sdma_v4_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "soc15_common.h"
  37. #include "soc15.h"
  38. #include "vega10_sdma_pkt_open.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  45. static const u32 golden_settings_sdma_4[] =
  46. {
  47. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  48. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  49. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  50. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  58. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  59. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  60. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  61. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  62. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  70. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  71. };
  72. static const u32 golden_settings_sdma_vg10[] =
  73. {
  74. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  75. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  76. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  77. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  78. };
  79. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  80. {
  81. u32 base = 0;
  82. switch (instance) {
  83. case 0:
  84. base = SDMA0_BASE.instance[0].segment[0];
  85. break;
  86. case 1:
  87. base = SDMA1_BASE.instance[0].segment[0];
  88. break;
  89. default:
  90. BUG();
  91. break;
  92. }
  93. return base + internal_offset;
  94. }
  95. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  96. {
  97. switch (adev->asic_type) {
  98. case CHIP_VEGA10:
  99. amdgpu_program_register_sequence(adev,
  100. golden_settings_sdma_4,
  101. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  102. amdgpu_program_register_sequence(adev,
  103. golden_settings_sdma_vg10,
  104. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  105. break;
  106. default:
  107. break;
  108. }
  109. }
  110. static void sdma_v4_0_print_ucode_regs(void *handle)
  111. {
  112. int i;
  113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  114. dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
  115. for (i = 0; i < adev->sdma.num_instances; i++) {
  116. dev_info(adev->dev, " SDMA%d_UCODE_ADDR=0x%08X\n",
  117. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
  118. dev_info(adev->dev, " SDMA%d_UCODE_CHECKSUM=0x%08X\n",
  119. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
  120. }
  121. }
  122. /**
  123. * sdma_v4_0_init_microcode - load ucode images from disk
  124. *
  125. * @adev: amdgpu_device pointer
  126. *
  127. * Use the firmware interface to load the ucode images into
  128. * the driver (not loaded into hw).
  129. * Returns 0 on success, error on failure.
  130. */
  131. // emulation only, won't work on real chip
  132. // vega10 real chip need to use PSP to load firmware
  133. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  134. {
  135. const char *chip_name;
  136. char fw_name[30];
  137. int err = 0, i;
  138. struct amdgpu_firmware_info *info = NULL;
  139. const struct common_firmware_header *header = NULL;
  140. const struct sdma_firmware_header_v1_0 *hdr;
  141. DRM_DEBUG("\n");
  142. switch (adev->asic_type) {
  143. case CHIP_VEGA10:
  144. chip_name = "vega10";
  145. break;
  146. default: BUG();
  147. }
  148. for (i = 0; i < adev->sdma.num_instances; i++) {
  149. if (i == 0)
  150. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  151. else
  152. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  153. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  154. if (err)
  155. goto out;
  156. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  157. if (err)
  158. goto out;
  159. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  160. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  161. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  162. if (adev->sdma.instance[i].feature_version >= 20)
  163. adev->sdma.instance[i].burst_nop = true;
  164. DRM_DEBUG("psp_load == '%s'\n",
  165. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP? "true": "false");
  166. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  167. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  168. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  169. info->fw = adev->sdma.instance[i].fw;
  170. header = (const struct common_firmware_header *)info->fw->data;
  171. adev->firmware.fw_size +=
  172. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  173. }
  174. }
  175. out:
  176. if (err) {
  177. printk(KERN_ERR
  178. "sdma_v4_0: Failed to load firmware \"%s\"\n",
  179. fw_name);
  180. for (i = 0; i < adev->sdma.num_instances; i++) {
  181. release_firmware(adev->sdma.instance[i].fw);
  182. adev->sdma.instance[i].fw = NULL;
  183. }
  184. }
  185. return err;
  186. }
  187. /**
  188. * sdma_v4_0_ring_get_rptr - get the current read pointer
  189. *
  190. * @ring: amdgpu ring pointer
  191. *
  192. * Get the current rptr from the hardware (VEGA10+).
  193. */
  194. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  195. {
  196. u64* rptr;
  197. /* XXX check if swapping is necessary on BE */
  198. rptr =((u64*)&ring->adev->wb.wb[ring->rptr_offs]);
  199. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  200. return ((*rptr) >> 2);
  201. }
  202. /**
  203. * sdma_v4_0_ring_get_wptr - get the current write pointer
  204. *
  205. * @ring: amdgpu ring pointer
  206. *
  207. * Get the current wptr from the hardware (VEGA10+).
  208. */
  209. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  210. {
  211. struct amdgpu_device *adev = ring->adev;
  212. u64* wptr = NULL;
  213. uint64_t local_wptr=0;
  214. if (ring->use_doorbell) {
  215. /* XXX check if swapping is necessary on BE */
  216. wptr = ((u64*)&adev->wb.wb[ring->wptr_offs]);
  217. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  218. *wptr = (*wptr) >> 2;
  219. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  220. } else {
  221. u32 lowbit, highbit;
  222. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  223. wptr=&local_wptr;
  224. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  225. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  226. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  227. me, highbit, lowbit);
  228. *wptr = highbit;
  229. *wptr = (*wptr) << 32;
  230. *wptr |= lowbit;
  231. }
  232. return *wptr;
  233. }
  234. /**
  235. * sdma_v4_0_ring_set_wptr - commit the write pointer
  236. *
  237. * @ring: amdgpu ring pointer
  238. *
  239. * Write the wptr back to the hardware (VEGA10+).
  240. */
  241. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  242. {
  243. struct amdgpu_device *adev = ring->adev;
  244. DRM_DEBUG("Setting write pointer\n");
  245. if (ring->use_doorbell) {
  246. DRM_DEBUG("Using doorbell -- "
  247. "wptr_offs == 0x%08x "
  248. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  249. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  250. ring->wptr_offs,
  251. lower_32_bits(ring->wptr << 2),
  252. upper_32_bits(ring->wptr << 2));
  253. /* XXX check if swapping is necessary on BE */
  254. adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
  255. adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
  256. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  257. ring->doorbell_index, ring->wptr << 2);
  258. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  259. } else {
  260. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  261. DRM_DEBUG("Not using doorbell -- "
  262. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  263. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x \n",
  264. me,
  265. me,
  266. lower_32_bits(ring->wptr << 2),
  267. upper_32_bits(ring->wptr << 2));
  268. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  269. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  270. }
  271. }
  272. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  273. {
  274. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  275. int i;
  276. for (i = 0; i < count; i++)
  277. if (sdma && sdma->burst_nop && (i == 0))
  278. amdgpu_ring_write(ring, ring->funcs->nop |
  279. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  280. else
  281. amdgpu_ring_write(ring, ring->funcs->nop);
  282. }
  283. /**
  284. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  285. *
  286. * @ring: amdgpu ring pointer
  287. * @ib: IB object to schedule
  288. *
  289. * Schedule an IB in the DMA ring (VEGA10).
  290. */
  291. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  292. struct amdgpu_ib *ib,
  293. unsigned vm_id, bool ctx_switch)
  294. {
  295. u32 vmid = vm_id & 0xf;
  296. /* IB packet must end on a 8 DW boundary */
  297. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  298. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  299. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  300. /* base must be 32 byte aligned */
  301. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  302. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  303. amdgpu_ring_write(ring, ib->length_dw);
  304. amdgpu_ring_write(ring, 0);
  305. amdgpu_ring_write(ring, 0);
  306. }
  307. /**
  308. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Emit an hdp flush packet on the requested DMA ring.
  313. */
  314. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  315. {
  316. u32 ref_and_mask = 0;
  317. struct nbio_hdp_flush_reg *nbio_hf_reg;
  318. if (ring->adev->asic_type == CHIP_VEGA10)
  319. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  320. if (ring == &ring->adev->sdma.instance[0].ring)
  321. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  322. else
  323. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  324. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  325. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  326. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  327. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  328. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  329. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  330. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  331. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  332. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  333. }
  334. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  335. {
  336. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  337. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  338. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  339. amdgpu_ring_write(ring, 1);
  340. }
  341. /**
  342. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  343. *
  344. * @ring: amdgpu ring pointer
  345. * @fence: amdgpu fence object
  346. *
  347. * Add a DMA fence packet to the ring to write
  348. * the fence seq number and DMA trap packet to generate
  349. * an interrupt if needed (VEGA10).
  350. */
  351. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  352. unsigned flags)
  353. {
  354. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  355. /* write the fence */
  356. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  357. /* zero in first two bits */
  358. BUG_ON(addr & 0x3);
  359. amdgpu_ring_write(ring, lower_32_bits(addr));
  360. amdgpu_ring_write(ring, upper_32_bits(addr));
  361. amdgpu_ring_write(ring, lower_32_bits(seq));
  362. /* optionally write high bits as well */
  363. if (write64bit) {
  364. addr += 4;
  365. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  366. /* zero in first two bits */
  367. BUG_ON(addr & 0x3);
  368. amdgpu_ring_write(ring, lower_32_bits(addr));
  369. amdgpu_ring_write(ring, upper_32_bits(addr));
  370. amdgpu_ring_write(ring, upper_32_bits(seq));
  371. }
  372. /* generate an interrupt */
  373. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  374. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  375. }
  376. /**
  377. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  378. *
  379. * @adev: amdgpu_device pointer
  380. *
  381. * Stop the gfx async dma ring buffers (VEGA10).
  382. */
  383. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  384. {
  385. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  386. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  387. u32 rb_cntl, ib_cntl;
  388. int i;
  389. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  390. (adev->mman.buffer_funcs_ring == sdma1))
  391. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  392. for (i = 0; i < adev->sdma.num_instances; i++) {
  393. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  394. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  395. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  396. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  397. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  398. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  399. }
  400. sdma0->ready = false;
  401. sdma1->ready = false;
  402. }
  403. /**
  404. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  405. *
  406. * @adev: amdgpu_device pointer
  407. *
  408. * Stop the compute async dma queues (VEGA10).
  409. */
  410. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  411. {
  412. /* XXX todo */
  413. }
  414. /**
  415. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  416. *
  417. * @adev: amdgpu_device pointer
  418. * @enable: enable/disable the DMA MEs context switch.
  419. *
  420. * Halt or unhalt the async dma engines context switch (VEGA10).
  421. */
  422. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  423. {
  424. u32 f32_cntl;
  425. int i;
  426. for (i = 0; i < adev->sdma.num_instances; i++) {
  427. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  428. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  429. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  430. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  431. }
  432. }
  433. /**
  434. * sdma_v4_0_enable - stop the async dma engines
  435. *
  436. * @adev: amdgpu_device pointer
  437. * @enable: enable/disable the DMA MEs.
  438. *
  439. * Halt or unhalt the async dma engines (VEGA10).
  440. */
  441. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  442. {
  443. u32 f32_cntl;
  444. int i;
  445. if (enable == false) {
  446. sdma_v4_0_gfx_stop(adev);
  447. sdma_v4_0_rlc_stop(adev);
  448. }
  449. for (i = 0; i < adev->sdma.num_instances; i++) {
  450. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  451. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  452. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  453. }
  454. }
  455. /**
  456. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  461. * Returns 0 for success, error for failure.
  462. */
  463. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  464. {
  465. struct amdgpu_ring *ring;
  466. u32 rb_cntl, ib_cntl;
  467. u32 rb_bufsz;
  468. u32 wb_offset;
  469. u32 doorbell;
  470. u32 doorbell_offset;
  471. u32 temp;
  472. int i,r;
  473. for (i = 0; i < adev->sdma.num_instances; i++) {
  474. ring = &adev->sdma.instance[i].ring;
  475. wb_offset = (ring->rptr_offs * 4);
  476. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  477. /* Set ring buffer size in dwords */
  478. rb_bufsz = order_base_2(ring->ring_size / 4);
  479. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  480. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  481. #ifdef __BIG_ENDIAN
  482. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  483. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  484. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  485. #endif
  486. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  487. /* Initialize the ring buffer's read and write pointers */
  488. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  489. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  490. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  491. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  492. /* set the wb address whether it's enabled or not */
  493. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  494. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  495. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  496. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  497. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  498. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  499. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  500. ring->wptr = 0;
  501. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  502. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  503. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  504. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  505. if (ring->use_doorbell){
  506. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  507. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  508. OFFSET, ring->doorbell_index);
  509. } else {
  510. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  511. }
  512. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  513. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  514. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  515. /* set utc l1 enable flag always to 1 */
  516. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  517. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  518. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  519. /* unhalt engine */
  520. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  521. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  522. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  523. /* enable DMA RB */
  524. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  525. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  526. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  527. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  528. #ifdef __BIG_ENDIAN
  529. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  530. #endif
  531. /* enable DMA IBs */
  532. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  533. ring->ready = true;
  534. r = amdgpu_ring_test_ring(ring);
  535. if (r) {
  536. ring->ready = false;
  537. return r;
  538. }
  539. if (adev->mman.buffer_funcs_ring == ring)
  540. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  541. }
  542. return 0;
  543. }
  544. /**
  545. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  546. *
  547. * @adev: amdgpu_device pointer
  548. *
  549. * Set up the compute DMA queues and enable them (VEGA10).
  550. * Returns 0 for success, error for failure.
  551. */
  552. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  553. {
  554. /* XXX todo */
  555. return 0;
  556. }
  557. /**
  558. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  559. *
  560. * @adev: amdgpu_device pointer
  561. *
  562. * Loads the sDMA0/1 ucode.
  563. * Returns 0 for success, -EINVAL if the ucode is not available.
  564. */
  565. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  566. {
  567. const struct sdma_firmware_header_v1_0 *hdr;
  568. const __le32 *fw_data;
  569. u32 fw_size;
  570. u32 digest_size = 0;
  571. int i, j;
  572. /* halt the MEs */
  573. sdma_v4_0_enable(adev, false);
  574. for (i = 0; i < adev->sdma.num_instances; i++) {
  575. uint16_t version_major;
  576. uint16_t version_minor;
  577. if (!adev->sdma.instance[i].fw)
  578. return -EINVAL;
  579. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  580. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  581. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  582. version_major = le16_to_cpu(hdr->header.header_version_major);
  583. version_minor = le16_to_cpu(hdr->header.header_version_minor);
  584. if (version_major == 1 && version_minor >= 1) {
  585. const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
  586. digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
  587. }
  588. fw_size -= digest_size;
  589. fw_data = (const __le32 *)
  590. (adev->sdma.instance[i].fw->data +
  591. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  592. sdma_v4_0_print_ucode_regs(adev);
  593. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  594. for (j = 0; j < fw_size; j++)
  595. {
  596. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  597. }
  598. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  599. }
  600. sdma_v4_0_print_ucode_regs(adev);
  601. return 0;
  602. }
  603. /**
  604. * sdma_v4_0_start - setup and start the async dma engines
  605. *
  606. * @adev: amdgpu_device pointer
  607. *
  608. * Set up the DMA engines and enable them (VEGA10).
  609. * Returns 0 for success, error for failure.
  610. */
  611. static int sdma_v4_0_start(struct amdgpu_device *adev)
  612. {
  613. int r;
  614. if (amdgpu_sriov_vf(adev)) {
  615. /* disable RB and halt engine */
  616. sdma_v4_0_enable(adev, false);
  617. /* set RB registers */
  618. r = sdma_v4_0_gfx_resume(adev);
  619. return r;
  620. }
  621. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  622. DRM_INFO("Loading via direct write\n");
  623. r = sdma_v4_0_load_microcode(adev);
  624. if (r)
  625. return r;
  626. }
  627. /* unhalt the MEs */
  628. sdma_v4_0_enable(adev, true);
  629. /* enable sdma ring preemption */
  630. sdma_v4_0_ctx_switch_enable(adev, true);
  631. /* start the gfx rings and rlc compute queues */
  632. r = sdma_v4_0_gfx_resume(adev);
  633. if (r)
  634. return r;
  635. r = sdma_v4_0_rlc_resume(adev);
  636. if (r)
  637. return r;
  638. return 0;
  639. }
  640. /**
  641. * sdma_v4_0_ring_test_ring - simple async dma engine test
  642. *
  643. * @ring: amdgpu_ring structure holding ring information
  644. *
  645. * Test the DMA engine by writing using it to write an
  646. * value to memory. (VEGA10).
  647. * Returns 0 for success, error for failure.
  648. */
  649. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  650. {
  651. struct amdgpu_device *adev = ring->adev;
  652. unsigned i;
  653. unsigned index;
  654. int r;
  655. u32 tmp;
  656. u64 gpu_addr;
  657. DRM_INFO("In Ring test func\n");
  658. r = amdgpu_wb_get(adev, &index);
  659. if (r) {
  660. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  661. return r;
  662. }
  663. gpu_addr = adev->wb.gpu_addr + (index * 4);
  664. tmp = 0xCAFEDEAD;
  665. adev->wb.wb[index] = cpu_to_le32(tmp);
  666. r = amdgpu_ring_alloc(ring, 5);
  667. if (r) {
  668. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  669. amdgpu_wb_free(adev, index);
  670. return r;
  671. }
  672. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  673. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  674. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  675. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  676. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  677. amdgpu_ring_write(ring, 0xDEADBEEF);
  678. amdgpu_ring_commit(ring);
  679. for (i = 0; i < adev->usec_timeout; i++) {
  680. tmp = le32_to_cpu(adev->wb.wb[index]);
  681. if (tmp == 0xDEADBEEF) {
  682. break;
  683. }
  684. DRM_UDELAY(1);
  685. }
  686. if (i < adev->usec_timeout) {
  687. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  688. } else {
  689. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  690. ring->idx, tmp);
  691. r = -EINVAL;
  692. }
  693. amdgpu_wb_free(adev, index);
  694. return r;
  695. }
  696. /**
  697. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  698. *
  699. * @ring: amdgpu_ring structure holding ring information
  700. *
  701. * Test a simple IB in the DMA ring (VEGA10).
  702. * Returns 0 on success, error on failure.
  703. */
  704. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  705. {
  706. struct amdgpu_device *adev = ring->adev;
  707. struct amdgpu_ib ib;
  708. struct dma_fence *f = NULL;
  709. unsigned index;
  710. long r;
  711. u32 tmp = 0;
  712. u64 gpu_addr;
  713. r = amdgpu_wb_get(adev, &index);
  714. if (r) {
  715. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  716. return r;
  717. }
  718. gpu_addr = adev->wb.gpu_addr + (index * 4);
  719. tmp = 0xCAFEDEAD;
  720. adev->wb.wb[index] = cpu_to_le32(tmp);
  721. memset(&ib, 0, sizeof(ib));
  722. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  723. if (r) {
  724. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  725. goto err0;
  726. }
  727. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  728. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  729. ib.ptr[1] = lower_32_bits(gpu_addr);
  730. ib.ptr[2] = upper_32_bits(gpu_addr);
  731. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  732. ib.ptr[4] = 0xDEADBEEF;
  733. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  734. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  735. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  736. ib.length_dw = 8;
  737. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  738. if (r)
  739. goto err1;
  740. r = dma_fence_wait_timeout(f, false, timeout);
  741. if (r == 0) {
  742. DRM_ERROR("amdgpu: IB test timed out\n");
  743. r = -ETIMEDOUT;
  744. goto err1;
  745. } else if (r < 0) {
  746. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  747. goto err1;
  748. }
  749. tmp = le32_to_cpu(adev->wb.wb[index]);
  750. if (tmp == 0xDEADBEEF) {
  751. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  752. r = 0;
  753. } else {
  754. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  755. r = -EINVAL;
  756. }
  757. err1:
  758. amdgpu_ib_free(adev, &ib, NULL);
  759. dma_fence_put(f);
  760. err0:
  761. amdgpu_wb_free(adev, index);
  762. return r;
  763. }
  764. /**
  765. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  766. *
  767. * @ib: indirect buffer to fill with commands
  768. * @pe: addr of the page entry
  769. * @src: src addr to copy from
  770. * @count: number of page entries to update
  771. *
  772. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  773. */
  774. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  775. uint64_t pe, uint64_t src,
  776. unsigned count)
  777. {
  778. unsigned bytes = count * 8;
  779. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  780. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  781. ib->ptr[ib->length_dw++] = bytes - 1;
  782. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  783. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  784. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  785. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  786. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  787. }
  788. /**
  789. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  790. *
  791. * @ib: indirect buffer to fill with commands
  792. * @pe: addr of the page entry
  793. * @addr: dst addr to write into pe
  794. * @count: number of page entries to update
  795. * @incr: increase next addr by incr bytes
  796. * @flags: access flags
  797. *
  798. * Update PTEs by writing them manually using sDMA (VEGA10).
  799. */
  800. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  801. uint64_t value, unsigned count,
  802. uint32_t incr)
  803. {
  804. unsigned ndw = count * 2;
  805. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  806. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  807. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  808. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  809. ib->ptr[ib->length_dw++] = ndw - 1;
  810. for (; ndw > 0; ndw -= 2) {
  811. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  812. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  813. value += incr;
  814. }
  815. }
  816. /**
  817. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  818. *
  819. * @ib: indirect buffer to fill with commands
  820. * @pe: addr of the page entry
  821. * @addr: dst addr to write into pe
  822. * @count: number of page entries to update
  823. * @incr: increase next addr by incr bytes
  824. * @flags: access flags
  825. *
  826. * Update the page tables using sDMA (VEGA10).
  827. */
  828. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  829. uint64_t pe,
  830. uint64_t addr, unsigned count,
  831. uint32_t incr, uint64_t flags)
  832. {
  833. /* for physically contiguous pages (vram) */
  834. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  835. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  836. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  837. ib->ptr[ib->length_dw++] = flags; /* mask */
  838. ib->ptr[ib->length_dw++] = 0;
  839. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  840. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  841. ib->ptr[ib->length_dw++] = incr; /* increment size */
  842. ib->ptr[ib->length_dw++] = 0;
  843. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  844. }
  845. /**
  846. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  847. *
  848. * @ib: indirect buffer to fill with padding
  849. *
  850. */
  851. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  852. {
  853. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  854. u32 pad_count;
  855. int i;
  856. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  857. for (i = 0; i < pad_count; i++)
  858. if (sdma && sdma->burst_nop && (i == 0))
  859. ib->ptr[ib->length_dw++] =
  860. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  861. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  862. else
  863. ib->ptr[ib->length_dw++] =
  864. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  865. }
  866. /**
  867. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  868. *
  869. * @ring: amdgpu_ring pointer
  870. *
  871. * Make sure all previous operations are completed (CIK).
  872. */
  873. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  874. {
  875. uint32_t seq = ring->fence_drv.sync_seq;
  876. uint64_t addr = ring->fence_drv.gpu_addr;
  877. /* wait for idle */
  878. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  879. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  880. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  881. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  882. amdgpu_ring_write(ring, addr & 0xfffffffc);
  883. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  884. amdgpu_ring_write(ring, seq); /* reference */
  885. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  886. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  887. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  888. }
  889. /**
  890. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  891. *
  892. * @ring: amdgpu_ring pointer
  893. * @vm: amdgpu_vm pointer
  894. *
  895. * Update the page table base and flush the VM TLB
  896. * using sDMA (VEGA10).
  897. */
  898. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  899. unsigned vm_id, uint64_t pd_addr)
  900. {
  901. unsigned eng = ring->idx;
  902. unsigned i;
  903. pd_addr = pd_addr | 0x1; /* valid bit */
  904. /* now only use physical base address of PDE and valid */
  905. BUG_ON(pd_addr & 0xFFFF00000000003EULL);
  906. for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
  907. struct amdgpu_vmhub *hub = &ring->adev->vmhub[i];
  908. uint32_t req = hub->get_invalidate_req(vm_id);
  909. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  910. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  911. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  912. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  913. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  914. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  915. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  916. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  917. /* flush TLB */
  918. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  919. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  920. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  921. amdgpu_ring_write(ring, req);
  922. /* wait for flush */
  923. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  924. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  925. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  926. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  927. amdgpu_ring_write(ring, 0);
  928. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  929. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  930. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  931. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  932. }
  933. }
  934. static int sdma_v4_0_early_init(void *handle)
  935. {
  936. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  937. adev->sdma.num_instances = 2;
  938. sdma_v4_0_set_ring_funcs(adev);
  939. sdma_v4_0_set_buffer_funcs(adev);
  940. sdma_v4_0_set_vm_pte_funcs(adev);
  941. sdma_v4_0_set_irq_funcs(adev);
  942. return 0;
  943. }
  944. static int sdma_v4_0_sw_init(void *handle)
  945. {
  946. struct amdgpu_ring *ring;
  947. int r, i;
  948. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  949. /* SDMA trap event */
  950. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  951. &adev->sdma.trap_irq);
  952. if (r)
  953. return r;
  954. /* SDMA trap event */
  955. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  956. &adev->sdma.trap_irq);
  957. if (r)
  958. return r;
  959. r = sdma_v4_0_init_microcode(adev);
  960. if (r) {
  961. DRM_ERROR("Failed to load sdma firmware!\n");
  962. return r;
  963. }
  964. for (i = 0; i < adev->sdma.num_instances; i++) {
  965. ring = &adev->sdma.instance[i].ring;
  966. ring->ring_obj = NULL;
  967. ring->use_doorbell = true;
  968. DRM_INFO("use_doorbell being set to: [%s]\n",
  969. ring->use_doorbell?"true":"false");
  970. ring->doorbell_index = (i == 0) ?
  971. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  972. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  973. sprintf(ring->name, "sdma%d", i);
  974. r = amdgpu_ring_init(adev, ring, 1024,
  975. &adev->sdma.trap_irq,
  976. (i == 0) ?
  977. AMDGPU_SDMA_IRQ_TRAP0 :
  978. AMDGPU_SDMA_IRQ_TRAP1);
  979. if (r)
  980. return r;
  981. }
  982. return r;
  983. }
  984. static int sdma_v4_0_sw_fini(void *handle)
  985. {
  986. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  987. int i;
  988. for (i = 0; i < adev->sdma.num_instances; i++)
  989. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  990. return 0;
  991. }
  992. static int sdma_v4_0_hw_init(void *handle)
  993. {
  994. int r;
  995. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  996. sdma_v4_0_init_golden_registers(adev);
  997. r = sdma_v4_0_start(adev);
  998. if (r)
  999. return r;
  1000. return r;
  1001. }
  1002. static int sdma_v4_0_hw_fini(void *handle)
  1003. {
  1004. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1005. sdma_v4_0_ctx_switch_enable(adev, false);
  1006. sdma_v4_0_enable(adev, false);
  1007. return 0;
  1008. }
  1009. static int sdma_v4_0_suspend(void *handle)
  1010. {
  1011. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1012. return sdma_v4_0_hw_fini(adev);
  1013. }
  1014. static int sdma_v4_0_resume(void *handle)
  1015. {
  1016. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1017. return sdma_v4_0_hw_init(adev);
  1018. }
  1019. static bool sdma_v4_0_is_idle(void *handle)
  1020. {
  1021. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1022. u32 i;
  1023. for (i = 0; i < adev->sdma.num_instances; i++) {
  1024. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1025. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1026. return false;
  1027. }
  1028. return true;
  1029. }
  1030. static int sdma_v4_0_wait_for_idle(void *handle)
  1031. {
  1032. unsigned i;
  1033. u32 sdma0,sdma1;
  1034. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1035. for (i = 0; i < adev->usec_timeout; i++) {
  1036. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1037. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1038. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1039. return 0;
  1040. udelay(1);
  1041. }
  1042. return -ETIMEDOUT;
  1043. }
  1044. static int sdma_v4_0_soft_reset(void *handle)
  1045. {
  1046. /* todo */
  1047. return 0;
  1048. }
  1049. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1050. struct amdgpu_irq_src *source,
  1051. unsigned type,
  1052. enum amdgpu_interrupt_state state)
  1053. {
  1054. u32 sdma_cntl;
  1055. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1056. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1057. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1058. sdma_cntl = RREG32(reg_offset);
  1059. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1060. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1061. WREG32(reg_offset, sdma_cntl);
  1062. return 0;
  1063. }
  1064. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1065. struct amdgpu_irq_src *source,
  1066. struct amdgpu_iv_entry *entry)
  1067. {
  1068. DRM_DEBUG("IH: SDMA trap\n");
  1069. switch (entry->client_id) {
  1070. case AMDGPU_IH_CLIENTID_SDMA0:
  1071. switch (entry->ring_id) {
  1072. case 0:
  1073. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1074. break;
  1075. case 1:
  1076. /* XXX compute */
  1077. break;
  1078. case 2:
  1079. /* XXX compute */
  1080. break;
  1081. case 3:
  1082. /* XXX page queue*/
  1083. break;
  1084. }
  1085. break;
  1086. case AMDGPU_IH_CLIENTID_SDMA1:
  1087. switch (entry->ring_id) {
  1088. case 0:
  1089. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1090. break;
  1091. case 1:
  1092. /* XXX compute */
  1093. break;
  1094. case 2:
  1095. /* XXX compute */
  1096. break;
  1097. case 3:
  1098. /* XXX page queue*/
  1099. break;
  1100. }
  1101. break;
  1102. }
  1103. return 0;
  1104. }
  1105. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1106. struct amdgpu_irq_src *source,
  1107. struct amdgpu_iv_entry *entry)
  1108. {
  1109. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1110. schedule_work(&adev->reset_work);
  1111. return 0;
  1112. }
  1113. static void sdma_v4_0_update_medium_grain_clock_gating(
  1114. struct amdgpu_device *adev,
  1115. bool enable)
  1116. {
  1117. uint32_t data, def;
  1118. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1119. /* enable sdma0 clock gating */
  1120. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1121. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1122. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1123. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1124. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1125. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1126. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1127. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1128. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1129. if (def != data)
  1130. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1131. if (adev->asic_type == CHIP_VEGA10) {
  1132. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1133. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1134. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1135. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1136. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1137. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1138. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1139. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1140. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1141. if(def != data)
  1142. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1143. }
  1144. } else {
  1145. /* disable sdma0 clock gating */
  1146. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1147. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1148. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1149. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1150. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1151. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1152. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1153. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1154. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1155. if (def != data)
  1156. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1157. if (adev->asic_type == CHIP_VEGA10) {
  1158. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1159. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1160. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1161. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1162. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1163. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1164. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1165. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1166. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1167. if (def != data)
  1168. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1169. }
  1170. }
  1171. }
  1172. static void sdma_v4_0_update_medium_grain_light_sleep(
  1173. struct amdgpu_device *adev,
  1174. bool enable)
  1175. {
  1176. uint32_t data, def;
  1177. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1178. /* 1-not override: enable sdma0 mem light sleep */
  1179. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1180. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1181. if (def != data)
  1182. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1183. /* 1-not override: enable sdma1 mem light sleep */
  1184. if (adev->asic_type == CHIP_VEGA10) {
  1185. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1186. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1187. if (def != data)
  1188. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1189. }
  1190. } else {
  1191. /* 0-override:disable sdma0 mem light sleep */
  1192. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1193. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1194. if (def != data)
  1195. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1196. /* 0-override:disable sdma1 mem light sleep */
  1197. if (adev->asic_type == CHIP_VEGA10) {
  1198. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1199. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1200. if (def != data)
  1201. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1202. }
  1203. }
  1204. }
  1205. static int sdma_v4_0_set_clockgating_state(void *handle,
  1206. enum amd_clockgating_state state)
  1207. {
  1208. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1209. switch (adev->asic_type) {
  1210. case CHIP_VEGA10:
  1211. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1212. state == AMD_CG_STATE_GATE ? true : false);
  1213. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1214. state == AMD_CG_STATE_GATE ? true : false);
  1215. break;
  1216. default:
  1217. break;
  1218. }
  1219. return 0;
  1220. }
  1221. static int sdma_v4_0_set_powergating_state(void *handle,
  1222. enum amd_powergating_state state)
  1223. {
  1224. return 0;
  1225. }
  1226. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1227. {
  1228. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1229. int data;
  1230. if (amdgpu_sriov_vf(adev))
  1231. *flags = 0;
  1232. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1233. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1234. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1235. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1236. /* AMD_CG_SUPPORT_SDMA_LS */
  1237. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1238. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1239. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1240. }
  1241. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1242. .name = "sdma_v4_0",
  1243. .early_init = sdma_v4_0_early_init,
  1244. .late_init = NULL,
  1245. .sw_init = sdma_v4_0_sw_init,
  1246. .sw_fini = sdma_v4_0_sw_fini,
  1247. .hw_init = sdma_v4_0_hw_init,
  1248. .hw_fini = sdma_v4_0_hw_fini,
  1249. .suspend = sdma_v4_0_suspend,
  1250. .resume = sdma_v4_0_resume,
  1251. .is_idle = sdma_v4_0_is_idle,
  1252. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1253. .soft_reset = sdma_v4_0_soft_reset,
  1254. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1255. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1256. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1257. };
  1258. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1259. .type = AMDGPU_RING_TYPE_SDMA,
  1260. .align_mask = 0xf,
  1261. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1262. .support_64bit_ptrs = true,
  1263. .get_rptr = sdma_v4_0_ring_get_rptr,
  1264. .get_wptr = sdma_v4_0_ring_get_wptr,
  1265. .set_wptr = sdma_v4_0_ring_set_wptr,
  1266. .emit_frame_size =
  1267. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1268. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1269. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1270. 36 + /* sdma_v4_0_ring_emit_vm_flush */
  1271. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1272. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1273. .emit_ib = sdma_v4_0_ring_emit_ib,
  1274. .emit_fence = sdma_v4_0_ring_emit_fence,
  1275. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1276. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1277. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1278. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1279. .test_ring = sdma_v4_0_ring_test_ring,
  1280. .test_ib = sdma_v4_0_ring_test_ib,
  1281. .insert_nop = sdma_v4_0_ring_insert_nop,
  1282. .pad_ib = sdma_v4_0_ring_pad_ib,
  1283. };
  1284. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1285. {
  1286. int i;
  1287. for (i = 0; i < adev->sdma.num_instances; i++)
  1288. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1289. }
  1290. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1291. .set = sdma_v4_0_set_trap_irq_state,
  1292. .process = sdma_v4_0_process_trap_irq,
  1293. };
  1294. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1295. .process = sdma_v4_0_process_illegal_inst_irq,
  1296. };
  1297. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1298. {
  1299. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1300. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1301. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1302. }
  1303. /**
  1304. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1305. *
  1306. * @ring: amdgpu_ring structure holding ring information
  1307. * @src_offset: src GPU address
  1308. * @dst_offset: dst GPU address
  1309. * @byte_count: number of bytes to xfer
  1310. *
  1311. * Copy GPU buffers using the DMA engine (VEGA10).
  1312. * Used by the amdgpu ttm implementation to move pages if
  1313. * registered as the asic copy callback.
  1314. */
  1315. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1316. uint64_t src_offset,
  1317. uint64_t dst_offset,
  1318. uint32_t byte_count)
  1319. {
  1320. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1321. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1322. ib->ptr[ib->length_dw++] = byte_count - 1;
  1323. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1324. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1325. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1326. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1327. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1328. }
  1329. /**
  1330. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1331. *
  1332. * @ring: amdgpu_ring structure holding ring information
  1333. * @src_data: value to write to buffer
  1334. * @dst_offset: dst GPU address
  1335. * @byte_count: number of bytes to xfer
  1336. *
  1337. * Fill GPU buffers using the DMA engine (VEGA10).
  1338. */
  1339. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1340. uint32_t src_data,
  1341. uint64_t dst_offset,
  1342. uint32_t byte_count)
  1343. {
  1344. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1345. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1346. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1347. ib->ptr[ib->length_dw++] = src_data;
  1348. ib->ptr[ib->length_dw++] = byte_count - 1;
  1349. }
  1350. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1351. .copy_max_bytes = 0x400000,
  1352. .copy_num_dw = 7,
  1353. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1354. .fill_max_bytes = 0x400000,
  1355. .fill_num_dw = 5,
  1356. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1357. };
  1358. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1359. {
  1360. if (adev->mman.buffer_funcs == NULL) {
  1361. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1362. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1363. }
  1364. }
  1365. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1366. .copy_pte = sdma_v4_0_vm_copy_pte,
  1367. .write_pte = sdma_v4_0_vm_write_pte,
  1368. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1369. };
  1370. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1371. {
  1372. unsigned i;
  1373. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1374. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1375. for (i = 0; i < adev->sdma.num_instances; i++)
  1376. adev->vm_manager.vm_pte_rings[i] =
  1377. &adev->sdma.instance[i].ring;
  1378. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1379. }
  1380. }
  1381. const struct amdgpu_ip_block_version sdma_v4_0_ip_block =
  1382. {
  1383. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1384. .major = 4,
  1385. .minor = 0,
  1386. .rev = 0,
  1387. .funcs = &sdma_v4_0_ip_funcs,
  1388. };