sdma_v4_0.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "mmhub/mmhub_1_0_offset.h"
  33. #include "mmhub/mmhub_1_0_sh_mask.h"
  34. #include "hdp/hdp_4_0_offset.h"
  35. #include "sdma0/sdma0_4_1_default.h"
  36. #include "soc15_common.h"
  37. #include "soc15.h"
  38. #include "vega10_sdma_pkt_open.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  42. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  43. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  44. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  45. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  46. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  48. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  49. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  50. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  51. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  52. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  59. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  60. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  61. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
  62. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  63. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  64. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  65. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  71. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  72. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  73. };
  74. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  75. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  76. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  77. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  78. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  79. };
  80. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  81. {
  82. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  83. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  84. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  85. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  86. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  87. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  88. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  89. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  90. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  91. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  92. };
  93. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  94. {
  95. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  96. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  97. };
  98. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  99. u32 instance, u32 offset)
  100. {
  101. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  102. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  103. }
  104. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  105. {
  106. switch (adev->asic_type) {
  107. case CHIP_VEGA10:
  108. soc15_program_register_sequence(adev,
  109. golden_settings_sdma_4,
  110. ARRAY_SIZE(golden_settings_sdma_4));
  111. soc15_program_register_sequence(adev,
  112. golden_settings_sdma_vg10,
  113. ARRAY_SIZE(golden_settings_sdma_vg10));
  114. break;
  115. case CHIP_RAVEN:
  116. soc15_program_register_sequence(adev,
  117. golden_settings_sdma_4_1,
  118. ARRAY_SIZE(golden_settings_sdma_4_1));
  119. soc15_program_register_sequence(adev,
  120. golden_settings_sdma_rv1,
  121. ARRAY_SIZE(golden_settings_sdma_rv1));
  122. break;
  123. default:
  124. break;
  125. }
  126. }
  127. /**
  128. * sdma_v4_0_init_microcode - load ucode images from disk
  129. *
  130. * @adev: amdgpu_device pointer
  131. *
  132. * Use the firmware interface to load the ucode images into
  133. * the driver (not loaded into hw).
  134. * Returns 0 on success, error on failure.
  135. */
  136. // emulation only, won't work on real chip
  137. // vega10 real chip need to use PSP to load firmware
  138. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  139. {
  140. const char *chip_name;
  141. char fw_name[30];
  142. int err = 0, i;
  143. struct amdgpu_firmware_info *info = NULL;
  144. const struct common_firmware_header *header = NULL;
  145. const struct sdma_firmware_header_v1_0 *hdr;
  146. DRM_DEBUG("\n");
  147. switch (adev->asic_type) {
  148. case CHIP_VEGA10:
  149. chip_name = "vega10";
  150. break;
  151. case CHIP_RAVEN:
  152. chip_name = "raven";
  153. break;
  154. default:
  155. BUG();
  156. }
  157. for (i = 0; i < adev->sdma.num_instances; i++) {
  158. if (i == 0)
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  160. else
  161. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  162. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  163. if (err)
  164. goto out;
  165. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  166. if (err)
  167. goto out;
  168. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  169. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  170. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  171. if (adev->sdma.instance[i].feature_version >= 20)
  172. adev->sdma.instance[i].burst_nop = true;
  173. DRM_DEBUG("psp_load == '%s'\n",
  174. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  175. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  176. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  177. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  178. info->fw = adev->sdma.instance[i].fw;
  179. header = (const struct common_firmware_header *)info->fw->data;
  180. adev->firmware.fw_size +=
  181. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  182. }
  183. }
  184. out:
  185. if (err) {
  186. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  187. for (i = 0; i < adev->sdma.num_instances; i++) {
  188. release_firmware(adev->sdma.instance[i].fw);
  189. adev->sdma.instance[i].fw = NULL;
  190. }
  191. }
  192. return err;
  193. }
  194. /**
  195. * sdma_v4_0_ring_get_rptr - get the current read pointer
  196. *
  197. * @ring: amdgpu ring pointer
  198. *
  199. * Get the current rptr from the hardware (VEGA10+).
  200. */
  201. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  202. {
  203. u64 *rptr;
  204. /* XXX check if swapping is necessary on BE */
  205. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  206. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  207. return ((*rptr) >> 2);
  208. }
  209. /**
  210. * sdma_v4_0_ring_get_wptr - get the current write pointer
  211. *
  212. * @ring: amdgpu ring pointer
  213. *
  214. * Get the current wptr from the hardware (VEGA10+).
  215. */
  216. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  217. {
  218. struct amdgpu_device *adev = ring->adev;
  219. u64 *wptr = NULL;
  220. uint64_t local_wptr = 0;
  221. if (ring->use_doorbell) {
  222. /* XXX check if swapping is necessary on BE */
  223. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  224. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  225. *wptr = (*wptr) >> 2;
  226. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  227. } else {
  228. u32 lowbit, highbit;
  229. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  230. wptr = &local_wptr;
  231. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  232. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  233. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  234. me, highbit, lowbit);
  235. *wptr = highbit;
  236. *wptr = (*wptr) << 32;
  237. *wptr |= lowbit;
  238. }
  239. return *wptr;
  240. }
  241. /**
  242. * sdma_v4_0_ring_set_wptr - commit the write pointer
  243. *
  244. * @ring: amdgpu ring pointer
  245. *
  246. * Write the wptr back to the hardware (VEGA10+).
  247. */
  248. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  249. {
  250. struct amdgpu_device *adev = ring->adev;
  251. DRM_DEBUG("Setting write pointer\n");
  252. if (ring->use_doorbell) {
  253. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  254. DRM_DEBUG("Using doorbell -- "
  255. "wptr_offs == 0x%08x "
  256. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  257. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  258. ring->wptr_offs,
  259. lower_32_bits(ring->wptr << 2),
  260. upper_32_bits(ring->wptr << 2));
  261. /* XXX check if swapping is necessary on BE */
  262. WRITE_ONCE(*wb, (ring->wptr << 2));
  263. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  264. ring->doorbell_index, ring->wptr << 2);
  265. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  266. } else {
  267. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  268. DRM_DEBUG("Not using doorbell -- "
  269. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  270. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  271. me,
  272. lower_32_bits(ring->wptr << 2),
  273. me,
  274. upper_32_bits(ring->wptr << 2));
  275. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  276. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  277. }
  278. }
  279. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  280. {
  281. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  282. int i;
  283. for (i = 0; i < count; i++)
  284. if (sdma && sdma->burst_nop && (i == 0))
  285. amdgpu_ring_write(ring, ring->funcs->nop |
  286. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  287. else
  288. amdgpu_ring_write(ring, ring->funcs->nop);
  289. }
  290. /**
  291. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  292. *
  293. * @ring: amdgpu ring pointer
  294. * @ib: IB object to schedule
  295. *
  296. * Schedule an IB in the DMA ring (VEGA10).
  297. */
  298. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  299. struct amdgpu_ib *ib,
  300. unsigned vm_id, bool ctx_switch)
  301. {
  302. u32 vmid = vm_id & 0xf;
  303. /* IB packet must end on a 8 DW boundary */
  304. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  305. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  306. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  307. /* base must be 32 byte aligned */
  308. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  309. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  310. amdgpu_ring_write(ring, ib->length_dw);
  311. amdgpu_ring_write(ring, 0);
  312. amdgpu_ring_write(ring, 0);
  313. }
  314. /**
  315. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  316. *
  317. * @ring: amdgpu ring pointer
  318. *
  319. * Emit an hdp flush packet on the requested DMA ring.
  320. */
  321. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  322. {
  323. struct amdgpu_device *adev = ring->adev;
  324. u32 ref_and_mask = 0;
  325. const struct nbio_hdp_flush_reg *nbio_hf_reg;
  326. if (ring->adev->flags & AMD_IS_APU)
  327. nbio_hf_reg = &nbio_v7_0_hdp_flush_reg;
  328. else
  329. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  330. if (ring == &ring->adev->sdma.instance[0].ring)
  331. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  332. else
  333. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  334. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  335. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  336. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  337. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
  338. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
  339. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  340. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  341. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  342. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  343. }
  344. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  345. {
  346. struct amdgpu_device *adev = ring->adev;
  347. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  348. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  349. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_READ_CACHE_INVALIDATE));
  350. amdgpu_ring_write(ring, 1);
  351. }
  352. /**
  353. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  354. *
  355. * @ring: amdgpu ring pointer
  356. * @fence: amdgpu fence object
  357. *
  358. * Add a DMA fence packet to the ring to write
  359. * the fence seq number and DMA trap packet to generate
  360. * an interrupt if needed (VEGA10).
  361. */
  362. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  363. unsigned flags)
  364. {
  365. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  366. /* write the fence */
  367. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  368. /* zero in first two bits */
  369. BUG_ON(addr & 0x3);
  370. amdgpu_ring_write(ring, lower_32_bits(addr));
  371. amdgpu_ring_write(ring, upper_32_bits(addr));
  372. amdgpu_ring_write(ring, lower_32_bits(seq));
  373. /* optionally write high bits as well */
  374. if (write64bit) {
  375. addr += 4;
  376. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  377. /* zero in first two bits */
  378. BUG_ON(addr & 0x3);
  379. amdgpu_ring_write(ring, lower_32_bits(addr));
  380. amdgpu_ring_write(ring, upper_32_bits(addr));
  381. amdgpu_ring_write(ring, upper_32_bits(seq));
  382. }
  383. /* generate an interrupt */
  384. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  385. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  386. }
  387. /**
  388. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  389. *
  390. * @adev: amdgpu_device pointer
  391. *
  392. * Stop the gfx async dma ring buffers (VEGA10).
  393. */
  394. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  395. {
  396. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  397. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  398. u32 rb_cntl, ib_cntl;
  399. int i;
  400. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  401. (adev->mman.buffer_funcs_ring == sdma1))
  402. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  403. for (i = 0; i < adev->sdma.num_instances; i++) {
  404. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  405. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  406. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  407. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  408. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  409. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  410. }
  411. sdma0->ready = false;
  412. sdma1->ready = false;
  413. }
  414. /**
  415. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  416. *
  417. * @adev: amdgpu_device pointer
  418. *
  419. * Stop the compute async dma queues (VEGA10).
  420. */
  421. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  422. {
  423. /* XXX todo */
  424. }
  425. /**
  426. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  427. *
  428. * @adev: amdgpu_device pointer
  429. * @enable: enable/disable the DMA MEs context switch.
  430. *
  431. * Halt or unhalt the async dma engines context switch (VEGA10).
  432. */
  433. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  434. {
  435. u32 f32_cntl, phase_quantum = 0;
  436. int i;
  437. if (amdgpu_sdma_phase_quantum) {
  438. unsigned value = amdgpu_sdma_phase_quantum;
  439. unsigned unit = 0;
  440. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  441. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  442. value = (value + 1) >> 1;
  443. unit++;
  444. }
  445. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  446. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  447. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  448. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  449. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  450. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  451. WARN_ONCE(1,
  452. "clamping sdma_phase_quantum to %uK clock cycles\n",
  453. value << unit);
  454. }
  455. phase_quantum =
  456. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  457. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  458. }
  459. for (i = 0; i < adev->sdma.num_instances; i++) {
  460. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  461. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  462. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  463. if (enable && amdgpu_sdma_phase_quantum) {
  464. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  465. phase_quantum);
  466. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  467. phase_quantum);
  468. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  469. phase_quantum);
  470. }
  471. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  472. }
  473. }
  474. /**
  475. * sdma_v4_0_enable - stop the async dma engines
  476. *
  477. * @adev: amdgpu_device pointer
  478. * @enable: enable/disable the DMA MEs.
  479. *
  480. * Halt or unhalt the async dma engines (VEGA10).
  481. */
  482. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  483. {
  484. u32 f32_cntl;
  485. int i;
  486. if (enable == false) {
  487. sdma_v4_0_gfx_stop(adev);
  488. sdma_v4_0_rlc_stop(adev);
  489. }
  490. for (i = 0; i < adev->sdma.num_instances; i++) {
  491. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  492. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  493. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  494. }
  495. }
  496. /**
  497. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  498. *
  499. * @adev: amdgpu_device pointer
  500. *
  501. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  502. * Returns 0 for success, error for failure.
  503. */
  504. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  505. {
  506. struct amdgpu_ring *ring;
  507. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  508. u32 rb_bufsz;
  509. u32 wb_offset;
  510. u32 doorbell;
  511. u32 doorbell_offset;
  512. u32 temp;
  513. u64 wptr_gpu_addr;
  514. int i, r;
  515. for (i = 0; i < adev->sdma.num_instances; i++) {
  516. ring = &adev->sdma.instance[i].ring;
  517. wb_offset = (ring->rptr_offs * 4);
  518. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  519. /* Set ring buffer size in dwords */
  520. rb_bufsz = order_base_2(ring->ring_size / 4);
  521. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  522. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  523. #ifdef __BIG_ENDIAN
  524. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  525. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  526. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  527. #endif
  528. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  529. /* Initialize the ring buffer's read and write pointers */
  530. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  531. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  532. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  533. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  534. /* set the wb address whether it's enabled or not */
  535. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  536. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  537. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  538. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  539. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  540. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  541. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  542. ring->wptr = 0;
  543. /* before programing wptr to a less value, need set minor_ptr_update first */
  544. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  545. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  546. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  547. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  548. }
  549. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  550. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  551. if (ring->use_doorbell) {
  552. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  553. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  554. OFFSET, ring->doorbell_index);
  555. } else {
  556. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  557. }
  558. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  559. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  560. if (adev->flags & AMD_IS_APU)
  561. nbio_v7_0_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  562. else
  563. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  564. if (amdgpu_sriov_vf(adev))
  565. sdma_v4_0_ring_set_wptr(ring);
  566. /* set minor_ptr_update to 0 after wptr programed */
  567. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  568. /* set utc l1 enable flag always to 1 */
  569. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  570. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  571. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  572. if (!amdgpu_sriov_vf(adev)) {
  573. /* unhalt engine */
  574. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  575. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  576. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  577. }
  578. /* setup the wptr shadow polling */
  579. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  580. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  581. lower_32_bits(wptr_gpu_addr));
  582. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  583. upper_32_bits(wptr_gpu_addr));
  584. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  585. if (amdgpu_sriov_vf(adev))
  586. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  587. else
  588. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  589. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  590. /* enable DMA RB */
  591. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  592. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  593. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  594. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  595. #ifdef __BIG_ENDIAN
  596. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  597. #endif
  598. /* enable DMA IBs */
  599. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  600. ring->ready = true;
  601. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  602. sdma_v4_0_ctx_switch_enable(adev, true);
  603. sdma_v4_0_enable(adev, true);
  604. }
  605. r = amdgpu_ring_test_ring(ring);
  606. if (r) {
  607. ring->ready = false;
  608. return r;
  609. }
  610. if (adev->mman.buffer_funcs_ring == ring)
  611. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  612. }
  613. return 0;
  614. }
  615. static void
  616. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  617. {
  618. uint32_t def, data;
  619. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  620. /* disable idle interrupt */
  621. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  622. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  623. if (data != def)
  624. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  625. } else {
  626. /* disable idle interrupt */
  627. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  628. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  629. if (data != def)
  630. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  631. }
  632. }
  633. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  634. {
  635. uint32_t def, data;
  636. /* Enable HW based PG. */
  637. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  638. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  639. if (data != def)
  640. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  641. /* enable interrupt */
  642. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  643. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  644. if (data != def)
  645. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  646. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  647. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  648. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  649. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  650. /* Configure switch time for hysteresis purpose. Use default right now */
  651. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  652. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  653. if(data != def)
  654. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  655. }
  656. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  657. {
  658. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  659. return;
  660. switch (adev->asic_type) {
  661. case CHIP_RAVEN:
  662. sdma_v4_1_init_power_gating(adev);
  663. sdma_v4_1_update_power_gating(adev, true);
  664. break;
  665. default:
  666. break;
  667. }
  668. }
  669. /**
  670. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  671. *
  672. * @adev: amdgpu_device pointer
  673. *
  674. * Set up the compute DMA queues and enable them (VEGA10).
  675. * Returns 0 for success, error for failure.
  676. */
  677. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  678. {
  679. sdma_v4_0_init_pg(adev);
  680. return 0;
  681. }
  682. /**
  683. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  684. *
  685. * @adev: amdgpu_device pointer
  686. *
  687. * Loads the sDMA0/1 ucode.
  688. * Returns 0 for success, -EINVAL if the ucode is not available.
  689. */
  690. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  691. {
  692. const struct sdma_firmware_header_v1_0 *hdr;
  693. const __le32 *fw_data;
  694. u32 fw_size;
  695. int i, j;
  696. /* halt the MEs */
  697. sdma_v4_0_enable(adev, false);
  698. for (i = 0; i < adev->sdma.num_instances; i++) {
  699. if (!adev->sdma.instance[i].fw)
  700. return -EINVAL;
  701. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  702. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  703. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  704. fw_data = (const __le32 *)
  705. (adev->sdma.instance[i].fw->data +
  706. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  707. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  708. for (j = 0; j < fw_size; j++)
  709. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  710. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  711. }
  712. return 0;
  713. }
  714. /**
  715. * sdma_v4_0_start - setup and start the async dma engines
  716. *
  717. * @adev: amdgpu_device pointer
  718. *
  719. * Set up the DMA engines and enable them (VEGA10).
  720. * Returns 0 for success, error for failure.
  721. */
  722. static int sdma_v4_0_start(struct amdgpu_device *adev)
  723. {
  724. int r = 0;
  725. if (amdgpu_sriov_vf(adev)) {
  726. sdma_v4_0_ctx_switch_enable(adev, false);
  727. sdma_v4_0_enable(adev, false);
  728. /* set RB registers */
  729. r = sdma_v4_0_gfx_resume(adev);
  730. return r;
  731. }
  732. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  733. r = sdma_v4_0_load_microcode(adev);
  734. if (r)
  735. return r;
  736. }
  737. /* unhalt the MEs */
  738. sdma_v4_0_enable(adev, true);
  739. /* enable sdma ring preemption */
  740. sdma_v4_0_ctx_switch_enable(adev, true);
  741. /* start the gfx rings and rlc compute queues */
  742. r = sdma_v4_0_gfx_resume(adev);
  743. if (r)
  744. return r;
  745. r = sdma_v4_0_rlc_resume(adev);
  746. return r;
  747. }
  748. /**
  749. * sdma_v4_0_ring_test_ring - simple async dma engine test
  750. *
  751. * @ring: amdgpu_ring structure holding ring information
  752. *
  753. * Test the DMA engine by writing using it to write an
  754. * value to memory. (VEGA10).
  755. * Returns 0 for success, error for failure.
  756. */
  757. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  758. {
  759. struct amdgpu_device *adev = ring->adev;
  760. unsigned i;
  761. unsigned index;
  762. int r;
  763. u32 tmp;
  764. u64 gpu_addr;
  765. r = amdgpu_wb_get(adev, &index);
  766. if (r) {
  767. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  768. return r;
  769. }
  770. gpu_addr = adev->wb.gpu_addr + (index * 4);
  771. tmp = 0xCAFEDEAD;
  772. adev->wb.wb[index] = cpu_to_le32(tmp);
  773. r = amdgpu_ring_alloc(ring, 5);
  774. if (r) {
  775. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  776. amdgpu_wb_free(adev, index);
  777. return r;
  778. }
  779. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  780. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  781. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  782. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  783. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  784. amdgpu_ring_write(ring, 0xDEADBEEF);
  785. amdgpu_ring_commit(ring);
  786. for (i = 0; i < adev->usec_timeout; i++) {
  787. tmp = le32_to_cpu(adev->wb.wb[index]);
  788. if (tmp == 0xDEADBEEF)
  789. break;
  790. DRM_UDELAY(1);
  791. }
  792. if (i < adev->usec_timeout) {
  793. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  794. } else {
  795. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  796. ring->idx, tmp);
  797. r = -EINVAL;
  798. }
  799. amdgpu_wb_free(adev, index);
  800. return r;
  801. }
  802. /**
  803. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  804. *
  805. * @ring: amdgpu_ring structure holding ring information
  806. *
  807. * Test a simple IB in the DMA ring (VEGA10).
  808. * Returns 0 on success, error on failure.
  809. */
  810. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  811. {
  812. struct amdgpu_device *adev = ring->adev;
  813. struct amdgpu_ib ib;
  814. struct dma_fence *f = NULL;
  815. unsigned index;
  816. long r;
  817. u32 tmp = 0;
  818. u64 gpu_addr;
  819. r = amdgpu_wb_get(adev, &index);
  820. if (r) {
  821. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  822. return r;
  823. }
  824. gpu_addr = adev->wb.gpu_addr + (index * 4);
  825. tmp = 0xCAFEDEAD;
  826. adev->wb.wb[index] = cpu_to_le32(tmp);
  827. memset(&ib, 0, sizeof(ib));
  828. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  829. if (r) {
  830. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  831. goto err0;
  832. }
  833. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  834. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  835. ib.ptr[1] = lower_32_bits(gpu_addr);
  836. ib.ptr[2] = upper_32_bits(gpu_addr);
  837. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  838. ib.ptr[4] = 0xDEADBEEF;
  839. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  840. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  841. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  842. ib.length_dw = 8;
  843. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  844. if (r)
  845. goto err1;
  846. r = dma_fence_wait_timeout(f, false, timeout);
  847. if (r == 0) {
  848. DRM_ERROR("amdgpu: IB test timed out\n");
  849. r = -ETIMEDOUT;
  850. goto err1;
  851. } else if (r < 0) {
  852. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  853. goto err1;
  854. }
  855. tmp = le32_to_cpu(adev->wb.wb[index]);
  856. if (tmp == 0xDEADBEEF) {
  857. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  858. r = 0;
  859. } else {
  860. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  861. r = -EINVAL;
  862. }
  863. err1:
  864. amdgpu_ib_free(adev, &ib, NULL);
  865. dma_fence_put(f);
  866. err0:
  867. amdgpu_wb_free(adev, index);
  868. return r;
  869. }
  870. /**
  871. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  872. *
  873. * @ib: indirect buffer to fill with commands
  874. * @pe: addr of the page entry
  875. * @src: src addr to copy from
  876. * @count: number of page entries to update
  877. *
  878. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  879. */
  880. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  881. uint64_t pe, uint64_t src,
  882. unsigned count)
  883. {
  884. unsigned bytes = count * 8;
  885. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  886. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  887. ib->ptr[ib->length_dw++] = bytes - 1;
  888. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  889. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  890. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  891. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  892. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  893. }
  894. /**
  895. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  896. *
  897. * @ib: indirect buffer to fill with commands
  898. * @pe: addr of the page entry
  899. * @addr: dst addr to write into pe
  900. * @count: number of page entries to update
  901. * @incr: increase next addr by incr bytes
  902. * @flags: access flags
  903. *
  904. * Update PTEs by writing them manually using sDMA (VEGA10).
  905. */
  906. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  907. uint64_t value, unsigned count,
  908. uint32_t incr)
  909. {
  910. unsigned ndw = count * 2;
  911. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  912. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  913. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  914. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  915. ib->ptr[ib->length_dw++] = ndw - 1;
  916. for (; ndw > 0; ndw -= 2) {
  917. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  918. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  919. value += incr;
  920. }
  921. }
  922. /**
  923. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  924. *
  925. * @ib: indirect buffer to fill with commands
  926. * @pe: addr of the page entry
  927. * @addr: dst addr to write into pe
  928. * @count: number of page entries to update
  929. * @incr: increase next addr by incr bytes
  930. * @flags: access flags
  931. *
  932. * Update the page tables using sDMA (VEGA10).
  933. */
  934. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  935. uint64_t pe,
  936. uint64_t addr, unsigned count,
  937. uint32_t incr, uint64_t flags)
  938. {
  939. /* for physically contiguous pages (vram) */
  940. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  941. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  942. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  943. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  944. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  945. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  946. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  947. ib->ptr[ib->length_dw++] = incr; /* increment size */
  948. ib->ptr[ib->length_dw++] = 0;
  949. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  950. }
  951. /**
  952. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  953. *
  954. * @ib: indirect buffer to fill with padding
  955. *
  956. */
  957. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  958. {
  959. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  960. u32 pad_count;
  961. int i;
  962. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  963. for (i = 0; i < pad_count; i++)
  964. if (sdma && sdma->burst_nop && (i == 0))
  965. ib->ptr[ib->length_dw++] =
  966. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  967. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  968. else
  969. ib->ptr[ib->length_dw++] =
  970. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  971. }
  972. /**
  973. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  974. *
  975. * @ring: amdgpu_ring pointer
  976. *
  977. * Make sure all previous operations are completed (CIK).
  978. */
  979. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  980. {
  981. uint32_t seq = ring->fence_drv.sync_seq;
  982. uint64_t addr = ring->fence_drv.gpu_addr;
  983. /* wait for idle */
  984. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  985. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  986. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  987. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  988. amdgpu_ring_write(ring, addr & 0xfffffffc);
  989. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  990. amdgpu_ring_write(ring, seq); /* reference */
  991. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  992. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  993. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  994. }
  995. /**
  996. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  997. *
  998. * @ring: amdgpu_ring pointer
  999. * @vm: amdgpu_vm pointer
  1000. *
  1001. * Update the page table base and flush the VM TLB
  1002. * using sDMA (VEGA10).
  1003. */
  1004. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1005. unsigned vm_id, uint64_t pd_addr)
  1006. {
  1007. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  1008. uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
  1009. unsigned eng = ring->vm_inv_eng;
  1010. pd_addr = amdgpu_gart_get_vm_pde(ring->adev, pd_addr);
  1011. pd_addr |= AMDGPU_PTE_VALID;
  1012. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1013. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1014. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  1015. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  1016. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1017. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1018. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  1019. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  1020. /* flush TLB */
  1021. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1022. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1023. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  1024. amdgpu_ring_write(ring, req);
  1025. /* wait for flush */
  1026. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1027. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1028. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1029. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  1030. amdgpu_ring_write(ring, 0);
  1031. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  1032. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  1033. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1034. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1035. }
  1036. static int sdma_v4_0_early_init(void *handle)
  1037. {
  1038. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1039. if (adev->asic_type == CHIP_RAVEN)
  1040. adev->sdma.num_instances = 1;
  1041. else
  1042. adev->sdma.num_instances = 2;
  1043. sdma_v4_0_set_ring_funcs(adev);
  1044. sdma_v4_0_set_buffer_funcs(adev);
  1045. sdma_v4_0_set_vm_pte_funcs(adev);
  1046. sdma_v4_0_set_irq_funcs(adev);
  1047. return 0;
  1048. }
  1049. static int sdma_v4_0_sw_init(void *handle)
  1050. {
  1051. struct amdgpu_ring *ring;
  1052. int r, i;
  1053. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1054. /* SDMA trap event */
  1055. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  1056. &adev->sdma.trap_irq);
  1057. if (r)
  1058. return r;
  1059. /* SDMA trap event */
  1060. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  1061. &adev->sdma.trap_irq);
  1062. if (r)
  1063. return r;
  1064. r = sdma_v4_0_init_microcode(adev);
  1065. if (r) {
  1066. DRM_ERROR("Failed to load sdma firmware!\n");
  1067. return r;
  1068. }
  1069. for (i = 0; i < adev->sdma.num_instances; i++) {
  1070. ring = &adev->sdma.instance[i].ring;
  1071. ring->ring_obj = NULL;
  1072. ring->use_doorbell = true;
  1073. DRM_INFO("use_doorbell being set to: [%s]\n",
  1074. ring->use_doorbell?"true":"false");
  1075. ring->doorbell_index = (i == 0) ?
  1076. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1077. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1078. sprintf(ring->name, "sdma%d", i);
  1079. r = amdgpu_ring_init(adev, ring, 1024,
  1080. &adev->sdma.trap_irq,
  1081. (i == 0) ?
  1082. AMDGPU_SDMA_IRQ_TRAP0 :
  1083. AMDGPU_SDMA_IRQ_TRAP1);
  1084. if (r)
  1085. return r;
  1086. }
  1087. return r;
  1088. }
  1089. static int sdma_v4_0_sw_fini(void *handle)
  1090. {
  1091. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1092. int i;
  1093. for (i = 0; i < adev->sdma.num_instances; i++)
  1094. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1095. for (i = 0; i < adev->sdma.num_instances; i++) {
  1096. release_firmware(adev->sdma.instance[i].fw);
  1097. adev->sdma.instance[i].fw = NULL;
  1098. }
  1099. return 0;
  1100. }
  1101. static int sdma_v4_0_hw_init(void *handle)
  1102. {
  1103. int r;
  1104. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1105. sdma_v4_0_init_golden_registers(adev);
  1106. r = sdma_v4_0_start(adev);
  1107. return r;
  1108. }
  1109. static int sdma_v4_0_hw_fini(void *handle)
  1110. {
  1111. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1112. if (amdgpu_sriov_vf(adev))
  1113. return 0;
  1114. sdma_v4_0_ctx_switch_enable(adev, false);
  1115. sdma_v4_0_enable(adev, false);
  1116. return 0;
  1117. }
  1118. static int sdma_v4_0_suspend(void *handle)
  1119. {
  1120. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1121. return sdma_v4_0_hw_fini(adev);
  1122. }
  1123. static int sdma_v4_0_resume(void *handle)
  1124. {
  1125. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1126. return sdma_v4_0_hw_init(adev);
  1127. }
  1128. static bool sdma_v4_0_is_idle(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. u32 i;
  1132. for (i = 0; i < adev->sdma.num_instances; i++) {
  1133. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1134. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1135. return false;
  1136. }
  1137. return true;
  1138. }
  1139. static int sdma_v4_0_wait_for_idle(void *handle)
  1140. {
  1141. unsigned i;
  1142. u32 sdma0, sdma1;
  1143. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1144. for (i = 0; i < adev->usec_timeout; i++) {
  1145. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1146. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1147. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1148. return 0;
  1149. udelay(1);
  1150. }
  1151. return -ETIMEDOUT;
  1152. }
  1153. static int sdma_v4_0_soft_reset(void *handle)
  1154. {
  1155. /* todo */
  1156. return 0;
  1157. }
  1158. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1159. struct amdgpu_irq_src *source,
  1160. unsigned type,
  1161. enum amdgpu_interrupt_state state)
  1162. {
  1163. u32 sdma_cntl;
  1164. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1165. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1166. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1167. sdma_cntl = RREG32(reg_offset);
  1168. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1169. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1170. WREG32(reg_offset, sdma_cntl);
  1171. return 0;
  1172. }
  1173. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1174. struct amdgpu_irq_src *source,
  1175. struct amdgpu_iv_entry *entry)
  1176. {
  1177. DRM_DEBUG("IH: SDMA trap\n");
  1178. switch (entry->client_id) {
  1179. case AMDGPU_IH_CLIENTID_SDMA0:
  1180. switch (entry->ring_id) {
  1181. case 0:
  1182. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1183. break;
  1184. case 1:
  1185. /* XXX compute */
  1186. break;
  1187. case 2:
  1188. /* XXX compute */
  1189. break;
  1190. case 3:
  1191. /* XXX page queue*/
  1192. break;
  1193. }
  1194. break;
  1195. case AMDGPU_IH_CLIENTID_SDMA1:
  1196. switch (entry->ring_id) {
  1197. case 0:
  1198. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1199. break;
  1200. case 1:
  1201. /* XXX compute */
  1202. break;
  1203. case 2:
  1204. /* XXX compute */
  1205. break;
  1206. case 3:
  1207. /* XXX page queue*/
  1208. break;
  1209. }
  1210. break;
  1211. }
  1212. return 0;
  1213. }
  1214. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1215. struct amdgpu_irq_src *source,
  1216. struct amdgpu_iv_entry *entry)
  1217. {
  1218. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1219. schedule_work(&adev->reset_work);
  1220. return 0;
  1221. }
  1222. static void sdma_v4_0_update_medium_grain_clock_gating(
  1223. struct amdgpu_device *adev,
  1224. bool enable)
  1225. {
  1226. uint32_t data, def;
  1227. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1228. /* enable sdma0 clock gating */
  1229. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1230. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1231. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1232. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1233. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1234. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1235. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1236. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1237. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1238. if (def != data)
  1239. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1240. if (adev->asic_type == CHIP_VEGA10) {
  1241. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1242. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1243. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1244. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1245. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1246. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1247. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1248. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1249. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1250. if (def != data)
  1251. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1252. }
  1253. } else {
  1254. /* disable sdma0 clock gating */
  1255. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1256. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1257. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1258. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1259. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1260. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1261. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1262. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1263. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1264. if (def != data)
  1265. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1266. if (adev->asic_type == CHIP_VEGA10) {
  1267. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1268. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1269. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1270. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1271. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1272. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1273. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1274. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1275. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1276. if (def != data)
  1277. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1278. }
  1279. }
  1280. }
  1281. static void sdma_v4_0_update_medium_grain_light_sleep(
  1282. struct amdgpu_device *adev,
  1283. bool enable)
  1284. {
  1285. uint32_t data, def;
  1286. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1287. /* 1-not override: enable sdma0 mem light sleep */
  1288. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1289. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1290. if (def != data)
  1291. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1292. /* 1-not override: enable sdma1 mem light sleep */
  1293. if (adev->asic_type == CHIP_VEGA10) {
  1294. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1295. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1296. if (def != data)
  1297. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1298. }
  1299. } else {
  1300. /* 0-override:disable sdma0 mem light sleep */
  1301. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1302. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1303. if (def != data)
  1304. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1305. /* 0-override:disable sdma1 mem light sleep */
  1306. if (adev->asic_type == CHIP_VEGA10) {
  1307. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1308. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1309. if (def != data)
  1310. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1311. }
  1312. }
  1313. }
  1314. static int sdma_v4_0_set_clockgating_state(void *handle,
  1315. enum amd_clockgating_state state)
  1316. {
  1317. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1318. if (amdgpu_sriov_vf(adev))
  1319. return 0;
  1320. switch (adev->asic_type) {
  1321. case CHIP_VEGA10:
  1322. case CHIP_RAVEN:
  1323. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1324. state == AMD_CG_STATE_GATE ? true : false);
  1325. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1326. state == AMD_CG_STATE_GATE ? true : false);
  1327. break;
  1328. default:
  1329. break;
  1330. }
  1331. return 0;
  1332. }
  1333. static int sdma_v4_0_set_powergating_state(void *handle,
  1334. enum amd_powergating_state state)
  1335. {
  1336. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1337. switch (adev->asic_type) {
  1338. case CHIP_RAVEN:
  1339. sdma_v4_1_update_power_gating(adev,
  1340. state == AMD_PG_STATE_GATE ? true : false);
  1341. break;
  1342. default:
  1343. break;
  1344. }
  1345. return 0;
  1346. }
  1347. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1348. {
  1349. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1350. int data;
  1351. if (amdgpu_sriov_vf(adev))
  1352. *flags = 0;
  1353. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1354. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1355. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1356. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1357. /* AMD_CG_SUPPORT_SDMA_LS */
  1358. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1359. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1360. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1361. }
  1362. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1363. .name = "sdma_v4_0",
  1364. .early_init = sdma_v4_0_early_init,
  1365. .late_init = NULL,
  1366. .sw_init = sdma_v4_0_sw_init,
  1367. .sw_fini = sdma_v4_0_sw_fini,
  1368. .hw_init = sdma_v4_0_hw_init,
  1369. .hw_fini = sdma_v4_0_hw_fini,
  1370. .suspend = sdma_v4_0_suspend,
  1371. .resume = sdma_v4_0_resume,
  1372. .is_idle = sdma_v4_0_is_idle,
  1373. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1374. .soft_reset = sdma_v4_0_soft_reset,
  1375. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1376. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1377. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1378. };
  1379. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1380. .type = AMDGPU_RING_TYPE_SDMA,
  1381. .align_mask = 0xf,
  1382. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1383. .support_64bit_ptrs = true,
  1384. .vmhub = AMDGPU_MMHUB,
  1385. .get_rptr = sdma_v4_0_ring_get_rptr,
  1386. .get_wptr = sdma_v4_0_ring_get_wptr,
  1387. .set_wptr = sdma_v4_0_ring_set_wptr,
  1388. .emit_frame_size =
  1389. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1390. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1391. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1392. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1393. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1394. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1395. .emit_ib = sdma_v4_0_ring_emit_ib,
  1396. .emit_fence = sdma_v4_0_ring_emit_fence,
  1397. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1398. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1399. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1400. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1401. .test_ring = sdma_v4_0_ring_test_ring,
  1402. .test_ib = sdma_v4_0_ring_test_ib,
  1403. .insert_nop = sdma_v4_0_ring_insert_nop,
  1404. .pad_ib = sdma_v4_0_ring_pad_ib,
  1405. };
  1406. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1407. {
  1408. int i;
  1409. for (i = 0; i < adev->sdma.num_instances; i++)
  1410. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1411. }
  1412. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1413. .set = sdma_v4_0_set_trap_irq_state,
  1414. .process = sdma_v4_0_process_trap_irq,
  1415. };
  1416. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1417. .process = sdma_v4_0_process_illegal_inst_irq,
  1418. };
  1419. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1420. {
  1421. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1422. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1423. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1424. }
  1425. /**
  1426. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1427. *
  1428. * @ring: amdgpu_ring structure holding ring information
  1429. * @src_offset: src GPU address
  1430. * @dst_offset: dst GPU address
  1431. * @byte_count: number of bytes to xfer
  1432. *
  1433. * Copy GPU buffers using the DMA engine (VEGA10).
  1434. * Used by the amdgpu ttm implementation to move pages if
  1435. * registered as the asic copy callback.
  1436. */
  1437. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1438. uint64_t src_offset,
  1439. uint64_t dst_offset,
  1440. uint32_t byte_count)
  1441. {
  1442. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1443. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1444. ib->ptr[ib->length_dw++] = byte_count - 1;
  1445. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1446. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1447. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1448. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1449. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1450. }
  1451. /**
  1452. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1453. *
  1454. * @ring: amdgpu_ring structure holding ring information
  1455. * @src_data: value to write to buffer
  1456. * @dst_offset: dst GPU address
  1457. * @byte_count: number of bytes to xfer
  1458. *
  1459. * Fill GPU buffers using the DMA engine (VEGA10).
  1460. */
  1461. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1462. uint32_t src_data,
  1463. uint64_t dst_offset,
  1464. uint32_t byte_count)
  1465. {
  1466. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1467. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1468. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1469. ib->ptr[ib->length_dw++] = src_data;
  1470. ib->ptr[ib->length_dw++] = byte_count - 1;
  1471. }
  1472. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1473. .copy_max_bytes = 0x400000,
  1474. .copy_num_dw = 7,
  1475. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1476. .fill_max_bytes = 0x400000,
  1477. .fill_num_dw = 5,
  1478. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1479. };
  1480. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1481. {
  1482. if (adev->mman.buffer_funcs == NULL) {
  1483. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1484. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1485. }
  1486. }
  1487. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1488. .copy_pte_num_dw = 7,
  1489. .copy_pte = sdma_v4_0_vm_copy_pte,
  1490. .write_pte = sdma_v4_0_vm_write_pte,
  1491. .set_max_nums_pte_pde = 0x400000 >> 3,
  1492. .set_pte_pde_num_dw = 10,
  1493. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1494. };
  1495. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1496. {
  1497. unsigned i;
  1498. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1499. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1500. for (i = 0; i < adev->sdma.num_instances; i++)
  1501. adev->vm_manager.vm_pte_rings[i] =
  1502. &adev->sdma.instance[i].ring;
  1503. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1504. }
  1505. }
  1506. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1507. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1508. .major = 4,
  1509. .minor = 0,
  1510. .rev = 0,
  1511. .funcs = &sdma_v4_0_ip_funcs,
  1512. };