intel_ringbuffer.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (w->count == 0)
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw,chv */
  686. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  687. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  688. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  689. * workaround for for a possible hang in the unlikely event a TLB
  690. * invalidation occurs during a PSD flush.
  691. */
  692. /* WaForceEnableNonCoherent:bdw,chv */
  693. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  694. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  695. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  696. HDC_FORCE_NON_COHERENT);
  697. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  698. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  699. * polygons in the same 8x4 pixel/sample area to be processed without
  700. * stalling waiting for the earlier ones to write to Hierarchical Z
  701. * buffer."
  702. *
  703. * This optimization is off by default for BDW and CHV; turn it on.
  704. */
  705. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  706. /* Wa4x4STCOptimizationDisable:bdw,chv */
  707. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  708. /*
  709. * BSpec recommends 8x4 when MSAA is used,
  710. * however in practice 16x4 seems fastest.
  711. *
  712. * Note that PS/WM thread counts depend on the WIZ hashing
  713. * disable bit, which we don't touch here, but it's good
  714. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  715. */
  716. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  717. GEN6_WIZ_HASHING_MASK,
  718. GEN6_WIZ_HASHING_16x4);
  719. return 0;
  720. }
  721. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  722. {
  723. int ret;
  724. struct drm_device *dev = ring->dev;
  725. struct drm_i915_private *dev_priv = dev->dev_private;
  726. ret = gen8_init_workarounds(ring);
  727. if (ret)
  728. return ret;
  729. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  730. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  731. /* WaDisableDopClockGating:bdw */
  732. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  733. DOP_CLOCK_GATING_DISABLE);
  734. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  735. GEN8_SAMPLER_POWER_BYPASS_DIS);
  736. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  737. /* WaForceContextSaveRestoreNonCoherent:bdw */
  738. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  739. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  740. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  741. return 0;
  742. }
  743. static int chv_init_workarounds(struct intel_engine_cs *ring)
  744. {
  745. int ret;
  746. struct drm_device *dev = ring->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. ret = gen8_init_workarounds(ring);
  749. if (ret)
  750. return ret;
  751. /* WaDisableThreadStallDopClockGating:chv */
  752. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  753. /* Improve HiZ throughput on CHV. */
  754. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  755. return 0;
  756. }
  757. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  758. {
  759. struct drm_device *dev = ring->dev;
  760. struct drm_i915_private *dev_priv = dev->dev_private;
  761. uint32_t tmp;
  762. /* WaDisablePartialInstShootdown:skl,bxt */
  763. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  764. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  765. /* Syncing dependencies between camera and graphics:skl,bxt */
  766. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  767. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  768. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  769. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  770. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  771. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  772. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  773. GEN9_DG_MIRROR_FIX_ENABLE);
  774. }
  775. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  776. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  777. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  778. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  779. GEN9_RHWO_OPTIMIZATION_DISABLE);
  780. /*
  781. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  782. * but we do that in per ctx batchbuffer as there is an issue
  783. * with this register not getting restored on ctx restore
  784. */
  785. }
  786. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  787. IS_BROXTON(dev)) {
  788. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  789. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  790. GEN9_ENABLE_YV12_BUGFIX);
  791. }
  792. /* Wa4x4STCOptimizationDisable:skl,bxt */
  793. /* WaDisablePartialResolveInVc:skl,bxt */
  794. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  795. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  796. /* WaCcsTlbPrefetchDisable:skl,bxt */
  797. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  798. GEN9_CCS_TLB_PREFETCH_ENABLE);
  799. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  800. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  801. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  802. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  803. PIXEL_MASK_CAMMING_DISABLE);
  804. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  805. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  806. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  807. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  808. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  809. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  810. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  811. if (IS_SKYLAKE(dev) ||
  812. (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
  813. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  814. GEN8_SAMPLER_POWER_BYPASS_DIS);
  815. }
  816. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  817. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  818. return 0;
  819. }
  820. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  821. {
  822. struct drm_device *dev = ring->dev;
  823. struct drm_i915_private *dev_priv = dev->dev_private;
  824. u8 vals[3] = { 0, 0, 0 };
  825. unsigned int i;
  826. for (i = 0; i < 3; i++) {
  827. u8 ss;
  828. /*
  829. * Only consider slices where one, and only one, subslice has 7
  830. * EUs
  831. */
  832. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  833. continue;
  834. /*
  835. * subslice_7eu[i] != 0 (because of the check above) and
  836. * ss_max == 4 (maximum number of subslices possible per slice)
  837. *
  838. * -> 0 <= ss <= 3;
  839. */
  840. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  841. vals[i] = 3 - ss;
  842. }
  843. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  844. return 0;
  845. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  846. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  847. GEN9_IZ_HASHING_MASK(2) |
  848. GEN9_IZ_HASHING_MASK(1) |
  849. GEN9_IZ_HASHING_MASK(0),
  850. GEN9_IZ_HASHING(2, vals[2]) |
  851. GEN9_IZ_HASHING(1, vals[1]) |
  852. GEN9_IZ_HASHING(0, vals[0]));
  853. return 0;
  854. }
  855. static int skl_init_workarounds(struct intel_engine_cs *ring)
  856. {
  857. int ret;
  858. struct drm_device *dev = ring->dev;
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. ret = gen9_init_workarounds(ring);
  861. if (ret)
  862. return ret;
  863. /* WaDisablePowerCompilerClockGating:skl */
  864. if (INTEL_REVID(dev) == SKL_REVID_B0)
  865. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  866. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  867. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  868. /*
  869. *Use Force Non-Coherent whenever executing a 3D context. This
  870. * is a workaround for a possible hang in the unlikely event
  871. * a TLB invalidation occurs during a PSD flush.
  872. */
  873. /* WaForceEnableNonCoherent:skl */
  874. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  875. HDC_FORCE_NON_COHERENT);
  876. }
  877. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  878. INTEL_REVID(dev) == SKL_REVID_D0)
  879. /* WaBarrierPerformanceFixDisable:skl */
  880. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  881. HDC_FENCE_DEST_SLM_DISABLE |
  882. HDC_BARRIER_PERFORMANCE_DISABLE);
  883. /* WaDisableSbeCacheDispatchPortSharing:skl */
  884. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  885. WA_SET_BIT_MASKED(
  886. GEN7_HALF_SLICE_CHICKEN1,
  887. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  888. }
  889. return skl_tune_iz_hashing(ring);
  890. }
  891. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  892. {
  893. int ret;
  894. struct drm_device *dev = ring->dev;
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. ret = gen9_init_workarounds(ring);
  897. if (ret)
  898. return ret;
  899. /* WaDisableThreadStallDopClockGating:bxt */
  900. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  901. STALL_DOP_GATING_DISABLE);
  902. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  903. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  904. WA_SET_BIT_MASKED(
  905. GEN7_HALF_SLICE_CHICKEN1,
  906. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  907. }
  908. return 0;
  909. }
  910. int init_workarounds_ring(struct intel_engine_cs *ring)
  911. {
  912. struct drm_device *dev = ring->dev;
  913. struct drm_i915_private *dev_priv = dev->dev_private;
  914. WARN_ON(ring->id != RCS);
  915. dev_priv->workarounds.count = 0;
  916. if (IS_BROADWELL(dev))
  917. return bdw_init_workarounds(ring);
  918. if (IS_CHERRYVIEW(dev))
  919. return chv_init_workarounds(ring);
  920. if (IS_SKYLAKE(dev))
  921. return skl_init_workarounds(ring);
  922. if (IS_BROXTON(dev))
  923. return bxt_init_workarounds(ring);
  924. return 0;
  925. }
  926. static int init_render_ring(struct intel_engine_cs *ring)
  927. {
  928. struct drm_device *dev = ring->dev;
  929. struct drm_i915_private *dev_priv = dev->dev_private;
  930. int ret = init_ring_common(ring);
  931. if (ret)
  932. return ret;
  933. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  934. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  935. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  936. /* We need to disable the AsyncFlip performance optimisations in order
  937. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  938. * programmed to '1' on all products.
  939. *
  940. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  941. */
  942. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  943. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  944. /* Required for the hardware to program scanline values for waiting */
  945. /* WaEnableFlushTlbInvalidationMode:snb */
  946. if (INTEL_INFO(dev)->gen == 6)
  947. I915_WRITE(GFX_MODE,
  948. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  949. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  950. if (IS_GEN7(dev))
  951. I915_WRITE(GFX_MODE_GEN7,
  952. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  953. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  954. if (IS_GEN6(dev)) {
  955. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  956. * "If this bit is set, STCunit will have LRA as replacement
  957. * policy. [...] This bit must be reset. LRA replacement
  958. * policy is not supported."
  959. */
  960. I915_WRITE(CACHE_MODE_0,
  961. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  962. }
  963. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  964. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  965. if (HAS_L3_DPF(dev))
  966. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  967. return init_workarounds_ring(ring);
  968. }
  969. static void render_ring_cleanup(struct intel_engine_cs *ring)
  970. {
  971. struct drm_device *dev = ring->dev;
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. if (dev_priv->semaphore_obj) {
  974. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  975. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  976. dev_priv->semaphore_obj = NULL;
  977. }
  978. intel_fini_pipe_control(ring);
  979. }
  980. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  981. unsigned int num_dwords)
  982. {
  983. #define MBOX_UPDATE_DWORDS 8
  984. struct intel_engine_cs *signaller = signaller_req->ring;
  985. struct drm_device *dev = signaller->dev;
  986. struct drm_i915_private *dev_priv = dev->dev_private;
  987. struct intel_engine_cs *waiter;
  988. int i, ret, num_rings;
  989. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  990. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  991. #undef MBOX_UPDATE_DWORDS
  992. ret = intel_ring_begin(signaller_req, num_dwords);
  993. if (ret)
  994. return ret;
  995. for_each_ring(waiter, dev_priv, i) {
  996. u32 seqno;
  997. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  998. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  999. continue;
  1000. seqno = i915_gem_request_get_seqno(signaller_req);
  1001. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1002. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1003. PIPE_CONTROL_QW_WRITE |
  1004. PIPE_CONTROL_FLUSH_ENABLE);
  1005. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1006. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1007. intel_ring_emit(signaller, seqno);
  1008. intel_ring_emit(signaller, 0);
  1009. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1010. MI_SEMAPHORE_TARGET(waiter->id));
  1011. intel_ring_emit(signaller, 0);
  1012. }
  1013. return 0;
  1014. }
  1015. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1016. unsigned int num_dwords)
  1017. {
  1018. #define MBOX_UPDATE_DWORDS 6
  1019. struct intel_engine_cs *signaller = signaller_req->ring;
  1020. struct drm_device *dev = signaller->dev;
  1021. struct drm_i915_private *dev_priv = dev->dev_private;
  1022. struct intel_engine_cs *waiter;
  1023. int i, ret, num_rings;
  1024. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1025. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1026. #undef MBOX_UPDATE_DWORDS
  1027. ret = intel_ring_begin(signaller_req, num_dwords);
  1028. if (ret)
  1029. return ret;
  1030. for_each_ring(waiter, dev_priv, i) {
  1031. u32 seqno;
  1032. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1033. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1034. continue;
  1035. seqno = i915_gem_request_get_seqno(signaller_req);
  1036. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1037. MI_FLUSH_DW_OP_STOREDW);
  1038. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1039. MI_FLUSH_DW_USE_GTT);
  1040. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1041. intel_ring_emit(signaller, seqno);
  1042. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1043. MI_SEMAPHORE_TARGET(waiter->id));
  1044. intel_ring_emit(signaller, 0);
  1045. }
  1046. return 0;
  1047. }
  1048. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1049. unsigned int num_dwords)
  1050. {
  1051. struct intel_engine_cs *signaller = signaller_req->ring;
  1052. struct drm_device *dev = signaller->dev;
  1053. struct drm_i915_private *dev_priv = dev->dev_private;
  1054. struct intel_engine_cs *useless;
  1055. int i, ret, num_rings;
  1056. #define MBOX_UPDATE_DWORDS 3
  1057. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1058. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1059. #undef MBOX_UPDATE_DWORDS
  1060. ret = intel_ring_begin(signaller_req, num_dwords);
  1061. if (ret)
  1062. return ret;
  1063. for_each_ring(useless, dev_priv, i) {
  1064. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1065. if (mbox_reg != GEN6_NOSYNC) {
  1066. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1067. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1068. intel_ring_emit(signaller, mbox_reg);
  1069. intel_ring_emit(signaller, seqno);
  1070. }
  1071. }
  1072. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1073. if (num_rings % 2 == 0)
  1074. intel_ring_emit(signaller, MI_NOOP);
  1075. return 0;
  1076. }
  1077. /**
  1078. * gen6_add_request - Update the semaphore mailbox registers
  1079. *
  1080. * @request - request to write to the ring
  1081. *
  1082. * Update the mailbox registers in the *other* rings with the current seqno.
  1083. * This acts like a signal in the canonical semaphore.
  1084. */
  1085. static int
  1086. gen6_add_request(struct drm_i915_gem_request *req)
  1087. {
  1088. struct intel_engine_cs *ring = req->ring;
  1089. int ret;
  1090. if (ring->semaphore.signal)
  1091. ret = ring->semaphore.signal(req, 4);
  1092. else
  1093. ret = intel_ring_begin(req, 4);
  1094. if (ret)
  1095. return ret;
  1096. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1097. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1098. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1099. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1100. __intel_ring_advance(ring);
  1101. return 0;
  1102. }
  1103. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1104. u32 seqno)
  1105. {
  1106. struct drm_i915_private *dev_priv = dev->dev_private;
  1107. return dev_priv->last_seqno < seqno;
  1108. }
  1109. /**
  1110. * intel_ring_sync - sync the waiter to the signaller on seqno
  1111. *
  1112. * @waiter - ring that is waiting
  1113. * @signaller - ring which has, or will signal
  1114. * @seqno - seqno which the waiter will block on
  1115. */
  1116. static int
  1117. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1118. struct intel_engine_cs *signaller,
  1119. u32 seqno)
  1120. {
  1121. struct intel_engine_cs *waiter = waiter_req->ring;
  1122. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1123. int ret;
  1124. ret = intel_ring_begin(waiter_req, 4);
  1125. if (ret)
  1126. return ret;
  1127. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1128. MI_SEMAPHORE_GLOBAL_GTT |
  1129. MI_SEMAPHORE_POLL |
  1130. MI_SEMAPHORE_SAD_GTE_SDD);
  1131. intel_ring_emit(waiter, seqno);
  1132. intel_ring_emit(waiter,
  1133. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1134. intel_ring_emit(waiter,
  1135. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1136. intel_ring_advance(waiter);
  1137. return 0;
  1138. }
  1139. static int
  1140. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1141. struct intel_engine_cs *signaller,
  1142. u32 seqno)
  1143. {
  1144. struct intel_engine_cs *waiter = waiter_req->ring;
  1145. u32 dw1 = MI_SEMAPHORE_MBOX |
  1146. MI_SEMAPHORE_COMPARE |
  1147. MI_SEMAPHORE_REGISTER;
  1148. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1149. int ret;
  1150. /* Throughout all of the GEM code, seqno passed implies our current
  1151. * seqno is >= the last seqno executed. However for hardware the
  1152. * comparison is strictly greater than.
  1153. */
  1154. seqno -= 1;
  1155. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1156. ret = intel_ring_begin(waiter_req, 4);
  1157. if (ret)
  1158. return ret;
  1159. /* If seqno wrap happened, omit the wait with no-ops */
  1160. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1161. intel_ring_emit(waiter, dw1 | wait_mbox);
  1162. intel_ring_emit(waiter, seqno);
  1163. intel_ring_emit(waiter, 0);
  1164. intel_ring_emit(waiter, MI_NOOP);
  1165. } else {
  1166. intel_ring_emit(waiter, MI_NOOP);
  1167. intel_ring_emit(waiter, MI_NOOP);
  1168. intel_ring_emit(waiter, MI_NOOP);
  1169. intel_ring_emit(waiter, MI_NOOP);
  1170. }
  1171. intel_ring_advance(waiter);
  1172. return 0;
  1173. }
  1174. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1175. do { \
  1176. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1177. PIPE_CONTROL_DEPTH_STALL); \
  1178. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1179. intel_ring_emit(ring__, 0); \
  1180. intel_ring_emit(ring__, 0); \
  1181. } while (0)
  1182. static int
  1183. pc_render_add_request(struct drm_i915_gem_request *req)
  1184. {
  1185. struct intel_engine_cs *ring = req->ring;
  1186. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1187. int ret;
  1188. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1189. * incoherent with writes to memory, i.e. completely fubar,
  1190. * so we need to use PIPE_NOTIFY instead.
  1191. *
  1192. * However, we also need to workaround the qword write
  1193. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1194. * memory before requesting an interrupt.
  1195. */
  1196. ret = intel_ring_begin(req, 32);
  1197. if (ret)
  1198. return ret;
  1199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1200. PIPE_CONTROL_WRITE_FLUSH |
  1201. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1202. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1203. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1204. intel_ring_emit(ring, 0);
  1205. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1206. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1207. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1208. scratch_addr += 2 * CACHELINE_BYTES;
  1209. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1210. scratch_addr += 2 * CACHELINE_BYTES;
  1211. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1212. scratch_addr += 2 * CACHELINE_BYTES;
  1213. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1214. scratch_addr += 2 * CACHELINE_BYTES;
  1215. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1216. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1217. PIPE_CONTROL_WRITE_FLUSH |
  1218. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1219. PIPE_CONTROL_NOTIFY);
  1220. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1221. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1222. intel_ring_emit(ring, 0);
  1223. __intel_ring_advance(ring);
  1224. return 0;
  1225. }
  1226. static u32
  1227. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1228. {
  1229. /* Workaround to force correct ordering between irq and seqno writes on
  1230. * ivb (and maybe also on snb) by reading from a CS register (like
  1231. * ACTHD) before reading the status page. */
  1232. if (!lazy_coherency) {
  1233. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1234. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1235. }
  1236. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1237. }
  1238. static u32
  1239. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1240. {
  1241. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1242. }
  1243. static void
  1244. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1245. {
  1246. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1247. }
  1248. static u32
  1249. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1250. {
  1251. return ring->scratch.cpu_page[0];
  1252. }
  1253. static void
  1254. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1255. {
  1256. ring->scratch.cpu_page[0] = seqno;
  1257. }
  1258. static bool
  1259. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1260. {
  1261. struct drm_device *dev = ring->dev;
  1262. struct drm_i915_private *dev_priv = dev->dev_private;
  1263. unsigned long flags;
  1264. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1265. return false;
  1266. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1267. if (ring->irq_refcount++ == 0)
  1268. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1269. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1270. return true;
  1271. }
  1272. static void
  1273. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1274. {
  1275. struct drm_device *dev = ring->dev;
  1276. struct drm_i915_private *dev_priv = dev->dev_private;
  1277. unsigned long flags;
  1278. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1279. if (--ring->irq_refcount == 0)
  1280. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1281. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1282. }
  1283. static bool
  1284. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1285. {
  1286. struct drm_device *dev = ring->dev;
  1287. struct drm_i915_private *dev_priv = dev->dev_private;
  1288. unsigned long flags;
  1289. if (!intel_irqs_enabled(dev_priv))
  1290. return false;
  1291. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1292. if (ring->irq_refcount++ == 0) {
  1293. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1294. I915_WRITE(IMR, dev_priv->irq_mask);
  1295. POSTING_READ(IMR);
  1296. }
  1297. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1298. return true;
  1299. }
  1300. static void
  1301. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1302. {
  1303. struct drm_device *dev = ring->dev;
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. unsigned long flags;
  1306. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1307. if (--ring->irq_refcount == 0) {
  1308. dev_priv->irq_mask |= ring->irq_enable_mask;
  1309. I915_WRITE(IMR, dev_priv->irq_mask);
  1310. POSTING_READ(IMR);
  1311. }
  1312. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1313. }
  1314. static bool
  1315. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1316. {
  1317. struct drm_device *dev = ring->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. unsigned long flags;
  1320. if (!intel_irqs_enabled(dev_priv))
  1321. return false;
  1322. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1323. if (ring->irq_refcount++ == 0) {
  1324. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1325. I915_WRITE16(IMR, dev_priv->irq_mask);
  1326. POSTING_READ16(IMR);
  1327. }
  1328. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1329. return true;
  1330. }
  1331. static void
  1332. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1333. {
  1334. struct drm_device *dev = ring->dev;
  1335. struct drm_i915_private *dev_priv = dev->dev_private;
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1338. if (--ring->irq_refcount == 0) {
  1339. dev_priv->irq_mask |= ring->irq_enable_mask;
  1340. I915_WRITE16(IMR, dev_priv->irq_mask);
  1341. POSTING_READ16(IMR);
  1342. }
  1343. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1344. }
  1345. static int
  1346. bsd_ring_flush(struct drm_i915_gem_request *req,
  1347. u32 invalidate_domains,
  1348. u32 flush_domains)
  1349. {
  1350. struct intel_engine_cs *ring = req->ring;
  1351. int ret;
  1352. ret = intel_ring_begin(req, 2);
  1353. if (ret)
  1354. return ret;
  1355. intel_ring_emit(ring, MI_FLUSH);
  1356. intel_ring_emit(ring, MI_NOOP);
  1357. intel_ring_advance(ring);
  1358. return 0;
  1359. }
  1360. static int
  1361. i9xx_add_request(struct drm_i915_gem_request *req)
  1362. {
  1363. struct intel_engine_cs *ring = req->ring;
  1364. int ret;
  1365. ret = intel_ring_begin(req, 4);
  1366. if (ret)
  1367. return ret;
  1368. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1369. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1370. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1371. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1372. __intel_ring_advance(ring);
  1373. return 0;
  1374. }
  1375. static bool
  1376. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1377. {
  1378. struct drm_device *dev = ring->dev;
  1379. struct drm_i915_private *dev_priv = dev->dev_private;
  1380. unsigned long flags;
  1381. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1382. return false;
  1383. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1384. if (ring->irq_refcount++ == 0) {
  1385. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1386. I915_WRITE_IMR(ring,
  1387. ~(ring->irq_enable_mask |
  1388. GT_PARITY_ERROR(dev)));
  1389. else
  1390. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1391. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1392. }
  1393. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1394. return true;
  1395. }
  1396. static void
  1397. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1398. {
  1399. struct drm_device *dev = ring->dev;
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. unsigned long flags;
  1402. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1403. if (--ring->irq_refcount == 0) {
  1404. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1405. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1406. else
  1407. I915_WRITE_IMR(ring, ~0);
  1408. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1409. }
  1410. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1411. }
  1412. static bool
  1413. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1414. {
  1415. struct drm_device *dev = ring->dev;
  1416. struct drm_i915_private *dev_priv = dev->dev_private;
  1417. unsigned long flags;
  1418. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1419. return false;
  1420. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1421. if (ring->irq_refcount++ == 0) {
  1422. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1423. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1424. }
  1425. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1426. return true;
  1427. }
  1428. static void
  1429. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1430. {
  1431. struct drm_device *dev = ring->dev;
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. unsigned long flags;
  1434. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1435. if (--ring->irq_refcount == 0) {
  1436. I915_WRITE_IMR(ring, ~0);
  1437. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1438. }
  1439. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1440. }
  1441. static bool
  1442. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1443. {
  1444. struct drm_device *dev = ring->dev;
  1445. struct drm_i915_private *dev_priv = dev->dev_private;
  1446. unsigned long flags;
  1447. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1448. return false;
  1449. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1450. if (ring->irq_refcount++ == 0) {
  1451. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1452. I915_WRITE_IMR(ring,
  1453. ~(ring->irq_enable_mask |
  1454. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1455. } else {
  1456. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1457. }
  1458. POSTING_READ(RING_IMR(ring->mmio_base));
  1459. }
  1460. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1461. return true;
  1462. }
  1463. static void
  1464. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1465. {
  1466. struct drm_device *dev = ring->dev;
  1467. struct drm_i915_private *dev_priv = dev->dev_private;
  1468. unsigned long flags;
  1469. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1470. if (--ring->irq_refcount == 0) {
  1471. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1472. I915_WRITE_IMR(ring,
  1473. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1474. } else {
  1475. I915_WRITE_IMR(ring, ~0);
  1476. }
  1477. POSTING_READ(RING_IMR(ring->mmio_base));
  1478. }
  1479. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1480. }
  1481. static int
  1482. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1483. u64 offset, u32 length,
  1484. unsigned dispatch_flags)
  1485. {
  1486. struct intel_engine_cs *ring = req->ring;
  1487. int ret;
  1488. ret = intel_ring_begin(req, 2);
  1489. if (ret)
  1490. return ret;
  1491. intel_ring_emit(ring,
  1492. MI_BATCH_BUFFER_START |
  1493. MI_BATCH_GTT |
  1494. (dispatch_flags & I915_DISPATCH_SECURE ?
  1495. 0 : MI_BATCH_NON_SECURE_I965));
  1496. intel_ring_emit(ring, offset);
  1497. intel_ring_advance(ring);
  1498. return 0;
  1499. }
  1500. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1501. #define I830_BATCH_LIMIT (256*1024)
  1502. #define I830_TLB_ENTRIES (2)
  1503. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1504. static int
  1505. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1506. u64 offset, u32 len,
  1507. unsigned dispatch_flags)
  1508. {
  1509. struct intel_engine_cs *ring = req->ring;
  1510. u32 cs_offset = ring->scratch.gtt_offset;
  1511. int ret;
  1512. ret = intel_ring_begin(req, 6);
  1513. if (ret)
  1514. return ret;
  1515. /* Evict the invalid PTE TLBs */
  1516. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1517. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1518. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1519. intel_ring_emit(ring, cs_offset);
  1520. intel_ring_emit(ring, 0xdeadbeef);
  1521. intel_ring_emit(ring, MI_NOOP);
  1522. intel_ring_advance(ring);
  1523. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1524. if (len > I830_BATCH_LIMIT)
  1525. return -ENOSPC;
  1526. ret = intel_ring_begin(req, 6 + 2);
  1527. if (ret)
  1528. return ret;
  1529. /* Blit the batch (which has now all relocs applied) to the
  1530. * stable batch scratch bo area (so that the CS never
  1531. * stumbles over its tlb invalidation bug) ...
  1532. */
  1533. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1534. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1535. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1536. intel_ring_emit(ring, cs_offset);
  1537. intel_ring_emit(ring, 4096);
  1538. intel_ring_emit(ring, offset);
  1539. intel_ring_emit(ring, MI_FLUSH);
  1540. intel_ring_emit(ring, MI_NOOP);
  1541. intel_ring_advance(ring);
  1542. /* ... and execute it. */
  1543. offset = cs_offset;
  1544. }
  1545. ret = intel_ring_begin(req, 4);
  1546. if (ret)
  1547. return ret;
  1548. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1549. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1550. 0 : MI_BATCH_NON_SECURE));
  1551. intel_ring_emit(ring, offset + len - 8);
  1552. intel_ring_emit(ring, MI_NOOP);
  1553. intel_ring_advance(ring);
  1554. return 0;
  1555. }
  1556. static int
  1557. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1558. u64 offset, u32 len,
  1559. unsigned dispatch_flags)
  1560. {
  1561. struct intel_engine_cs *ring = req->ring;
  1562. int ret;
  1563. ret = intel_ring_begin(req, 2);
  1564. if (ret)
  1565. return ret;
  1566. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1567. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1568. 0 : MI_BATCH_NON_SECURE));
  1569. intel_ring_advance(ring);
  1570. return 0;
  1571. }
  1572. static void cleanup_status_page(struct intel_engine_cs *ring)
  1573. {
  1574. struct drm_i915_gem_object *obj;
  1575. obj = ring->status_page.obj;
  1576. if (obj == NULL)
  1577. return;
  1578. kunmap(sg_page(obj->pages->sgl));
  1579. i915_gem_object_ggtt_unpin(obj);
  1580. drm_gem_object_unreference(&obj->base);
  1581. ring->status_page.obj = NULL;
  1582. }
  1583. static int init_status_page(struct intel_engine_cs *ring)
  1584. {
  1585. struct drm_i915_gem_object *obj;
  1586. if ((obj = ring->status_page.obj) == NULL) {
  1587. unsigned flags;
  1588. int ret;
  1589. obj = i915_gem_alloc_object(ring->dev, 4096);
  1590. if (obj == NULL) {
  1591. DRM_ERROR("Failed to allocate status page\n");
  1592. return -ENOMEM;
  1593. }
  1594. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1595. if (ret)
  1596. goto err_unref;
  1597. flags = 0;
  1598. if (!HAS_LLC(ring->dev))
  1599. /* On g33, we cannot place HWS above 256MiB, so
  1600. * restrict its pinning to the low mappable arena.
  1601. * Though this restriction is not documented for
  1602. * gen4, gen5, or byt, they also behave similarly
  1603. * and hang if the HWS is placed at the top of the
  1604. * GTT. To generalise, it appears that all !llc
  1605. * platforms have issues with us placing the HWS
  1606. * above the mappable region (even though we never
  1607. * actualy map it).
  1608. */
  1609. flags |= PIN_MAPPABLE;
  1610. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1611. if (ret) {
  1612. err_unref:
  1613. drm_gem_object_unreference(&obj->base);
  1614. return ret;
  1615. }
  1616. ring->status_page.obj = obj;
  1617. }
  1618. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1619. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1620. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1621. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1622. ring->name, ring->status_page.gfx_addr);
  1623. return 0;
  1624. }
  1625. static int init_phys_status_page(struct intel_engine_cs *ring)
  1626. {
  1627. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1628. if (!dev_priv->status_page_dmah) {
  1629. dev_priv->status_page_dmah =
  1630. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1631. if (!dev_priv->status_page_dmah)
  1632. return -ENOMEM;
  1633. }
  1634. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1635. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1636. return 0;
  1637. }
  1638. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1639. {
  1640. iounmap(ringbuf->virtual_start);
  1641. ringbuf->virtual_start = NULL;
  1642. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1643. }
  1644. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1645. struct intel_ringbuffer *ringbuf)
  1646. {
  1647. struct drm_i915_private *dev_priv = to_i915(dev);
  1648. struct drm_i915_gem_object *obj = ringbuf->obj;
  1649. int ret;
  1650. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1651. if (ret)
  1652. return ret;
  1653. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1654. if (ret) {
  1655. i915_gem_object_ggtt_unpin(obj);
  1656. return ret;
  1657. }
  1658. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1659. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1660. if (ringbuf->virtual_start == NULL) {
  1661. i915_gem_object_ggtt_unpin(obj);
  1662. return -EINVAL;
  1663. }
  1664. return 0;
  1665. }
  1666. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1667. {
  1668. drm_gem_object_unreference(&ringbuf->obj->base);
  1669. ringbuf->obj = NULL;
  1670. }
  1671. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1672. struct intel_ringbuffer *ringbuf)
  1673. {
  1674. struct drm_i915_gem_object *obj;
  1675. obj = NULL;
  1676. if (!HAS_LLC(dev))
  1677. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1678. if (obj == NULL)
  1679. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1680. if (obj == NULL)
  1681. return -ENOMEM;
  1682. /* mark ring buffers as read-only from GPU side by default */
  1683. obj->gt_ro = 1;
  1684. ringbuf->obj = obj;
  1685. return 0;
  1686. }
  1687. struct intel_ringbuffer *
  1688. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1689. {
  1690. struct intel_ringbuffer *ring;
  1691. int ret;
  1692. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1693. if (ring == NULL)
  1694. return ERR_PTR(-ENOMEM);
  1695. ring->ring = engine;
  1696. ring->size = size;
  1697. /* Workaround an erratum on the i830 which causes a hang if
  1698. * the TAIL pointer points to within the last 2 cachelines
  1699. * of the buffer.
  1700. */
  1701. ring->effective_size = size;
  1702. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1703. ring->effective_size -= 2 * CACHELINE_BYTES;
  1704. ring->last_retired_head = -1;
  1705. intel_ring_update_space(ring);
  1706. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1707. if (ret) {
  1708. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1709. engine->name, ret);
  1710. kfree(ring);
  1711. return ERR_PTR(ret);
  1712. }
  1713. return ring;
  1714. }
  1715. void
  1716. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1717. {
  1718. intel_destroy_ringbuffer_obj(ring);
  1719. kfree(ring);
  1720. }
  1721. static int intel_init_ring_buffer(struct drm_device *dev,
  1722. struct intel_engine_cs *ring)
  1723. {
  1724. struct intel_ringbuffer *ringbuf;
  1725. int ret;
  1726. WARN_ON(ring->buffer);
  1727. ring->dev = dev;
  1728. INIT_LIST_HEAD(&ring->active_list);
  1729. INIT_LIST_HEAD(&ring->request_list);
  1730. INIT_LIST_HEAD(&ring->execlist_queue);
  1731. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1732. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1733. init_waitqueue_head(&ring->irq_queue);
  1734. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1735. if (IS_ERR(ringbuf))
  1736. return PTR_ERR(ringbuf);
  1737. ring->buffer = ringbuf;
  1738. if (I915_NEED_GFX_HWS(dev)) {
  1739. ret = init_status_page(ring);
  1740. if (ret)
  1741. goto error;
  1742. } else {
  1743. BUG_ON(ring->id != RCS);
  1744. ret = init_phys_status_page(ring);
  1745. if (ret)
  1746. goto error;
  1747. }
  1748. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1749. if (ret) {
  1750. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1751. ring->name, ret);
  1752. intel_destroy_ringbuffer_obj(ringbuf);
  1753. goto error;
  1754. }
  1755. ret = i915_cmd_parser_init_ring(ring);
  1756. if (ret)
  1757. goto error;
  1758. return 0;
  1759. error:
  1760. intel_ringbuffer_free(ringbuf);
  1761. ring->buffer = NULL;
  1762. return ret;
  1763. }
  1764. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1765. {
  1766. struct drm_i915_private *dev_priv;
  1767. if (!intel_ring_initialized(ring))
  1768. return;
  1769. dev_priv = to_i915(ring->dev);
  1770. intel_stop_ring_buffer(ring);
  1771. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1772. intel_unpin_ringbuffer_obj(ring->buffer);
  1773. intel_ringbuffer_free(ring->buffer);
  1774. ring->buffer = NULL;
  1775. if (ring->cleanup)
  1776. ring->cleanup(ring);
  1777. cleanup_status_page(ring);
  1778. i915_cmd_parser_fini_ring(ring);
  1779. i915_gem_batch_pool_fini(&ring->batch_pool);
  1780. }
  1781. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1782. {
  1783. struct intel_ringbuffer *ringbuf = ring->buffer;
  1784. struct drm_i915_gem_request *request;
  1785. unsigned space;
  1786. int ret;
  1787. if (intel_ring_space(ringbuf) >= n)
  1788. return 0;
  1789. /* The whole point of reserving space is to not wait! */
  1790. WARN_ON(ringbuf->reserved_in_use);
  1791. list_for_each_entry(request, &ring->request_list, list) {
  1792. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1793. ringbuf->size);
  1794. if (space >= n)
  1795. break;
  1796. }
  1797. if (WARN_ON(&request->list == &ring->request_list))
  1798. return -ENOSPC;
  1799. ret = i915_wait_request(request);
  1800. if (ret)
  1801. return ret;
  1802. ringbuf->space = space;
  1803. return 0;
  1804. }
  1805. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1806. {
  1807. uint32_t __iomem *virt;
  1808. int rem = ringbuf->size - ringbuf->tail;
  1809. virt = ringbuf->virtual_start + ringbuf->tail;
  1810. rem /= 4;
  1811. while (rem--)
  1812. iowrite32(MI_NOOP, virt++);
  1813. ringbuf->tail = 0;
  1814. intel_ring_update_space(ringbuf);
  1815. }
  1816. int intel_ring_idle(struct intel_engine_cs *ring)
  1817. {
  1818. struct drm_i915_gem_request *req;
  1819. /* Wait upon the last request to be completed */
  1820. if (list_empty(&ring->request_list))
  1821. return 0;
  1822. req = list_entry(ring->request_list.prev,
  1823. struct drm_i915_gem_request,
  1824. list);
  1825. /* Make sure we do not trigger any retires */
  1826. return __i915_wait_request(req,
  1827. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1828. to_i915(ring->dev)->mm.interruptible,
  1829. NULL, NULL);
  1830. }
  1831. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1832. {
  1833. request->ringbuf = request->ring->buffer;
  1834. return 0;
  1835. }
  1836. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1837. {
  1838. /*
  1839. * The first call merely notes the reserve request and is common for
  1840. * all back ends. The subsequent localised _begin() call actually
  1841. * ensures that the reservation is available. Without the begin, if
  1842. * the request creator immediately submitted the request without
  1843. * adding any commands to it then there might not actually be
  1844. * sufficient room for the submission commands.
  1845. */
  1846. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1847. return intel_ring_begin(request, 0);
  1848. }
  1849. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1850. {
  1851. WARN_ON(ringbuf->reserved_size);
  1852. WARN_ON(ringbuf->reserved_in_use);
  1853. ringbuf->reserved_size = size;
  1854. }
  1855. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1856. {
  1857. WARN_ON(ringbuf->reserved_in_use);
  1858. ringbuf->reserved_size = 0;
  1859. ringbuf->reserved_in_use = false;
  1860. }
  1861. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1862. {
  1863. WARN_ON(ringbuf->reserved_in_use);
  1864. ringbuf->reserved_in_use = true;
  1865. ringbuf->reserved_tail = ringbuf->tail;
  1866. }
  1867. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1868. {
  1869. WARN_ON(!ringbuf->reserved_in_use);
  1870. if (ringbuf->tail > ringbuf->reserved_tail) {
  1871. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1872. "request reserved size too small: %d vs %d!\n",
  1873. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1874. } else {
  1875. /*
  1876. * The ring was wrapped while the reserved space was in use.
  1877. * That means that some unknown amount of the ring tail was
  1878. * no-op filled and skipped. Thus simply adding the ring size
  1879. * to the tail and doing the above space check will not work.
  1880. * Rather than attempt to track how much tail was skipped,
  1881. * it is much simpler to say that also skipping the sanity
  1882. * check every once in a while is not a big issue.
  1883. */
  1884. }
  1885. ringbuf->reserved_size = 0;
  1886. ringbuf->reserved_in_use = false;
  1887. }
  1888. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1889. {
  1890. struct intel_ringbuffer *ringbuf = ring->buffer;
  1891. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1892. int remain_actual = ringbuf->size - ringbuf->tail;
  1893. int ret, total_bytes, wait_bytes = 0;
  1894. bool need_wrap = false;
  1895. if (ringbuf->reserved_in_use)
  1896. total_bytes = bytes;
  1897. else
  1898. total_bytes = bytes + ringbuf->reserved_size;
  1899. if (unlikely(bytes > remain_usable)) {
  1900. /*
  1901. * Not enough space for the basic request. So need to flush
  1902. * out the remainder and then wait for base + reserved.
  1903. */
  1904. wait_bytes = remain_actual + total_bytes;
  1905. need_wrap = true;
  1906. } else {
  1907. if (unlikely(total_bytes > remain_usable)) {
  1908. /*
  1909. * The base request will fit but the reserved space
  1910. * falls off the end. So only need to to wait for the
  1911. * reserved size after flushing out the remainder.
  1912. */
  1913. wait_bytes = remain_actual + ringbuf->reserved_size;
  1914. need_wrap = true;
  1915. } else if (total_bytes > ringbuf->space) {
  1916. /* No wrapping required, just waiting. */
  1917. wait_bytes = total_bytes;
  1918. }
  1919. }
  1920. if (wait_bytes) {
  1921. ret = ring_wait_for_space(ring, wait_bytes);
  1922. if (unlikely(ret))
  1923. return ret;
  1924. if (need_wrap)
  1925. __wrap_ring_buffer(ringbuf);
  1926. }
  1927. return 0;
  1928. }
  1929. int intel_ring_begin(struct drm_i915_gem_request *req,
  1930. int num_dwords)
  1931. {
  1932. struct intel_engine_cs *ring;
  1933. struct drm_i915_private *dev_priv;
  1934. int ret;
  1935. WARN_ON(req == NULL);
  1936. ring = req->ring;
  1937. dev_priv = ring->dev->dev_private;
  1938. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1939. dev_priv->mm.interruptible);
  1940. if (ret)
  1941. return ret;
  1942. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1943. if (ret)
  1944. return ret;
  1945. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1946. return 0;
  1947. }
  1948. /* Align the ring tail to a cacheline boundary */
  1949. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1950. {
  1951. struct intel_engine_cs *ring = req->ring;
  1952. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1953. int ret;
  1954. if (num_dwords == 0)
  1955. return 0;
  1956. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1957. ret = intel_ring_begin(req, num_dwords);
  1958. if (ret)
  1959. return ret;
  1960. while (num_dwords--)
  1961. intel_ring_emit(ring, MI_NOOP);
  1962. intel_ring_advance(ring);
  1963. return 0;
  1964. }
  1965. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1966. {
  1967. struct drm_device *dev = ring->dev;
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1970. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1971. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1972. if (HAS_VEBOX(dev))
  1973. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1974. }
  1975. ring->set_seqno(ring, seqno);
  1976. ring->hangcheck.seqno = seqno;
  1977. }
  1978. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1979. u32 value)
  1980. {
  1981. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1982. /* Every tail move must follow the sequence below */
  1983. /* Disable notification that the ring is IDLE. The GT
  1984. * will then assume that it is busy and bring it out of rc6.
  1985. */
  1986. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1987. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1988. /* Clear the context id. Here be magic! */
  1989. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1990. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1991. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1992. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1993. 50))
  1994. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1995. /* Now that the ring is fully powered up, update the tail */
  1996. I915_WRITE_TAIL(ring, value);
  1997. POSTING_READ(RING_TAIL(ring->mmio_base));
  1998. /* Let the ring send IDLE messages to the GT again,
  1999. * and so let it sleep to conserve power when idle.
  2000. */
  2001. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2002. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2003. }
  2004. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2005. u32 invalidate, u32 flush)
  2006. {
  2007. struct intel_engine_cs *ring = req->ring;
  2008. uint32_t cmd;
  2009. int ret;
  2010. ret = intel_ring_begin(req, 4);
  2011. if (ret)
  2012. return ret;
  2013. cmd = MI_FLUSH_DW;
  2014. if (INTEL_INFO(ring->dev)->gen >= 8)
  2015. cmd += 1;
  2016. /* We always require a command barrier so that subsequent
  2017. * commands, such as breadcrumb interrupts, are strictly ordered
  2018. * wrt the contents of the write cache being flushed to memory
  2019. * (and thus being coherent from the CPU).
  2020. */
  2021. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2022. /*
  2023. * Bspec vol 1c.5 - video engine command streamer:
  2024. * "If ENABLED, all TLBs will be invalidated once the flush
  2025. * operation is complete. This bit is only valid when the
  2026. * Post-Sync Operation field is a value of 1h or 3h."
  2027. */
  2028. if (invalidate & I915_GEM_GPU_DOMAINS)
  2029. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2030. intel_ring_emit(ring, cmd);
  2031. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2032. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2033. intel_ring_emit(ring, 0); /* upper addr */
  2034. intel_ring_emit(ring, 0); /* value */
  2035. } else {
  2036. intel_ring_emit(ring, 0);
  2037. intel_ring_emit(ring, MI_NOOP);
  2038. }
  2039. intel_ring_advance(ring);
  2040. return 0;
  2041. }
  2042. static int
  2043. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2044. u64 offset, u32 len,
  2045. unsigned dispatch_flags)
  2046. {
  2047. struct intel_engine_cs *ring = req->ring;
  2048. bool ppgtt = USES_PPGTT(ring->dev) &&
  2049. !(dispatch_flags & I915_DISPATCH_SECURE);
  2050. int ret;
  2051. ret = intel_ring_begin(req, 4);
  2052. if (ret)
  2053. return ret;
  2054. /* FIXME(BDW): Address space and security selectors. */
  2055. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2056. (dispatch_flags & I915_DISPATCH_RS ?
  2057. MI_BATCH_RESOURCE_STREAMER : 0));
  2058. intel_ring_emit(ring, lower_32_bits(offset));
  2059. intel_ring_emit(ring, upper_32_bits(offset));
  2060. intel_ring_emit(ring, MI_NOOP);
  2061. intel_ring_advance(ring);
  2062. return 0;
  2063. }
  2064. static int
  2065. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2066. u64 offset, u32 len,
  2067. unsigned dispatch_flags)
  2068. {
  2069. struct intel_engine_cs *ring = req->ring;
  2070. int ret;
  2071. ret = intel_ring_begin(req, 2);
  2072. if (ret)
  2073. return ret;
  2074. intel_ring_emit(ring,
  2075. MI_BATCH_BUFFER_START |
  2076. (dispatch_flags & I915_DISPATCH_SECURE ?
  2077. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2078. (dispatch_flags & I915_DISPATCH_RS ?
  2079. MI_BATCH_RESOURCE_STREAMER : 0));
  2080. /* bit0-7 is the length on GEN6+ */
  2081. intel_ring_emit(ring, offset);
  2082. intel_ring_advance(ring);
  2083. return 0;
  2084. }
  2085. static int
  2086. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2087. u64 offset, u32 len,
  2088. unsigned dispatch_flags)
  2089. {
  2090. struct intel_engine_cs *ring = req->ring;
  2091. int ret;
  2092. ret = intel_ring_begin(req, 2);
  2093. if (ret)
  2094. return ret;
  2095. intel_ring_emit(ring,
  2096. MI_BATCH_BUFFER_START |
  2097. (dispatch_flags & I915_DISPATCH_SECURE ?
  2098. 0 : MI_BATCH_NON_SECURE_I965));
  2099. /* bit0-7 is the length on GEN6+ */
  2100. intel_ring_emit(ring, offset);
  2101. intel_ring_advance(ring);
  2102. return 0;
  2103. }
  2104. /* Blitter support (SandyBridge+) */
  2105. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2106. u32 invalidate, u32 flush)
  2107. {
  2108. struct intel_engine_cs *ring = req->ring;
  2109. struct drm_device *dev = ring->dev;
  2110. uint32_t cmd;
  2111. int ret;
  2112. ret = intel_ring_begin(req, 4);
  2113. if (ret)
  2114. return ret;
  2115. cmd = MI_FLUSH_DW;
  2116. if (INTEL_INFO(dev)->gen >= 8)
  2117. cmd += 1;
  2118. /* We always require a command barrier so that subsequent
  2119. * commands, such as breadcrumb interrupts, are strictly ordered
  2120. * wrt the contents of the write cache being flushed to memory
  2121. * (and thus being coherent from the CPU).
  2122. */
  2123. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2124. /*
  2125. * Bspec vol 1c.3 - blitter engine command streamer:
  2126. * "If ENABLED, all TLBs will be invalidated once the flush
  2127. * operation is complete. This bit is only valid when the
  2128. * Post-Sync Operation field is a value of 1h or 3h."
  2129. */
  2130. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2131. cmd |= MI_INVALIDATE_TLB;
  2132. intel_ring_emit(ring, cmd);
  2133. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2134. if (INTEL_INFO(dev)->gen >= 8) {
  2135. intel_ring_emit(ring, 0); /* upper addr */
  2136. intel_ring_emit(ring, 0); /* value */
  2137. } else {
  2138. intel_ring_emit(ring, 0);
  2139. intel_ring_emit(ring, MI_NOOP);
  2140. }
  2141. intel_ring_advance(ring);
  2142. return 0;
  2143. }
  2144. int intel_init_render_ring_buffer(struct drm_device *dev)
  2145. {
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2148. struct drm_i915_gem_object *obj;
  2149. int ret;
  2150. ring->name = "render ring";
  2151. ring->id = RCS;
  2152. ring->mmio_base = RENDER_RING_BASE;
  2153. if (INTEL_INFO(dev)->gen >= 8) {
  2154. if (i915_semaphore_is_enabled(dev)) {
  2155. obj = i915_gem_alloc_object(dev, 4096);
  2156. if (obj == NULL) {
  2157. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2158. i915.semaphores = 0;
  2159. } else {
  2160. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2161. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2162. if (ret != 0) {
  2163. drm_gem_object_unreference(&obj->base);
  2164. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2165. i915.semaphores = 0;
  2166. } else
  2167. dev_priv->semaphore_obj = obj;
  2168. }
  2169. }
  2170. ring->init_context = intel_rcs_ctx_init;
  2171. ring->add_request = gen6_add_request;
  2172. ring->flush = gen8_render_ring_flush;
  2173. ring->irq_get = gen8_ring_get_irq;
  2174. ring->irq_put = gen8_ring_put_irq;
  2175. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2176. ring->get_seqno = gen6_ring_get_seqno;
  2177. ring->set_seqno = ring_set_seqno;
  2178. if (i915_semaphore_is_enabled(dev)) {
  2179. WARN_ON(!dev_priv->semaphore_obj);
  2180. ring->semaphore.sync_to = gen8_ring_sync;
  2181. ring->semaphore.signal = gen8_rcs_signal;
  2182. GEN8_RING_SEMAPHORE_INIT;
  2183. }
  2184. } else if (INTEL_INFO(dev)->gen >= 6) {
  2185. ring->init_context = intel_rcs_ctx_init;
  2186. ring->add_request = gen6_add_request;
  2187. ring->flush = gen7_render_ring_flush;
  2188. if (INTEL_INFO(dev)->gen == 6)
  2189. ring->flush = gen6_render_ring_flush;
  2190. ring->irq_get = gen6_ring_get_irq;
  2191. ring->irq_put = gen6_ring_put_irq;
  2192. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2193. ring->get_seqno = gen6_ring_get_seqno;
  2194. ring->set_seqno = ring_set_seqno;
  2195. if (i915_semaphore_is_enabled(dev)) {
  2196. ring->semaphore.sync_to = gen6_ring_sync;
  2197. ring->semaphore.signal = gen6_signal;
  2198. /*
  2199. * The current semaphore is only applied on pre-gen8
  2200. * platform. And there is no VCS2 ring on the pre-gen8
  2201. * platform. So the semaphore between RCS and VCS2 is
  2202. * initialized as INVALID. Gen8 will initialize the
  2203. * sema between VCS2 and RCS later.
  2204. */
  2205. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2206. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2207. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2208. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2209. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2210. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2211. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2212. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2213. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2214. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2215. }
  2216. } else if (IS_GEN5(dev)) {
  2217. ring->add_request = pc_render_add_request;
  2218. ring->flush = gen4_render_ring_flush;
  2219. ring->get_seqno = pc_render_get_seqno;
  2220. ring->set_seqno = pc_render_set_seqno;
  2221. ring->irq_get = gen5_ring_get_irq;
  2222. ring->irq_put = gen5_ring_put_irq;
  2223. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2224. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2225. } else {
  2226. ring->add_request = i9xx_add_request;
  2227. if (INTEL_INFO(dev)->gen < 4)
  2228. ring->flush = gen2_render_ring_flush;
  2229. else
  2230. ring->flush = gen4_render_ring_flush;
  2231. ring->get_seqno = ring_get_seqno;
  2232. ring->set_seqno = ring_set_seqno;
  2233. if (IS_GEN2(dev)) {
  2234. ring->irq_get = i8xx_ring_get_irq;
  2235. ring->irq_put = i8xx_ring_put_irq;
  2236. } else {
  2237. ring->irq_get = i9xx_ring_get_irq;
  2238. ring->irq_put = i9xx_ring_put_irq;
  2239. }
  2240. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2241. }
  2242. ring->write_tail = ring_write_tail;
  2243. if (IS_HASWELL(dev))
  2244. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2245. else if (IS_GEN8(dev))
  2246. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2247. else if (INTEL_INFO(dev)->gen >= 6)
  2248. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2249. else if (INTEL_INFO(dev)->gen >= 4)
  2250. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2251. else if (IS_I830(dev) || IS_845G(dev))
  2252. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2253. else
  2254. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2255. ring->init_hw = init_render_ring;
  2256. ring->cleanup = render_ring_cleanup;
  2257. /* Workaround batchbuffer to combat CS tlb bug. */
  2258. if (HAS_BROKEN_CS_TLB(dev)) {
  2259. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2260. if (obj == NULL) {
  2261. DRM_ERROR("Failed to allocate batch bo\n");
  2262. return -ENOMEM;
  2263. }
  2264. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2265. if (ret != 0) {
  2266. drm_gem_object_unreference(&obj->base);
  2267. DRM_ERROR("Failed to ping batch bo\n");
  2268. return ret;
  2269. }
  2270. ring->scratch.obj = obj;
  2271. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2272. }
  2273. ret = intel_init_ring_buffer(dev, ring);
  2274. if (ret)
  2275. return ret;
  2276. if (INTEL_INFO(dev)->gen >= 5) {
  2277. ret = intel_init_pipe_control(ring);
  2278. if (ret)
  2279. return ret;
  2280. }
  2281. return 0;
  2282. }
  2283. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2284. {
  2285. struct drm_i915_private *dev_priv = dev->dev_private;
  2286. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2287. ring->name = "bsd ring";
  2288. ring->id = VCS;
  2289. ring->write_tail = ring_write_tail;
  2290. if (INTEL_INFO(dev)->gen >= 6) {
  2291. ring->mmio_base = GEN6_BSD_RING_BASE;
  2292. /* gen6 bsd needs a special wa for tail updates */
  2293. if (IS_GEN6(dev))
  2294. ring->write_tail = gen6_bsd_ring_write_tail;
  2295. ring->flush = gen6_bsd_ring_flush;
  2296. ring->add_request = gen6_add_request;
  2297. ring->get_seqno = gen6_ring_get_seqno;
  2298. ring->set_seqno = ring_set_seqno;
  2299. if (INTEL_INFO(dev)->gen >= 8) {
  2300. ring->irq_enable_mask =
  2301. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2302. ring->irq_get = gen8_ring_get_irq;
  2303. ring->irq_put = gen8_ring_put_irq;
  2304. ring->dispatch_execbuffer =
  2305. gen8_ring_dispatch_execbuffer;
  2306. if (i915_semaphore_is_enabled(dev)) {
  2307. ring->semaphore.sync_to = gen8_ring_sync;
  2308. ring->semaphore.signal = gen8_xcs_signal;
  2309. GEN8_RING_SEMAPHORE_INIT;
  2310. }
  2311. } else {
  2312. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2313. ring->irq_get = gen6_ring_get_irq;
  2314. ring->irq_put = gen6_ring_put_irq;
  2315. ring->dispatch_execbuffer =
  2316. gen6_ring_dispatch_execbuffer;
  2317. if (i915_semaphore_is_enabled(dev)) {
  2318. ring->semaphore.sync_to = gen6_ring_sync;
  2319. ring->semaphore.signal = gen6_signal;
  2320. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2321. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2322. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2323. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2324. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2325. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2326. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2327. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2328. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2329. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2330. }
  2331. }
  2332. } else {
  2333. ring->mmio_base = BSD_RING_BASE;
  2334. ring->flush = bsd_ring_flush;
  2335. ring->add_request = i9xx_add_request;
  2336. ring->get_seqno = ring_get_seqno;
  2337. ring->set_seqno = ring_set_seqno;
  2338. if (IS_GEN5(dev)) {
  2339. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2340. ring->irq_get = gen5_ring_get_irq;
  2341. ring->irq_put = gen5_ring_put_irq;
  2342. } else {
  2343. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2344. ring->irq_get = i9xx_ring_get_irq;
  2345. ring->irq_put = i9xx_ring_put_irq;
  2346. }
  2347. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2348. }
  2349. ring->init_hw = init_ring_common;
  2350. return intel_init_ring_buffer(dev, ring);
  2351. }
  2352. /**
  2353. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2354. */
  2355. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2356. {
  2357. struct drm_i915_private *dev_priv = dev->dev_private;
  2358. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2359. ring->name = "bsd2 ring";
  2360. ring->id = VCS2;
  2361. ring->write_tail = ring_write_tail;
  2362. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2363. ring->flush = gen6_bsd_ring_flush;
  2364. ring->add_request = gen6_add_request;
  2365. ring->get_seqno = gen6_ring_get_seqno;
  2366. ring->set_seqno = ring_set_seqno;
  2367. ring->irq_enable_mask =
  2368. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2369. ring->irq_get = gen8_ring_get_irq;
  2370. ring->irq_put = gen8_ring_put_irq;
  2371. ring->dispatch_execbuffer =
  2372. gen8_ring_dispatch_execbuffer;
  2373. if (i915_semaphore_is_enabled(dev)) {
  2374. ring->semaphore.sync_to = gen8_ring_sync;
  2375. ring->semaphore.signal = gen8_xcs_signal;
  2376. GEN8_RING_SEMAPHORE_INIT;
  2377. }
  2378. ring->init_hw = init_ring_common;
  2379. return intel_init_ring_buffer(dev, ring);
  2380. }
  2381. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2382. {
  2383. struct drm_i915_private *dev_priv = dev->dev_private;
  2384. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2385. ring->name = "blitter ring";
  2386. ring->id = BCS;
  2387. ring->mmio_base = BLT_RING_BASE;
  2388. ring->write_tail = ring_write_tail;
  2389. ring->flush = gen6_ring_flush;
  2390. ring->add_request = gen6_add_request;
  2391. ring->get_seqno = gen6_ring_get_seqno;
  2392. ring->set_seqno = ring_set_seqno;
  2393. if (INTEL_INFO(dev)->gen >= 8) {
  2394. ring->irq_enable_mask =
  2395. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2396. ring->irq_get = gen8_ring_get_irq;
  2397. ring->irq_put = gen8_ring_put_irq;
  2398. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2399. if (i915_semaphore_is_enabled(dev)) {
  2400. ring->semaphore.sync_to = gen8_ring_sync;
  2401. ring->semaphore.signal = gen8_xcs_signal;
  2402. GEN8_RING_SEMAPHORE_INIT;
  2403. }
  2404. } else {
  2405. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2406. ring->irq_get = gen6_ring_get_irq;
  2407. ring->irq_put = gen6_ring_put_irq;
  2408. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2409. if (i915_semaphore_is_enabled(dev)) {
  2410. ring->semaphore.signal = gen6_signal;
  2411. ring->semaphore.sync_to = gen6_ring_sync;
  2412. /*
  2413. * The current semaphore is only applied on pre-gen8
  2414. * platform. And there is no VCS2 ring on the pre-gen8
  2415. * platform. So the semaphore between BCS and VCS2 is
  2416. * initialized as INVALID. Gen8 will initialize the
  2417. * sema between BCS and VCS2 later.
  2418. */
  2419. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2420. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2421. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2422. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2423. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2424. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2425. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2426. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2427. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2428. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2429. }
  2430. }
  2431. ring->init_hw = init_ring_common;
  2432. return intel_init_ring_buffer(dev, ring);
  2433. }
  2434. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2435. {
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2438. ring->name = "video enhancement ring";
  2439. ring->id = VECS;
  2440. ring->mmio_base = VEBOX_RING_BASE;
  2441. ring->write_tail = ring_write_tail;
  2442. ring->flush = gen6_ring_flush;
  2443. ring->add_request = gen6_add_request;
  2444. ring->get_seqno = gen6_ring_get_seqno;
  2445. ring->set_seqno = ring_set_seqno;
  2446. if (INTEL_INFO(dev)->gen >= 8) {
  2447. ring->irq_enable_mask =
  2448. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2449. ring->irq_get = gen8_ring_get_irq;
  2450. ring->irq_put = gen8_ring_put_irq;
  2451. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2452. if (i915_semaphore_is_enabled(dev)) {
  2453. ring->semaphore.sync_to = gen8_ring_sync;
  2454. ring->semaphore.signal = gen8_xcs_signal;
  2455. GEN8_RING_SEMAPHORE_INIT;
  2456. }
  2457. } else {
  2458. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2459. ring->irq_get = hsw_vebox_get_irq;
  2460. ring->irq_put = hsw_vebox_put_irq;
  2461. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2462. if (i915_semaphore_is_enabled(dev)) {
  2463. ring->semaphore.sync_to = gen6_ring_sync;
  2464. ring->semaphore.signal = gen6_signal;
  2465. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2466. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2467. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2468. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2469. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2470. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2471. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2472. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2473. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2474. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2475. }
  2476. }
  2477. ring->init_hw = init_ring_common;
  2478. return intel_init_ring_buffer(dev, ring);
  2479. }
  2480. int
  2481. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2482. {
  2483. struct intel_engine_cs *ring = req->ring;
  2484. int ret;
  2485. if (!ring->gpu_caches_dirty)
  2486. return 0;
  2487. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2488. if (ret)
  2489. return ret;
  2490. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2491. ring->gpu_caches_dirty = false;
  2492. return 0;
  2493. }
  2494. int
  2495. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2496. {
  2497. struct intel_engine_cs *ring = req->ring;
  2498. uint32_t flush_domains;
  2499. int ret;
  2500. flush_domains = 0;
  2501. if (ring->gpu_caches_dirty)
  2502. flush_domains = I915_GEM_GPU_DOMAINS;
  2503. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2504. if (ret)
  2505. return ret;
  2506. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2507. ring->gpu_caches_dirty = false;
  2508. return 0;
  2509. }
  2510. void
  2511. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2512. {
  2513. int ret;
  2514. if (!intel_ring_initialized(ring))
  2515. return;
  2516. ret = intel_ring_idle(ring);
  2517. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2518. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2519. ring->name, ret);
  2520. stop_ring(ring);
  2521. }