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5165. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5166. if (tp->rx_opt.tstamp_ok)
  5167. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5168. if (req) {
  5169. /* Re-arm the timer because data may have been sent out.
  5170. * This is similar to the regular data transmission case
  5171. * when new data has just been ack'ed.
  5172. *
  5173. * (TFO) - we could try to be more aggressive and
  5174. * retransmitting any data sooner based on when they
  5175. * are sent out.
  5176. */
  5177. tcp_rearm_rto(sk);
  5178. } else
  5179. tcp_init_metrics(sk);
  5180. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5181. tcp_update_pacing_rate(sk);
  5182. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5183. tp->lsndtime = tcp_time_stamp;
  5184. tcp_initialize_rcv_mss(sk);
  5185. tcp_fast_path_on(tp);
  5186. break;
  5187. case TCP_FIN_WAIT1: {
  5188. int tmo;
  5189. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5190. * Fast Open socket and this is the first acceptable
  5191. * ACK we have received, this would have acknowledged
  5192. * our SYNACK so stop the SYNACK timer.
  5193. */
  5194. if (req) {
  5195. /* Return RST if ack_seq is invalid.
  5196. * Note that RFC793 only says to generate a
  5197. * DUPACK for it but for TCP Fast Open it seems
  5198. * better to treat this case like TCP_SYN_RECV
  5199. * above.
  5200. */
  5201. if (!acceptable)
  5202. return 1;
  5203. /* We no longer need the request sock. */
  5204. reqsk_fastopen_remove(sk, req, false);
  5205. tcp_rearm_rto(sk);
  5206. }
  5207. if (tp->snd_una != tp->write_seq)
  5208. break;
  5209. tcp_set_state(sk, TCP_FIN_WAIT2);
  5210. sk->sk_shutdown |= SEND_SHUTDOWN;
  5211. sk_dst_confirm(sk);
  5212. if (!sock_flag(sk, SOCK_DEAD)) {
  5213. /* Wake up lingering close() */
  5214. sk->sk_state_change(sk);
  5215. break;
  5216. }
  5217. if (tp->linger2 < 0) {
  5218. tcp_done(sk);
  5219. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5220. return 1;
  5221. }
  5222. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5223. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5224. /* Receive out of order FIN after close() */
  5225. if (tp->syn_fastopen && th->fin)
  5226. tcp_fastopen_active_disable(sk);
  5227. tcp_done(sk);
  5228. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5229. return 1;
  5230. }
  5231. tmo = tcp_fin_time(sk);
  5232. if (tmo > TCP_TIMEWAIT_LEN) {
  5233. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5234. } else if (th->fin || sock_owned_by_user(sk)) {
  5235. /* Bad case. We could lose such FIN otherwise.
  5236. * It is not a big problem, but it looks confusing
  5237. * and not so rare event. We still can lose it now,
  5238. * if it spins in bh_lock_sock(), but it is really
  5239. * marginal case.
  5240. */
  5241. inet_csk_reset_keepalive_timer(sk, tmo);
  5242. } else {
  5243. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5244. goto discard;
  5245. }
  5246. break;
  5247. }
  5248. case TCP_CLOSING:
  5249. if (tp->snd_una == tp->write_seq) {
  5250. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5251. goto discard;
  5252. }
  5253. break;
  5254. case TCP_LAST_ACK:
  5255. if (tp->snd_una == tp->write_seq) {
  5256. tcp_update_metrics(sk);
  5257. tcp_done(sk);
  5258. goto discard;
  5259. }
  5260. break;
  5261. }
  5262. /* step 6: check the URG bit */
  5263. tcp_urg(sk, skb, th);
  5264. /* step 7: process the segment text */
  5265. switch (sk->sk_state) {
  5266. case TCP_CLOSE_WAIT:
  5267. case TCP_CLOSING:
  5268. case TCP_LAST_ACK:
  5269. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5270. break;
  5271. case TCP_FIN_WAIT1:
  5272. case TCP_FIN_WAIT2:
  5273. /* RFC 793 says to queue data in these states,
  5274. * RFC 1122 says we MUST send a reset.
  5275. * BSD 4.4 also does reset.
  5276. */
  5277. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5278. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5279. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5280. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5281. tcp_reset(sk);
  5282. return 1;
  5283. }
  5284. }
  5285. /* Fall through */
  5286. case TCP_ESTABLISHED:
  5287. tcp_data_queue(sk, skb);
  5288. queued = 1;
  5289. break;
  5290. }
  5291. /* tcp_data could move socket to TIME-WAIT */
  5292. if (sk->sk_state != TCP_CLOSE) {
  5293. tcp_data_snd_check(sk);
  5294. tcp_ack_snd_check(sk);
  5295. }
  5296. if (!queued) {
  5297. discard:
  5298. tcp_drop(sk, skb);
  5299. }
  5300. return 0;
  5301. }
  5302. EXPORT_SYMBOL(tcp_rcv_state_process);
  5303. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5304. {
  5305. struct inet_request_sock *ireq = inet_rsk(req);
  5306. if (family == AF_INET)
  5307. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5308. &ireq->ir_rmt_addr, port);
  5309. #if IS_ENABLED(CONFIG_IPV6)
  5310. else if (family == AF_INET6)
  5311. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5312. &ireq->ir_v6_rmt_addr, port);
  5313. #endif
  5314. }
  5315. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5316. *
  5317. * If we receive a SYN packet with these bits set, it means a
  5318. * network is playing bad games with TOS bits. In order to
  5319. * avoid possible false congestion notifications, we disable
  5320. * TCP ECN negotiation.
  5321. *
  5322. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5323. * congestion control: Linux DCTCP asserts ECT on all packets,
  5324. * including SYN, which is most optimal solution; however,
  5325. * others, such as FreeBSD do not.
  5326. */
  5327. static void tcp_ecn_create_request(struct request_sock *req,
  5328. const struct sk_buff *skb,
  5329. const struct sock *listen_sk,
  5330. const struct dst_entry *dst)
  5331. {
  5332. const struct tcphdr *th = tcp_hdr(skb);
  5333. const struct net *net = sock_net(listen_sk);
  5334. bool th_ecn = th->ece && th->cwr;
  5335. bool ect, ecn_ok;
  5336. u32 ecn_ok_dst;
  5337. if (!th_ecn)
  5338. return;
  5339. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5340. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5341. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5342. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5343. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5344. inet_rsk(req)->ecn_ok = 1;
  5345. }
  5346. static void tcp_openreq_init(struct request_sock *req,
  5347. const struct tcp_options_received *rx_opt,
  5348. struct sk_buff *skb, const struct sock *sk)
  5349. {
  5350. struct inet_request_sock *ireq = inet_rsk(req);
  5351. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5352. req->cookie_ts = 0;
  5353. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5354. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5355. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5356. tcp_rsk(req)->last_oow_ack_time = 0;
  5357. req->mss = rx_opt->mss_clamp;
  5358. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5359. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5360. ireq->sack_ok = rx_opt->sack_ok;
  5361. ireq->snd_wscale = rx_opt->snd_wscale;
  5362. ireq->wscale_ok = rx_opt->wscale_ok;
  5363. ireq->acked = 0;
  5364. ireq->ecn_ok = 0;
  5365. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5366. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5367. ireq->ir_mark = inet_request_mark(sk, skb);
  5368. }
  5369. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5370. struct sock *sk_listener,
  5371. bool attach_listener)
  5372. {
  5373. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5374. attach_listener);
  5375. if (req) {
  5376. struct inet_request_sock *ireq = inet_rsk(req);
  5377. kmemcheck_annotate_bitfield(ireq, flags);
  5378. ireq->opt = NULL;
  5379. #if IS_ENABLED(CONFIG_IPV6)
  5380. ireq->pktopts = NULL;
  5381. #endif
  5382. atomic64_set(&ireq->ir_cookie, 0);
  5383. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5384. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5385. ireq->ireq_family = sk_listener->sk_family;
  5386. }
  5387. return req;
  5388. }
  5389. EXPORT_SYMBOL(inet_reqsk_alloc);
  5390. /*
  5391. * Return true if a syncookie should be sent
  5392. */
  5393. static bool tcp_syn_flood_action(const struct sock *sk,
  5394. const struct sk_buff *skb,
  5395. const char *proto)
  5396. {
  5397. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5398. const char *msg = "Dropping request";
  5399. bool want_cookie = false;
  5400. struct net *net = sock_net(sk);
  5401. #ifdef CONFIG_SYN_COOKIES
  5402. if (net->ipv4.sysctl_tcp_syncookies) {
  5403. msg = "Sending cookies";
  5404. want_cookie = true;
  5405. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5406. } else
  5407. #endif
  5408. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5409. if (!queue->synflood_warned &&
  5410. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5411. xchg(&queue->synflood_warned, 1) == 0)
  5412. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5413. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5414. return want_cookie;
  5415. }
  5416. static void tcp_reqsk_record_syn(const struct sock *sk,
  5417. struct request_sock *req,
  5418. const struct sk_buff *skb)
  5419. {
  5420. if (tcp_sk(sk)->save_syn) {
  5421. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5422. u32 *copy;
  5423. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5424. if (copy) {
  5425. copy[0] = len;
  5426. memcpy(&copy[1], skb_network_header(skb), len);
  5427. req->saved_syn = copy;
  5428. }
  5429. }
  5430. }
  5431. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5432. const struct tcp_request_sock_ops *af_ops,
  5433. struct sock *sk, struct sk_buff *skb)
  5434. {
  5435. struct tcp_fastopen_cookie foc = { .len = -1 };
  5436. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5437. struct tcp_options_received tmp_opt;
  5438. struct tcp_sock *tp = tcp_sk(sk);
  5439. struct net *net = sock_net(sk);
  5440. struct sock *fastopen_sk = NULL;
  5441. struct dst_entry *dst = NULL;
  5442. struct request_sock *req;
  5443. bool want_cookie = false;
  5444. struct flowi fl;
  5445. /* TW buckets are converted to open requests without
  5446. * limitations, they conserve resources and peer is
  5447. * evidently real one.
  5448. */
  5449. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5450. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5451. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5452. if (!want_cookie)
  5453. goto drop;
  5454. }
  5455. if (sk_acceptq_is_full(sk)) {
  5456. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5457. goto drop;
  5458. }
  5459. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5460. if (!req)
  5461. goto drop;
  5462. tcp_rsk(req)->af_specific = af_ops;
  5463. tcp_rsk(req)->ts_off = 0;
  5464. tcp_clear_options(&tmp_opt);
  5465. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5466. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5467. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5468. if (want_cookie && !tmp_opt.saw_tstamp)
  5469. tcp_clear_options(&tmp_opt);
  5470. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5471. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5472. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5473. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5474. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5475. af_ops->init_req(req, sk, skb);
  5476. if (security_inet_conn_request(sk, skb, req))
  5477. goto drop_and_free;
  5478. if (tmp_opt.tstamp_ok)
  5479. tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
  5480. if (!want_cookie && !isn) {
  5481. /* Kill the following clause, if you dislike this way. */
  5482. if (!net->ipv4.sysctl_tcp_syncookies &&
  5483. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5484. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5485. !tcp_peer_is_proven(req, dst)) {
  5486. /* Without syncookies last quarter of
  5487. * backlog is filled with destinations,
  5488. * proven to be alive.
  5489. * It means that we continue to communicate
  5490. * to destinations, already remembered
  5491. * to the moment of synflood.
  5492. */
  5493. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5494. rsk_ops->family);
  5495. goto drop_and_release;
  5496. }
  5497. isn = af_ops->init_seq(skb);
  5498. }
  5499. if (!dst) {
  5500. dst = af_ops->route_req(sk, &fl, req);
  5501. if (!dst)
  5502. goto drop_and_free;
  5503. }
  5504. tcp_ecn_create_request(req, skb, sk, dst);
  5505. if (want_cookie) {
  5506. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5507. req->cookie_ts = tmp_opt.tstamp_ok;
  5508. if (!tmp_opt.tstamp_ok)
  5509. inet_rsk(req)->ecn_ok = 0;
  5510. }
  5511. tcp_rsk(req)->snt_isn = isn;
  5512. tcp_rsk(req)->txhash = net_tx_rndhash();
  5513. tcp_openreq_init_rwin(req, sk, dst);
  5514. if (!want_cookie) {
  5515. tcp_reqsk_record_syn(sk, req, skb);
  5516. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5517. }
  5518. if (fastopen_sk) {
  5519. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5520. &foc, TCP_SYNACK_FASTOPEN);
  5521. /* Add the child socket directly into the accept queue */
  5522. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5523. sk->sk_data_ready(sk);
  5524. bh_unlock_sock(fastopen_sk);
  5525. sock_put(fastopen_sk);
  5526. } else {
  5527. tcp_rsk(req)->tfo_listener = false;
  5528. if (!want_cookie)
  5529. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5530. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5531. !want_cookie ? TCP_SYNACK_NORMAL :
  5532. TCP_SYNACK_COOKIE);
  5533. if (want_cookie) {
  5534. reqsk_free(req);
  5535. return 0;
  5536. }
  5537. }
  5538. reqsk_put(req);
  5539. return 0;
  5540. drop_and_release:
  5541. dst_release(dst);
  5542. drop_and_free:
  5543. reqsk_free(req);
  5544. drop:
  5545. tcp_listendrop(sk);
  5546. return 0;
  5547. }
  5548. EXPORT_SYMBOL(tcp_conn_request);