audit.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981
  1. /* audit.c -- Auditing support
  2. * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
  3. * System-call specific features have moved to auditsc.c
  4. *
  5. * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
  6. * All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23. *
  24. * Goals: 1) Integrate fully with Security Modules.
  25. * 2) Minimal run-time overhead:
  26. * a) Minimal when syscall auditing is disabled (audit_enable=0).
  27. * b) Small when syscall auditing is enabled and no audit record
  28. * is generated (defer as much work as possible to record
  29. * generation time):
  30. * i) context is allocated,
  31. * ii) names from getname are stored without a copy, and
  32. * iii) inode information stored from path_lookup.
  33. * 3) Ability to disable syscall auditing at boot time (audit=0).
  34. * 4) Usable by other parts of the kernel (if audit_log* is called,
  35. * then a syscall record will be generated automatically for the
  36. * current syscall).
  37. * 5) Netlink interface to user-space.
  38. * 6) Support low-overhead kernel-based filtering to minimize the
  39. * information that must be passed to user-space.
  40. *
  41. * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42. */
  43. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44. #include <linux/init.h>
  45. #include <asm/types.h>
  46. #include <linux/atomic.h>
  47. #include <linux/mm.h>
  48. #include <linux/export.h>
  49. #include <linux/slab.h>
  50. #include <linux/err.h>
  51. #include <linux/kthread.h>
  52. #include <linux/kernel.h>
  53. #include <linux/syscalls.h>
  54. #include <linux/audit.h>
  55. #include <net/sock.h>
  56. #include <net/netlink.h>
  57. #include <linux/skbuff.h>
  58. #ifdef CONFIG_SECURITY
  59. #include <linux/security.h>
  60. #endif
  61. #include <linux/freezer.h>
  62. #include <linux/tty.h>
  63. #include <linux/pid_namespace.h>
  64. #include <net/netns/generic.h>
  65. #include "audit.h"
  66. /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  67. * (Initialization happens after skb_init is called.) */
  68. #define AUDIT_DISABLED -1
  69. #define AUDIT_UNINITIALIZED 0
  70. #define AUDIT_INITIALIZED 1
  71. static int audit_initialized;
  72. #define AUDIT_OFF 0
  73. #define AUDIT_ON 1
  74. #define AUDIT_LOCKED 2
  75. u32 audit_enabled;
  76. u32 audit_ever_enabled;
  77. EXPORT_SYMBOL_GPL(audit_enabled);
  78. /* Default state when kernel boots without any parameters. */
  79. static u32 audit_default;
  80. /* If auditing cannot proceed, audit_failure selects what happens. */
  81. static u32 audit_failure = AUDIT_FAIL_PRINTK;
  82. /*
  83. * If audit records are to be written to the netlink socket, audit_pid
  84. * contains the pid of the auditd process and audit_nlk_portid contains
  85. * the portid to use to send netlink messages to that process.
  86. */
  87. int audit_pid;
  88. static __u32 audit_nlk_portid;
  89. /* If audit_rate_limit is non-zero, limit the rate of sending audit records
  90. * to that number per second. This prevents DoS attacks, but results in
  91. * audit records being dropped. */
  92. static u32 audit_rate_limit;
  93. /* Number of outstanding audit_buffers allowed.
  94. * When set to zero, this means unlimited. */
  95. static u32 audit_backlog_limit = 64;
  96. #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
  97. static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
  98. static u32 audit_backlog_wait_overflow = 0;
  99. /* The identity of the user shutting down the audit system. */
  100. kuid_t audit_sig_uid = INVALID_UID;
  101. pid_t audit_sig_pid = -1;
  102. u32 audit_sig_sid = 0;
  103. /* Records can be lost in several ways:
  104. 0) [suppressed in audit_alloc]
  105. 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
  106. 2) out of memory in audit_log_move [alloc_skb]
  107. 3) suppressed due to audit_rate_limit
  108. 4) suppressed due to audit_backlog_limit
  109. */
  110. static atomic_t audit_lost = ATOMIC_INIT(0);
  111. /* The netlink socket. */
  112. static struct sock *audit_sock;
  113. int audit_net_id;
  114. /* Hash for inode-based rules */
  115. struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
  116. /* The audit_freelist is a list of pre-allocated audit buffers (if more
  117. * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
  118. * being placed on the freelist). */
  119. static DEFINE_SPINLOCK(audit_freelist_lock);
  120. static int audit_freelist_count;
  121. static LIST_HEAD(audit_freelist);
  122. static struct sk_buff_head audit_skb_queue;
  123. /* queue of skbs to send to auditd when/if it comes back */
  124. static struct sk_buff_head audit_skb_hold_queue;
  125. static struct task_struct *kauditd_task;
  126. static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
  127. static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
  128. static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
  129. .mask = -1,
  130. .features = 0,
  131. .lock = 0,};
  132. static char *audit_feature_names[2] = {
  133. "only_unset_loginuid",
  134. "loginuid_immutable",
  135. };
  136. /* Serialize requests from userspace. */
  137. DEFINE_MUTEX(audit_cmd_mutex);
  138. /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
  139. * audit records. Since printk uses a 1024 byte buffer, this buffer
  140. * should be at least that large. */
  141. #define AUDIT_BUFSIZ 1024
  142. /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
  143. * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
  144. #define AUDIT_MAXFREE (2*NR_CPUS)
  145. /* The audit_buffer is used when formatting an audit record. The caller
  146. * locks briefly to get the record off the freelist or to allocate the
  147. * buffer, and locks briefly to send the buffer to the netlink layer or
  148. * to place it on a transmit queue. Multiple audit_buffers can be in
  149. * use simultaneously. */
  150. struct audit_buffer {
  151. struct list_head list;
  152. struct sk_buff *skb; /* formatted skb ready to send */
  153. struct audit_context *ctx; /* NULL or associated context */
  154. gfp_t gfp_mask;
  155. };
  156. struct audit_reply {
  157. __u32 portid;
  158. struct net *net;
  159. struct sk_buff *skb;
  160. };
  161. static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
  162. {
  163. if (ab) {
  164. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  165. nlh->nlmsg_pid = portid;
  166. }
  167. }
  168. void audit_panic(const char *message)
  169. {
  170. switch (audit_failure) {
  171. case AUDIT_FAIL_SILENT:
  172. break;
  173. case AUDIT_FAIL_PRINTK:
  174. if (printk_ratelimit())
  175. pr_err("%s\n", message);
  176. break;
  177. case AUDIT_FAIL_PANIC:
  178. /* test audit_pid since printk is always losey, why bother? */
  179. if (audit_pid)
  180. panic("audit: %s\n", message);
  181. break;
  182. }
  183. }
  184. static inline int audit_rate_check(void)
  185. {
  186. static unsigned long last_check = 0;
  187. static int messages = 0;
  188. static DEFINE_SPINLOCK(lock);
  189. unsigned long flags;
  190. unsigned long now;
  191. unsigned long elapsed;
  192. int retval = 0;
  193. if (!audit_rate_limit) return 1;
  194. spin_lock_irqsave(&lock, flags);
  195. if (++messages < audit_rate_limit) {
  196. retval = 1;
  197. } else {
  198. now = jiffies;
  199. elapsed = now - last_check;
  200. if (elapsed > HZ) {
  201. last_check = now;
  202. messages = 0;
  203. retval = 1;
  204. }
  205. }
  206. spin_unlock_irqrestore(&lock, flags);
  207. return retval;
  208. }
  209. /**
  210. * audit_log_lost - conditionally log lost audit message event
  211. * @message: the message stating reason for lost audit message
  212. *
  213. * Emit at least 1 message per second, even if audit_rate_check is
  214. * throttling.
  215. * Always increment the lost messages counter.
  216. */
  217. void audit_log_lost(const char *message)
  218. {
  219. static unsigned long last_msg = 0;
  220. static DEFINE_SPINLOCK(lock);
  221. unsigned long flags;
  222. unsigned long now;
  223. int print;
  224. atomic_inc(&audit_lost);
  225. print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
  226. if (!print) {
  227. spin_lock_irqsave(&lock, flags);
  228. now = jiffies;
  229. if (now - last_msg > HZ) {
  230. print = 1;
  231. last_msg = now;
  232. }
  233. spin_unlock_irqrestore(&lock, flags);
  234. }
  235. if (print) {
  236. if (printk_ratelimit())
  237. pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
  238. atomic_read(&audit_lost),
  239. audit_rate_limit,
  240. audit_backlog_limit);
  241. audit_panic(message);
  242. }
  243. }
  244. static int audit_log_config_change(char *function_name, u32 new, u32 old,
  245. int allow_changes)
  246. {
  247. struct audit_buffer *ab;
  248. int rc = 0;
  249. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  250. if (unlikely(!ab))
  251. return rc;
  252. audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
  253. audit_log_session_info(ab);
  254. rc = audit_log_task_context(ab);
  255. if (rc)
  256. allow_changes = 0; /* Something weird, deny request */
  257. audit_log_format(ab, " res=%d", allow_changes);
  258. audit_log_end(ab);
  259. return rc;
  260. }
  261. static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
  262. {
  263. int allow_changes, rc = 0;
  264. u32 old = *to_change;
  265. /* check if we are locked */
  266. if (audit_enabled == AUDIT_LOCKED)
  267. allow_changes = 0;
  268. else
  269. allow_changes = 1;
  270. if (audit_enabled != AUDIT_OFF) {
  271. rc = audit_log_config_change(function_name, new, old, allow_changes);
  272. if (rc)
  273. allow_changes = 0;
  274. }
  275. /* If we are allowed, make the change */
  276. if (allow_changes == 1)
  277. *to_change = new;
  278. /* Not allowed, update reason */
  279. else if (rc == 0)
  280. rc = -EPERM;
  281. return rc;
  282. }
  283. static int audit_set_rate_limit(u32 limit)
  284. {
  285. return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
  286. }
  287. static int audit_set_backlog_limit(u32 limit)
  288. {
  289. return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
  290. }
  291. static int audit_set_backlog_wait_time(u32 timeout)
  292. {
  293. return audit_do_config_change("audit_backlog_wait_time",
  294. &audit_backlog_wait_time, timeout);
  295. }
  296. static int audit_set_enabled(u32 state)
  297. {
  298. int rc;
  299. if (state < AUDIT_OFF || state > AUDIT_LOCKED)
  300. return -EINVAL;
  301. rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
  302. if (!rc)
  303. audit_ever_enabled |= !!state;
  304. return rc;
  305. }
  306. static int audit_set_failure(u32 state)
  307. {
  308. if (state != AUDIT_FAIL_SILENT
  309. && state != AUDIT_FAIL_PRINTK
  310. && state != AUDIT_FAIL_PANIC)
  311. return -EINVAL;
  312. return audit_do_config_change("audit_failure", &audit_failure, state);
  313. }
  314. /*
  315. * Queue skbs to be sent to auditd when/if it comes back. These skbs should
  316. * already have been sent via prink/syslog and so if these messages are dropped
  317. * it is not a huge concern since we already passed the audit_log_lost()
  318. * notification and stuff. This is just nice to get audit messages during
  319. * boot before auditd is running or messages generated while auditd is stopped.
  320. * This only holds messages is audit_default is set, aka booting with audit=1
  321. * or building your kernel that way.
  322. */
  323. static void audit_hold_skb(struct sk_buff *skb)
  324. {
  325. if (audit_default &&
  326. (!audit_backlog_limit ||
  327. skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
  328. skb_queue_tail(&audit_skb_hold_queue, skb);
  329. else
  330. kfree_skb(skb);
  331. }
  332. /*
  333. * For one reason or another this nlh isn't getting delivered to the userspace
  334. * audit daemon, just send it to printk.
  335. */
  336. static void audit_printk_skb(struct sk_buff *skb)
  337. {
  338. struct nlmsghdr *nlh = nlmsg_hdr(skb);
  339. char *data = nlmsg_data(nlh);
  340. if (nlh->nlmsg_type != AUDIT_EOE) {
  341. if (printk_ratelimit())
  342. pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
  343. else
  344. audit_log_lost("printk limit exceeded\n");
  345. }
  346. audit_hold_skb(skb);
  347. }
  348. static void kauditd_send_skb(struct sk_buff *skb)
  349. {
  350. int err;
  351. /* take a reference in case we can't send it and we want to hold it */
  352. skb_get(skb);
  353. err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
  354. if (err < 0) {
  355. BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
  356. if (audit_pid) {
  357. pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
  358. audit_log_lost("auditd disappeared\n");
  359. audit_pid = 0;
  360. audit_sock = NULL;
  361. }
  362. /* we might get lucky and get this in the next auditd */
  363. audit_hold_skb(skb);
  364. } else
  365. /* drop the extra reference if sent ok */
  366. consume_skb(skb);
  367. }
  368. /*
  369. * flush_hold_queue - empty the hold queue if auditd appears
  370. *
  371. * If auditd just started, drain the queue of messages already
  372. * sent to syslog/printk. Remember loss here is ok. We already
  373. * called audit_log_lost() if it didn't go out normally. so the
  374. * race between the skb_dequeue and the next check for audit_pid
  375. * doesn't matter.
  376. *
  377. * If you ever find kauditd to be too slow we can get a perf win
  378. * by doing our own locking and keeping better track if there
  379. * are messages in this queue. I don't see the need now, but
  380. * in 5 years when I want to play with this again I'll see this
  381. * note and still have no friggin idea what i'm thinking today.
  382. */
  383. static void flush_hold_queue(void)
  384. {
  385. struct sk_buff *skb;
  386. if (!audit_default || !audit_pid)
  387. return;
  388. skb = skb_dequeue(&audit_skb_hold_queue);
  389. if (likely(!skb))
  390. return;
  391. while (skb && audit_pid) {
  392. kauditd_send_skb(skb);
  393. skb = skb_dequeue(&audit_skb_hold_queue);
  394. }
  395. /*
  396. * if auditd just disappeared but we
  397. * dequeued an skb we need to drop ref
  398. */
  399. if (skb)
  400. consume_skb(skb);
  401. }
  402. static int kauditd_thread(void *dummy)
  403. {
  404. set_freezable();
  405. while (!kthread_should_stop()) {
  406. struct sk_buff *skb;
  407. DECLARE_WAITQUEUE(wait, current);
  408. flush_hold_queue();
  409. skb = skb_dequeue(&audit_skb_queue);
  410. if (skb) {
  411. if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
  412. wake_up(&audit_backlog_wait);
  413. if (audit_pid)
  414. kauditd_send_skb(skb);
  415. else
  416. audit_printk_skb(skb);
  417. continue;
  418. }
  419. set_current_state(TASK_INTERRUPTIBLE);
  420. add_wait_queue(&kauditd_wait, &wait);
  421. if (!skb_queue_len(&audit_skb_queue)) {
  422. try_to_freeze();
  423. schedule();
  424. }
  425. __set_current_state(TASK_RUNNING);
  426. remove_wait_queue(&kauditd_wait, &wait);
  427. }
  428. return 0;
  429. }
  430. int audit_send_list(void *_dest)
  431. {
  432. struct audit_netlink_list *dest = _dest;
  433. struct sk_buff *skb;
  434. struct net *net = dest->net;
  435. struct audit_net *aunet = net_generic(net, audit_net_id);
  436. /* wait for parent to finish and send an ACK */
  437. mutex_lock(&audit_cmd_mutex);
  438. mutex_unlock(&audit_cmd_mutex);
  439. while ((skb = __skb_dequeue(&dest->q)) != NULL)
  440. netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
  441. put_net(net);
  442. kfree(dest);
  443. return 0;
  444. }
  445. struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
  446. int multi, const void *payload, int size)
  447. {
  448. struct sk_buff *skb;
  449. struct nlmsghdr *nlh;
  450. void *data;
  451. int flags = multi ? NLM_F_MULTI : 0;
  452. int t = done ? NLMSG_DONE : type;
  453. skb = nlmsg_new(size, GFP_KERNEL);
  454. if (!skb)
  455. return NULL;
  456. nlh = nlmsg_put(skb, portid, seq, t, size, flags);
  457. if (!nlh)
  458. goto out_kfree_skb;
  459. data = nlmsg_data(nlh);
  460. memcpy(data, payload, size);
  461. return skb;
  462. out_kfree_skb:
  463. kfree_skb(skb);
  464. return NULL;
  465. }
  466. static int audit_send_reply_thread(void *arg)
  467. {
  468. struct audit_reply *reply = (struct audit_reply *)arg;
  469. struct net *net = reply->net;
  470. struct audit_net *aunet = net_generic(net, audit_net_id);
  471. mutex_lock(&audit_cmd_mutex);
  472. mutex_unlock(&audit_cmd_mutex);
  473. /* Ignore failure. It'll only happen if the sender goes away,
  474. because our timeout is set to infinite. */
  475. netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
  476. put_net(net);
  477. kfree(reply);
  478. return 0;
  479. }
  480. /**
  481. * audit_send_reply - send an audit reply message via netlink
  482. * @request_skb: skb of request we are replying to (used to target the reply)
  483. * @seq: sequence number
  484. * @type: audit message type
  485. * @done: done (last) flag
  486. * @multi: multi-part message flag
  487. * @payload: payload data
  488. * @size: payload size
  489. *
  490. * Allocates an skb, builds the netlink message, and sends it to the port id.
  491. * No failure notifications.
  492. */
  493. static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
  494. int multi, const void *payload, int size)
  495. {
  496. u32 portid = NETLINK_CB(request_skb).portid;
  497. struct net *net = sock_net(NETLINK_CB(request_skb).sk);
  498. struct sk_buff *skb;
  499. struct task_struct *tsk;
  500. struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
  501. GFP_KERNEL);
  502. if (!reply)
  503. return;
  504. skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
  505. if (!skb)
  506. goto out;
  507. reply->net = get_net(net);
  508. reply->portid = portid;
  509. reply->skb = skb;
  510. tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
  511. if (!IS_ERR(tsk))
  512. return;
  513. kfree_skb(skb);
  514. out:
  515. kfree(reply);
  516. }
  517. /*
  518. * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
  519. * control messages.
  520. */
  521. static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
  522. {
  523. int err = 0;
  524. /* Only support the initial namespaces for now. */
  525. /*
  526. * We return ECONNREFUSED because it tricks userspace into thinking
  527. * that audit was not configured into the kernel. Lots of users
  528. * configure their PAM stack (because that's what the distro does)
  529. * to reject login if unable to send messages to audit. If we return
  530. * ECONNREFUSED the PAM stack thinks the kernel does not have audit
  531. * configured in and will let login proceed. If we return EPERM
  532. * userspace will reject all logins. This should be removed when we
  533. * support non init namespaces!!
  534. */
  535. if ((current_user_ns() != &init_user_ns) ||
  536. (task_active_pid_ns(current) != &init_pid_ns))
  537. return -ECONNREFUSED;
  538. switch (msg_type) {
  539. case AUDIT_LIST:
  540. case AUDIT_ADD:
  541. case AUDIT_DEL:
  542. return -EOPNOTSUPP;
  543. case AUDIT_GET:
  544. case AUDIT_SET:
  545. case AUDIT_GET_FEATURE:
  546. case AUDIT_SET_FEATURE:
  547. case AUDIT_LIST_RULES:
  548. case AUDIT_ADD_RULE:
  549. case AUDIT_DEL_RULE:
  550. case AUDIT_SIGNAL_INFO:
  551. case AUDIT_TTY_GET:
  552. case AUDIT_TTY_SET:
  553. case AUDIT_TRIM:
  554. case AUDIT_MAKE_EQUIV:
  555. if (!capable(CAP_AUDIT_CONTROL))
  556. err = -EPERM;
  557. break;
  558. case AUDIT_USER:
  559. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  560. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  561. if (!capable(CAP_AUDIT_WRITE))
  562. err = -EPERM;
  563. break;
  564. default: /* bad msg */
  565. err = -EINVAL;
  566. }
  567. return err;
  568. }
  569. static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
  570. {
  571. int rc = 0;
  572. uid_t uid = from_kuid(&init_user_ns, current_uid());
  573. if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
  574. *ab = NULL;
  575. return rc;
  576. }
  577. *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
  578. if (unlikely(!*ab))
  579. return rc;
  580. audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
  581. audit_log_session_info(*ab);
  582. audit_log_task_context(*ab);
  583. return rc;
  584. }
  585. int is_audit_feature_set(int i)
  586. {
  587. return af.features & AUDIT_FEATURE_TO_MASK(i);
  588. }
  589. static int audit_get_feature(struct sk_buff *skb)
  590. {
  591. u32 seq;
  592. seq = nlmsg_hdr(skb)->nlmsg_seq;
  593. audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
  594. return 0;
  595. }
  596. static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
  597. u32 old_lock, u32 new_lock, int res)
  598. {
  599. struct audit_buffer *ab;
  600. if (audit_enabled == AUDIT_OFF)
  601. return;
  602. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
  603. audit_log_task_info(ab, current);
  604. audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
  605. audit_feature_names[which], !!old_feature, !!new_feature,
  606. !!old_lock, !!new_lock, res);
  607. audit_log_end(ab);
  608. }
  609. static int audit_set_feature(struct sk_buff *skb)
  610. {
  611. struct audit_features *uaf;
  612. int i;
  613. BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
  614. uaf = nlmsg_data(nlmsg_hdr(skb));
  615. /* if there is ever a version 2 we should handle that here */
  616. for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
  617. u32 feature = AUDIT_FEATURE_TO_MASK(i);
  618. u32 old_feature, new_feature, old_lock, new_lock;
  619. /* if we are not changing this feature, move along */
  620. if (!(feature & uaf->mask))
  621. continue;
  622. old_feature = af.features & feature;
  623. new_feature = uaf->features & feature;
  624. new_lock = (uaf->lock | af.lock) & feature;
  625. old_lock = af.lock & feature;
  626. /* are we changing a locked feature? */
  627. if (old_lock && (new_feature != old_feature)) {
  628. audit_log_feature_change(i, old_feature, new_feature,
  629. old_lock, new_lock, 0);
  630. return -EPERM;
  631. }
  632. }
  633. /* nothing invalid, do the changes */
  634. for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
  635. u32 feature = AUDIT_FEATURE_TO_MASK(i);
  636. u32 old_feature, new_feature, old_lock, new_lock;
  637. /* if we are not changing this feature, move along */
  638. if (!(feature & uaf->mask))
  639. continue;
  640. old_feature = af.features & feature;
  641. new_feature = uaf->features & feature;
  642. old_lock = af.lock & feature;
  643. new_lock = (uaf->lock | af.lock) & feature;
  644. if (new_feature != old_feature)
  645. audit_log_feature_change(i, old_feature, new_feature,
  646. old_lock, new_lock, 1);
  647. if (new_feature)
  648. af.features |= feature;
  649. else
  650. af.features &= ~feature;
  651. af.lock |= new_lock;
  652. }
  653. return 0;
  654. }
  655. static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  656. {
  657. u32 seq;
  658. void *data;
  659. int err;
  660. struct audit_buffer *ab;
  661. u16 msg_type = nlh->nlmsg_type;
  662. struct audit_sig_info *sig_data;
  663. char *ctx = NULL;
  664. u32 len;
  665. err = audit_netlink_ok(skb, msg_type);
  666. if (err)
  667. return err;
  668. /* As soon as there's any sign of userspace auditd,
  669. * start kauditd to talk to it */
  670. if (!kauditd_task) {
  671. kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
  672. if (IS_ERR(kauditd_task)) {
  673. err = PTR_ERR(kauditd_task);
  674. kauditd_task = NULL;
  675. return err;
  676. }
  677. }
  678. seq = nlh->nlmsg_seq;
  679. data = nlmsg_data(nlh);
  680. switch (msg_type) {
  681. case AUDIT_GET: {
  682. struct audit_status s;
  683. memset(&s, 0, sizeof(s));
  684. s.enabled = audit_enabled;
  685. s.failure = audit_failure;
  686. s.pid = audit_pid;
  687. s.rate_limit = audit_rate_limit;
  688. s.backlog_limit = audit_backlog_limit;
  689. s.lost = atomic_read(&audit_lost);
  690. s.backlog = skb_queue_len(&audit_skb_queue);
  691. s.version = AUDIT_VERSION_LATEST;
  692. s.backlog_wait_time = audit_backlog_wait_time;
  693. audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
  694. break;
  695. }
  696. case AUDIT_SET: {
  697. struct audit_status s;
  698. memset(&s, 0, sizeof(s));
  699. /* guard against past and future API changes */
  700. memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
  701. if (s.mask & AUDIT_STATUS_ENABLED) {
  702. err = audit_set_enabled(s.enabled);
  703. if (err < 0)
  704. return err;
  705. }
  706. if (s.mask & AUDIT_STATUS_FAILURE) {
  707. err = audit_set_failure(s.failure);
  708. if (err < 0)
  709. return err;
  710. }
  711. if (s.mask & AUDIT_STATUS_PID) {
  712. int new_pid = s.pid;
  713. if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
  714. return -EACCES;
  715. if (audit_enabled != AUDIT_OFF)
  716. audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
  717. audit_pid = new_pid;
  718. audit_nlk_portid = NETLINK_CB(skb).portid;
  719. audit_sock = skb->sk;
  720. }
  721. if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
  722. err = audit_set_rate_limit(s.rate_limit);
  723. if (err < 0)
  724. return err;
  725. }
  726. if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
  727. err = audit_set_backlog_limit(s.backlog_limit);
  728. if (err < 0)
  729. return err;
  730. }
  731. if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
  732. if (sizeof(s) > (size_t)nlh->nlmsg_len)
  733. return -EINVAL;
  734. if (s.backlog_wait_time < 0 ||
  735. s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
  736. return -EINVAL;
  737. err = audit_set_backlog_wait_time(s.backlog_wait_time);
  738. if (err < 0)
  739. return err;
  740. }
  741. break;
  742. }
  743. case AUDIT_GET_FEATURE:
  744. err = audit_get_feature(skb);
  745. if (err)
  746. return err;
  747. break;
  748. case AUDIT_SET_FEATURE:
  749. err = audit_set_feature(skb);
  750. if (err)
  751. return err;
  752. break;
  753. case AUDIT_USER:
  754. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  755. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  756. if (!audit_enabled && msg_type != AUDIT_USER_AVC)
  757. return 0;
  758. err = audit_filter_user(msg_type);
  759. if (err == 1) { /* match or error */
  760. err = 0;
  761. if (msg_type == AUDIT_USER_TTY) {
  762. err = tty_audit_push_current();
  763. if (err)
  764. break;
  765. }
  766. mutex_unlock(&audit_cmd_mutex);
  767. audit_log_common_recv_msg(&ab, msg_type);
  768. if (msg_type != AUDIT_USER_TTY)
  769. audit_log_format(ab, " msg='%.*s'",
  770. AUDIT_MESSAGE_TEXT_MAX,
  771. (char *)data);
  772. else {
  773. int size;
  774. audit_log_format(ab, " data=");
  775. size = nlmsg_len(nlh);
  776. if (size > 0 &&
  777. ((unsigned char *)data)[size - 1] == '\0')
  778. size--;
  779. audit_log_n_untrustedstring(ab, data, size);
  780. }
  781. audit_set_portid(ab, NETLINK_CB(skb).portid);
  782. audit_log_end(ab);
  783. mutex_lock(&audit_cmd_mutex);
  784. }
  785. break;
  786. case AUDIT_ADD_RULE:
  787. case AUDIT_DEL_RULE:
  788. if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
  789. return -EINVAL;
  790. if (audit_enabled == AUDIT_LOCKED) {
  791. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
  792. audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
  793. audit_log_end(ab);
  794. return -EPERM;
  795. }
  796. err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
  797. seq, data, nlmsg_len(nlh));
  798. break;
  799. case AUDIT_LIST_RULES:
  800. err = audit_list_rules_send(skb, seq);
  801. break;
  802. case AUDIT_TRIM:
  803. audit_trim_trees();
  804. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
  805. audit_log_format(ab, " op=trim res=1");
  806. audit_log_end(ab);
  807. break;
  808. case AUDIT_MAKE_EQUIV: {
  809. void *bufp = data;
  810. u32 sizes[2];
  811. size_t msglen = nlmsg_len(nlh);
  812. char *old, *new;
  813. err = -EINVAL;
  814. if (msglen < 2 * sizeof(u32))
  815. break;
  816. memcpy(sizes, bufp, 2 * sizeof(u32));
  817. bufp += 2 * sizeof(u32);
  818. msglen -= 2 * sizeof(u32);
  819. old = audit_unpack_string(&bufp, &msglen, sizes[0]);
  820. if (IS_ERR(old)) {
  821. err = PTR_ERR(old);
  822. break;
  823. }
  824. new = audit_unpack_string(&bufp, &msglen, sizes[1]);
  825. if (IS_ERR(new)) {
  826. err = PTR_ERR(new);
  827. kfree(old);
  828. break;
  829. }
  830. /* OK, here comes... */
  831. err = audit_tag_tree(old, new);
  832. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
  833. audit_log_format(ab, " op=make_equiv old=");
  834. audit_log_untrustedstring(ab, old);
  835. audit_log_format(ab, " new=");
  836. audit_log_untrustedstring(ab, new);
  837. audit_log_format(ab, " res=%d", !err);
  838. audit_log_end(ab);
  839. kfree(old);
  840. kfree(new);
  841. break;
  842. }
  843. case AUDIT_SIGNAL_INFO:
  844. len = 0;
  845. if (audit_sig_sid) {
  846. err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
  847. if (err)
  848. return err;
  849. }
  850. sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
  851. if (!sig_data) {
  852. if (audit_sig_sid)
  853. security_release_secctx(ctx, len);
  854. return -ENOMEM;
  855. }
  856. sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
  857. sig_data->pid = audit_sig_pid;
  858. if (audit_sig_sid) {
  859. memcpy(sig_data->ctx, ctx, len);
  860. security_release_secctx(ctx, len);
  861. }
  862. audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
  863. sig_data, sizeof(*sig_data) + len);
  864. kfree(sig_data);
  865. break;
  866. case AUDIT_TTY_GET: {
  867. struct audit_tty_status s;
  868. struct task_struct *tsk = current;
  869. spin_lock(&tsk->sighand->siglock);
  870. s.enabled = tsk->signal->audit_tty;
  871. s.log_passwd = tsk->signal->audit_tty_log_passwd;
  872. spin_unlock(&tsk->sighand->siglock);
  873. audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
  874. break;
  875. }
  876. case AUDIT_TTY_SET: {
  877. struct audit_tty_status s, old;
  878. struct task_struct *tsk = current;
  879. struct audit_buffer *ab;
  880. memset(&s, 0, sizeof(s));
  881. /* guard against past and future API changes */
  882. memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
  883. /* check if new data is valid */
  884. if ((s.enabled != 0 && s.enabled != 1) ||
  885. (s.log_passwd != 0 && s.log_passwd != 1))
  886. err = -EINVAL;
  887. spin_lock(&tsk->sighand->siglock);
  888. old.enabled = tsk->signal->audit_tty;
  889. old.log_passwd = tsk->signal->audit_tty_log_passwd;
  890. if (!err) {
  891. tsk->signal->audit_tty = s.enabled;
  892. tsk->signal->audit_tty_log_passwd = s.log_passwd;
  893. }
  894. spin_unlock(&tsk->sighand->siglock);
  895. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
  896. audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
  897. " old-log_passwd=%d new-log_passwd=%d res=%d",
  898. old.enabled, s.enabled, old.log_passwd,
  899. s.log_passwd, !err);
  900. audit_log_end(ab);
  901. break;
  902. }
  903. default:
  904. err = -EINVAL;
  905. break;
  906. }
  907. return err < 0 ? err : 0;
  908. }
  909. /*
  910. * Get message from skb. Each message is processed by audit_receive_msg.
  911. * Malformed skbs with wrong length are discarded silently.
  912. */
  913. static void audit_receive_skb(struct sk_buff *skb)
  914. {
  915. struct nlmsghdr *nlh;
  916. /*
  917. * len MUST be signed for nlmsg_next to be able to dec it below 0
  918. * if the nlmsg_len was not aligned
  919. */
  920. int len;
  921. int err;
  922. nlh = nlmsg_hdr(skb);
  923. len = skb->len;
  924. while (nlmsg_ok(nlh, len)) {
  925. err = audit_receive_msg(skb, nlh);
  926. /* if err or if this message says it wants a response */
  927. if (err || (nlh->nlmsg_flags & NLM_F_ACK))
  928. netlink_ack(skb, nlh, err);
  929. nlh = nlmsg_next(nlh, &len);
  930. }
  931. }
  932. /* Receive messages from netlink socket. */
  933. static void audit_receive(struct sk_buff *skb)
  934. {
  935. mutex_lock(&audit_cmd_mutex);
  936. audit_receive_skb(skb);
  937. mutex_unlock(&audit_cmd_mutex);
  938. }
  939. static int __net_init audit_net_init(struct net *net)
  940. {
  941. struct netlink_kernel_cfg cfg = {
  942. .input = audit_receive,
  943. };
  944. struct audit_net *aunet = net_generic(net, audit_net_id);
  945. aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
  946. if (aunet->nlsk == NULL) {
  947. audit_panic("cannot initialize netlink socket in namespace");
  948. return -ENOMEM;
  949. }
  950. aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  951. return 0;
  952. }
  953. static void __net_exit audit_net_exit(struct net *net)
  954. {
  955. struct audit_net *aunet = net_generic(net, audit_net_id);
  956. struct sock *sock = aunet->nlsk;
  957. if (sock == audit_sock) {
  958. audit_pid = 0;
  959. audit_sock = NULL;
  960. }
  961. rcu_assign_pointer(aunet->nlsk, NULL);
  962. synchronize_net();
  963. netlink_kernel_release(sock);
  964. }
  965. static struct pernet_operations audit_net_ops __net_initdata = {
  966. .init = audit_net_init,
  967. .exit = audit_net_exit,
  968. .id = &audit_net_id,
  969. .size = sizeof(struct audit_net),
  970. };
  971. /* Initialize audit support at boot time. */
  972. static int __init audit_init(void)
  973. {
  974. int i;
  975. if (audit_initialized == AUDIT_DISABLED)
  976. return 0;
  977. pr_info("initializing netlink subsys (%s)\n",
  978. audit_default ? "enabled" : "disabled");
  979. register_pernet_subsys(&audit_net_ops);
  980. skb_queue_head_init(&audit_skb_queue);
  981. skb_queue_head_init(&audit_skb_hold_queue);
  982. audit_initialized = AUDIT_INITIALIZED;
  983. audit_enabled = audit_default;
  984. audit_ever_enabled |= !!audit_default;
  985. audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
  986. for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
  987. INIT_LIST_HEAD(&audit_inode_hash[i]);
  988. return 0;
  989. }
  990. __initcall(audit_init);
  991. /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
  992. static int __init audit_enable(char *str)
  993. {
  994. audit_default = !!simple_strtol(str, NULL, 0);
  995. if (!audit_default)
  996. audit_initialized = AUDIT_DISABLED;
  997. pr_info("%s\n", audit_default ?
  998. "enabled (after initialization)" : "disabled (until reboot)");
  999. return 1;
  1000. }
  1001. __setup("audit=", audit_enable);
  1002. /* Process kernel command-line parameter at boot time.
  1003. * audit_backlog_limit=<n> */
  1004. static int __init audit_backlog_limit_set(char *str)
  1005. {
  1006. u32 audit_backlog_limit_arg;
  1007. pr_info("audit_backlog_limit: ");
  1008. if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
  1009. pr_cont("using default of %u, unable to parse %s\n",
  1010. audit_backlog_limit, str);
  1011. return 1;
  1012. }
  1013. audit_backlog_limit = audit_backlog_limit_arg;
  1014. pr_cont("%d\n", audit_backlog_limit);
  1015. return 1;
  1016. }
  1017. __setup("audit_backlog_limit=", audit_backlog_limit_set);
  1018. static void audit_buffer_free(struct audit_buffer *ab)
  1019. {
  1020. unsigned long flags;
  1021. if (!ab)
  1022. return;
  1023. if (ab->skb)
  1024. kfree_skb(ab->skb);
  1025. spin_lock_irqsave(&audit_freelist_lock, flags);
  1026. if (audit_freelist_count > AUDIT_MAXFREE)
  1027. kfree(ab);
  1028. else {
  1029. audit_freelist_count++;
  1030. list_add(&ab->list, &audit_freelist);
  1031. }
  1032. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  1033. }
  1034. static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
  1035. gfp_t gfp_mask, int type)
  1036. {
  1037. unsigned long flags;
  1038. struct audit_buffer *ab = NULL;
  1039. struct nlmsghdr *nlh;
  1040. spin_lock_irqsave(&audit_freelist_lock, flags);
  1041. if (!list_empty(&audit_freelist)) {
  1042. ab = list_entry(audit_freelist.next,
  1043. struct audit_buffer, list);
  1044. list_del(&ab->list);
  1045. --audit_freelist_count;
  1046. }
  1047. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  1048. if (!ab) {
  1049. ab = kmalloc(sizeof(*ab), gfp_mask);
  1050. if (!ab)
  1051. goto err;
  1052. }
  1053. ab->ctx = ctx;
  1054. ab->gfp_mask = gfp_mask;
  1055. ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
  1056. if (!ab->skb)
  1057. goto err;
  1058. nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
  1059. if (!nlh)
  1060. goto out_kfree_skb;
  1061. return ab;
  1062. out_kfree_skb:
  1063. kfree_skb(ab->skb);
  1064. ab->skb = NULL;
  1065. err:
  1066. audit_buffer_free(ab);
  1067. return NULL;
  1068. }
  1069. /**
  1070. * audit_serial - compute a serial number for the audit record
  1071. *
  1072. * Compute a serial number for the audit record. Audit records are
  1073. * written to user-space as soon as they are generated, so a complete
  1074. * audit record may be written in several pieces. The timestamp of the
  1075. * record and this serial number are used by the user-space tools to
  1076. * determine which pieces belong to the same audit record. The
  1077. * (timestamp,serial) tuple is unique for each syscall and is live from
  1078. * syscall entry to syscall exit.
  1079. *
  1080. * NOTE: Another possibility is to store the formatted records off the
  1081. * audit context (for those records that have a context), and emit them
  1082. * all at syscall exit. However, this could delay the reporting of
  1083. * significant errors until syscall exit (or never, if the system
  1084. * halts).
  1085. */
  1086. unsigned int audit_serial(void)
  1087. {
  1088. static DEFINE_SPINLOCK(serial_lock);
  1089. static unsigned int serial = 0;
  1090. unsigned long flags;
  1091. unsigned int ret;
  1092. spin_lock_irqsave(&serial_lock, flags);
  1093. do {
  1094. ret = ++serial;
  1095. } while (unlikely(!ret));
  1096. spin_unlock_irqrestore(&serial_lock, flags);
  1097. return ret;
  1098. }
  1099. static inline void audit_get_stamp(struct audit_context *ctx,
  1100. struct timespec *t, unsigned int *serial)
  1101. {
  1102. if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
  1103. *t = CURRENT_TIME;
  1104. *serial = audit_serial();
  1105. }
  1106. }
  1107. /*
  1108. * Wait for auditd to drain the queue a little
  1109. */
  1110. static long wait_for_auditd(long sleep_time)
  1111. {
  1112. DECLARE_WAITQUEUE(wait, current);
  1113. set_current_state(TASK_UNINTERRUPTIBLE);
  1114. add_wait_queue_exclusive(&audit_backlog_wait, &wait);
  1115. if (audit_backlog_limit &&
  1116. skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
  1117. sleep_time = schedule_timeout(sleep_time);
  1118. __set_current_state(TASK_RUNNING);
  1119. remove_wait_queue(&audit_backlog_wait, &wait);
  1120. return sleep_time;
  1121. }
  1122. /**
  1123. * audit_log_start - obtain an audit buffer
  1124. * @ctx: audit_context (may be NULL)
  1125. * @gfp_mask: type of allocation
  1126. * @type: audit message type
  1127. *
  1128. * Returns audit_buffer pointer on success or NULL on error.
  1129. *
  1130. * Obtain an audit buffer. This routine does locking to obtain the
  1131. * audit buffer, but then no locking is required for calls to
  1132. * audit_log_*format. If the task (ctx) is a task that is currently in a
  1133. * syscall, then the syscall is marked as auditable and an audit record
  1134. * will be written at syscall exit. If there is no associated task, then
  1135. * task context (ctx) should be NULL.
  1136. */
  1137. struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
  1138. int type)
  1139. {
  1140. struct audit_buffer *ab = NULL;
  1141. struct timespec t;
  1142. unsigned int uninitialized_var(serial);
  1143. int reserve = 5; /* Allow atomic callers to go up to five
  1144. entries over the normal backlog limit */
  1145. unsigned long timeout_start = jiffies;
  1146. if (audit_initialized != AUDIT_INITIALIZED)
  1147. return NULL;
  1148. if (unlikely(audit_filter_type(type)))
  1149. return NULL;
  1150. if (gfp_mask & __GFP_WAIT) {
  1151. if (audit_pid && audit_pid == current->pid)
  1152. gfp_mask &= ~__GFP_WAIT;
  1153. else
  1154. reserve = 0;
  1155. }
  1156. while (audit_backlog_limit
  1157. && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
  1158. if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
  1159. long sleep_time;
  1160. sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
  1161. if (sleep_time > 0) {
  1162. sleep_time = wait_for_auditd(sleep_time);
  1163. if (sleep_time > 0)
  1164. continue;
  1165. }
  1166. }
  1167. if (audit_rate_check() && printk_ratelimit())
  1168. pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
  1169. skb_queue_len(&audit_skb_queue),
  1170. audit_backlog_limit);
  1171. audit_log_lost("backlog limit exceeded");
  1172. audit_backlog_wait_time = audit_backlog_wait_overflow;
  1173. wake_up(&audit_backlog_wait);
  1174. return NULL;
  1175. }
  1176. audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
  1177. ab = audit_buffer_alloc(ctx, gfp_mask, type);
  1178. if (!ab) {
  1179. audit_log_lost("out of memory in audit_log_start");
  1180. return NULL;
  1181. }
  1182. audit_get_stamp(ab->ctx, &t, &serial);
  1183. audit_log_format(ab, "audit(%lu.%03lu:%u): ",
  1184. t.tv_sec, t.tv_nsec/1000000, serial);
  1185. return ab;
  1186. }
  1187. /**
  1188. * audit_expand - expand skb in the audit buffer
  1189. * @ab: audit_buffer
  1190. * @extra: space to add at tail of the skb
  1191. *
  1192. * Returns 0 (no space) on failed expansion, or available space if
  1193. * successful.
  1194. */
  1195. static inline int audit_expand(struct audit_buffer *ab, int extra)
  1196. {
  1197. struct sk_buff *skb = ab->skb;
  1198. int oldtail = skb_tailroom(skb);
  1199. int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
  1200. int newtail = skb_tailroom(skb);
  1201. if (ret < 0) {
  1202. audit_log_lost("out of memory in audit_expand");
  1203. return 0;
  1204. }
  1205. skb->truesize += newtail - oldtail;
  1206. return newtail;
  1207. }
  1208. /*
  1209. * Format an audit message into the audit buffer. If there isn't enough
  1210. * room in the audit buffer, more room will be allocated and vsnprint
  1211. * will be called a second time. Currently, we assume that a printk
  1212. * can't format message larger than 1024 bytes, so we don't either.
  1213. */
  1214. static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
  1215. va_list args)
  1216. {
  1217. int len, avail;
  1218. struct sk_buff *skb;
  1219. va_list args2;
  1220. if (!ab)
  1221. return;
  1222. BUG_ON(!ab->skb);
  1223. skb = ab->skb;
  1224. avail = skb_tailroom(skb);
  1225. if (avail == 0) {
  1226. avail = audit_expand(ab, AUDIT_BUFSIZ);
  1227. if (!avail)
  1228. goto out;
  1229. }
  1230. va_copy(args2, args);
  1231. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
  1232. if (len >= avail) {
  1233. /* The printk buffer is 1024 bytes long, so if we get
  1234. * here and AUDIT_BUFSIZ is at least 1024, then we can
  1235. * log everything that printk could have logged. */
  1236. avail = audit_expand(ab,
  1237. max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
  1238. if (!avail)
  1239. goto out_va_end;
  1240. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
  1241. }
  1242. if (len > 0)
  1243. skb_put(skb, len);
  1244. out_va_end:
  1245. va_end(args2);
  1246. out:
  1247. return;
  1248. }
  1249. /**
  1250. * audit_log_format - format a message into the audit buffer.
  1251. * @ab: audit_buffer
  1252. * @fmt: format string
  1253. * @...: optional parameters matching @fmt string
  1254. *
  1255. * All the work is done in audit_log_vformat.
  1256. */
  1257. void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
  1258. {
  1259. va_list args;
  1260. if (!ab)
  1261. return;
  1262. va_start(args, fmt);
  1263. audit_log_vformat(ab, fmt, args);
  1264. va_end(args);
  1265. }
  1266. /**
  1267. * audit_log_hex - convert a buffer to hex and append it to the audit skb
  1268. * @ab: the audit_buffer
  1269. * @buf: buffer to convert to hex
  1270. * @len: length of @buf to be converted
  1271. *
  1272. * No return value; failure to expand is silently ignored.
  1273. *
  1274. * This function will take the passed buf and convert it into a string of
  1275. * ascii hex digits. The new string is placed onto the skb.
  1276. */
  1277. void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
  1278. size_t len)
  1279. {
  1280. int i, avail, new_len;
  1281. unsigned char *ptr;
  1282. struct sk_buff *skb;
  1283. if (!ab)
  1284. return;
  1285. BUG_ON(!ab->skb);
  1286. skb = ab->skb;
  1287. avail = skb_tailroom(skb);
  1288. new_len = len<<1;
  1289. if (new_len >= avail) {
  1290. /* Round the buffer request up to the next multiple */
  1291. new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
  1292. avail = audit_expand(ab, new_len);
  1293. if (!avail)
  1294. return;
  1295. }
  1296. ptr = skb_tail_pointer(skb);
  1297. for (i = 0; i < len; i++)
  1298. ptr = hex_byte_pack_upper(ptr, buf[i]);
  1299. *ptr = 0;
  1300. skb_put(skb, len << 1); /* new string is twice the old string */
  1301. }
  1302. /*
  1303. * Format a string of no more than slen characters into the audit buffer,
  1304. * enclosed in quote marks.
  1305. */
  1306. void audit_log_n_string(struct audit_buffer *ab, const char *string,
  1307. size_t slen)
  1308. {
  1309. int avail, new_len;
  1310. unsigned char *ptr;
  1311. struct sk_buff *skb;
  1312. if (!ab)
  1313. return;
  1314. BUG_ON(!ab->skb);
  1315. skb = ab->skb;
  1316. avail = skb_tailroom(skb);
  1317. new_len = slen + 3; /* enclosing quotes + null terminator */
  1318. if (new_len > avail) {
  1319. avail = audit_expand(ab, new_len);
  1320. if (!avail)
  1321. return;
  1322. }
  1323. ptr = skb_tail_pointer(skb);
  1324. *ptr++ = '"';
  1325. memcpy(ptr, string, slen);
  1326. ptr += slen;
  1327. *ptr++ = '"';
  1328. *ptr = 0;
  1329. skb_put(skb, slen + 2); /* don't include null terminator */
  1330. }
  1331. /**
  1332. * audit_string_contains_control - does a string need to be logged in hex
  1333. * @string: string to be checked
  1334. * @len: max length of the string to check
  1335. */
  1336. int audit_string_contains_control(const char *string, size_t len)
  1337. {
  1338. const unsigned char *p;
  1339. for (p = string; p < (const unsigned char *)string + len; p++) {
  1340. if (*p == '"' || *p < 0x21 || *p > 0x7e)
  1341. return 1;
  1342. }
  1343. return 0;
  1344. }
  1345. /**
  1346. * audit_log_n_untrustedstring - log a string that may contain random characters
  1347. * @ab: audit_buffer
  1348. * @len: length of string (not including trailing null)
  1349. * @string: string to be logged
  1350. *
  1351. * This code will escape a string that is passed to it if the string
  1352. * contains a control character, unprintable character, double quote mark,
  1353. * or a space. Unescaped strings will start and end with a double quote mark.
  1354. * Strings that are escaped are printed in hex (2 digits per char).
  1355. *
  1356. * The caller specifies the number of characters in the string to log, which may
  1357. * or may not be the entire string.
  1358. */
  1359. void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
  1360. size_t len)
  1361. {
  1362. if (audit_string_contains_control(string, len))
  1363. audit_log_n_hex(ab, string, len);
  1364. else
  1365. audit_log_n_string(ab, string, len);
  1366. }
  1367. /**
  1368. * audit_log_untrustedstring - log a string that may contain random characters
  1369. * @ab: audit_buffer
  1370. * @string: string to be logged
  1371. *
  1372. * Same as audit_log_n_untrustedstring(), except that strlen is used to
  1373. * determine string length.
  1374. */
  1375. void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
  1376. {
  1377. audit_log_n_untrustedstring(ab, string, strlen(string));
  1378. }
  1379. /* This is a helper-function to print the escaped d_path */
  1380. void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
  1381. const struct path *path)
  1382. {
  1383. char *p, *pathname;
  1384. if (prefix)
  1385. audit_log_format(ab, "%s", prefix);
  1386. /* We will allow 11 spaces for ' (deleted)' to be appended */
  1387. pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
  1388. if (!pathname) {
  1389. audit_log_string(ab, "<no_memory>");
  1390. return;
  1391. }
  1392. p = d_path(path, pathname, PATH_MAX+11);
  1393. if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
  1394. /* FIXME: can we save some information here? */
  1395. audit_log_string(ab, "<too_long>");
  1396. } else
  1397. audit_log_untrustedstring(ab, p);
  1398. kfree(pathname);
  1399. }
  1400. void audit_log_session_info(struct audit_buffer *ab)
  1401. {
  1402. unsigned int sessionid = audit_get_sessionid(current);
  1403. uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
  1404. audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
  1405. }
  1406. void audit_log_key(struct audit_buffer *ab, char *key)
  1407. {
  1408. audit_log_format(ab, " key=");
  1409. if (key)
  1410. audit_log_untrustedstring(ab, key);
  1411. else
  1412. audit_log_format(ab, "(null)");
  1413. }
  1414. void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
  1415. {
  1416. int i;
  1417. audit_log_format(ab, " %s=", prefix);
  1418. CAP_FOR_EACH_U32(i) {
  1419. audit_log_format(ab, "%08x",
  1420. cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
  1421. }
  1422. }
  1423. void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
  1424. {
  1425. kernel_cap_t *perm = &name->fcap.permitted;
  1426. kernel_cap_t *inh = &name->fcap.inheritable;
  1427. int log = 0;
  1428. if (!cap_isclear(*perm)) {
  1429. audit_log_cap(ab, "cap_fp", perm);
  1430. log = 1;
  1431. }
  1432. if (!cap_isclear(*inh)) {
  1433. audit_log_cap(ab, "cap_fi", inh);
  1434. log = 1;
  1435. }
  1436. if (log)
  1437. audit_log_format(ab, " cap_fe=%d cap_fver=%x",
  1438. name->fcap.fE, name->fcap_ver);
  1439. }
  1440. static inline int audit_copy_fcaps(struct audit_names *name,
  1441. const struct dentry *dentry)
  1442. {
  1443. struct cpu_vfs_cap_data caps;
  1444. int rc;
  1445. if (!dentry)
  1446. return 0;
  1447. rc = get_vfs_caps_from_disk(dentry, &caps);
  1448. if (rc)
  1449. return rc;
  1450. name->fcap.permitted = caps.permitted;
  1451. name->fcap.inheritable = caps.inheritable;
  1452. name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
  1453. name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
  1454. VFS_CAP_REVISION_SHIFT;
  1455. return 0;
  1456. }
  1457. /* Copy inode data into an audit_names. */
  1458. void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
  1459. const struct inode *inode)
  1460. {
  1461. name->ino = inode->i_ino;
  1462. name->dev = inode->i_sb->s_dev;
  1463. name->mode = inode->i_mode;
  1464. name->uid = inode->i_uid;
  1465. name->gid = inode->i_gid;
  1466. name->rdev = inode->i_rdev;
  1467. security_inode_getsecid(inode, &name->osid);
  1468. audit_copy_fcaps(name, dentry);
  1469. }
  1470. /**
  1471. * audit_log_name - produce AUDIT_PATH record from struct audit_names
  1472. * @context: audit_context for the task
  1473. * @n: audit_names structure with reportable details
  1474. * @path: optional path to report instead of audit_names->name
  1475. * @record_num: record number to report when handling a list of names
  1476. * @call_panic: optional pointer to int that will be updated if secid fails
  1477. */
  1478. void audit_log_name(struct audit_context *context, struct audit_names *n,
  1479. struct path *path, int record_num, int *call_panic)
  1480. {
  1481. struct audit_buffer *ab;
  1482. ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
  1483. if (!ab)
  1484. return;
  1485. audit_log_format(ab, "item=%d", record_num);
  1486. if (path)
  1487. audit_log_d_path(ab, " name=", path);
  1488. else if (n->name) {
  1489. switch (n->name_len) {
  1490. case AUDIT_NAME_FULL:
  1491. /* log the full path */
  1492. audit_log_format(ab, " name=");
  1493. audit_log_untrustedstring(ab, n->name->name);
  1494. break;
  1495. case 0:
  1496. /* name was specified as a relative path and the
  1497. * directory component is the cwd */
  1498. audit_log_d_path(ab, " name=", &context->pwd);
  1499. break;
  1500. default:
  1501. /* log the name's directory component */
  1502. audit_log_format(ab, " name=");
  1503. audit_log_n_untrustedstring(ab, n->name->name,
  1504. n->name_len);
  1505. }
  1506. } else
  1507. audit_log_format(ab, " name=(null)");
  1508. if (n->ino != (unsigned long)-1) {
  1509. audit_log_format(ab, " inode=%lu"
  1510. " dev=%02x:%02x mode=%#ho"
  1511. " ouid=%u ogid=%u rdev=%02x:%02x",
  1512. n->ino,
  1513. MAJOR(n->dev),
  1514. MINOR(n->dev),
  1515. n->mode,
  1516. from_kuid(&init_user_ns, n->uid),
  1517. from_kgid(&init_user_ns, n->gid),
  1518. MAJOR(n->rdev),
  1519. MINOR(n->rdev));
  1520. }
  1521. if (n->osid != 0) {
  1522. char *ctx = NULL;
  1523. u32 len;
  1524. if (security_secid_to_secctx(
  1525. n->osid, &ctx, &len)) {
  1526. audit_log_format(ab, " osid=%u", n->osid);
  1527. if (call_panic)
  1528. *call_panic = 2;
  1529. } else {
  1530. audit_log_format(ab, " obj=%s", ctx);
  1531. security_release_secctx(ctx, len);
  1532. }
  1533. }
  1534. /* log the audit_names record type */
  1535. audit_log_format(ab, " nametype=");
  1536. switch(n->type) {
  1537. case AUDIT_TYPE_NORMAL:
  1538. audit_log_format(ab, "NORMAL");
  1539. break;
  1540. case AUDIT_TYPE_PARENT:
  1541. audit_log_format(ab, "PARENT");
  1542. break;
  1543. case AUDIT_TYPE_CHILD_DELETE:
  1544. audit_log_format(ab, "DELETE");
  1545. break;
  1546. case AUDIT_TYPE_CHILD_CREATE:
  1547. audit_log_format(ab, "CREATE");
  1548. break;
  1549. default:
  1550. audit_log_format(ab, "UNKNOWN");
  1551. break;
  1552. }
  1553. audit_log_fcaps(ab, n);
  1554. audit_log_end(ab);
  1555. }
  1556. int audit_log_task_context(struct audit_buffer *ab)
  1557. {
  1558. char *ctx = NULL;
  1559. unsigned len;
  1560. int error;
  1561. u32 sid;
  1562. security_task_getsecid(current, &sid);
  1563. if (!sid)
  1564. return 0;
  1565. error = security_secid_to_secctx(sid, &ctx, &len);
  1566. if (error) {
  1567. if (error != -EINVAL)
  1568. goto error_path;
  1569. return 0;
  1570. }
  1571. audit_log_format(ab, " subj=%s", ctx);
  1572. security_release_secctx(ctx, len);
  1573. return 0;
  1574. error_path:
  1575. audit_panic("error in audit_log_task_context");
  1576. return error;
  1577. }
  1578. EXPORT_SYMBOL(audit_log_task_context);
  1579. void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
  1580. {
  1581. const struct cred *cred;
  1582. char name[sizeof(tsk->comm)];
  1583. struct mm_struct *mm = tsk->mm;
  1584. char *tty;
  1585. if (!ab)
  1586. return;
  1587. /* tsk == current */
  1588. cred = current_cred();
  1589. spin_lock_irq(&tsk->sighand->siglock);
  1590. if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
  1591. tty = tsk->signal->tty->name;
  1592. else
  1593. tty = "(none)";
  1594. spin_unlock_irq(&tsk->sighand->siglock);
  1595. audit_log_format(ab,
  1596. " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
  1597. " euid=%u suid=%u fsuid=%u"
  1598. " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
  1599. sys_getppid(),
  1600. tsk->pid,
  1601. from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
  1602. from_kuid(&init_user_ns, cred->uid),
  1603. from_kgid(&init_user_ns, cred->gid),
  1604. from_kuid(&init_user_ns, cred->euid),
  1605. from_kuid(&init_user_ns, cred->suid),
  1606. from_kuid(&init_user_ns, cred->fsuid),
  1607. from_kgid(&init_user_ns, cred->egid),
  1608. from_kgid(&init_user_ns, cred->sgid),
  1609. from_kgid(&init_user_ns, cred->fsgid),
  1610. tty, audit_get_sessionid(tsk));
  1611. get_task_comm(name, tsk);
  1612. audit_log_format(ab, " comm=");
  1613. audit_log_untrustedstring(ab, name);
  1614. if (mm) {
  1615. down_read(&mm->mmap_sem);
  1616. if (mm->exe_file)
  1617. audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
  1618. up_read(&mm->mmap_sem);
  1619. } else
  1620. audit_log_format(ab, " exe=(null)");
  1621. audit_log_task_context(ab);
  1622. }
  1623. EXPORT_SYMBOL(audit_log_task_info);
  1624. /**
  1625. * audit_log_link_denied - report a link restriction denial
  1626. * @operation: specific link opreation
  1627. * @link: the path that triggered the restriction
  1628. */
  1629. void audit_log_link_denied(const char *operation, struct path *link)
  1630. {
  1631. struct audit_buffer *ab;
  1632. struct audit_names *name;
  1633. name = kzalloc(sizeof(*name), GFP_NOFS);
  1634. if (!name)
  1635. return;
  1636. /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
  1637. ab = audit_log_start(current->audit_context, GFP_KERNEL,
  1638. AUDIT_ANOM_LINK);
  1639. if (!ab)
  1640. goto out;
  1641. audit_log_format(ab, "op=%s", operation);
  1642. audit_log_task_info(ab, current);
  1643. audit_log_format(ab, " res=0");
  1644. audit_log_end(ab);
  1645. /* Generate AUDIT_PATH record with object. */
  1646. name->type = AUDIT_TYPE_NORMAL;
  1647. audit_copy_inode(name, link->dentry, link->dentry->d_inode);
  1648. audit_log_name(current->audit_context, name, link, 0, NULL);
  1649. out:
  1650. kfree(name);
  1651. }
  1652. /**
  1653. * audit_log_end - end one audit record
  1654. * @ab: the audit_buffer
  1655. *
  1656. * The netlink_* functions cannot be called inside an irq context, so
  1657. * the audit buffer is placed on a queue and a tasklet is scheduled to
  1658. * remove them from the queue outside the irq context. May be called in
  1659. * any context.
  1660. */
  1661. void audit_log_end(struct audit_buffer *ab)
  1662. {
  1663. if (!ab)
  1664. return;
  1665. if (!audit_rate_check()) {
  1666. audit_log_lost("rate limit exceeded");
  1667. } else {
  1668. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  1669. nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
  1670. if (audit_pid) {
  1671. skb_queue_tail(&audit_skb_queue, ab->skb);
  1672. wake_up_interruptible(&kauditd_wait);
  1673. } else {
  1674. audit_printk_skb(ab->skb);
  1675. }
  1676. ab->skb = NULL;
  1677. }
  1678. audit_buffer_free(ab);
  1679. }
  1680. /**
  1681. * audit_log - Log an audit record
  1682. * @ctx: audit context
  1683. * @gfp_mask: type of allocation
  1684. * @type: audit message type
  1685. * @fmt: format string to use
  1686. * @...: variable parameters matching the format string
  1687. *
  1688. * This is a convenience function that calls audit_log_start,
  1689. * audit_log_vformat, and audit_log_end. It may be called
  1690. * in any context.
  1691. */
  1692. void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
  1693. const char *fmt, ...)
  1694. {
  1695. struct audit_buffer *ab;
  1696. va_list args;
  1697. ab = audit_log_start(ctx, gfp_mask, type);
  1698. if (ab) {
  1699. va_start(args, fmt);
  1700. audit_log_vformat(ab, fmt, args);
  1701. va_end(args);
  1702. audit_log_end(ab);
  1703. }
  1704. }
  1705. #ifdef CONFIG_SECURITY
  1706. /**
  1707. * audit_log_secctx - Converts and logs SELinux context
  1708. * @ab: audit_buffer
  1709. * @secid: security number
  1710. *
  1711. * This is a helper function that calls security_secid_to_secctx to convert
  1712. * secid to secctx and then adds the (converted) SELinux context to the audit
  1713. * log by calling audit_log_format, thus also preventing leak of internal secid
  1714. * to userspace. If secid cannot be converted audit_panic is called.
  1715. */
  1716. void audit_log_secctx(struct audit_buffer *ab, u32 secid)
  1717. {
  1718. u32 len;
  1719. char *secctx;
  1720. if (security_secid_to_secctx(secid, &secctx, &len)) {
  1721. audit_panic("Cannot convert secid to context");
  1722. } else {
  1723. audit_log_format(ab, " obj=%s", secctx);
  1724. security_release_secctx(secctx, len);
  1725. }
  1726. }
  1727. EXPORT_SYMBOL(audit_log_secctx);
  1728. #endif
  1729. EXPORT_SYMBOL(audit_log_start);
  1730. EXPORT_SYMBOL(audit_log_end);
  1731. EXPORT_SYMBOL(audit_log_format);
  1732. EXPORT_SYMBOL(audit_log);