amdgpu_cs.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044
  1. /*
  2. * Copyright 2008 Jerome Glisse.
  3. * All Rights Reserved.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Jerome Glisse <glisse@freedesktop.org>
  26. */
  27. #include <linux/list_sort.h>
  28. #include <drm/drmP.h>
  29. #include <drm/amdgpu_drm.h>
  30. #include "amdgpu.h"
  31. #include "amdgpu_trace.h"
  32. #define AMDGPU_CS_MAX_PRIORITY 32u
  33. #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
  34. /* This is based on the bucket sort with O(n) time complexity.
  35. * An item with priority "i" is added to bucket[i]. The lists are then
  36. * concatenated in descending order.
  37. */
  38. struct amdgpu_cs_buckets {
  39. struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
  40. };
  41. static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
  42. {
  43. unsigned i;
  44. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
  45. INIT_LIST_HEAD(&b->bucket[i]);
  46. }
  47. static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
  48. struct list_head *item, unsigned priority)
  49. {
  50. /* Since buffers which appear sooner in the relocation list are
  51. * likely to be used more often than buffers which appear later
  52. * in the list, the sort mustn't change the ordering of buffers
  53. * with the same priority, i.e. it must be stable.
  54. */
  55. list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
  56. }
  57. static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
  58. struct list_head *out_list)
  59. {
  60. unsigned i;
  61. /* Connect the sorted buckets in the output list. */
  62. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
  63. list_splice(&b->bucket[i], out_list);
  64. }
  65. }
  66. int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
  67. u32 ip_instance, u32 ring,
  68. struct amdgpu_ring **out_ring)
  69. {
  70. /* Right now all IPs have only one instance - multiple rings. */
  71. if (ip_instance != 0) {
  72. DRM_ERROR("invalid ip instance: %d\n", ip_instance);
  73. return -EINVAL;
  74. }
  75. switch (ip_type) {
  76. default:
  77. DRM_ERROR("unknown ip type: %d\n", ip_type);
  78. return -EINVAL;
  79. case AMDGPU_HW_IP_GFX:
  80. if (ring < adev->gfx.num_gfx_rings) {
  81. *out_ring = &adev->gfx.gfx_ring[ring];
  82. } else {
  83. DRM_ERROR("only %d gfx rings are supported now\n",
  84. adev->gfx.num_gfx_rings);
  85. return -EINVAL;
  86. }
  87. break;
  88. case AMDGPU_HW_IP_COMPUTE:
  89. if (ring < adev->gfx.num_compute_rings) {
  90. *out_ring = &adev->gfx.compute_ring[ring];
  91. } else {
  92. DRM_ERROR("only %d compute rings are supported now\n",
  93. adev->gfx.num_compute_rings);
  94. return -EINVAL;
  95. }
  96. break;
  97. case AMDGPU_HW_IP_DMA:
  98. if (ring < 2) {
  99. *out_ring = &adev->sdma[ring].ring;
  100. } else {
  101. DRM_ERROR("only two SDMA rings are supported\n");
  102. return -EINVAL;
  103. }
  104. break;
  105. case AMDGPU_HW_IP_UVD:
  106. *out_ring = &adev->uvd.ring;
  107. break;
  108. case AMDGPU_HW_IP_VCE:
  109. if (ring < 2){
  110. *out_ring = &adev->vce.ring[ring];
  111. } else {
  112. DRM_ERROR("only two VCE rings are supported\n");
  113. return -EINVAL;
  114. }
  115. break;
  116. }
  117. return 0;
  118. }
  119. struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev,
  120. struct drm_file *filp,
  121. struct amdgpu_ctx *ctx,
  122. struct amdgpu_ib *ibs,
  123. uint32_t num_ibs)
  124. {
  125. struct amdgpu_cs_parser *parser;
  126. int i;
  127. parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL);
  128. if (!parser)
  129. return NULL;
  130. parser->adev = adev;
  131. parser->filp = filp;
  132. parser->ctx = ctx;
  133. parser->ibs = ibs;
  134. parser->num_ibs = num_ibs;
  135. for (i = 0; i < num_ibs; i++)
  136. ibs[i].ctx = ctx;
  137. return parser;
  138. }
  139. int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
  140. {
  141. union drm_amdgpu_cs *cs = data;
  142. uint64_t *chunk_array_user;
  143. uint64_t *chunk_array = NULL;
  144. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  145. struct amdgpu_bo_list *bo_list = NULL;
  146. unsigned size, i;
  147. int r = 0;
  148. if (!cs->in.num_chunks)
  149. goto out;
  150. p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
  151. if (!p->ctx) {
  152. r = -EINVAL;
  153. goto out;
  154. }
  155. bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
  156. if (!amdgpu_enable_scheduler)
  157. p->bo_list = bo_list;
  158. else {
  159. if (bo_list && !bo_list->has_userptr) {
  160. p->bo_list = amdgpu_bo_list_clone(bo_list);
  161. amdgpu_bo_list_put(bo_list);
  162. if (!p->bo_list)
  163. return -ENOMEM;
  164. } else if (bo_list && bo_list->has_userptr)
  165. p->bo_list = bo_list;
  166. else
  167. p->bo_list = NULL;
  168. }
  169. /* get chunks */
  170. INIT_LIST_HEAD(&p->validated);
  171. chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
  172. if (chunk_array == NULL) {
  173. r = -ENOMEM;
  174. goto out;
  175. }
  176. chunk_array_user = (uint64_t __user *)(cs->in.chunks);
  177. if (copy_from_user(chunk_array, chunk_array_user,
  178. sizeof(uint64_t)*cs->in.num_chunks)) {
  179. r = -EFAULT;
  180. goto out;
  181. }
  182. p->nchunks = cs->in.num_chunks;
  183. p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
  184. GFP_KERNEL);
  185. if (p->chunks == NULL) {
  186. r = -ENOMEM;
  187. goto out;
  188. }
  189. for (i = 0; i < p->nchunks; i++) {
  190. struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
  191. struct drm_amdgpu_cs_chunk user_chunk;
  192. uint32_t __user *cdata;
  193. chunk_ptr = (void __user *)chunk_array[i];
  194. if (copy_from_user(&user_chunk, chunk_ptr,
  195. sizeof(struct drm_amdgpu_cs_chunk))) {
  196. r = -EFAULT;
  197. goto out;
  198. }
  199. p->chunks[i].chunk_id = user_chunk.chunk_id;
  200. p->chunks[i].length_dw = user_chunk.length_dw;
  201. size = p->chunks[i].length_dw;
  202. cdata = (void __user *)user_chunk.chunk_data;
  203. p->chunks[i].user_ptr = cdata;
  204. p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
  205. if (p->chunks[i].kdata == NULL) {
  206. r = -ENOMEM;
  207. goto out;
  208. }
  209. size *= sizeof(uint32_t);
  210. if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
  211. r = -EFAULT;
  212. goto out;
  213. }
  214. switch (p->chunks[i].chunk_id) {
  215. case AMDGPU_CHUNK_ID_IB:
  216. p->num_ibs++;
  217. break;
  218. case AMDGPU_CHUNK_ID_FENCE:
  219. size = sizeof(struct drm_amdgpu_cs_chunk_fence);
  220. if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) {
  221. uint32_t handle;
  222. struct drm_gem_object *gobj;
  223. struct drm_amdgpu_cs_chunk_fence *fence_data;
  224. fence_data = (void *)p->chunks[i].kdata;
  225. handle = fence_data->handle;
  226. gobj = drm_gem_object_lookup(p->adev->ddev,
  227. p->filp, handle);
  228. if (gobj == NULL) {
  229. r = -EINVAL;
  230. goto out;
  231. }
  232. p->uf.bo = gem_to_amdgpu_bo(gobj);
  233. p->uf.offset = fence_data->offset;
  234. } else {
  235. r = -EINVAL;
  236. goto out;
  237. }
  238. break;
  239. case AMDGPU_CHUNK_ID_DEPENDENCIES:
  240. break;
  241. default:
  242. r = -EINVAL;
  243. goto out;
  244. }
  245. }
  246. p->ibs = kmalloc_array(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
  247. if (!p->ibs)
  248. r = -ENOMEM;
  249. out:
  250. kfree(chunk_array);
  251. return r;
  252. }
  253. /* Returns how many bytes TTM can move per IB.
  254. */
  255. static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
  256. {
  257. u64 real_vram_size = adev->mc.real_vram_size;
  258. u64 vram_usage = atomic64_read(&adev->vram_usage);
  259. /* This function is based on the current VRAM usage.
  260. *
  261. * - If all of VRAM is free, allow relocating the number of bytes that
  262. * is equal to 1/4 of the size of VRAM for this IB.
  263. * - If more than one half of VRAM is occupied, only allow relocating
  264. * 1 MB of data for this IB.
  265. *
  266. * - From 0 to one half of used VRAM, the threshold decreases
  267. * linearly.
  268. * __________________
  269. * 1/4 of -|\ |
  270. * VRAM | \ |
  271. * | \ |
  272. * | \ |
  273. * | \ |
  274. * | \ |
  275. * | \ |
  276. * | \________|1 MB
  277. * |----------------|
  278. * VRAM 0 % 100 %
  279. * used used
  280. *
  281. * Note: It's a threshold, not a limit. The threshold must be crossed
  282. * for buffer relocations to stop, so any buffer of an arbitrary size
  283. * can be moved as long as the threshold isn't crossed before
  284. * the relocation takes place. We don't want to disable buffer
  285. * relocations completely.
  286. *
  287. * The idea is that buffers should be placed in VRAM at creation time
  288. * and TTM should only do a minimum number of relocations during
  289. * command submission. In practice, you need to submit at least
  290. * a dozen IBs to move all buffers to VRAM if they are in GTT.
  291. *
  292. * Also, things can get pretty crazy under memory pressure and actual
  293. * VRAM usage can change a lot, so playing safe even at 50% does
  294. * consistently increase performance.
  295. */
  296. u64 half_vram = real_vram_size >> 1;
  297. u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
  298. u64 bytes_moved_threshold = half_free_vram >> 1;
  299. return max(bytes_moved_threshold, 1024*1024ull);
  300. }
  301. int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p)
  302. {
  303. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  304. struct amdgpu_vm *vm = &fpriv->vm;
  305. struct amdgpu_device *adev = p->adev;
  306. struct amdgpu_bo_list_entry *lobj;
  307. struct list_head duplicates;
  308. struct amdgpu_bo *bo;
  309. u64 bytes_moved = 0, initial_bytes_moved;
  310. u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
  311. int r;
  312. INIT_LIST_HEAD(&duplicates);
  313. r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
  314. if (unlikely(r != 0)) {
  315. return r;
  316. }
  317. list_for_each_entry(lobj, &p->validated, tv.head) {
  318. bo = lobj->robj;
  319. if (!bo->pin_count) {
  320. u32 domain = lobj->prefered_domains;
  321. u32 current_domain =
  322. amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
  323. /* Check if this buffer will be moved and don't move it
  324. * if we have moved too many buffers for this IB already.
  325. *
  326. * Note that this allows moving at least one buffer of
  327. * any size, because it doesn't take the current "bo"
  328. * into account. We don't want to disallow buffer moves
  329. * completely.
  330. */
  331. if (current_domain != AMDGPU_GEM_DOMAIN_CPU &&
  332. (domain & current_domain) == 0 && /* will be moved */
  333. bytes_moved > bytes_moved_threshold) {
  334. /* don't move it */
  335. domain = current_domain;
  336. }
  337. retry:
  338. amdgpu_ttm_placement_from_domain(bo, domain);
  339. initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
  340. r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
  341. bytes_moved += atomic64_read(&adev->num_bytes_moved) -
  342. initial_bytes_moved;
  343. if (unlikely(r)) {
  344. if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
  345. domain = lobj->allowed_domains;
  346. goto retry;
  347. }
  348. ttm_eu_backoff_reservation(&p->ticket, &p->validated);
  349. return r;
  350. }
  351. }
  352. lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
  353. }
  354. return 0;
  355. }
  356. static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
  357. {
  358. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  359. struct amdgpu_cs_buckets buckets;
  360. bool need_mmap_lock = false;
  361. int i, r;
  362. if (p->bo_list) {
  363. need_mmap_lock = p->bo_list->has_userptr;
  364. amdgpu_cs_buckets_init(&buckets);
  365. for (i = 0; i < p->bo_list->num_entries; i++)
  366. amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
  367. p->bo_list->array[i].priority);
  368. amdgpu_cs_buckets_get_list(&buckets, &p->validated);
  369. }
  370. p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
  371. &p->validated);
  372. if (need_mmap_lock)
  373. down_read(&current->mm->mmap_sem);
  374. r = amdgpu_cs_list_validate(p);
  375. if (need_mmap_lock)
  376. up_read(&current->mm->mmap_sem);
  377. return r;
  378. }
  379. static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
  380. {
  381. struct amdgpu_bo_list_entry *e;
  382. int r;
  383. list_for_each_entry(e, &p->validated, tv.head) {
  384. struct reservation_object *resv = e->robj->tbo.resv;
  385. r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
  386. if (r)
  387. return r;
  388. }
  389. return 0;
  390. }
  391. static int cmp_size_smaller_first(void *priv, struct list_head *a,
  392. struct list_head *b)
  393. {
  394. struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
  395. struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
  396. /* Sort A before B if A is smaller. */
  397. return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
  398. }
  399. static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff)
  400. {
  401. if (!error) {
  402. /* Sort the buffer list from the smallest to largest buffer,
  403. * which affects the order of buffers in the LRU list.
  404. * This assures that the smallest buffers are added first
  405. * to the LRU list, so they are likely to be later evicted
  406. * first, instead of large buffers whose eviction is more
  407. * expensive.
  408. *
  409. * This slightly lowers the number of bytes moved by TTM
  410. * per frame under memory pressure.
  411. */
  412. list_sort(NULL, &parser->validated, cmp_size_smaller_first);
  413. ttm_eu_fence_buffer_objects(&parser->ticket,
  414. &parser->validated,
  415. &parser->ibs[parser->num_ibs-1].fence->base);
  416. } else if (backoff) {
  417. ttm_eu_backoff_reservation(&parser->ticket,
  418. &parser->validated);
  419. }
  420. }
  421. static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser)
  422. {
  423. unsigned i;
  424. if (parser->ctx)
  425. amdgpu_ctx_put(parser->ctx);
  426. if (parser->bo_list) {
  427. if (amdgpu_enable_scheduler && !parser->bo_list->has_userptr)
  428. amdgpu_bo_list_free(parser->bo_list);
  429. else
  430. amdgpu_bo_list_put(parser->bo_list);
  431. }
  432. drm_free_large(parser->vm_bos);
  433. for (i = 0; i < parser->nchunks; i++)
  434. drm_free_large(parser->chunks[i].kdata);
  435. kfree(parser->chunks);
  436. if (!amdgpu_enable_scheduler)
  437. {
  438. if (parser->ibs)
  439. for (i = 0; i < parser->num_ibs; i++)
  440. amdgpu_ib_free(parser->adev, &parser->ibs[i]);
  441. kfree(parser->ibs);
  442. if (parser->uf.bo)
  443. drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base);
  444. }
  445. kfree(parser);
  446. }
  447. /**
  448. * cs_parser_fini() - clean parser states
  449. * @parser: parser structure holding parsing context.
  450. * @error: error number
  451. *
  452. * If error is set than unvalidate buffer, otherwise just free memory
  453. * used by parsing context.
  454. **/
  455. static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
  456. {
  457. amdgpu_cs_parser_fini_early(parser, error, backoff);
  458. amdgpu_cs_parser_fini_late(parser);
  459. }
  460. static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
  461. struct amdgpu_vm *vm)
  462. {
  463. struct amdgpu_device *adev = p->adev;
  464. struct amdgpu_bo_va *bo_va;
  465. struct amdgpu_bo *bo;
  466. int i, r;
  467. r = amdgpu_vm_update_page_directory(adev, vm);
  468. if (r)
  469. return r;
  470. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
  471. if (r)
  472. return r;
  473. r = amdgpu_vm_clear_freed(adev, vm);
  474. if (r)
  475. return r;
  476. if (p->bo_list) {
  477. for (i = 0; i < p->bo_list->num_entries; i++) {
  478. struct fence *f;
  479. /* ignore duplicates */
  480. bo = p->bo_list->array[i].robj;
  481. if (!bo)
  482. continue;
  483. bo_va = p->bo_list->array[i].bo_va;
  484. if (bo_va == NULL)
  485. continue;
  486. r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
  487. if (r)
  488. return r;
  489. f = bo_va->last_pt_update;
  490. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
  491. if (r)
  492. return r;
  493. }
  494. }
  495. return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
  496. }
  497. static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
  498. struct amdgpu_cs_parser *parser)
  499. {
  500. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  501. struct amdgpu_vm *vm = &fpriv->vm;
  502. struct amdgpu_ring *ring;
  503. int i, r;
  504. if (parser->num_ibs == 0)
  505. return 0;
  506. /* Only for UVD/VCE VM emulation */
  507. for (i = 0; i < parser->num_ibs; i++) {
  508. ring = parser->ibs[i].ring;
  509. if (ring->funcs->parse_cs) {
  510. r = amdgpu_ring_parse_cs(ring, parser, i);
  511. if (r)
  512. return r;
  513. }
  514. }
  515. mutex_lock(&vm->mutex);
  516. r = amdgpu_bo_vm_update_pte(parser, vm);
  517. if (r) {
  518. goto out;
  519. }
  520. amdgpu_cs_sync_rings(parser);
  521. if (!amdgpu_enable_scheduler)
  522. r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs,
  523. parser->filp);
  524. out:
  525. mutex_unlock(&vm->mutex);
  526. return r;
  527. }
  528. static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
  529. {
  530. if (r == -EDEADLK) {
  531. r = amdgpu_gpu_reset(adev);
  532. if (!r)
  533. r = -EAGAIN;
  534. }
  535. return r;
  536. }
  537. static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
  538. struct amdgpu_cs_parser *parser)
  539. {
  540. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  541. struct amdgpu_vm *vm = &fpriv->vm;
  542. int i, j;
  543. int r;
  544. for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
  545. struct amdgpu_cs_chunk *chunk;
  546. struct amdgpu_ib *ib;
  547. struct drm_amdgpu_cs_chunk_ib *chunk_ib;
  548. struct amdgpu_ring *ring;
  549. chunk = &parser->chunks[i];
  550. ib = &parser->ibs[j];
  551. chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
  552. if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
  553. continue;
  554. r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
  555. chunk_ib->ip_instance, chunk_ib->ring,
  556. &ring);
  557. if (r)
  558. return r;
  559. if (ring->funcs->parse_cs) {
  560. struct amdgpu_bo_va_mapping *m;
  561. struct amdgpu_bo *aobj = NULL;
  562. uint64_t offset;
  563. uint8_t *kptr;
  564. m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
  565. &aobj);
  566. if (!aobj) {
  567. DRM_ERROR("IB va_start is invalid\n");
  568. return -EINVAL;
  569. }
  570. if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
  571. (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
  572. DRM_ERROR("IB va_start+ib_bytes is invalid\n");
  573. return -EINVAL;
  574. }
  575. /* the IB should be reserved at this point */
  576. r = amdgpu_bo_kmap(aobj, (void **)&kptr);
  577. if (r) {
  578. return r;
  579. }
  580. offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
  581. kptr += chunk_ib->va_start - offset;
  582. r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
  583. if (r) {
  584. DRM_ERROR("Failed to get ib !\n");
  585. return r;
  586. }
  587. memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
  588. amdgpu_bo_kunmap(aobj);
  589. } else {
  590. r = amdgpu_ib_get(ring, vm, 0, ib);
  591. if (r) {
  592. DRM_ERROR("Failed to get ib !\n");
  593. return r;
  594. }
  595. ib->gpu_addr = chunk_ib->va_start;
  596. }
  597. ib->length_dw = chunk_ib->ib_bytes / 4;
  598. ib->flags = chunk_ib->flags;
  599. ib->ctx = parser->ctx;
  600. j++;
  601. }
  602. if (!parser->num_ibs)
  603. return 0;
  604. /* add GDS resources to first IB */
  605. if (parser->bo_list) {
  606. struct amdgpu_bo *gds = parser->bo_list->gds_obj;
  607. struct amdgpu_bo *gws = parser->bo_list->gws_obj;
  608. struct amdgpu_bo *oa = parser->bo_list->oa_obj;
  609. struct amdgpu_ib *ib = &parser->ibs[0];
  610. if (gds) {
  611. ib->gds_base = amdgpu_bo_gpu_offset(gds);
  612. ib->gds_size = amdgpu_bo_size(gds);
  613. }
  614. if (gws) {
  615. ib->gws_base = amdgpu_bo_gpu_offset(gws);
  616. ib->gws_size = amdgpu_bo_size(gws);
  617. }
  618. if (oa) {
  619. ib->oa_base = amdgpu_bo_gpu_offset(oa);
  620. ib->oa_size = amdgpu_bo_size(oa);
  621. }
  622. }
  623. /* wrap the last IB with user fence */
  624. if (parser->uf.bo) {
  625. struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
  626. /* UVD & VCE fw doesn't support user fences */
  627. if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
  628. ib->ring->type == AMDGPU_RING_TYPE_VCE)
  629. return -EINVAL;
  630. ib->user = &parser->uf;
  631. }
  632. return 0;
  633. }
  634. static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
  635. struct amdgpu_cs_parser *p)
  636. {
  637. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  638. struct amdgpu_ib *ib;
  639. int i, j, r;
  640. if (!p->num_ibs)
  641. return 0;
  642. /* Add dependencies to first IB */
  643. ib = &p->ibs[0];
  644. for (i = 0; i < p->nchunks; ++i) {
  645. struct drm_amdgpu_cs_chunk_dep *deps;
  646. struct amdgpu_cs_chunk *chunk;
  647. unsigned num_deps;
  648. chunk = &p->chunks[i];
  649. if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
  650. continue;
  651. deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
  652. num_deps = chunk->length_dw * 4 /
  653. sizeof(struct drm_amdgpu_cs_chunk_dep);
  654. for (j = 0; j < num_deps; ++j) {
  655. struct amdgpu_ring *ring;
  656. struct amdgpu_ctx *ctx;
  657. struct fence *fence;
  658. r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
  659. deps[j].ip_instance,
  660. deps[j].ring, &ring);
  661. if (r)
  662. return r;
  663. ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
  664. if (ctx == NULL)
  665. return -EINVAL;
  666. fence = amdgpu_ctx_get_fence(ctx, ring,
  667. deps[j].handle);
  668. if (IS_ERR(fence)) {
  669. r = PTR_ERR(fence);
  670. amdgpu_ctx_put(ctx);
  671. return r;
  672. } else if (fence) {
  673. r = amdgpu_sync_fence(adev, &ib->sync, fence);
  674. fence_put(fence);
  675. amdgpu_ctx_put(ctx);
  676. if (r)
  677. return r;
  678. }
  679. }
  680. }
  681. return 0;
  682. }
  683. static int amdgpu_cs_parser_prepare_job(struct amdgpu_cs_parser *sched_job)
  684. {
  685. int r, i;
  686. struct amdgpu_cs_parser *parser = sched_job;
  687. struct amdgpu_device *adev = sched_job->adev;
  688. bool reserved_buffers = false;
  689. r = amdgpu_cs_parser_relocs(parser);
  690. if (r) {
  691. if (r != -ERESTARTSYS) {
  692. if (r == -ENOMEM)
  693. DRM_ERROR("Not enough memory for command submission!\n");
  694. else
  695. DRM_ERROR("Failed to process the buffer list %d!\n", r);
  696. }
  697. }
  698. if (!r) {
  699. reserved_buffers = true;
  700. r = amdgpu_cs_ib_fill(adev, parser);
  701. }
  702. if (!r) {
  703. r = amdgpu_cs_dependencies(adev, parser);
  704. if (r)
  705. DRM_ERROR("Failed in the dependencies handling %d!\n", r);
  706. }
  707. if (r) {
  708. amdgpu_cs_parser_fini(parser, r, reserved_buffers);
  709. return r;
  710. }
  711. for (i = 0; i < parser->num_ibs; i++)
  712. trace_amdgpu_cs(parser, i);
  713. r = amdgpu_cs_ib_vm_chunk(adev, parser);
  714. return r;
  715. }
  716. static struct amdgpu_ring *amdgpu_cs_parser_get_ring(
  717. struct amdgpu_device *adev,
  718. struct amdgpu_cs_parser *parser)
  719. {
  720. int i, r;
  721. struct amdgpu_cs_chunk *chunk;
  722. struct drm_amdgpu_cs_chunk_ib *chunk_ib;
  723. struct amdgpu_ring *ring;
  724. for (i = 0; i < parser->nchunks; i++) {
  725. chunk = &parser->chunks[i];
  726. chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
  727. if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
  728. continue;
  729. r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
  730. chunk_ib->ip_instance, chunk_ib->ring,
  731. &ring);
  732. if (r)
  733. return NULL;
  734. break;
  735. }
  736. return ring;
  737. }
  738. static int amdgpu_cs_free_job(struct amdgpu_job *sched_job)
  739. {
  740. int i;
  741. amdgpu_ctx_put(sched_job->ctx);
  742. if (sched_job->ibs)
  743. for (i = 0; i < sched_job->num_ibs; i++)
  744. amdgpu_ib_free(sched_job->adev, &sched_job->ibs[i]);
  745. kfree(sched_job->ibs);
  746. if (sched_job->uf.bo)
  747. drm_gem_object_unreference_unlocked(&sched_job->uf.bo->gem_base);
  748. return 0;
  749. }
  750. int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
  751. {
  752. struct amdgpu_device *adev = dev->dev_private;
  753. union drm_amdgpu_cs *cs = data;
  754. struct amdgpu_cs_parser *parser;
  755. int r;
  756. down_read(&adev->exclusive_lock);
  757. if (!adev->accel_working) {
  758. up_read(&adev->exclusive_lock);
  759. return -EBUSY;
  760. }
  761. parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0);
  762. if (!parser)
  763. return -ENOMEM;
  764. r = amdgpu_cs_parser_init(parser, data);
  765. if (r) {
  766. DRM_ERROR("Failed to initialize parser !\n");
  767. amdgpu_cs_parser_fini(parser, r, false);
  768. up_read(&adev->exclusive_lock);
  769. r = amdgpu_cs_handle_lockup(adev, r);
  770. return r;
  771. }
  772. r = amdgpu_cs_parser_prepare_job(parser);
  773. if (r)
  774. goto out;
  775. if (amdgpu_enable_scheduler && parser->num_ibs) {
  776. struct amdgpu_job *job;
  777. struct amdgpu_ring * ring =
  778. amdgpu_cs_parser_get_ring(adev, parser);
  779. job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
  780. if (!job)
  781. return -ENOMEM;
  782. job->base.sched = ring->scheduler;
  783. job->base.s_entity = &parser->ctx->rings[ring->idx].entity;
  784. job->adev = parser->adev;
  785. job->ibs = parser->ibs;
  786. job->num_ibs = parser->num_ibs;
  787. job->owner = parser->filp;
  788. job->ctx = amdgpu_ctx_get_ref(parser->ctx);
  789. mutex_init(&job->job_lock);
  790. if (job->ibs[job->num_ibs - 1].user) {
  791. memcpy(&job->uf, &parser->uf,
  792. sizeof(struct amdgpu_user_fence));
  793. job->ibs[job->num_ibs - 1].user = &job->uf;
  794. }
  795. job->free_job = amdgpu_cs_free_job;
  796. mutex_lock(&job->job_lock);
  797. r = amd_sched_push_job((struct amd_sched_job *)job);
  798. if (r) {
  799. mutex_unlock(&job->job_lock);
  800. amdgpu_cs_free_job(job);
  801. kfree(job);
  802. goto out;
  803. }
  804. job->ibs[parser->num_ibs - 1].sequence =
  805. amdgpu_ctx_add_fence(job->ctx, ring,
  806. &job->base.s_fence->base,
  807. job->base.s_fence->v_seq);
  808. cs->out.handle = job->base.s_fence->v_seq;
  809. list_sort(NULL, &parser->validated, cmp_size_smaller_first);
  810. ttm_eu_fence_buffer_objects(&parser->ticket,
  811. &parser->validated,
  812. &job->base.s_fence->base);
  813. mutex_unlock(&job->job_lock);
  814. amdgpu_cs_parser_fini_late(parser);
  815. up_read(&adev->exclusive_lock);
  816. return 0;
  817. }
  818. cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence;
  819. out:
  820. amdgpu_cs_parser_fini(parser, r, true);
  821. up_read(&adev->exclusive_lock);
  822. r = amdgpu_cs_handle_lockup(adev, r);
  823. return r;
  824. }
  825. /**
  826. * amdgpu_cs_wait_ioctl - wait for a command submission to finish
  827. *
  828. * @dev: drm device
  829. * @data: data from userspace
  830. * @filp: file private
  831. *
  832. * Wait for the command submission identified by handle to finish.
  833. */
  834. int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
  835. struct drm_file *filp)
  836. {
  837. union drm_amdgpu_wait_cs *wait = data;
  838. struct amdgpu_device *adev = dev->dev_private;
  839. unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
  840. struct amdgpu_ring *ring = NULL;
  841. struct amdgpu_ctx *ctx;
  842. struct fence *fence;
  843. long r;
  844. r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
  845. wait->in.ring, &ring);
  846. if (r)
  847. return r;
  848. ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
  849. if (ctx == NULL)
  850. return -EINVAL;
  851. fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
  852. if (IS_ERR(fence))
  853. r = PTR_ERR(fence);
  854. else if (fence) {
  855. r = fence_wait_timeout(fence, true, timeout);
  856. fence_put(fence);
  857. } else
  858. r = 1;
  859. amdgpu_ctx_put(ctx);
  860. if (r < 0)
  861. return r;
  862. memset(wait, 0, sizeof(*wait));
  863. wait->out.status = (r == 0);
  864. return 0;
  865. }
  866. /**
  867. * amdgpu_cs_find_bo_va - find bo_va for VM address
  868. *
  869. * @parser: command submission parser context
  870. * @addr: VM address
  871. * @bo: resulting BO of the mapping found
  872. *
  873. * Search the buffer objects in the command submission context for a certain
  874. * virtual memory address. Returns allocation structure when found, NULL
  875. * otherwise.
  876. */
  877. struct amdgpu_bo_va_mapping *
  878. amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
  879. uint64_t addr, struct amdgpu_bo **bo)
  880. {
  881. struct amdgpu_bo_list_entry *reloc;
  882. struct amdgpu_bo_va_mapping *mapping;
  883. addr /= AMDGPU_GPU_PAGE_SIZE;
  884. list_for_each_entry(reloc, &parser->validated, tv.head) {
  885. if (!reloc->bo_va)
  886. continue;
  887. list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
  888. if (mapping->it.start > addr ||
  889. addr > mapping->it.last)
  890. continue;
  891. *bo = reloc->bo_va->bo;
  892. return mapping;
  893. }
  894. list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
  895. if (mapping->it.start > addr ||
  896. addr > mapping->it.last)
  897. continue;
  898. *bo = reloc->bo_va->bo;
  899. return mapping;
  900. }
  901. }
  902. return NULL;
  903. }