i915_debugfs.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include <linux/sched/mm.h>
  31. #include "intel_drv.h"
  32. #include "intel_guc_submission.h"
  33. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  34. {
  35. return to_i915(node->minor->dev);
  36. }
  37. static __always_inline void seq_print_param(struct seq_file *m,
  38. const char *name,
  39. const char *type,
  40. const void *x)
  41. {
  42. if (!__builtin_strcmp(type, "bool"))
  43. seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
  44. else if (!__builtin_strcmp(type, "int"))
  45. seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
  46. else if (!__builtin_strcmp(type, "unsigned int"))
  47. seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
  48. else if (!__builtin_strcmp(type, "char *"))
  49. seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
  50. else
  51. BUILD_BUG();
  52. }
  53. static int i915_capabilities(struct seq_file *m, void *data)
  54. {
  55. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  56. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  57. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  58. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  59. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  60. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  61. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  62. #undef PRINT_FLAG
  63. kernel_param_lock(THIS_MODULE);
  64. #define PRINT_PARAM(T, x, ...) seq_print_param(m, #x, #T, &i915_modparams.x);
  65. I915_PARAMS_FOR_EACH(PRINT_PARAM);
  66. #undef PRINT_PARAM
  67. kernel_param_unlock(THIS_MODULE);
  68. return 0;
  69. }
  70. static char get_active_flag(struct drm_i915_gem_object *obj)
  71. {
  72. return i915_gem_object_is_active(obj) ? '*' : ' ';
  73. }
  74. static char get_pin_flag(struct drm_i915_gem_object *obj)
  75. {
  76. return obj->pin_global ? 'p' : ' ';
  77. }
  78. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  79. {
  80. switch (i915_gem_object_get_tiling(obj)) {
  81. default:
  82. case I915_TILING_NONE: return ' ';
  83. case I915_TILING_X: return 'X';
  84. case I915_TILING_Y: return 'Y';
  85. }
  86. }
  87. static char get_global_flag(struct drm_i915_gem_object *obj)
  88. {
  89. return obj->userfault_count ? 'g' : ' ';
  90. }
  91. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  92. {
  93. return obj->mm.mapping ? 'M' : ' ';
  94. }
  95. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  96. {
  97. u64 size = 0;
  98. struct i915_vma *vma;
  99. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  100. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  101. size += vma->node.size;
  102. }
  103. return size;
  104. }
  105. static const char *
  106. stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
  107. {
  108. size_t x = 0;
  109. switch (page_sizes) {
  110. case 0:
  111. return "";
  112. case I915_GTT_PAGE_SIZE_4K:
  113. return "4K";
  114. case I915_GTT_PAGE_SIZE_64K:
  115. return "64K";
  116. case I915_GTT_PAGE_SIZE_2M:
  117. return "2M";
  118. default:
  119. if (!buf)
  120. return "M";
  121. if (page_sizes & I915_GTT_PAGE_SIZE_2M)
  122. x += snprintf(buf + x, len - x, "2M, ");
  123. if (page_sizes & I915_GTT_PAGE_SIZE_64K)
  124. x += snprintf(buf + x, len - x, "64K, ");
  125. if (page_sizes & I915_GTT_PAGE_SIZE_4K)
  126. x += snprintf(buf + x, len - x, "4K, ");
  127. buf[x-2] = '\0';
  128. return buf;
  129. }
  130. }
  131. static void
  132. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  133. {
  134. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  135. struct intel_engine_cs *engine;
  136. struct i915_vma *vma;
  137. unsigned int frontbuffer_bits;
  138. int pin_count = 0;
  139. lockdep_assert_held(&obj->base.dev->struct_mutex);
  140. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  141. &obj->base,
  142. get_active_flag(obj),
  143. get_pin_flag(obj),
  144. get_tiling_flag(obj),
  145. get_global_flag(obj),
  146. get_pin_mapped_flag(obj),
  147. obj->base.size / 1024,
  148. obj->base.read_domains,
  149. obj->base.write_domain,
  150. i915_cache_level_str(dev_priv, obj->cache_level),
  151. obj->mm.dirty ? " dirty" : "",
  152. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  153. if (obj->base.name)
  154. seq_printf(m, " (name: %d)", obj->base.name);
  155. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  156. if (i915_vma_is_pinned(vma))
  157. pin_count++;
  158. }
  159. seq_printf(m, " (pinned x %d)", pin_count);
  160. if (obj->pin_global)
  161. seq_printf(m, " (global)");
  162. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  163. if (!drm_mm_node_allocated(&vma->node))
  164. continue;
  165. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
  166. i915_vma_is_ggtt(vma) ? "g" : "pp",
  167. vma->node.start, vma->node.size,
  168. stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
  169. if (i915_vma_is_ggtt(vma)) {
  170. switch (vma->ggtt_view.type) {
  171. case I915_GGTT_VIEW_NORMAL:
  172. seq_puts(m, ", normal");
  173. break;
  174. case I915_GGTT_VIEW_PARTIAL:
  175. seq_printf(m, ", partial [%08llx+%x]",
  176. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  177. vma->ggtt_view.partial.size << PAGE_SHIFT);
  178. break;
  179. case I915_GGTT_VIEW_ROTATED:
  180. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  181. vma->ggtt_view.rotated.plane[0].width,
  182. vma->ggtt_view.rotated.plane[0].height,
  183. vma->ggtt_view.rotated.plane[0].stride,
  184. vma->ggtt_view.rotated.plane[0].offset,
  185. vma->ggtt_view.rotated.plane[1].width,
  186. vma->ggtt_view.rotated.plane[1].height,
  187. vma->ggtt_view.rotated.plane[1].stride,
  188. vma->ggtt_view.rotated.plane[1].offset);
  189. break;
  190. default:
  191. MISSING_CASE(vma->ggtt_view.type);
  192. break;
  193. }
  194. }
  195. if (vma->fence)
  196. seq_printf(m, " , fence: %d%s",
  197. vma->fence->id,
  198. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  199. seq_puts(m, ")");
  200. }
  201. if (obj->stolen)
  202. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  203. engine = i915_gem_object_last_write_engine(obj);
  204. if (engine)
  205. seq_printf(m, " (%s)", engine->name);
  206. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  207. if (frontbuffer_bits)
  208. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  209. }
  210. static int obj_rank_by_stolen(const void *A, const void *B)
  211. {
  212. const struct drm_i915_gem_object *a =
  213. *(const struct drm_i915_gem_object **)A;
  214. const struct drm_i915_gem_object *b =
  215. *(const struct drm_i915_gem_object **)B;
  216. if (a->stolen->start < b->stolen->start)
  217. return -1;
  218. if (a->stolen->start > b->stolen->start)
  219. return 1;
  220. return 0;
  221. }
  222. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  223. {
  224. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  225. struct drm_device *dev = &dev_priv->drm;
  226. struct drm_i915_gem_object **objects;
  227. struct drm_i915_gem_object *obj;
  228. u64 total_obj_size, total_gtt_size;
  229. unsigned long total, count, n;
  230. int ret;
  231. total = READ_ONCE(dev_priv->mm.object_count);
  232. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  233. if (!objects)
  234. return -ENOMEM;
  235. ret = mutex_lock_interruptible(&dev->struct_mutex);
  236. if (ret)
  237. goto out;
  238. total_obj_size = total_gtt_size = count = 0;
  239. spin_lock(&dev_priv->mm.obj_lock);
  240. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  241. if (count == total)
  242. break;
  243. if (obj->stolen == NULL)
  244. continue;
  245. objects[count++] = obj;
  246. total_obj_size += obj->base.size;
  247. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  248. }
  249. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  250. if (count == total)
  251. break;
  252. if (obj->stolen == NULL)
  253. continue;
  254. objects[count++] = obj;
  255. total_obj_size += obj->base.size;
  256. }
  257. spin_unlock(&dev_priv->mm.obj_lock);
  258. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  259. seq_puts(m, "Stolen:\n");
  260. for (n = 0; n < count; n++) {
  261. seq_puts(m, " ");
  262. describe_obj(m, objects[n]);
  263. seq_putc(m, '\n');
  264. }
  265. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  266. count, total_obj_size, total_gtt_size);
  267. mutex_unlock(&dev->struct_mutex);
  268. out:
  269. kvfree(objects);
  270. return ret;
  271. }
  272. struct file_stats {
  273. struct drm_i915_file_private *file_priv;
  274. unsigned long count;
  275. u64 total, unbound;
  276. u64 global, shared;
  277. u64 active, inactive;
  278. };
  279. static int per_file_stats(int id, void *ptr, void *data)
  280. {
  281. struct drm_i915_gem_object *obj = ptr;
  282. struct file_stats *stats = data;
  283. struct i915_vma *vma;
  284. lockdep_assert_held(&obj->base.dev->struct_mutex);
  285. stats->count++;
  286. stats->total += obj->base.size;
  287. if (!obj->bind_count)
  288. stats->unbound += obj->base.size;
  289. if (obj->base.name || obj->base.dma_buf)
  290. stats->shared += obj->base.size;
  291. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  292. if (!drm_mm_node_allocated(&vma->node))
  293. continue;
  294. if (i915_vma_is_ggtt(vma)) {
  295. stats->global += vma->node.size;
  296. } else {
  297. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  298. if (ppgtt->base.file != stats->file_priv)
  299. continue;
  300. }
  301. if (i915_vma_is_active(vma))
  302. stats->active += vma->node.size;
  303. else
  304. stats->inactive += vma->node.size;
  305. }
  306. return 0;
  307. }
  308. #define print_file_stats(m, name, stats) do { \
  309. if (stats.count) \
  310. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  311. name, \
  312. stats.count, \
  313. stats.total, \
  314. stats.active, \
  315. stats.inactive, \
  316. stats.global, \
  317. stats.shared, \
  318. stats.unbound); \
  319. } while (0)
  320. static void print_batch_pool_stats(struct seq_file *m,
  321. struct drm_i915_private *dev_priv)
  322. {
  323. struct drm_i915_gem_object *obj;
  324. struct file_stats stats;
  325. struct intel_engine_cs *engine;
  326. enum intel_engine_id id;
  327. int j;
  328. memset(&stats, 0, sizeof(stats));
  329. for_each_engine(engine, dev_priv, id) {
  330. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  331. list_for_each_entry(obj,
  332. &engine->batch_pool.cache_list[j],
  333. batch_pool_link)
  334. per_file_stats(0, obj, &stats);
  335. }
  336. }
  337. print_file_stats(m, "[k]batch pool", stats);
  338. }
  339. static int per_file_ctx_stats(int id, void *ptr, void *data)
  340. {
  341. struct i915_gem_context *ctx = ptr;
  342. int n;
  343. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  344. if (ctx->engine[n].state)
  345. per_file_stats(0, ctx->engine[n].state->obj, data);
  346. if (ctx->engine[n].ring)
  347. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  348. }
  349. return 0;
  350. }
  351. static void print_context_stats(struct seq_file *m,
  352. struct drm_i915_private *dev_priv)
  353. {
  354. struct drm_device *dev = &dev_priv->drm;
  355. struct file_stats stats;
  356. struct drm_file *file;
  357. memset(&stats, 0, sizeof(stats));
  358. mutex_lock(&dev->struct_mutex);
  359. if (dev_priv->kernel_context)
  360. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  361. list_for_each_entry(file, &dev->filelist, lhead) {
  362. struct drm_i915_file_private *fpriv = file->driver_priv;
  363. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  364. }
  365. mutex_unlock(&dev->struct_mutex);
  366. print_file_stats(m, "[k]contexts", stats);
  367. }
  368. static int i915_gem_object_info(struct seq_file *m, void *data)
  369. {
  370. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  371. struct drm_device *dev = &dev_priv->drm;
  372. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  373. u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
  374. u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
  375. struct drm_i915_gem_object *obj;
  376. unsigned int page_sizes = 0;
  377. struct drm_file *file;
  378. char buf[80];
  379. int ret;
  380. ret = mutex_lock_interruptible(&dev->struct_mutex);
  381. if (ret)
  382. return ret;
  383. seq_printf(m, "%u objects, %llu bytes\n",
  384. dev_priv->mm.object_count,
  385. dev_priv->mm.object_memory);
  386. size = count = 0;
  387. mapped_size = mapped_count = 0;
  388. purgeable_size = purgeable_count = 0;
  389. huge_size = huge_count = 0;
  390. spin_lock(&dev_priv->mm.obj_lock);
  391. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  392. size += obj->base.size;
  393. ++count;
  394. if (obj->mm.madv == I915_MADV_DONTNEED) {
  395. purgeable_size += obj->base.size;
  396. ++purgeable_count;
  397. }
  398. if (obj->mm.mapping) {
  399. mapped_count++;
  400. mapped_size += obj->base.size;
  401. }
  402. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  403. huge_count++;
  404. huge_size += obj->base.size;
  405. page_sizes |= obj->mm.page_sizes.sg;
  406. }
  407. }
  408. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  409. size = count = dpy_size = dpy_count = 0;
  410. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  411. size += obj->base.size;
  412. ++count;
  413. if (obj->pin_global) {
  414. dpy_size += obj->base.size;
  415. ++dpy_count;
  416. }
  417. if (obj->mm.madv == I915_MADV_DONTNEED) {
  418. purgeable_size += obj->base.size;
  419. ++purgeable_count;
  420. }
  421. if (obj->mm.mapping) {
  422. mapped_count++;
  423. mapped_size += obj->base.size;
  424. }
  425. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  426. huge_count++;
  427. huge_size += obj->base.size;
  428. page_sizes |= obj->mm.page_sizes.sg;
  429. }
  430. }
  431. spin_unlock(&dev_priv->mm.obj_lock);
  432. seq_printf(m, "%u bound objects, %llu bytes\n",
  433. count, size);
  434. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  435. purgeable_count, purgeable_size);
  436. seq_printf(m, "%u mapped objects, %llu bytes\n",
  437. mapped_count, mapped_size);
  438. seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
  439. huge_count,
  440. stringify_page_sizes(page_sizes, buf, sizeof(buf)),
  441. huge_size);
  442. seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
  443. dpy_count, dpy_size);
  444. seq_printf(m, "%llu [%llu] gtt total\n",
  445. ggtt->base.total, ggtt->mappable_end);
  446. seq_printf(m, "Supported page sizes: %s\n",
  447. stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
  448. buf, sizeof(buf)));
  449. seq_putc(m, '\n');
  450. print_batch_pool_stats(m, dev_priv);
  451. mutex_unlock(&dev->struct_mutex);
  452. mutex_lock(&dev->filelist_mutex);
  453. print_context_stats(m, dev_priv);
  454. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  455. struct file_stats stats;
  456. struct drm_i915_file_private *file_priv = file->driver_priv;
  457. struct drm_i915_gem_request *request;
  458. struct task_struct *task;
  459. mutex_lock(&dev->struct_mutex);
  460. memset(&stats, 0, sizeof(stats));
  461. stats.file_priv = file->driver_priv;
  462. spin_lock(&file->table_lock);
  463. idr_for_each(&file->object_idr, per_file_stats, &stats);
  464. spin_unlock(&file->table_lock);
  465. /*
  466. * Although we have a valid reference on file->pid, that does
  467. * not guarantee that the task_struct who called get_pid() is
  468. * still alive (e.g. get_pid(current) => fork() => exit()).
  469. * Therefore, we need to protect this ->comm access using RCU.
  470. */
  471. request = list_first_entry_or_null(&file_priv->mm.request_list,
  472. struct drm_i915_gem_request,
  473. client_link);
  474. rcu_read_lock();
  475. task = pid_task(request && request->ctx->pid ?
  476. request->ctx->pid : file->pid,
  477. PIDTYPE_PID);
  478. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  479. rcu_read_unlock();
  480. mutex_unlock(&dev->struct_mutex);
  481. }
  482. mutex_unlock(&dev->filelist_mutex);
  483. return 0;
  484. }
  485. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  486. {
  487. struct drm_info_node *node = m->private;
  488. struct drm_i915_private *dev_priv = node_to_i915(node);
  489. struct drm_device *dev = &dev_priv->drm;
  490. struct drm_i915_gem_object **objects;
  491. struct drm_i915_gem_object *obj;
  492. u64 total_obj_size, total_gtt_size;
  493. unsigned long nobject, n;
  494. int count, ret;
  495. nobject = READ_ONCE(dev_priv->mm.object_count);
  496. objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
  497. if (!objects)
  498. return -ENOMEM;
  499. ret = mutex_lock_interruptible(&dev->struct_mutex);
  500. if (ret)
  501. return ret;
  502. count = 0;
  503. spin_lock(&dev_priv->mm.obj_lock);
  504. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  505. objects[count++] = obj;
  506. if (count == nobject)
  507. break;
  508. }
  509. spin_unlock(&dev_priv->mm.obj_lock);
  510. total_obj_size = total_gtt_size = 0;
  511. for (n = 0; n < count; n++) {
  512. obj = objects[n];
  513. seq_puts(m, " ");
  514. describe_obj(m, obj);
  515. seq_putc(m, '\n');
  516. total_obj_size += obj->base.size;
  517. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  518. }
  519. mutex_unlock(&dev->struct_mutex);
  520. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  521. count, total_obj_size, total_gtt_size);
  522. kvfree(objects);
  523. return 0;
  524. }
  525. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  526. {
  527. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  528. struct drm_device *dev = &dev_priv->drm;
  529. struct drm_i915_gem_object *obj;
  530. struct intel_engine_cs *engine;
  531. enum intel_engine_id id;
  532. int total = 0;
  533. int ret, j;
  534. ret = mutex_lock_interruptible(&dev->struct_mutex);
  535. if (ret)
  536. return ret;
  537. for_each_engine(engine, dev_priv, id) {
  538. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  539. int count;
  540. count = 0;
  541. list_for_each_entry(obj,
  542. &engine->batch_pool.cache_list[j],
  543. batch_pool_link)
  544. count++;
  545. seq_printf(m, "%s cache[%d]: %d objects\n",
  546. engine->name, j, count);
  547. list_for_each_entry(obj,
  548. &engine->batch_pool.cache_list[j],
  549. batch_pool_link) {
  550. seq_puts(m, " ");
  551. describe_obj(m, obj);
  552. seq_putc(m, '\n');
  553. }
  554. total += count;
  555. }
  556. }
  557. seq_printf(m, "total: %d\n", total);
  558. mutex_unlock(&dev->struct_mutex);
  559. return 0;
  560. }
  561. static void i915_ring_seqno_info(struct seq_file *m,
  562. struct intel_engine_cs *engine)
  563. {
  564. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  565. struct rb_node *rb;
  566. seq_printf(m, "Current sequence (%s): %x\n",
  567. engine->name, intel_engine_get_seqno(engine));
  568. spin_lock_irq(&b->rb_lock);
  569. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  570. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  571. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  572. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  573. }
  574. spin_unlock_irq(&b->rb_lock);
  575. }
  576. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  577. {
  578. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  579. struct intel_engine_cs *engine;
  580. enum intel_engine_id id;
  581. for_each_engine(engine, dev_priv, id)
  582. i915_ring_seqno_info(m, engine);
  583. return 0;
  584. }
  585. static int i915_interrupt_info(struct seq_file *m, void *data)
  586. {
  587. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  588. struct intel_engine_cs *engine;
  589. enum intel_engine_id id;
  590. int i, pipe;
  591. intel_runtime_pm_get(dev_priv);
  592. if (IS_CHERRYVIEW(dev_priv)) {
  593. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  594. I915_READ(GEN8_MASTER_IRQ));
  595. seq_printf(m, "Display IER:\t%08x\n",
  596. I915_READ(VLV_IER));
  597. seq_printf(m, "Display IIR:\t%08x\n",
  598. I915_READ(VLV_IIR));
  599. seq_printf(m, "Display IIR_RW:\t%08x\n",
  600. I915_READ(VLV_IIR_RW));
  601. seq_printf(m, "Display IMR:\t%08x\n",
  602. I915_READ(VLV_IMR));
  603. for_each_pipe(dev_priv, pipe) {
  604. enum intel_display_power_domain power_domain;
  605. power_domain = POWER_DOMAIN_PIPE(pipe);
  606. if (!intel_display_power_get_if_enabled(dev_priv,
  607. power_domain)) {
  608. seq_printf(m, "Pipe %c power disabled\n",
  609. pipe_name(pipe));
  610. continue;
  611. }
  612. seq_printf(m, "Pipe %c stat:\t%08x\n",
  613. pipe_name(pipe),
  614. I915_READ(PIPESTAT(pipe)));
  615. intel_display_power_put(dev_priv, power_domain);
  616. }
  617. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  618. seq_printf(m, "Port hotplug:\t%08x\n",
  619. I915_READ(PORT_HOTPLUG_EN));
  620. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  621. I915_READ(VLV_DPFLIPSTAT));
  622. seq_printf(m, "DPINVGTT:\t%08x\n",
  623. I915_READ(DPINVGTT));
  624. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  625. for (i = 0; i < 4; i++) {
  626. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  627. i, I915_READ(GEN8_GT_IMR(i)));
  628. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  629. i, I915_READ(GEN8_GT_IIR(i)));
  630. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  631. i, I915_READ(GEN8_GT_IER(i)));
  632. }
  633. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  634. I915_READ(GEN8_PCU_IMR));
  635. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  636. I915_READ(GEN8_PCU_IIR));
  637. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  638. I915_READ(GEN8_PCU_IER));
  639. } else if (INTEL_GEN(dev_priv) >= 8) {
  640. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  641. I915_READ(GEN8_MASTER_IRQ));
  642. for (i = 0; i < 4; i++) {
  643. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  644. i, I915_READ(GEN8_GT_IMR(i)));
  645. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  646. i, I915_READ(GEN8_GT_IIR(i)));
  647. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  648. i, I915_READ(GEN8_GT_IER(i)));
  649. }
  650. for_each_pipe(dev_priv, pipe) {
  651. enum intel_display_power_domain power_domain;
  652. power_domain = POWER_DOMAIN_PIPE(pipe);
  653. if (!intel_display_power_get_if_enabled(dev_priv,
  654. power_domain)) {
  655. seq_printf(m, "Pipe %c power disabled\n",
  656. pipe_name(pipe));
  657. continue;
  658. }
  659. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  660. pipe_name(pipe),
  661. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  662. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  663. pipe_name(pipe),
  664. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  665. seq_printf(m, "Pipe %c IER:\t%08x\n",
  666. pipe_name(pipe),
  667. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  668. intel_display_power_put(dev_priv, power_domain);
  669. }
  670. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  671. I915_READ(GEN8_DE_PORT_IMR));
  672. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  673. I915_READ(GEN8_DE_PORT_IIR));
  674. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  675. I915_READ(GEN8_DE_PORT_IER));
  676. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  677. I915_READ(GEN8_DE_MISC_IMR));
  678. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  679. I915_READ(GEN8_DE_MISC_IIR));
  680. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  681. I915_READ(GEN8_DE_MISC_IER));
  682. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  683. I915_READ(GEN8_PCU_IMR));
  684. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  685. I915_READ(GEN8_PCU_IIR));
  686. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  687. I915_READ(GEN8_PCU_IER));
  688. } else if (IS_VALLEYVIEW(dev_priv)) {
  689. seq_printf(m, "Display IER:\t%08x\n",
  690. I915_READ(VLV_IER));
  691. seq_printf(m, "Display IIR:\t%08x\n",
  692. I915_READ(VLV_IIR));
  693. seq_printf(m, "Display IIR_RW:\t%08x\n",
  694. I915_READ(VLV_IIR_RW));
  695. seq_printf(m, "Display IMR:\t%08x\n",
  696. I915_READ(VLV_IMR));
  697. for_each_pipe(dev_priv, pipe) {
  698. enum intel_display_power_domain power_domain;
  699. power_domain = POWER_DOMAIN_PIPE(pipe);
  700. if (!intel_display_power_get_if_enabled(dev_priv,
  701. power_domain)) {
  702. seq_printf(m, "Pipe %c power disabled\n",
  703. pipe_name(pipe));
  704. continue;
  705. }
  706. seq_printf(m, "Pipe %c stat:\t%08x\n",
  707. pipe_name(pipe),
  708. I915_READ(PIPESTAT(pipe)));
  709. intel_display_power_put(dev_priv, power_domain);
  710. }
  711. seq_printf(m, "Master IER:\t%08x\n",
  712. I915_READ(VLV_MASTER_IER));
  713. seq_printf(m, "Render IER:\t%08x\n",
  714. I915_READ(GTIER));
  715. seq_printf(m, "Render IIR:\t%08x\n",
  716. I915_READ(GTIIR));
  717. seq_printf(m, "Render IMR:\t%08x\n",
  718. I915_READ(GTIMR));
  719. seq_printf(m, "PM IER:\t\t%08x\n",
  720. I915_READ(GEN6_PMIER));
  721. seq_printf(m, "PM IIR:\t\t%08x\n",
  722. I915_READ(GEN6_PMIIR));
  723. seq_printf(m, "PM IMR:\t\t%08x\n",
  724. I915_READ(GEN6_PMIMR));
  725. seq_printf(m, "Port hotplug:\t%08x\n",
  726. I915_READ(PORT_HOTPLUG_EN));
  727. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  728. I915_READ(VLV_DPFLIPSTAT));
  729. seq_printf(m, "DPINVGTT:\t%08x\n",
  730. I915_READ(DPINVGTT));
  731. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  732. seq_printf(m, "Interrupt enable: %08x\n",
  733. I915_READ(IER));
  734. seq_printf(m, "Interrupt identity: %08x\n",
  735. I915_READ(IIR));
  736. seq_printf(m, "Interrupt mask: %08x\n",
  737. I915_READ(IMR));
  738. for_each_pipe(dev_priv, pipe)
  739. seq_printf(m, "Pipe %c stat: %08x\n",
  740. pipe_name(pipe),
  741. I915_READ(PIPESTAT(pipe)));
  742. } else {
  743. seq_printf(m, "North Display Interrupt enable: %08x\n",
  744. I915_READ(DEIER));
  745. seq_printf(m, "North Display Interrupt identity: %08x\n",
  746. I915_READ(DEIIR));
  747. seq_printf(m, "North Display Interrupt mask: %08x\n",
  748. I915_READ(DEIMR));
  749. seq_printf(m, "South Display Interrupt enable: %08x\n",
  750. I915_READ(SDEIER));
  751. seq_printf(m, "South Display Interrupt identity: %08x\n",
  752. I915_READ(SDEIIR));
  753. seq_printf(m, "South Display Interrupt mask: %08x\n",
  754. I915_READ(SDEIMR));
  755. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  756. I915_READ(GTIER));
  757. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  758. I915_READ(GTIIR));
  759. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  760. I915_READ(GTIMR));
  761. }
  762. for_each_engine(engine, dev_priv, id) {
  763. if (INTEL_GEN(dev_priv) >= 6) {
  764. seq_printf(m,
  765. "Graphics Interrupt mask (%s): %08x\n",
  766. engine->name, I915_READ_IMR(engine));
  767. }
  768. i915_ring_seqno_info(m, engine);
  769. }
  770. intel_runtime_pm_put(dev_priv);
  771. return 0;
  772. }
  773. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  774. {
  775. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  776. struct drm_device *dev = &dev_priv->drm;
  777. int i, ret;
  778. ret = mutex_lock_interruptible(&dev->struct_mutex);
  779. if (ret)
  780. return ret;
  781. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  782. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  783. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  784. seq_printf(m, "Fence %d, pin count = %d, object = ",
  785. i, dev_priv->fence_regs[i].pin_count);
  786. if (!vma)
  787. seq_puts(m, "unused");
  788. else
  789. describe_obj(m, vma->obj);
  790. seq_putc(m, '\n');
  791. }
  792. mutex_unlock(&dev->struct_mutex);
  793. return 0;
  794. }
  795. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  796. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  797. size_t count, loff_t *pos)
  798. {
  799. struct i915_gpu_state *error = file->private_data;
  800. struct drm_i915_error_state_buf str;
  801. ssize_t ret;
  802. loff_t tmp;
  803. if (!error)
  804. return 0;
  805. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  806. if (ret)
  807. return ret;
  808. ret = i915_error_state_to_str(&str, error);
  809. if (ret)
  810. goto out;
  811. tmp = 0;
  812. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  813. if (ret < 0)
  814. goto out;
  815. *pos = str.start + ret;
  816. out:
  817. i915_error_state_buf_release(&str);
  818. return ret;
  819. }
  820. static int gpu_state_release(struct inode *inode, struct file *file)
  821. {
  822. i915_gpu_state_put(file->private_data);
  823. return 0;
  824. }
  825. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  826. {
  827. struct drm_i915_private *i915 = inode->i_private;
  828. struct i915_gpu_state *gpu;
  829. intel_runtime_pm_get(i915);
  830. gpu = i915_capture_gpu_state(i915);
  831. intel_runtime_pm_put(i915);
  832. if (!gpu)
  833. return -ENOMEM;
  834. file->private_data = gpu;
  835. return 0;
  836. }
  837. static const struct file_operations i915_gpu_info_fops = {
  838. .owner = THIS_MODULE,
  839. .open = i915_gpu_info_open,
  840. .read = gpu_state_read,
  841. .llseek = default_llseek,
  842. .release = gpu_state_release,
  843. };
  844. static ssize_t
  845. i915_error_state_write(struct file *filp,
  846. const char __user *ubuf,
  847. size_t cnt,
  848. loff_t *ppos)
  849. {
  850. struct i915_gpu_state *error = filp->private_data;
  851. if (!error)
  852. return 0;
  853. DRM_DEBUG_DRIVER("Resetting error state\n");
  854. i915_reset_error_state(error->i915);
  855. return cnt;
  856. }
  857. static int i915_error_state_open(struct inode *inode, struct file *file)
  858. {
  859. file->private_data = i915_first_error_state(inode->i_private);
  860. return 0;
  861. }
  862. static const struct file_operations i915_error_state_fops = {
  863. .owner = THIS_MODULE,
  864. .open = i915_error_state_open,
  865. .read = gpu_state_read,
  866. .write = i915_error_state_write,
  867. .llseek = default_llseek,
  868. .release = gpu_state_release,
  869. };
  870. #endif
  871. static int
  872. i915_next_seqno_set(void *data, u64 val)
  873. {
  874. struct drm_i915_private *dev_priv = data;
  875. struct drm_device *dev = &dev_priv->drm;
  876. int ret;
  877. ret = mutex_lock_interruptible(&dev->struct_mutex);
  878. if (ret)
  879. return ret;
  880. ret = i915_gem_set_global_seqno(dev, val);
  881. mutex_unlock(&dev->struct_mutex);
  882. return ret;
  883. }
  884. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  885. NULL, i915_next_seqno_set,
  886. "0x%llx\n");
  887. static int i915_frequency_info(struct seq_file *m, void *unused)
  888. {
  889. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  890. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  891. int ret = 0;
  892. intel_runtime_pm_get(dev_priv);
  893. if (IS_GEN5(dev_priv)) {
  894. u16 rgvswctl = I915_READ16(MEMSWCTL);
  895. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  896. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  897. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  898. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  899. MEMSTAT_VID_SHIFT);
  900. seq_printf(m, "Current P-state: %d\n",
  901. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  902. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  903. u32 rpmodectl, freq_sts;
  904. mutex_lock(&dev_priv->pcu_lock);
  905. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  906. seq_printf(m, "Video Turbo Mode: %s\n",
  907. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  908. seq_printf(m, "HW control enabled: %s\n",
  909. yesno(rpmodectl & GEN6_RP_ENABLE));
  910. seq_printf(m, "SW control enabled: %s\n",
  911. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  912. GEN6_RP_MEDIA_SW_MODE));
  913. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  914. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  915. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  916. seq_printf(m, "actual GPU freq: %d MHz\n",
  917. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  918. seq_printf(m, "current GPU freq: %d MHz\n",
  919. intel_gpu_freq(dev_priv, rps->cur_freq));
  920. seq_printf(m, "max GPU freq: %d MHz\n",
  921. intel_gpu_freq(dev_priv, rps->max_freq));
  922. seq_printf(m, "min GPU freq: %d MHz\n",
  923. intel_gpu_freq(dev_priv, rps->min_freq));
  924. seq_printf(m, "idle GPU freq: %d MHz\n",
  925. intel_gpu_freq(dev_priv, rps->idle_freq));
  926. seq_printf(m,
  927. "efficient (RPe) frequency: %d MHz\n",
  928. intel_gpu_freq(dev_priv, rps->efficient_freq));
  929. mutex_unlock(&dev_priv->pcu_lock);
  930. } else if (INTEL_GEN(dev_priv) >= 6) {
  931. u32 rp_state_limits;
  932. u32 gt_perf_status;
  933. u32 rp_state_cap;
  934. u32 rpmodectl, rpinclimit, rpdeclimit;
  935. u32 rpstat, cagf, reqf;
  936. u32 rpupei, rpcurup, rpprevup;
  937. u32 rpdownei, rpcurdown, rpprevdown;
  938. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  939. int max_freq;
  940. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  941. if (IS_GEN9_LP(dev_priv)) {
  942. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  943. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  944. } else {
  945. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  946. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  947. }
  948. /* RPSTAT1 is in the GT power well */
  949. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  950. reqf = I915_READ(GEN6_RPNSWREQ);
  951. if (INTEL_GEN(dev_priv) >= 9)
  952. reqf >>= 23;
  953. else {
  954. reqf &= ~GEN6_TURBO_DISABLE;
  955. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  956. reqf >>= 24;
  957. else
  958. reqf >>= 25;
  959. }
  960. reqf = intel_gpu_freq(dev_priv, reqf);
  961. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  962. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  963. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  964. rpstat = I915_READ(GEN6_RPSTAT1);
  965. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  966. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  967. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  968. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  969. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  970. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  971. if (INTEL_GEN(dev_priv) >= 9)
  972. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  973. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  974. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  975. else
  976. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  977. cagf = intel_gpu_freq(dev_priv, cagf);
  978. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  979. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  980. pm_ier = I915_READ(GEN6_PMIER);
  981. pm_imr = I915_READ(GEN6_PMIMR);
  982. pm_isr = I915_READ(GEN6_PMISR);
  983. pm_iir = I915_READ(GEN6_PMIIR);
  984. pm_mask = I915_READ(GEN6_PMINTRMSK);
  985. } else {
  986. pm_ier = I915_READ(GEN8_GT_IER(2));
  987. pm_imr = I915_READ(GEN8_GT_IMR(2));
  988. pm_isr = I915_READ(GEN8_GT_ISR(2));
  989. pm_iir = I915_READ(GEN8_GT_IIR(2));
  990. pm_mask = I915_READ(GEN6_PMINTRMSK);
  991. }
  992. seq_printf(m, "Video Turbo Mode: %s\n",
  993. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  994. seq_printf(m, "HW control enabled: %s\n",
  995. yesno(rpmodectl & GEN6_RP_ENABLE));
  996. seq_printf(m, "SW control enabled: %s\n",
  997. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  998. GEN6_RP_MEDIA_SW_MODE));
  999. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1000. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1001. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  1002. rps->pm_intrmsk_mbz);
  1003. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1004. seq_printf(m, "Render p-state ratio: %d\n",
  1005. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  1006. seq_printf(m, "Render p-state VID: %d\n",
  1007. gt_perf_status & 0xff);
  1008. seq_printf(m, "Render p-state limit: %d\n",
  1009. rp_state_limits & 0xff);
  1010. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1011. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1012. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1013. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1014. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1015. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1016. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1017. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1018. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1019. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1020. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1021. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1022. seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
  1023. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1024. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1025. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1026. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1027. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1028. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1029. seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
  1030. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1031. rp_state_cap >> 16) & 0xff;
  1032. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1033. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1034. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1035. intel_gpu_freq(dev_priv, max_freq));
  1036. max_freq = (rp_state_cap & 0xff00) >> 8;
  1037. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1038. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1039. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1040. intel_gpu_freq(dev_priv, max_freq));
  1041. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1042. rp_state_cap >> 0) & 0xff;
  1043. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1044. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1045. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1046. intel_gpu_freq(dev_priv, max_freq));
  1047. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1048. intel_gpu_freq(dev_priv, rps->max_freq));
  1049. seq_printf(m, "Current freq: %d MHz\n",
  1050. intel_gpu_freq(dev_priv, rps->cur_freq));
  1051. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1052. seq_printf(m, "Idle freq: %d MHz\n",
  1053. intel_gpu_freq(dev_priv, rps->idle_freq));
  1054. seq_printf(m, "Min freq: %d MHz\n",
  1055. intel_gpu_freq(dev_priv, rps->min_freq));
  1056. seq_printf(m, "Boost freq: %d MHz\n",
  1057. intel_gpu_freq(dev_priv, rps->boost_freq));
  1058. seq_printf(m, "Max freq: %d MHz\n",
  1059. intel_gpu_freq(dev_priv, rps->max_freq));
  1060. seq_printf(m,
  1061. "efficient (RPe) frequency: %d MHz\n",
  1062. intel_gpu_freq(dev_priv, rps->efficient_freq));
  1063. } else {
  1064. seq_puts(m, "no P-state info available\n");
  1065. }
  1066. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1067. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1068. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1069. intel_runtime_pm_put(dev_priv);
  1070. return ret;
  1071. }
  1072. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1073. struct seq_file *m,
  1074. struct intel_instdone *instdone)
  1075. {
  1076. int slice;
  1077. int subslice;
  1078. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1079. instdone->instdone);
  1080. if (INTEL_GEN(dev_priv) <= 3)
  1081. return;
  1082. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1083. instdone->slice_common);
  1084. if (INTEL_GEN(dev_priv) <= 6)
  1085. return;
  1086. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1087. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1088. slice, subslice, instdone->sampler[slice][subslice]);
  1089. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1090. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1091. slice, subslice, instdone->row[slice][subslice]);
  1092. }
  1093. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1094. {
  1095. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1096. struct intel_engine_cs *engine;
  1097. u64 acthd[I915_NUM_ENGINES];
  1098. u32 seqno[I915_NUM_ENGINES];
  1099. struct intel_instdone instdone;
  1100. enum intel_engine_id id;
  1101. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1102. seq_puts(m, "Wedged\n");
  1103. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1104. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1105. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1106. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1107. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1108. seq_puts(m, "Waiter holding struct mutex\n");
  1109. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1110. seq_puts(m, "struct_mutex blocked for reset\n");
  1111. if (!i915_modparams.enable_hangcheck) {
  1112. seq_puts(m, "Hangcheck disabled\n");
  1113. return 0;
  1114. }
  1115. intel_runtime_pm_get(dev_priv);
  1116. for_each_engine(engine, dev_priv, id) {
  1117. acthd[id] = intel_engine_get_active_head(engine);
  1118. seqno[id] = intel_engine_get_seqno(engine);
  1119. }
  1120. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1121. intel_runtime_pm_put(dev_priv);
  1122. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1123. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1124. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1125. jiffies));
  1126. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1127. seq_puts(m, "Hangcheck active, work pending\n");
  1128. else
  1129. seq_puts(m, "Hangcheck inactive\n");
  1130. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1131. for_each_engine(engine, dev_priv, id) {
  1132. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1133. struct rb_node *rb;
  1134. seq_printf(m, "%s:\n", engine->name);
  1135. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1136. engine->hangcheck.seqno, seqno[id],
  1137. intel_engine_last_submit(engine),
  1138. engine->timeline->inflight_seqnos);
  1139. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1140. yesno(intel_engine_has_waiter(engine)),
  1141. yesno(test_bit(engine->id,
  1142. &dev_priv->gpu_error.missed_irq_rings)),
  1143. yesno(engine->hangcheck.stalled));
  1144. spin_lock_irq(&b->rb_lock);
  1145. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1146. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1147. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1148. w->tsk->comm, w->tsk->pid, w->seqno);
  1149. }
  1150. spin_unlock_irq(&b->rb_lock);
  1151. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1152. (long long)engine->hangcheck.acthd,
  1153. (long long)acthd[id]);
  1154. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1155. hangcheck_action_to_str(engine->hangcheck.action),
  1156. engine->hangcheck.action,
  1157. jiffies_to_msecs(jiffies -
  1158. engine->hangcheck.action_timestamp));
  1159. if (engine->id == RCS) {
  1160. seq_puts(m, "\tinstdone read =\n");
  1161. i915_instdone_info(dev_priv, m, &instdone);
  1162. seq_puts(m, "\tinstdone accu =\n");
  1163. i915_instdone_info(dev_priv, m,
  1164. &engine->hangcheck.instdone);
  1165. }
  1166. }
  1167. return 0;
  1168. }
  1169. static int i915_reset_info(struct seq_file *m, void *unused)
  1170. {
  1171. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1172. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1173. struct intel_engine_cs *engine;
  1174. enum intel_engine_id id;
  1175. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1176. for_each_engine(engine, dev_priv, id) {
  1177. seq_printf(m, "%s = %u\n", engine->name,
  1178. i915_reset_engine_count(error, engine));
  1179. }
  1180. return 0;
  1181. }
  1182. static int ironlake_drpc_info(struct seq_file *m)
  1183. {
  1184. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1185. u32 rgvmodectl, rstdbyctl;
  1186. u16 crstandvid;
  1187. rgvmodectl = I915_READ(MEMMODECTL);
  1188. rstdbyctl = I915_READ(RSTDBYCTL);
  1189. crstandvid = I915_READ16(CRSTANDVID);
  1190. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1191. seq_printf(m, "Boost freq: %d\n",
  1192. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1193. MEMMODE_BOOST_FREQ_SHIFT);
  1194. seq_printf(m, "HW control enabled: %s\n",
  1195. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1196. seq_printf(m, "SW control enabled: %s\n",
  1197. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1198. seq_printf(m, "Gated voltage change: %s\n",
  1199. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1200. seq_printf(m, "Starting frequency: P%d\n",
  1201. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1202. seq_printf(m, "Max P-state: P%d\n",
  1203. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1204. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1205. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1206. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1207. seq_printf(m, "Render standby enabled: %s\n",
  1208. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1209. seq_puts(m, "Current RS state: ");
  1210. switch (rstdbyctl & RSX_STATUS_MASK) {
  1211. case RSX_STATUS_ON:
  1212. seq_puts(m, "on\n");
  1213. break;
  1214. case RSX_STATUS_RC1:
  1215. seq_puts(m, "RC1\n");
  1216. break;
  1217. case RSX_STATUS_RC1E:
  1218. seq_puts(m, "RC1E\n");
  1219. break;
  1220. case RSX_STATUS_RS1:
  1221. seq_puts(m, "RS1\n");
  1222. break;
  1223. case RSX_STATUS_RS2:
  1224. seq_puts(m, "RS2 (RC6)\n");
  1225. break;
  1226. case RSX_STATUS_RS3:
  1227. seq_puts(m, "RC3 (RC6+)\n");
  1228. break;
  1229. default:
  1230. seq_puts(m, "unknown\n");
  1231. break;
  1232. }
  1233. return 0;
  1234. }
  1235. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1236. {
  1237. struct drm_i915_private *i915 = node_to_i915(m->private);
  1238. struct intel_uncore_forcewake_domain *fw_domain;
  1239. unsigned int tmp;
  1240. seq_printf(m, "user.bypass_count = %u\n",
  1241. i915->uncore.user_forcewake.count);
  1242. for_each_fw_domain(fw_domain, i915, tmp)
  1243. seq_printf(m, "%s.wake_count = %u\n",
  1244. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1245. READ_ONCE(fw_domain->wake_count));
  1246. return 0;
  1247. }
  1248. static void print_rc6_res(struct seq_file *m,
  1249. const char *title,
  1250. const i915_reg_t reg)
  1251. {
  1252. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1253. seq_printf(m, "%s %u (%llu us)\n",
  1254. title, I915_READ(reg),
  1255. intel_rc6_residency_us(dev_priv, reg));
  1256. }
  1257. static int vlv_drpc_info(struct seq_file *m)
  1258. {
  1259. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1260. u32 rcctl1, pw_status;
  1261. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1262. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1263. seq_printf(m, "RC6 Enabled: %s\n",
  1264. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1265. GEN6_RC_CTL_EI_MODE(1))));
  1266. seq_printf(m, "Render Power Well: %s\n",
  1267. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1268. seq_printf(m, "Media Power Well: %s\n",
  1269. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1270. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1271. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1272. return i915_forcewake_domains(m, NULL);
  1273. }
  1274. static int gen6_drpc_info(struct seq_file *m)
  1275. {
  1276. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1277. u32 gt_core_status, rcctl1, rc6vids = 0;
  1278. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1279. unsigned forcewake_count;
  1280. int count = 0;
  1281. forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
  1282. if (forcewake_count) {
  1283. seq_puts(m, "RC information inaccurate because somebody "
  1284. "holds a forcewake reference \n");
  1285. } else {
  1286. /* NB: we cannot use forcewake, else we read the wrong values */
  1287. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1288. udelay(10);
  1289. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1290. }
  1291. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1292. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1293. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1294. if (INTEL_GEN(dev_priv) >= 9) {
  1295. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1296. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1297. }
  1298. mutex_lock(&dev_priv->pcu_lock);
  1299. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1300. mutex_unlock(&dev_priv->pcu_lock);
  1301. seq_printf(m, "RC1e Enabled: %s\n",
  1302. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1303. seq_printf(m, "RC6 Enabled: %s\n",
  1304. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1305. if (INTEL_GEN(dev_priv) >= 9) {
  1306. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1307. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1308. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1309. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1310. }
  1311. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1312. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1313. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1314. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1315. seq_puts(m, "Current RC state: ");
  1316. switch (gt_core_status & GEN6_RCn_MASK) {
  1317. case GEN6_RC0:
  1318. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1319. seq_puts(m, "Core Power Down\n");
  1320. else
  1321. seq_puts(m, "on\n");
  1322. break;
  1323. case GEN6_RC3:
  1324. seq_puts(m, "RC3\n");
  1325. break;
  1326. case GEN6_RC6:
  1327. seq_puts(m, "RC6\n");
  1328. break;
  1329. case GEN6_RC7:
  1330. seq_puts(m, "RC7\n");
  1331. break;
  1332. default:
  1333. seq_puts(m, "Unknown\n");
  1334. break;
  1335. }
  1336. seq_printf(m, "Core Power Down: %s\n",
  1337. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1338. if (INTEL_GEN(dev_priv) >= 9) {
  1339. seq_printf(m, "Render Power Well: %s\n",
  1340. (gen9_powergate_status &
  1341. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1342. seq_printf(m, "Media Power Well: %s\n",
  1343. (gen9_powergate_status &
  1344. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1345. }
  1346. /* Not exactly sure what this is */
  1347. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1348. GEN6_GT_GFX_RC6_LOCKED);
  1349. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1350. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1351. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1352. seq_printf(m, "RC6 voltage: %dmV\n",
  1353. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1354. seq_printf(m, "RC6+ voltage: %dmV\n",
  1355. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1356. seq_printf(m, "RC6++ voltage: %dmV\n",
  1357. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1358. return i915_forcewake_domains(m, NULL);
  1359. }
  1360. static int i915_drpc_info(struct seq_file *m, void *unused)
  1361. {
  1362. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1363. int err;
  1364. intel_runtime_pm_get(dev_priv);
  1365. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1366. err = vlv_drpc_info(m);
  1367. else if (INTEL_GEN(dev_priv) >= 6)
  1368. err = gen6_drpc_info(m);
  1369. else
  1370. err = ironlake_drpc_info(m);
  1371. intel_runtime_pm_put(dev_priv);
  1372. return err;
  1373. }
  1374. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1375. {
  1376. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1377. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1378. dev_priv->fb_tracking.busy_bits);
  1379. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1380. dev_priv->fb_tracking.flip_bits);
  1381. return 0;
  1382. }
  1383. static int i915_fbc_status(struct seq_file *m, void *unused)
  1384. {
  1385. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1386. if (!HAS_FBC(dev_priv)) {
  1387. seq_puts(m, "FBC unsupported on this chipset\n");
  1388. return 0;
  1389. }
  1390. intel_runtime_pm_get(dev_priv);
  1391. mutex_lock(&dev_priv->fbc.lock);
  1392. if (intel_fbc_is_active(dev_priv))
  1393. seq_puts(m, "FBC enabled\n");
  1394. else
  1395. seq_printf(m, "FBC disabled: %s\n",
  1396. dev_priv->fbc.no_fbc_reason);
  1397. if (intel_fbc_is_active(dev_priv)) {
  1398. u32 mask;
  1399. if (INTEL_GEN(dev_priv) >= 8)
  1400. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1401. else if (INTEL_GEN(dev_priv) >= 7)
  1402. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1403. else if (INTEL_GEN(dev_priv) >= 5)
  1404. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1405. else if (IS_G4X(dev_priv))
  1406. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1407. else
  1408. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1409. FBC_STAT_COMPRESSED);
  1410. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1411. }
  1412. mutex_unlock(&dev_priv->fbc.lock);
  1413. intel_runtime_pm_put(dev_priv);
  1414. return 0;
  1415. }
  1416. static int i915_fbc_false_color_get(void *data, u64 *val)
  1417. {
  1418. struct drm_i915_private *dev_priv = data;
  1419. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1420. return -ENODEV;
  1421. *val = dev_priv->fbc.false_color;
  1422. return 0;
  1423. }
  1424. static int i915_fbc_false_color_set(void *data, u64 val)
  1425. {
  1426. struct drm_i915_private *dev_priv = data;
  1427. u32 reg;
  1428. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1429. return -ENODEV;
  1430. mutex_lock(&dev_priv->fbc.lock);
  1431. reg = I915_READ(ILK_DPFC_CONTROL);
  1432. dev_priv->fbc.false_color = val;
  1433. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1434. (reg | FBC_CTL_FALSE_COLOR) :
  1435. (reg & ~FBC_CTL_FALSE_COLOR));
  1436. mutex_unlock(&dev_priv->fbc.lock);
  1437. return 0;
  1438. }
  1439. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1440. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1441. "%llu\n");
  1442. static int i915_ips_status(struct seq_file *m, void *unused)
  1443. {
  1444. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1445. if (!HAS_IPS(dev_priv)) {
  1446. seq_puts(m, "not supported\n");
  1447. return 0;
  1448. }
  1449. intel_runtime_pm_get(dev_priv);
  1450. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1451. yesno(i915_modparams.enable_ips));
  1452. if (INTEL_GEN(dev_priv) >= 8) {
  1453. seq_puts(m, "Currently: unknown\n");
  1454. } else {
  1455. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1456. seq_puts(m, "Currently: enabled\n");
  1457. else
  1458. seq_puts(m, "Currently: disabled\n");
  1459. }
  1460. intel_runtime_pm_put(dev_priv);
  1461. return 0;
  1462. }
  1463. static int i915_sr_status(struct seq_file *m, void *unused)
  1464. {
  1465. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1466. bool sr_enabled = false;
  1467. intel_runtime_pm_get(dev_priv);
  1468. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1469. if (INTEL_GEN(dev_priv) >= 9)
  1470. /* no global SR status; inspect per-plane WM */;
  1471. else if (HAS_PCH_SPLIT(dev_priv))
  1472. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1473. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1474. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1475. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1476. else if (IS_I915GM(dev_priv))
  1477. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1478. else if (IS_PINEVIEW(dev_priv))
  1479. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1480. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1481. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1482. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1483. intel_runtime_pm_put(dev_priv);
  1484. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1485. return 0;
  1486. }
  1487. static int i915_emon_status(struct seq_file *m, void *unused)
  1488. {
  1489. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1490. struct drm_device *dev = &dev_priv->drm;
  1491. unsigned long temp, chipset, gfx;
  1492. int ret;
  1493. if (!IS_GEN5(dev_priv))
  1494. return -ENODEV;
  1495. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1496. if (ret)
  1497. return ret;
  1498. temp = i915_mch_val(dev_priv);
  1499. chipset = i915_chipset_val(dev_priv);
  1500. gfx = i915_gfx_val(dev_priv);
  1501. mutex_unlock(&dev->struct_mutex);
  1502. seq_printf(m, "GMCH temp: %ld\n", temp);
  1503. seq_printf(m, "Chipset power: %ld\n", chipset);
  1504. seq_printf(m, "GFX power: %ld\n", gfx);
  1505. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1506. return 0;
  1507. }
  1508. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1509. {
  1510. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1511. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1512. int ret = 0;
  1513. int gpu_freq, ia_freq;
  1514. unsigned int max_gpu_freq, min_gpu_freq;
  1515. if (!HAS_LLC(dev_priv)) {
  1516. seq_puts(m, "unsupported on this chipset\n");
  1517. return 0;
  1518. }
  1519. intel_runtime_pm_get(dev_priv);
  1520. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  1521. if (ret)
  1522. goto out;
  1523. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  1524. /* Convert GT frequency to 50 HZ units */
  1525. min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
  1526. max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
  1527. } else {
  1528. min_gpu_freq = rps->min_freq_softlimit;
  1529. max_gpu_freq = rps->max_freq_softlimit;
  1530. }
  1531. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1532. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1533. ia_freq = gpu_freq;
  1534. sandybridge_pcode_read(dev_priv,
  1535. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1536. &ia_freq);
  1537. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1538. intel_gpu_freq(dev_priv, (gpu_freq *
  1539. (IS_GEN9_BC(dev_priv) ||
  1540. IS_CANNONLAKE(dev_priv) ?
  1541. GEN9_FREQ_SCALER : 1))),
  1542. ((ia_freq >> 0) & 0xff) * 100,
  1543. ((ia_freq >> 8) & 0xff) * 100);
  1544. }
  1545. mutex_unlock(&dev_priv->pcu_lock);
  1546. out:
  1547. intel_runtime_pm_put(dev_priv);
  1548. return ret;
  1549. }
  1550. static int i915_opregion(struct seq_file *m, void *unused)
  1551. {
  1552. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1553. struct drm_device *dev = &dev_priv->drm;
  1554. struct intel_opregion *opregion = &dev_priv->opregion;
  1555. int ret;
  1556. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1557. if (ret)
  1558. goto out;
  1559. if (opregion->header)
  1560. seq_write(m, opregion->header, OPREGION_SIZE);
  1561. mutex_unlock(&dev->struct_mutex);
  1562. out:
  1563. return 0;
  1564. }
  1565. static int i915_vbt(struct seq_file *m, void *unused)
  1566. {
  1567. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1568. if (opregion->vbt)
  1569. seq_write(m, opregion->vbt, opregion->vbt_size);
  1570. return 0;
  1571. }
  1572. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1573. {
  1574. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1575. struct drm_device *dev = &dev_priv->drm;
  1576. struct intel_framebuffer *fbdev_fb = NULL;
  1577. struct drm_framebuffer *drm_fb;
  1578. int ret;
  1579. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1580. if (ret)
  1581. return ret;
  1582. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1583. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1584. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1585. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1586. fbdev_fb->base.width,
  1587. fbdev_fb->base.height,
  1588. fbdev_fb->base.format->depth,
  1589. fbdev_fb->base.format->cpp[0] * 8,
  1590. fbdev_fb->base.modifier,
  1591. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1592. describe_obj(m, fbdev_fb->obj);
  1593. seq_putc(m, '\n');
  1594. }
  1595. #endif
  1596. mutex_lock(&dev->mode_config.fb_lock);
  1597. drm_for_each_fb(drm_fb, dev) {
  1598. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1599. if (fb == fbdev_fb)
  1600. continue;
  1601. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1602. fb->base.width,
  1603. fb->base.height,
  1604. fb->base.format->depth,
  1605. fb->base.format->cpp[0] * 8,
  1606. fb->base.modifier,
  1607. drm_framebuffer_read_refcount(&fb->base));
  1608. describe_obj(m, fb->obj);
  1609. seq_putc(m, '\n');
  1610. }
  1611. mutex_unlock(&dev->mode_config.fb_lock);
  1612. mutex_unlock(&dev->struct_mutex);
  1613. return 0;
  1614. }
  1615. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1616. {
  1617. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1618. ring->space, ring->head, ring->tail);
  1619. }
  1620. static int i915_context_status(struct seq_file *m, void *unused)
  1621. {
  1622. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1623. struct drm_device *dev = &dev_priv->drm;
  1624. struct intel_engine_cs *engine;
  1625. struct i915_gem_context *ctx;
  1626. enum intel_engine_id id;
  1627. int ret;
  1628. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1629. if (ret)
  1630. return ret;
  1631. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1632. seq_printf(m, "HW context %u ", ctx->hw_id);
  1633. if (ctx->pid) {
  1634. struct task_struct *task;
  1635. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1636. if (task) {
  1637. seq_printf(m, "(%s [%d]) ",
  1638. task->comm, task->pid);
  1639. put_task_struct(task);
  1640. }
  1641. } else if (IS_ERR(ctx->file_priv)) {
  1642. seq_puts(m, "(deleted) ");
  1643. } else {
  1644. seq_puts(m, "(kernel) ");
  1645. }
  1646. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1647. seq_putc(m, '\n');
  1648. for_each_engine(engine, dev_priv, id) {
  1649. struct intel_context *ce = &ctx->engine[engine->id];
  1650. seq_printf(m, "%s: ", engine->name);
  1651. if (ce->state)
  1652. describe_obj(m, ce->state->obj);
  1653. if (ce->ring)
  1654. describe_ctx_ring(m, ce->ring);
  1655. seq_putc(m, '\n');
  1656. }
  1657. seq_putc(m, '\n');
  1658. }
  1659. mutex_unlock(&dev->struct_mutex);
  1660. return 0;
  1661. }
  1662. static void i915_dump_lrc_obj(struct seq_file *m,
  1663. struct i915_gem_context *ctx,
  1664. struct intel_engine_cs *engine)
  1665. {
  1666. struct i915_vma *vma = ctx->engine[engine->id].state;
  1667. struct page *page;
  1668. int j;
  1669. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1670. if (!vma) {
  1671. seq_puts(m, "\tFake context\n");
  1672. return;
  1673. }
  1674. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1675. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1676. i915_ggtt_offset(vma));
  1677. if (i915_gem_object_pin_pages(vma->obj)) {
  1678. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1679. return;
  1680. }
  1681. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1682. if (page) {
  1683. u32 *reg_state = kmap_atomic(page);
  1684. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1685. seq_printf(m,
  1686. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1687. j * 4,
  1688. reg_state[j], reg_state[j + 1],
  1689. reg_state[j + 2], reg_state[j + 3]);
  1690. }
  1691. kunmap_atomic(reg_state);
  1692. }
  1693. i915_gem_object_unpin_pages(vma->obj);
  1694. seq_putc(m, '\n');
  1695. }
  1696. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1697. {
  1698. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1699. struct drm_device *dev = &dev_priv->drm;
  1700. struct intel_engine_cs *engine;
  1701. struct i915_gem_context *ctx;
  1702. enum intel_engine_id id;
  1703. int ret;
  1704. if (!i915_modparams.enable_execlists) {
  1705. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1706. return 0;
  1707. }
  1708. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1709. if (ret)
  1710. return ret;
  1711. list_for_each_entry(ctx, &dev_priv->contexts.list, link)
  1712. for_each_engine(engine, dev_priv, id)
  1713. i915_dump_lrc_obj(m, ctx, engine);
  1714. mutex_unlock(&dev->struct_mutex);
  1715. return 0;
  1716. }
  1717. static const char *swizzle_string(unsigned swizzle)
  1718. {
  1719. switch (swizzle) {
  1720. case I915_BIT_6_SWIZZLE_NONE:
  1721. return "none";
  1722. case I915_BIT_6_SWIZZLE_9:
  1723. return "bit9";
  1724. case I915_BIT_6_SWIZZLE_9_10:
  1725. return "bit9/bit10";
  1726. case I915_BIT_6_SWIZZLE_9_11:
  1727. return "bit9/bit11";
  1728. case I915_BIT_6_SWIZZLE_9_10_11:
  1729. return "bit9/bit10/bit11";
  1730. case I915_BIT_6_SWIZZLE_9_17:
  1731. return "bit9/bit17";
  1732. case I915_BIT_6_SWIZZLE_9_10_17:
  1733. return "bit9/bit10/bit17";
  1734. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1735. return "unknown";
  1736. }
  1737. return "bug";
  1738. }
  1739. static int i915_swizzle_info(struct seq_file *m, void *data)
  1740. {
  1741. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1742. intel_runtime_pm_get(dev_priv);
  1743. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1744. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1745. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1746. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1747. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1748. seq_printf(m, "DDC = 0x%08x\n",
  1749. I915_READ(DCC));
  1750. seq_printf(m, "DDC2 = 0x%08x\n",
  1751. I915_READ(DCC2));
  1752. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1753. I915_READ16(C0DRB3));
  1754. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1755. I915_READ16(C1DRB3));
  1756. } else if (INTEL_GEN(dev_priv) >= 6) {
  1757. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1758. I915_READ(MAD_DIMM_C0));
  1759. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1760. I915_READ(MAD_DIMM_C1));
  1761. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1762. I915_READ(MAD_DIMM_C2));
  1763. seq_printf(m, "TILECTL = 0x%08x\n",
  1764. I915_READ(TILECTL));
  1765. if (INTEL_GEN(dev_priv) >= 8)
  1766. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1767. I915_READ(GAMTARBMODE));
  1768. else
  1769. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1770. I915_READ(ARB_MODE));
  1771. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1772. I915_READ(DISP_ARB_CTL));
  1773. }
  1774. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1775. seq_puts(m, "L-shaped memory detected\n");
  1776. intel_runtime_pm_put(dev_priv);
  1777. return 0;
  1778. }
  1779. static int per_file_ctx(int id, void *ptr, void *data)
  1780. {
  1781. struct i915_gem_context *ctx = ptr;
  1782. struct seq_file *m = data;
  1783. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1784. if (!ppgtt) {
  1785. seq_printf(m, " no ppgtt for context %d\n",
  1786. ctx->user_handle);
  1787. return 0;
  1788. }
  1789. if (i915_gem_context_is_default(ctx))
  1790. seq_puts(m, " default context:\n");
  1791. else
  1792. seq_printf(m, " context %d:\n", ctx->user_handle);
  1793. ppgtt->debug_dump(ppgtt, m);
  1794. return 0;
  1795. }
  1796. static void gen8_ppgtt_info(struct seq_file *m,
  1797. struct drm_i915_private *dev_priv)
  1798. {
  1799. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1800. struct intel_engine_cs *engine;
  1801. enum intel_engine_id id;
  1802. int i;
  1803. if (!ppgtt)
  1804. return;
  1805. for_each_engine(engine, dev_priv, id) {
  1806. seq_printf(m, "%s\n", engine->name);
  1807. for (i = 0; i < 4; i++) {
  1808. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1809. pdp <<= 32;
  1810. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1811. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1812. }
  1813. }
  1814. }
  1815. static void gen6_ppgtt_info(struct seq_file *m,
  1816. struct drm_i915_private *dev_priv)
  1817. {
  1818. struct intel_engine_cs *engine;
  1819. enum intel_engine_id id;
  1820. if (IS_GEN6(dev_priv))
  1821. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1822. for_each_engine(engine, dev_priv, id) {
  1823. seq_printf(m, "%s\n", engine->name);
  1824. if (IS_GEN7(dev_priv))
  1825. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1826. I915_READ(RING_MODE_GEN7(engine)));
  1827. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1828. I915_READ(RING_PP_DIR_BASE(engine)));
  1829. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1830. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1831. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1832. I915_READ(RING_PP_DIR_DCLV(engine)));
  1833. }
  1834. if (dev_priv->mm.aliasing_ppgtt) {
  1835. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1836. seq_puts(m, "aliasing PPGTT:\n");
  1837. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1838. ppgtt->debug_dump(ppgtt, m);
  1839. }
  1840. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1841. }
  1842. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1843. {
  1844. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1845. struct drm_device *dev = &dev_priv->drm;
  1846. struct drm_file *file;
  1847. int ret;
  1848. mutex_lock(&dev->filelist_mutex);
  1849. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1850. if (ret)
  1851. goto out_unlock;
  1852. intel_runtime_pm_get(dev_priv);
  1853. if (INTEL_GEN(dev_priv) >= 8)
  1854. gen8_ppgtt_info(m, dev_priv);
  1855. else if (INTEL_GEN(dev_priv) >= 6)
  1856. gen6_ppgtt_info(m, dev_priv);
  1857. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1858. struct drm_i915_file_private *file_priv = file->driver_priv;
  1859. struct task_struct *task;
  1860. task = get_pid_task(file->pid, PIDTYPE_PID);
  1861. if (!task) {
  1862. ret = -ESRCH;
  1863. goto out_rpm;
  1864. }
  1865. seq_printf(m, "\nproc: %s\n", task->comm);
  1866. put_task_struct(task);
  1867. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1868. (void *)(unsigned long)m);
  1869. }
  1870. out_rpm:
  1871. intel_runtime_pm_put(dev_priv);
  1872. mutex_unlock(&dev->struct_mutex);
  1873. out_unlock:
  1874. mutex_unlock(&dev->filelist_mutex);
  1875. return ret;
  1876. }
  1877. static int count_irq_waiters(struct drm_i915_private *i915)
  1878. {
  1879. struct intel_engine_cs *engine;
  1880. enum intel_engine_id id;
  1881. int count = 0;
  1882. for_each_engine(engine, i915, id)
  1883. count += intel_engine_has_waiter(engine);
  1884. return count;
  1885. }
  1886. static const char *rps_power_to_str(unsigned int power)
  1887. {
  1888. static const char * const strings[] = {
  1889. [LOW_POWER] = "low power",
  1890. [BETWEEN] = "mixed",
  1891. [HIGH_POWER] = "high power",
  1892. };
  1893. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1894. return "unknown";
  1895. return strings[power];
  1896. }
  1897. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1898. {
  1899. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1900. struct drm_device *dev = &dev_priv->drm;
  1901. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1902. struct drm_file *file;
  1903. seq_printf(m, "RPS enabled? %d\n", rps->enabled);
  1904. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1905. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1906. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1907. seq_printf(m, "Boosts outstanding? %d\n",
  1908. atomic_read(&rps->num_waiters));
  1909. seq_printf(m, "Frequency requested %d\n",
  1910. intel_gpu_freq(dev_priv, rps->cur_freq));
  1911. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1912. intel_gpu_freq(dev_priv, rps->min_freq),
  1913. intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
  1914. intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
  1915. intel_gpu_freq(dev_priv, rps->max_freq));
  1916. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1917. intel_gpu_freq(dev_priv, rps->idle_freq),
  1918. intel_gpu_freq(dev_priv, rps->efficient_freq),
  1919. intel_gpu_freq(dev_priv, rps->boost_freq));
  1920. mutex_lock(&dev->filelist_mutex);
  1921. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1922. struct drm_i915_file_private *file_priv = file->driver_priv;
  1923. struct task_struct *task;
  1924. rcu_read_lock();
  1925. task = pid_task(file->pid, PIDTYPE_PID);
  1926. seq_printf(m, "%s [%d]: %d boosts\n",
  1927. task ? task->comm : "<unknown>",
  1928. task ? task->pid : -1,
  1929. atomic_read(&file_priv->rps_client.boosts));
  1930. rcu_read_unlock();
  1931. }
  1932. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1933. atomic_read(&rps->boosts));
  1934. mutex_unlock(&dev->filelist_mutex);
  1935. if (INTEL_GEN(dev_priv) >= 6 &&
  1936. rps->enabled &&
  1937. dev_priv->gt.active_requests) {
  1938. u32 rpup, rpupei;
  1939. u32 rpdown, rpdownei;
  1940. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1941. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1942. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1943. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1944. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1945. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1946. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1947. rps_power_to_str(rps->power));
  1948. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1949. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1950. rps->up_threshold);
  1951. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1952. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1953. rps->down_threshold);
  1954. } else {
  1955. seq_puts(m, "\nRPS Autotuning inactive\n");
  1956. }
  1957. return 0;
  1958. }
  1959. static int i915_llc(struct seq_file *m, void *data)
  1960. {
  1961. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1962. const bool edram = INTEL_GEN(dev_priv) > 8;
  1963. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1964. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1965. intel_uncore_edram_size(dev_priv)/1024/1024);
  1966. return 0;
  1967. }
  1968. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1969. {
  1970. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1971. struct drm_printer p;
  1972. if (!HAS_HUC_UCODE(dev_priv))
  1973. return 0;
  1974. p = drm_seq_file_printer(m);
  1975. intel_uc_fw_dump(&dev_priv->huc.fw, &p);
  1976. intel_runtime_pm_get(dev_priv);
  1977. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1978. intel_runtime_pm_put(dev_priv);
  1979. return 0;
  1980. }
  1981. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1982. {
  1983. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1984. struct drm_printer p;
  1985. u32 tmp, i;
  1986. if (!HAS_GUC_UCODE(dev_priv))
  1987. return 0;
  1988. p = drm_seq_file_printer(m);
  1989. intel_uc_fw_dump(&dev_priv->guc.fw, &p);
  1990. intel_runtime_pm_get(dev_priv);
  1991. tmp = I915_READ(GUC_STATUS);
  1992. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  1993. seq_printf(m, "\tBootrom status = 0x%x\n",
  1994. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  1995. seq_printf(m, "\tuKernel status = 0x%x\n",
  1996. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  1997. seq_printf(m, "\tMIA Core status = 0x%x\n",
  1998. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  1999. seq_puts(m, "\nScratch registers:\n");
  2000. for (i = 0; i < 16; i++)
  2001. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2002. intel_runtime_pm_put(dev_priv);
  2003. return 0;
  2004. }
  2005. static void i915_guc_log_info(struct seq_file *m,
  2006. struct drm_i915_private *dev_priv)
  2007. {
  2008. struct intel_guc *guc = &dev_priv->guc;
  2009. seq_puts(m, "\nGuC logging stats:\n");
  2010. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2011. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2012. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2013. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2014. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2015. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2016. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2017. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2018. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2019. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2020. guc->log.flush_interrupt_count);
  2021. seq_printf(m, "\tCapture miss count: %u\n",
  2022. guc->log.capture_miss_count);
  2023. }
  2024. static void i915_guc_client_info(struct seq_file *m,
  2025. struct drm_i915_private *dev_priv,
  2026. struct intel_guc_client *client)
  2027. {
  2028. struct intel_engine_cs *engine;
  2029. enum intel_engine_id id;
  2030. uint64_t tot = 0;
  2031. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  2032. client->priority, client->stage_id, client->proc_desc_offset);
  2033. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
  2034. client->doorbell_id, client->doorbell_offset);
  2035. for_each_engine(engine, dev_priv, id) {
  2036. u64 submissions = client->submissions[id];
  2037. tot += submissions;
  2038. seq_printf(m, "\tSubmissions: %llu %s\n",
  2039. submissions, engine->name);
  2040. }
  2041. seq_printf(m, "\tTotal: %llu\n", tot);
  2042. }
  2043. static bool check_guc_submission(struct seq_file *m)
  2044. {
  2045. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2046. const struct intel_guc *guc = &dev_priv->guc;
  2047. if (!guc->execbuf_client) {
  2048. seq_printf(m, "GuC submission %s\n",
  2049. HAS_GUC_SCHED(dev_priv) ?
  2050. "disabled" :
  2051. "not supported");
  2052. return false;
  2053. }
  2054. return true;
  2055. }
  2056. static int i915_guc_info(struct seq_file *m, void *data)
  2057. {
  2058. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2059. const struct intel_guc *guc = &dev_priv->guc;
  2060. if (!check_guc_submission(m))
  2061. return 0;
  2062. seq_printf(m, "Doorbell map:\n");
  2063. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  2064. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2065. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2066. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2067. seq_printf(m, "\nGuC preempt client @ %p:\n", guc->preempt_client);
  2068. i915_guc_client_info(m, dev_priv, guc->preempt_client);
  2069. i915_guc_log_info(m, dev_priv);
  2070. /* Add more as required ... */
  2071. return 0;
  2072. }
  2073. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  2074. {
  2075. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2076. const struct intel_guc *guc = &dev_priv->guc;
  2077. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  2078. struct intel_guc_client *client = guc->execbuf_client;
  2079. unsigned int tmp;
  2080. int index;
  2081. if (!check_guc_submission(m))
  2082. return 0;
  2083. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  2084. struct intel_engine_cs *engine;
  2085. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  2086. continue;
  2087. seq_printf(m, "GuC stage descriptor %u:\n", index);
  2088. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  2089. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  2090. seq_printf(m, "\tPriority: %d\n", desc->priority);
  2091. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  2092. seq_printf(m, "\tEngines used: 0x%x\n",
  2093. desc->engines_used);
  2094. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  2095. desc->db_trigger_phy,
  2096. desc->db_trigger_cpu,
  2097. desc->db_trigger_uk);
  2098. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  2099. desc->process_desc);
  2100. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  2101. desc->wq_addr, desc->wq_size);
  2102. seq_putc(m, '\n');
  2103. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  2104. u32 guc_engine_id = engine->guc_id;
  2105. struct guc_execlist_context *lrc =
  2106. &desc->lrc[guc_engine_id];
  2107. seq_printf(m, "\t%s LRC:\n", engine->name);
  2108. seq_printf(m, "\t\tContext desc: 0x%x\n",
  2109. lrc->context_desc);
  2110. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  2111. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  2112. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  2113. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  2114. seq_putc(m, '\n');
  2115. }
  2116. }
  2117. return 0;
  2118. }
  2119. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2120. {
  2121. struct drm_info_node *node = m->private;
  2122. struct drm_i915_private *dev_priv = node_to_i915(node);
  2123. bool dump_load_err = !!node->info_ent->data;
  2124. struct drm_i915_gem_object *obj = NULL;
  2125. u32 *log;
  2126. int i = 0;
  2127. if (dump_load_err)
  2128. obj = dev_priv->guc.load_err_log;
  2129. else if (dev_priv->guc.log.vma)
  2130. obj = dev_priv->guc.log.vma->obj;
  2131. if (!obj)
  2132. return 0;
  2133. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2134. if (IS_ERR(log)) {
  2135. DRM_DEBUG("Failed to pin object\n");
  2136. seq_puts(m, "(log data unaccessible)\n");
  2137. return PTR_ERR(log);
  2138. }
  2139. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2140. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2141. *(log + i), *(log + i + 1),
  2142. *(log + i + 2), *(log + i + 3));
  2143. seq_putc(m, '\n');
  2144. i915_gem_object_unpin_map(obj);
  2145. return 0;
  2146. }
  2147. static int i915_guc_log_control_get(void *data, u64 *val)
  2148. {
  2149. struct drm_i915_private *dev_priv = data;
  2150. if (!dev_priv->guc.log.vma)
  2151. return -EINVAL;
  2152. *val = i915_modparams.guc_log_level;
  2153. return 0;
  2154. }
  2155. static int i915_guc_log_control_set(void *data, u64 val)
  2156. {
  2157. struct drm_i915_private *dev_priv = data;
  2158. int ret;
  2159. if (!dev_priv->guc.log.vma)
  2160. return -EINVAL;
  2161. ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
  2162. if (ret)
  2163. return ret;
  2164. intel_runtime_pm_get(dev_priv);
  2165. ret = i915_guc_log_control(dev_priv, val);
  2166. intel_runtime_pm_put(dev_priv);
  2167. mutex_unlock(&dev_priv->drm.struct_mutex);
  2168. return ret;
  2169. }
  2170. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2171. i915_guc_log_control_get, i915_guc_log_control_set,
  2172. "%lld\n");
  2173. static const char *psr2_live_status(u32 val)
  2174. {
  2175. static const char * const live_status[] = {
  2176. "IDLE",
  2177. "CAPTURE",
  2178. "CAPTURE_FS",
  2179. "SLEEP",
  2180. "BUFON_FW",
  2181. "ML_UP",
  2182. "SU_STANDBY",
  2183. "FAST_SLEEP",
  2184. "DEEP_SLEEP",
  2185. "BUF_ON",
  2186. "TG_ON"
  2187. };
  2188. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2189. if (val < ARRAY_SIZE(live_status))
  2190. return live_status[val];
  2191. return "unknown";
  2192. }
  2193. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2194. {
  2195. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2196. u32 psrperf = 0;
  2197. u32 stat[3];
  2198. enum pipe pipe;
  2199. bool enabled = false;
  2200. if (!HAS_PSR(dev_priv)) {
  2201. seq_puts(m, "PSR not supported\n");
  2202. return 0;
  2203. }
  2204. intel_runtime_pm_get(dev_priv);
  2205. mutex_lock(&dev_priv->psr.lock);
  2206. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2207. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2208. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2209. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2210. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2211. dev_priv->psr.busy_frontbuffer_bits);
  2212. seq_printf(m, "Re-enable work scheduled: %s\n",
  2213. yesno(work_busy(&dev_priv->psr.work.work)));
  2214. if (HAS_DDI(dev_priv)) {
  2215. if (dev_priv->psr.psr2_support)
  2216. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2217. else
  2218. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2219. } else {
  2220. for_each_pipe(dev_priv, pipe) {
  2221. enum transcoder cpu_transcoder =
  2222. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2223. enum intel_display_power_domain power_domain;
  2224. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2225. if (!intel_display_power_get_if_enabled(dev_priv,
  2226. power_domain))
  2227. continue;
  2228. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2229. VLV_EDP_PSR_CURR_STATE_MASK;
  2230. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2231. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2232. enabled = true;
  2233. intel_display_power_put(dev_priv, power_domain);
  2234. }
  2235. }
  2236. seq_printf(m, "Main link in standby mode: %s\n",
  2237. yesno(dev_priv->psr.link_standby));
  2238. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2239. if (!HAS_DDI(dev_priv))
  2240. for_each_pipe(dev_priv, pipe) {
  2241. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2242. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2243. seq_printf(m, " pipe %c", pipe_name(pipe));
  2244. }
  2245. seq_puts(m, "\n");
  2246. /*
  2247. * VLV/CHV PSR has no kind of performance counter
  2248. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2249. */
  2250. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2251. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2252. EDP_PSR_PERF_CNT_MASK;
  2253. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2254. }
  2255. if (dev_priv->psr.psr2_support) {
  2256. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2257. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2258. psr2, psr2_live_status(psr2));
  2259. }
  2260. mutex_unlock(&dev_priv->psr.lock);
  2261. intel_runtime_pm_put(dev_priv);
  2262. return 0;
  2263. }
  2264. static int i915_sink_crc(struct seq_file *m, void *data)
  2265. {
  2266. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2267. struct drm_device *dev = &dev_priv->drm;
  2268. struct intel_connector *connector;
  2269. struct drm_connector_list_iter conn_iter;
  2270. struct intel_dp *intel_dp = NULL;
  2271. struct drm_modeset_acquire_ctx ctx;
  2272. int ret;
  2273. u8 crc[6];
  2274. drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
  2275. drm_connector_list_iter_begin(dev, &conn_iter);
  2276. for_each_intel_connector_iter(connector, &conn_iter) {
  2277. struct drm_crtc *crtc;
  2278. struct drm_connector_state *state;
  2279. struct intel_crtc_state *crtc_state;
  2280. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2281. continue;
  2282. retry:
  2283. ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
  2284. if (ret)
  2285. goto err;
  2286. state = connector->base.state;
  2287. if (!state->best_encoder)
  2288. continue;
  2289. crtc = state->crtc;
  2290. ret = drm_modeset_lock(&crtc->mutex, &ctx);
  2291. if (ret)
  2292. goto err;
  2293. crtc_state = to_intel_crtc_state(crtc->state);
  2294. if (!crtc_state->base.active)
  2295. continue;
  2296. /*
  2297. * We need to wait for all crtc updates to complete, to make
  2298. * sure any pending modesets and plane updates are completed.
  2299. */
  2300. if (crtc_state->base.commit) {
  2301. ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
  2302. if (ret)
  2303. goto err;
  2304. }
  2305. intel_dp = enc_to_intel_dp(state->best_encoder);
  2306. ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
  2307. if (ret)
  2308. goto err;
  2309. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2310. crc[0], crc[1], crc[2],
  2311. crc[3], crc[4], crc[5]);
  2312. goto out;
  2313. err:
  2314. if (ret == -EDEADLK) {
  2315. ret = drm_modeset_backoff(&ctx);
  2316. if (!ret)
  2317. goto retry;
  2318. }
  2319. goto out;
  2320. }
  2321. ret = -ENODEV;
  2322. out:
  2323. drm_connector_list_iter_end(&conn_iter);
  2324. drm_modeset_drop_locks(&ctx);
  2325. drm_modeset_acquire_fini(&ctx);
  2326. return ret;
  2327. }
  2328. static int i915_energy_uJ(struct seq_file *m, void *data)
  2329. {
  2330. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2331. unsigned long long power;
  2332. u32 units;
  2333. if (INTEL_GEN(dev_priv) < 6)
  2334. return -ENODEV;
  2335. intel_runtime_pm_get(dev_priv);
  2336. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2337. intel_runtime_pm_put(dev_priv);
  2338. return -ENODEV;
  2339. }
  2340. units = (power & 0x1f00) >> 8;
  2341. power = I915_READ(MCH_SECP_NRG_STTS);
  2342. power = (1000000 * power) >> units; /* convert to uJ */
  2343. intel_runtime_pm_put(dev_priv);
  2344. seq_printf(m, "%llu", power);
  2345. return 0;
  2346. }
  2347. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2348. {
  2349. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2350. struct pci_dev *pdev = dev_priv->drm.pdev;
  2351. if (!HAS_RUNTIME_PM(dev_priv))
  2352. seq_puts(m, "Runtime power management not supported\n");
  2353. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2354. seq_printf(m, "IRQs disabled: %s\n",
  2355. yesno(!intel_irqs_enabled(dev_priv)));
  2356. #ifdef CONFIG_PM
  2357. seq_printf(m, "Usage count: %d\n",
  2358. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2359. #else
  2360. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2361. #endif
  2362. seq_printf(m, "PCI device power state: %s [%d]\n",
  2363. pci_power_name(pdev->current_state),
  2364. pdev->current_state);
  2365. return 0;
  2366. }
  2367. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2368. {
  2369. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2370. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2371. int i;
  2372. mutex_lock(&power_domains->lock);
  2373. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2374. for (i = 0; i < power_domains->power_well_count; i++) {
  2375. struct i915_power_well *power_well;
  2376. enum intel_display_power_domain power_domain;
  2377. power_well = &power_domains->power_wells[i];
  2378. seq_printf(m, "%-25s %d\n", power_well->name,
  2379. power_well->count);
  2380. for_each_power_domain(power_domain, power_well->domains)
  2381. seq_printf(m, " %-23s %d\n",
  2382. intel_display_power_domain_str(power_domain),
  2383. power_domains->domain_use_count[power_domain]);
  2384. }
  2385. mutex_unlock(&power_domains->lock);
  2386. return 0;
  2387. }
  2388. static int i915_dmc_info(struct seq_file *m, void *unused)
  2389. {
  2390. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2391. struct intel_csr *csr;
  2392. if (!HAS_CSR(dev_priv)) {
  2393. seq_puts(m, "not supported\n");
  2394. return 0;
  2395. }
  2396. csr = &dev_priv->csr;
  2397. intel_runtime_pm_get(dev_priv);
  2398. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2399. seq_printf(m, "path: %s\n", csr->fw_path);
  2400. if (!csr->dmc_payload)
  2401. goto out;
  2402. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2403. CSR_VERSION_MINOR(csr->version));
  2404. if (IS_KABYLAKE(dev_priv) ||
  2405. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2406. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2407. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2408. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2409. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2410. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2411. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2412. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2413. }
  2414. out:
  2415. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2416. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2417. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2418. intel_runtime_pm_put(dev_priv);
  2419. return 0;
  2420. }
  2421. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2422. struct drm_display_mode *mode)
  2423. {
  2424. int i;
  2425. for (i = 0; i < tabs; i++)
  2426. seq_putc(m, '\t');
  2427. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2428. mode->base.id, mode->name,
  2429. mode->vrefresh, mode->clock,
  2430. mode->hdisplay, mode->hsync_start,
  2431. mode->hsync_end, mode->htotal,
  2432. mode->vdisplay, mode->vsync_start,
  2433. mode->vsync_end, mode->vtotal,
  2434. mode->type, mode->flags);
  2435. }
  2436. static void intel_encoder_info(struct seq_file *m,
  2437. struct intel_crtc *intel_crtc,
  2438. struct intel_encoder *intel_encoder)
  2439. {
  2440. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2441. struct drm_device *dev = &dev_priv->drm;
  2442. struct drm_crtc *crtc = &intel_crtc->base;
  2443. struct intel_connector *intel_connector;
  2444. struct drm_encoder *encoder;
  2445. encoder = &intel_encoder->base;
  2446. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2447. encoder->base.id, encoder->name);
  2448. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2449. struct drm_connector *connector = &intel_connector->base;
  2450. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2451. connector->base.id,
  2452. connector->name,
  2453. drm_get_connector_status_name(connector->status));
  2454. if (connector->status == connector_status_connected) {
  2455. struct drm_display_mode *mode = &crtc->mode;
  2456. seq_printf(m, ", mode:\n");
  2457. intel_seq_print_mode(m, 2, mode);
  2458. } else {
  2459. seq_putc(m, '\n');
  2460. }
  2461. }
  2462. }
  2463. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2464. {
  2465. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2466. struct drm_device *dev = &dev_priv->drm;
  2467. struct drm_crtc *crtc = &intel_crtc->base;
  2468. struct intel_encoder *intel_encoder;
  2469. struct drm_plane_state *plane_state = crtc->primary->state;
  2470. struct drm_framebuffer *fb = plane_state->fb;
  2471. if (fb)
  2472. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2473. fb->base.id, plane_state->src_x >> 16,
  2474. plane_state->src_y >> 16, fb->width, fb->height);
  2475. else
  2476. seq_puts(m, "\tprimary plane disabled\n");
  2477. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2478. intel_encoder_info(m, intel_crtc, intel_encoder);
  2479. }
  2480. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2481. {
  2482. struct drm_display_mode *mode = panel->fixed_mode;
  2483. seq_printf(m, "\tfixed mode:\n");
  2484. intel_seq_print_mode(m, 2, mode);
  2485. }
  2486. static void intel_dp_info(struct seq_file *m,
  2487. struct intel_connector *intel_connector)
  2488. {
  2489. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2490. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2491. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2492. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2493. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2494. intel_panel_info(m, &intel_connector->panel);
  2495. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2496. &intel_dp->aux);
  2497. }
  2498. static void intel_dp_mst_info(struct seq_file *m,
  2499. struct intel_connector *intel_connector)
  2500. {
  2501. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2502. struct intel_dp_mst_encoder *intel_mst =
  2503. enc_to_mst(&intel_encoder->base);
  2504. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2505. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2506. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2507. intel_connector->port);
  2508. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2509. }
  2510. static void intel_hdmi_info(struct seq_file *m,
  2511. struct intel_connector *intel_connector)
  2512. {
  2513. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2514. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2515. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2516. }
  2517. static void intel_lvds_info(struct seq_file *m,
  2518. struct intel_connector *intel_connector)
  2519. {
  2520. intel_panel_info(m, &intel_connector->panel);
  2521. }
  2522. static void intel_connector_info(struct seq_file *m,
  2523. struct drm_connector *connector)
  2524. {
  2525. struct intel_connector *intel_connector = to_intel_connector(connector);
  2526. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2527. struct drm_display_mode *mode;
  2528. seq_printf(m, "connector %d: type %s, status: %s\n",
  2529. connector->base.id, connector->name,
  2530. drm_get_connector_status_name(connector->status));
  2531. if (connector->status == connector_status_connected) {
  2532. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2533. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2534. connector->display_info.width_mm,
  2535. connector->display_info.height_mm);
  2536. seq_printf(m, "\tsubpixel order: %s\n",
  2537. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2538. seq_printf(m, "\tCEA rev: %d\n",
  2539. connector->display_info.cea_rev);
  2540. }
  2541. if (!intel_encoder)
  2542. return;
  2543. switch (connector->connector_type) {
  2544. case DRM_MODE_CONNECTOR_DisplayPort:
  2545. case DRM_MODE_CONNECTOR_eDP:
  2546. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2547. intel_dp_mst_info(m, intel_connector);
  2548. else
  2549. intel_dp_info(m, intel_connector);
  2550. break;
  2551. case DRM_MODE_CONNECTOR_LVDS:
  2552. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2553. intel_lvds_info(m, intel_connector);
  2554. break;
  2555. case DRM_MODE_CONNECTOR_HDMIA:
  2556. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2557. intel_encoder->type == INTEL_OUTPUT_DDI)
  2558. intel_hdmi_info(m, intel_connector);
  2559. break;
  2560. default:
  2561. break;
  2562. }
  2563. seq_printf(m, "\tmodes:\n");
  2564. list_for_each_entry(mode, &connector->modes, head)
  2565. intel_seq_print_mode(m, 2, mode);
  2566. }
  2567. static const char *plane_type(enum drm_plane_type type)
  2568. {
  2569. switch (type) {
  2570. case DRM_PLANE_TYPE_OVERLAY:
  2571. return "OVL";
  2572. case DRM_PLANE_TYPE_PRIMARY:
  2573. return "PRI";
  2574. case DRM_PLANE_TYPE_CURSOR:
  2575. return "CUR";
  2576. /*
  2577. * Deliberately omitting default: to generate compiler warnings
  2578. * when a new drm_plane_type gets added.
  2579. */
  2580. }
  2581. return "unknown";
  2582. }
  2583. static const char *plane_rotation(unsigned int rotation)
  2584. {
  2585. static char buf[48];
  2586. /*
  2587. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2588. * will print them all to visualize if the values are misused
  2589. */
  2590. snprintf(buf, sizeof(buf),
  2591. "%s%s%s%s%s%s(0x%08x)",
  2592. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2593. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2594. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2595. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2596. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2597. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2598. rotation);
  2599. return buf;
  2600. }
  2601. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2602. {
  2603. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2604. struct drm_device *dev = &dev_priv->drm;
  2605. struct intel_plane *intel_plane;
  2606. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2607. struct drm_plane_state *state;
  2608. struct drm_plane *plane = &intel_plane->base;
  2609. struct drm_format_name_buf format_name;
  2610. if (!plane->state) {
  2611. seq_puts(m, "plane->state is NULL!\n");
  2612. continue;
  2613. }
  2614. state = plane->state;
  2615. if (state->fb) {
  2616. drm_get_format_name(state->fb->format->format,
  2617. &format_name);
  2618. } else {
  2619. sprintf(format_name.str, "N/A");
  2620. }
  2621. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2622. plane->base.id,
  2623. plane_type(intel_plane->base.type),
  2624. state->crtc_x, state->crtc_y,
  2625. state->crtc_w, state->crtc_h,
  2626. (state->src_x >> 16),
  2627. ((state->src_x & 0xffff) * 15625) >> 10,
  2628. (state->src_y >> 16),
  2629. ((state->src_y & 0xffff) * 15625) >> 10,
  2630. (state->src_w >> 16),
  2631. ((state->src_w & 0xffff) * 15625) >> 10,
  2632. (state->src_h >> 16),
  2633. ((state->src_h & 0xffff) * 15625) >> 10,
  2634. format_name.str,
  2635. plane_rotation(state->rotation));
  2636. }
  2637. }
  2638. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2639. {
  2640. struct intel_crtc_state *pipe_config;
  2641. int num_scalers = intel_crtc->num_scalers;
  2642. int i;
  2643. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2644. /* Not all platformas have a scaler */
  2645. if (num_scalers) {
  2646. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2647. num_scalers,
  2648. pipe_config->scaler_state.scaler_users,
  2649. pipe_config->scaler_state.scaler_id);
  2650. for (i = 0; i < num_scalers; i++) {
  2651. struct intel_scaler *sc =
  2652. &pipe_config->scaler_state.scalers[i];
  2653. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2654. i, yesno(sc->in_use), sc->mode);
  2655. }
  2656. seq_puts(m, "\n");
  2657. } else {
  2658. seq_puts(m, "\tNo scalers available on this platform\n");
  2659. }
  2660. }
  2661. static int i915_display_info(struct seq_file *m, void *unused)
  2662. {
  2663. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2664. struct drm_device *dev = &dev_priv->drm;
  2665. struct intel_crtc *crtc;
  2666. struct drm_connector *connector;
  2667. struct drm_connector_list_iter conn_iter;
  2668. intel_runtime_pm_get(dev_priv);
  2669. seq_printf(m, "CRTC info\n");
  2670. seq_printf(m, "---------\n");
  2671. for_each_intel_crtc(dev, crtc) {
  2672. struct intel_crtc_state *pipe_config;
  2673. drm_modeset_lock(&crtc->base.mutex, NULL);
  2674. pipe_config = to_intel_crtc_state(crtc->base.state);
  2675. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2676. crtc->base.base.id, pipe_name(crtc->pipe),
  2677. yesno(pipe_config->base.active),
  2678. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2679. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2680. if (pipe_config->base.active) {
  2681. struct intel_plane *cursor =
  2682. to_intel_plane(crtc->base.cursor);
  2683. intel_crtc_info(m, crtc);
  2684. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2685. yesno(cursor->base.state->visible),
  2686. cursor->base.state->crtc_x,
  2687. cursor->base.state->crtc_y,
  2688. cursor->base.state->crtc_w,
  2689. cursor->base.state->crtc_h,
  2690. cursor->cursor.base);
  2691. intel_scaler_info(m, crtc);
  2692. intel_plane_info(m, crtc);
  2693. }
  2694. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2695. yesno(!crtc->cpu_fifo_underrun_disabled),
  2696. yesno(!crtc->pch_fifo_underrun_disabled));
  2697. drm_modeset_unlock(&crtc->base.mutex);
  2698. }
  2699. seq_printf(m, "\n");
  2700. seq_printf(m, "Connector info\n");
  2701. seq_printf(m, "--------------\n");
  2702. mutex_lock(&dev->mode_config.mutex);
  2703. drm_connector_list_iter_begin(dev, &conn_iter);
  2704. drm_for_each_connector_iter(connector, &conn_iter)
  2705. intel_connector_info(m, connector);
  2706. drm_connector_list_iter_end(&conn_iter);
  2707. mutex_unlock(&dev->mode_config.mutex);
  2708. intel_runtime_pm_put(dev_priv);
  2709. return 0;
  2710. }
  2711. static int i915_engine_info(struct seq_file *m, void *unused)
  2712. {
  2713. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2714. struct intel_engine_cs *engine;
  2715. enum intel_engine_id id;
  2716. struct drm_printer p;
  2717. intel_runtime_pm_get(dev_priv);
  2718. seq_printf(m, "GT awake? %s\n",
  2719. yesno(dev_priv->gt.awake));
  2720. seq_printf(m, "Global active requests: %d\n",
  2721. dev_priv->gt.active_requests);
  2722. seq_printf(m, "CS timestamp frequency: %u kHz\n",
  2723. dev_priv->info.cs_timestamp_frequency_khz);
  2724. p = drm_seq_file_printer(m);
  2725. for_each_engine(engine, dev_priv, id)
  2726. intel_engine_dump(engine, &p);
  2727. intel_runtime_pm_put(dev_priv);
  2728. return 0;
  2729. }
  2730. static int i915_shrinker_info(struct seq_file *m, void *unused)
  2731. {
  2732. struct drm_i915_private *i915 = node_to_i915(m->private);
  2733. seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
  2734. seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
  2735. return 0;
  2736. }
  2737. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2738. {
  2739. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2740. struct drm_device *dev = &dev_priv->drm;
  2741. struct intel_engine_cs *engine;
  2742. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2743. enum intel_engine_id id;
  2744. int j, ret;
  2745. if (!i915_modparams.semaphores) {
  2746. seq_puts(m, "Semaphores are disabled\n");
  2747. return 0;
  2748. }
  2749. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2750. if (ret)
  2751. return ret;
  2752. intel_runtime_pm_get(dev_priv);
  2753. if (IS_BROADWELL(dev_priv)) {
  2754. struct page *page;
  2755. uint64_t *seqno;
  2756. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2757. seqno = (uint64_t *)kmap_atomic(page);
  2758. for_each_engine(engine, dev_priv, id) {
  2759. uint64_t offset;
  2760. seq_printf(m, "%s\n", engine->name);
  2761. seq_puts(m, " Last signal:");
  2762. for (j = 0; j < num_rings; j++) {
  2763. offset = id * I915_NUM_ENGINES + j;
  2764. seq_printf(m, "0x%08llx (0x%02llx) ",
  2765. seqno[offset], offset * 8);
  2766. }
  2767. seq_putc(m, '\n');
  2768. seq_puts(m, " Last wait: ");
  2769. for (j = 0; j < num_rings; j++) {
  2770. offset = id + (j * I915_NUM_ENGINES);
  2771. seq_printf(m, "0x%08llx (0x%02llx) ",
  2772. seqno[offset], offset * 8);
  2773. }
  2774. seq_putc(m, '\n');
  2775. }
  2776. kunmap_atomic(seqno);
  2777. } else {
  2778. seq_puts(m, " Last signal:");
  2779. for_each_engine(engine, dev_priv, id)
  2780. for (j = 0; j < num_rings; j++)
  2781. seq_printf(m, "0x%08x\n",
  2782. I915_READ(engine->semaphore.mbox.signal[j]));
  2783. seq_putc(m, '\n');
  2784. }
  2785. intel_runtime_pm_put(dev_priv);
  2786. mutex_unlock(&dev->struct_mutex);
  2787. return 0;
  2788. }
  2789. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2790. {
  2791. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2792. struct drm_device *dev = &dev_priv->drm;
  2793. int i;
  2794. drm_modeset_lock_all(dev);
  2795. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2796. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2797. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2798. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2799. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2800. seq_printf(m, " tracked hardware state:\n");
  2801. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2802. seq_printf(m, " dpll_md: 0x%08x\n",
  2803. pll->state.hw_state.dpll_md);
  2804. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2805. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2806. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2807. }
  2808. drm_modeset_unlock_all(dev);
  2809. return 0;
  2810. }
  2811. static int i915_wa_registers(struct seq_file *m, void *unused)
  2812. {
  2813. int i;
  2814. int ret;
  2815. struct intel_engine_cs *engine;
  2816. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2817. struct drm_device *dev = &dev_priv->drm;
  2818. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2819. enum intel_engine_id id;
  2820. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2821. if (ret)
  2822. return ret;
  2823. intel_runtime_pm_get(dev_priv);
  2824. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2825. for_each_engine(engine, dev_priv, id)
  2826. seq_printf(m, "HW whitelist count for %s: %d\n",
  2827. engine->name, workarounds->hw_whitelist_count[id]);
  2828. for (i = 0; i < workarounds->count; ++i) {
  2829. i915_reg_t addr;
  2830. u32 mask, value, read;
  2831. bool ok;
  2832. addr = workarounds->reg[i].addr;
  2833. mask = workarounds->reg[i].mask;
  2834. value = workarounds->reg[i].value;
  2835. read = I915_READ(addr);
  2836. ok = (value & mask) == (read & mask);
  2837. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2838. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2839. }
  2840. intel_runtime_pm_put(dev_priv);
  2841. mutex_unlock(&dev->struct_mutex);
  2842. return 0;
  2843. }
  2844. static int i915_ipc_status_show(struct seq_file *m, void *data)
  2845. {
  2846. struct drm_i915_private *dev_priv = m->private;
  2847. seq_printf(m, "Isochronous Priority Control: %s\n",
  2848. yesno(dev_priv->ipc_enabled));
  2849. return 0;
  2850. }
  2851. static int i915_ipc_status_open(struct inode *inode, struct file *file)
  2852. {
  2853. struct drm_i915_private *dev_priv = inode->i_private;
  2854. if (!HAS_IPC(dev_priv))
  2855. return -ENODEV;
  2856. return single_open(file, i915_ipc_status_show, dev_priv);
  2857. }
  2858. static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
  2859. size_t len, loff_t *offp)
  2860. {
  2861. struct seq_file *m = file->private_data;
  2862. struct drm_i915_private *dev_priv = m->private;
  2863. int ret;
  2864. bool enable;
  2865. ret = kstrtobool_from_user(ubuf, len, &enable);
  2866. if (ret < 0)
  2867. return ret;
  2868. intel_runtime_pm_get(dev_priv);
  2869. if (!dev_priv->ipc_enabled && enable)
  2870. DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
  2871. dev_priv->wm.distrust_bios_wm = true;
  2872. dev_priv->ipc_enabled = enable;
  2873. intel_enable_ipc(dev_priv);
  2874. intel_runtime_pm_put(dev_priv);
  2875. return len;
  2876. }
  2877. static const struct file_operations i915_ipc_status_fops = {
  2878. .owner = THIS_MODULE,
  2879. .open = i915_ipc_status_open,
  2880. .read = seq_read,
  2881. .llseek = seq_lseek,
  2882. .release = single_release,
  2883. .write = i915_ipc_status_write
  2884. };
  2885. static int i915_ddb_info(struct seq_file *m, void *unused)
  2886. {
  2887. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2888. struct drm_device *dev = &dev_priv->drm;
  2889. struct skl_ddb_allocation *ddb;
  2890. struct skl_ddb_entry *entry;
  2891. enum pipe pipe;
  2892. int plane;
  2893. if (INTEL_GEN(dev_priv) < 9)
  2894. return 0;
  2895. drm_modeset_lock_all(dev);
  2896. ddb = &dev_priv->wm.skl_hw.ddb;
  2897. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2898. for_each_pipe(dev_priv, pipe) {
  2899. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2900. for_each_universal_plane(dev_priv, pipe, plane) {
  2901. entry = &ddb->plane[pipe][plane];
  2902. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2903. entry->start, entry->end,
  2904. skl_ddb_entry_size(entry));
  2905. }
  2906. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2907. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2908. entry->end, skl_ddb_entry_size(entry));
  2909. }
  2910. drm_modeset_unlock_all(dev);
  2911. return 0;
  2912. }
  2913. static void drrs_status_per_crtc(struct seq_file *m,
  2914. struct drm_device *dev,
  2915. struct intel_crtc *intel_crtc)
  2916. {
  2917. struct drm_i915_private *dev_priv = to_i915(dev);
  2918. struct i915_drrs *drrs = &dev_priv->drrs;
  2919. int vrefresh = 0;
  2920. struct drm_connector *connector;
  2921. struct drm_connector_list_iter conn_iter;
  2922. drm_connector_list_iter_begin(dev, &conn_iter);
  2923. drm_for_each_connector_iter(connector, &conn_iter) {
  2924. if (connector->state->crtc != &intel_crtc->base)
  2925. continue;
  2926. seq_printf(m, "%s:\n", connector->name);
  2927. }
  2928. drm_connector_list_iter_end(&conn_iter);
  2929. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2930. seq_puts(m, "\tVBT: DRRS_type: Static");
  2931. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2932. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2933. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2934. seq_puts(m, "\tVBT: DRRS_type: None");
  2935. else
  2936. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2937. seq_puts(m, "\n\n");
  2938. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2939. struct intel_panel *panel;
  2940. mutex_lock(&drrs->mutex);
  2941. /* DRRS Supported */
  2942. seq_puts(m, "\tDRRS Supported: Yes\n");
  2943. /* disable_drrs() will make drrs->dp NULL */
  2944. if (!drrs->dp) {
  2945. seq_puts(m, "Idleness DRRS: Disabled");
  2946. mutex_unlock(&drrs->mutex);
  2947. return;
  2948. }
  2949. panel = &drrs->dp->attached_connector->panel;
  2950. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2951. drrs->busy_frontbuffer_bits);
  2952. seq_puts(m, "\n\t\t");
  2953. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2954. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2955. vrefresh = panel->fixed_mode->vrefresh;
  2956. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2957. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2958. vrefresh = panel->downclock_mode->vrefresh;
  2959. } else {
  2960. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2961. drrs->refresh_rate_type);
  2962. mutex_unlock(&drrs->mutex);
  2963. return;
  2964. }
  2965. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2966. seq_puts(m, "\n\t\t");
  2967. mutex_unlock(&drrs->mutex);
  2968. } else {
  2969. /* DRRS not supported. Print the VBT parameter*/
  2970. seq_puts(m, "\tDRRS Supported : No");
  2971. }
  2972. seq_puts(m, "\n");
  2973. }
  2974. static int i915_drrs_status(struct seq_file *m, void *unused)
  2975. {
  2976. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2977. struct drm_device *dev = &dev_priv->drm;
  2978. struct intel_crtc *intel_crtc;
  2979. int active_crtc_cnt = 0;
  2980. drm_modeset_lock_all(dev);
  2981. for_each_intel_crtc(dev, intel_crtc) {
  2982. if (intel_crtc->base.state->active) {
  2983. active_crtc_cnt++;
  2984. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2985. drrs_status_per_crtc(m, dev, intel_crtc);
  2986. }
  2987. }
  2988. drm_modeset_unlock_all(dev);
  2989. if (!active_crtc_cnt)
  2990. seq_puts(m, "No active crtc found\n");
  2991. return 0;
  2992. }
  2993. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2994. {
  2995. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2996. struct drm_device *dev = &dev_priv->drm;
  2997. struct intel_encoder *intel_encoder;
  2998. struct intel_digital_port *intel_dig_port;
  2999. struct drm_connector *connector;
  3000. struct drm_connector_list_iter conn_iter;
  3001. drm_connector_list_iter_begin(dev, &conn_iter);
  3002. drm_for_each_connector_iter(connector, &conn_iter) {
  3003. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3004. continue;
  3005. intel_encoder = intel_attached_encoder(connector);
  3006. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3007. continue;
  3008. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3009. if (!intel_dig_port->dp.can_mst)
  3010. continue;
  3011. seq_printf(m, "MST Source Port %c\n",
  3012. port_name(intel_dig_port->base.port));
  3013. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3014. }
  3015. drm_connector_list_iter_end(&conn_iter);
  3016. return 0;
  3017. }
  3018. static ssize_t i915_displayport_test_active_write(struct file *file,
  3019. const char __user *ubuf,
  3020. size_t len, loff_t *offp)
  3021. {
  3022. char *input_buffer;
  3023. int status = 0;
  3024. struct drm_device *dev;
  3025. struct drm_connector *connector;
  3026. struct drm_connector_list_iter conn_iter;
  3027. struct intel_dp *intel_dp;
  3028. int val = 0;
  3029. dev = ((struct seq_file *)file->private_data)->private;
  3030. if (len == 0)
  3031. return 0;
  3032. input_buffer = memdup_user_nul(ubuf, len);
  3033. if (IS_ERR(input_buffer))
  3034. return PTR_ERR(input_buffer);
  3035. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3036. drm_connector_list_iter_begin(dev, &conn_iter);
  3037. drm_for_each_connector_iter(connector, &conn_iter) {
  3038. struct intel_encoder *encoder;
  3039. if (connector->connector_type !=
  3040. DRM_MODE_CONNECTOR_DisplayPort)
  3041. continue;
  3042. encoder = to_intel_encoder(connector->encoder);
  3043. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3044. continue;
  3045. if (encoder && connector->status == connector_status_connected) {
  3046. intel_dp = enc_to_intel_dp(&encoder->base);
  3047. status = kstrtoint(input_buffer, 10, &val);
  3048. if (status < 0)
  3049. break;
  3050. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3051. /* To prevent erroneous activation of the compliance
  3052. * testing code, only accept an actual value of 1 here
  3053. */
  3054. if (val == 1)
  3055. intel_dp->compliance.test_active = 1;
  3056. else
  3057. intel_dp->compliance.test_active = 0;
  3058. }
  3059. }
  3060. drm_connector_list_iter_end(&conn_iter);
  3061. kfree(input_buffer);
  3062. if (status < 0)
  3063. return status;
  3064. *offp += len;
  3065. return len;
  3066. }
  3067. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3068. {
  3069. struct drm_device *dev = m->private;
  3070. struct drm_connector *connector;
  3071. struct drm_connector_list_iter conn_iter;
  3072. struct intel_dp *intel_dp;
  3073. drm_connector_list_iter_begin(dev, &conn_iter);
  3074. drm_for_each_connector_iter(connector, &conn_iter) {
  3075. struct intel_encoder *encoder;
  3076. if (connector->connector_type !=
  3077. DRM_MODE_CONNECTOR_DisplayPort)
  3078. continue;
  3079. encoder = to_intel_encoder(connector->encoder);
  3080. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3081. continue;
  3082. if (encoder && connector->status == connector_status_connected) {
  3083. intel_dp = enc_to_intel_dp(&encoder->base);
  3084. if (intel_dp->compliance.test_active)
  3085. seq_puts(m, "1");
  3086. else
  3087. seq_puts(m, "0");
  3088. } else
  3089. seq_puts(m, "0");
  3090. }
  3091. drm_connector_list_iter_end(&conn_iter);
  3092. return 0;
  3093. }
  3094. static int i915_displayport_test_active_open(struct inode *inode,
  3095. struct file *file)
  3096. {
  3097. struct drm_i915_private *dev_priv = inode->i_private;
  3098. return single_open(file, i915_displayport_test_active_show,
  3099. &dev_priv->drm);
  3100. }
  3101. static const struct file_operations i915_displayport_test_active_fops = {
  3102. .owner = THIS_MODULE,
  3103. .open = i915_displayport_test_active_open,
  3104. .read = seq_read,
  3105. .llseek = seq_lseek,
  3106. .release = single_release,
  3107. .write = i915_displayport_test_active_write
  3108. };
  3109. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3110. {
  3111. struct drm_device *dev = m->private;
  3112. struct drm_connector *connector;
  3113. struct drm_connector_list_iter conn_iter;
  3114. struct intel_dp *intel_dp;
  3115. drm_connector_list_iter_begin(dev, &conn_iter);
  3116. drm_for_each_connector_iter(connector, &conn_iter) {
  3117. struct intel_encoder *encoder;
  3118. if (connector->connector_type !=
  3119. DRM_MODE_CONNECTOR_DisplayPort)
  3120. continue;
  3121. encoder = to_intel_encoder(connector->encoder);
  3122. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3123. continue;
  3124. if (encoder && connector->status == connector_status_connected) {
  3125. intel_dp = enc_to_intel_dp(&encoder->base);
  3126. if (intel_dp->compliance.test_type ==
  3127. DP_TEST_LINK_EDID_READ)
  3128. seq_printf(m, "%lx",
  3129. intel_dp->compliance.test_data.edid);
  3130. else if (intel_dp->compliance.test_type ==
  3131. DP_TEST_LINK_VIDEO_PATTERN) {
  3132. seq_printf(m, "hdisplay: %d\n",
  3133. intel_dp->compliance.test_data.hdisplay);
  3134. seq_printf(m, "vdisplay: %d\n",
  3135. intel_dp->compliance.test_data.vdisplay);
  3136. seq_printf(m, "bpc: %u\n",
  3137. intel_dp->compliance.test_data.bpc);
  3138. }
  3139. } else
  3140. seq_puts(m, "0");
  3141. }
  3142. drm_connector_list_iter_end(&conn_iter);
  3143. return 0;
  3144. }
  3145. static int i915_displayport_test_data_open(struct inode *inode,
  3146. struct file *file)
  3147. {
  3148. struct drm_i915_private *dev_priv = inode->i_private;
  3149. return single_open(file, i915_displayport_test_data_show,
  3150. &dev_priv->drm);
  3151. }
  3152. static const struct file_operations i915_displayport_test_data_fops = {
  3153. .owner = THIS_MODULE,
  3154. .open = i915_displayport_test_data_open,
  3155. .read = seq_read,
  3156. .llseek = seq_lseek,
  3157. .release = single_release
  3158. };
  3159. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3160. {
  3161. struct drm_device *dev = m->private;
  3162. struct drm_connector *connector;
  3163. struct drm_connector_list_iter conn_iter;
  3164. struct intel_dp *intel_dp;
  3165. drm_connector_list_iter_begin(dev, &conn_iter);
  3166. drm_for_each_connector_iter(connector, &conn_iter) {
  3167. struct intel_encoder *encoder;
  3168. if (connector->connector_type !=
  3169. DRM_MODE_CONNECTOR_DisplayPort)
  3170. continue;
  3171. encoder = to_intel_encoder(connector->encoder);
  3172. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3173. continue;
  3174. if (encoder && connector->status == connector_status_connected) {
  3175. intel_dp = enc_to_intel_dp(&encoder->base);
  3176. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3177. } else
  3178. seq_puts(m, "0");
  3179. }
  3180. drm_connector_list_iter_end(&conn_iter);
  3181. return 0;
  3182. }
  3183. static int i915_displayport_test_type_open(struct inode *inode,
  3184. struct file *file)
  3185. {
  3186. struct drm_i915_private *dev_priv = inode->i_private;
  3187. return single_open(file, i915_displayport_test_type_show,
  3188. &dev_priv->drm);
  3189. }
  3190. static const struct file_operations i915_displayport_test_type_fops = {
  3191. .owner = THIS_MODULE,
  3192. .open = i915_displayport_test_type_open,
  3193. .read = seq_read,
  3194. .llseek = seq_lseek,
  3195. .release = single_release
  3196. };
  3197. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3198. {
  3199. struct drm_i915_private *dev_priv = m->private;
  3200. struct drm_device *dev = &dev_priv->drm;
  3201. int level;
  3202. int num_levels;
  3203. if (IS_CHERRYVIEW(dev_priv))
  3204. num_levels = 3;
  3205. else if (IS_VALLEYVIEW(dev_priv))
  3206. num_levels = 1;
  3207. else if (IS_G4X(dev_priv))
  3208. num_levels = 3;
  3209. else
  3210. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3211. drm_modeset_lock_all(dev);
  3212. for (level = 0; level < num_levels; level++) {
  3213. unsigned int latency = wm[level];
  3214. /*
  3215. * - WM1+ latency values in 0.5us units
  3216. * - latencies are in us on gen9/vlv/chv
  3217. */
  3218. if (INTEL_GEN(dev_priv) >= 9 ||
  3219. IS_VALLEYVIEW(dev_priv) ||
  3220. IS_CHERRYVIEW(dev_priv) ||
  3221. IS_G4X(dev_priv))
  3222. latency *= 10;
  3223. else if (level > 0)
  3224. latency *= 5;
  3225. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3226. level, wm[level], latency / 10, latency % 10);
  3227. }
  3228. drm_modeset_unlock_all(dev);
  3229. }
  3230. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3231. {
  3232. struct drm_i915_private *dev_priv = m->private;
  3233. const uint16_t *latencies;
  3234. if (INTEL_GEN(dev_priv) >= 9)
  3235. latencies = dev_priv->wm.skl_latency;
  3236. else
  3237. latencies = dev_priv->wm.pri_latency;
  3238. wm_latency_show(m, latencies);
  3239. return 0;
  3240. }
  3241. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3242. {
  3243. struct drm_i915_private *dev_priv = m->private;
  3244. const uint16_t *latencies;
  3245. if (INTEL_GEN(dev_priv) >= 9)
  3246. latencies = dev_priv->wm.skl_latency;
  3247. else
  3248. latencies = dev_priv->wm.spr_latency;
  3249. wm_latency_show(m, latencies);
  3250. return 0;
  3251. }
  3252. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3253. {
  3254. struct drm_i915_private *dev_priv = m->private;
  3255. const uint16_t *latencies;
  3256. if (INTEL_GEN(dev_priv) >= 9)
  3257. latencies = dev_priv->wm.skl_latency;
  3258. else
  3259. latencies = dev_priv->wm.cur_latency;
  3260. wm_latency_show(m, latencies);
  3261. return 0;
  3262. }
  3263. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3264. {
  3265. struct drm_i915_private *dev_priv = inode->i_private;
  3266. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3267. return -ENODEV;
  3268. return single_open(file, pri_wm_latency_show, dev_priv);
  3269. }
  3270. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3271. {
  3272. struct drm_i915_private *dev_priv = inode->i_private;
  3273. if (HAS_GMCH_DISPLAY(dev_priv))
  3274. return -ENODEV;
  3275. return single_open(file, spr_wm_latency_show, dev_priv);
  3276. }
  3277. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3278. {
  3279. struct drm_i915_private *dev_priv = inode->i_private;
  3280. if (HAS_GMCH_DISPLAY(dev_priv))
  3281. return -ENODEV;
  3282. return single_open(file, cur_wm_latency_show, dev_priv);
  3283. }
  3284. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3285. size_t len, loff_t *offp, uint16_t wm[8])
  3286. {
  3287. struct seq_file *m = file->private_data;
  3288. struct drm_i915_private *dev_priv = m->private;
  3289. struct drm_device *dev = &dev_priv->drm;
  3290. uint16_t new[8] = { 0 };
  3291. int num_levels;
  3292. int level;
  3293. int ret;
  3294. char tmp[32];
  3295. if (IS_CHERRYVIEW(dev_priv))
  3296. num_levels = 3;
  3297. else if (IS_VALLEYVIEW(dev_priv))
  3298. num_levels = 1;
  3299. else if (IS_G4X(dev_priv))
  3300. num_levels = 3;
  3301. else
  3302. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3303. if (len >= sizeof(tmp))
  3304. return -EINVAL;
  3305. if (copy_from_user(tmp, ubuf, len))
  3306. return -EFAULT;
  3307. tmp[len] = '\0';
  3308. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3309. &new[0], &new[1], &new[2], &new[3],
  3310. &new[4], &new[5], &new[6], &new[7]);
  3311. if (ret != num_levels)
  3312. return -EINVAL;
  3313. drm_modeset_lock_all(dev);
  3314. for (level = 0; level < num_levels; level++)
  3315. wm[level] = new[level];
  3316. drm_modeset_unlock_all(dev);
  3317. return len;
  3318. }
  3319. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3320. size_t len, loff_t *offp)
  3321. {
  3322. struct seq_file *m = file->private_data;
  3323. struct drm_i915_private *dev_priv = m->private;
  3324. uint16_t *latencies;
  3325. if (INTEL_GEN(dev_priv) >= 9)
  3326. latencies = dev_priv->wm.skl_latency;
  3327. else
  3328. latencies = dev_priv->wm.pri_latency;
  3329. return wm_latency_write(file, ubuf, len, offp, latencies);
  3330. }
  3331. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3332. size_t len, loff_t *offp)
  3333. {
  3334. struct seq_file *m = file->private_data;
  3335. struct drm_i915_private *dev_priv = m->private;
  3336. uint16_t *latencies;
  3337. if (INTEL_GEN(dev_priv) >= 9)
  3338. latencies = dev_priv->wm.skl_latency;
  3339. else
  3340. latencies = dev_priv->wm.spr_latency;
  3341. return wm_latency_write(file, ubuf, len, offp, latencies);
  3342. }
  3343. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3344. size_t len, loff_t *offp)
  3345. {
  3346. struct seq_file *m = file->private_data;
  3347. struct drm_i915_private *dev_priv = m->private;
  3348. uint16_t *latencies;
  3349. if (INTEL_GEN(dev_priv) >= 9)
  3350. latencies = dev_priv->wm.skl_latency;
  3351. else
  3352. latencies = dev_priv->wm.cur_latency;
  3353. return wm_latency_write(file, ubuf, len, offp, latencies);
  3354. }
  3355. static const struct file_operations i915_pri_wm_latency_fops = {
  3356. .owner = THIS_MODULE,
  3357. .open = pri_wm_latency_open,
  3358. .read = seq_read,
  3359. .llseek = seq_lseek,
  3360. .release = single_release,
  3361. .write = pri_wm_latency_write
  3362. };
  3363. static const struct file_operations i915_spr_wm_latency_fops = {
  3364. .owner = THIS_MODULE,
  3365. .open = spr_wm_latency_open,
  3366. .read = seq_read,
  3367. .llseek = seq_lseek,
  3368. .release = single_release,
  3369. .write = spr_wm_latency_write
  3370. };
  3371. static const struct file_operations i915_cur_wm_latency_fops = {
  3372. .owner = THIS_MODULE,
  3373. .open = cur_wm_latency_open,
  3374. .read = seq_read,
  3375. .llseek = seq_lseek,
  3376. .release = single_release,
  3377. .write = cur_wm_latency_write
  3378. };
  3379. static int
  3380. i915_wedged_get(void *data, u64 *val)
  3381. {
  3382. struct drm_i915_private *dev_priv = data;
  3383. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3384. return 0;
  3385. }
  3386. static int
  3387. i915_wedged_set(void *data, u64 val)
  3388. {
  3389. struct drm_i915_private *i915 = data;
  3390. struct intel_engine_cs *engine;
  3391. unsigned int tmp;
  3392. /*
  3393. * There is no safeguard against this debugfs entry colliding
  3394. * with the hangcheck calling same i915_handle_error() in
  3395. * parallel, causing an explosion. For now we assume that the
  3396. * test harness is responsible enough not to inject gpu hangs
  3397. * while it is writing to 'i915_wedged'
  3398. */
  3399. if (i915_reset_backoff(&i915->gpu_error))
  3400. return -EAGAIN;
  3401. for_each_engine_masked(engine, i915, val, tmp) {
  3402. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3403. engine->hangcheck.stalled = true;
  3404. }
  3405. i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
  3406. wait_on_bit(&i915->gpu_error.flags,
  3407. I915_RESET_HANDOFF,
  3408. TASK_UNINTERRUPTIBLE);
  3409. return 0;
  3410. }
  3411. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3412. i915_wedged_get, i915_wedged_set,
  3413. "%llu\n");
  3414. static int
  3415. fault_irq_set(struct drm_i915_private *i915,
  3416. unsigned long *irq,
  3417. unsigned long val)
  3418. {
  3419. int err;
  3420. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3421. if (err)
  3422. return err;
  3423. err = i915_gem_wait_for_idle(i915,
  3424. I915_WAIT_LOCKED |
  3425. I915_WAIT_INTERRUPTIBLE);
  3426. if (err)
  3427. goto err_unlock;
  3428. *irq = val;
  3429. mutex_unlock(&i915->drm.struct_mutex);
  3430. /* Flush idle worker to disarm irq */
  3431. drain_delayed_work(&i915->gt.idle_work);
  3432. return 0;
  3433. err_unlock:
  3434. mutex_unlock(&i915->drm.struct_mutex);
  3435. return err;
  3436. }
  3437. static int
  3438. i915_ring_missed_irq_get(void *data, u64 *val)
  3439. {
  3440. struct drm_i915_private *dev_priv = data;
  3441. *val = dev_priv->gpu_error.missed_irq_rings;
  3442. return 0;
  3443. }
  3444. static int
  3445. i915_ring_missed_irq_set(void *data, u64 val)
  3446. {
  3447. struct drm_i915_private *i915 = data;
  3448. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3449. }
  3450. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3451. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3452. "0x%08llx\n");
  3453. static int
  3454. i915_ring_test_irq_get(void *data, u64 *val)
  3455. {
  3456. struct drm_i915_private *dev_priv = data;
  3457. *val = dev_priv->gpu_error.test_irq_rings;
  3458. return 0;
  3459. }
  3460. static int
  3461. i915_ring_test_irq_set(void *data, u64 val)
  3462. {
  3463. struct drm_i915_private *i915 = data;
  3464. val &= INTEL_INFO(i915)->ring_mask;
  3465. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3466. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3467. }
  3468. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3469. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3470. "0x%08llx\n");
  3471. #define DROP_UNBOUND BIT(0)
  3472. #define DROP_BOUND BIT(1)
  3473. #define DROP_RETIRE BIT(2)
  3474. #define DROP_ACTIVE BIT(3)
  3475. #define DROP_FREED BIT(4)
  3476. #define DROP_SHRINK_ALL BIT(5)
  3477. #define DROP_IDLE BIT(6)
  3478. #define DROP_ALL (DROP_UNBOUND | \
  3479. DROP_BOUND | \
  3480. DROP_RETIRE | \
  3481. DROP_ACTIVE | \
  3482. DROP_FREED | \
  3483. DROP_SHRINK_ALL |\
  3484. DROP_IDLE)
  3485. static int
  3486. i915_drop_caches_get(void *data, u64 *val)
  3487. {
  3488. *val = DROP_ALL;
  3489. return 0;
  3490. }
  3491. static int
  3492. i915_drop_caches_set(void *data, u64 val)
  3493. {
  3494. struct drm_i915_private *dev_priv = data;
  3495. struct drm_device *dev = &dev_priv->drm;
  3496. int ret = 0;
  3497. DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
  3498. val, val & DROP_ALL);
  3499. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3500. * on ioctls on -EAGAIN. */
  3501. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3502. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3503. if (ret)
  3504. return ret;
  3505. if (val & DROP_ACTIVE)
  3506. ret = i915_gem_wait_for_idle(dev_priv,
  3507. I915_WAIT_INTERRUPTIBLE |
  3508. I915_WAIT_LOCKED);
  3509. if (val & DROP_RETIRE)
  3510. i915_gem_retire_requests(dev_priv);
  3511. mutex_unlock(&dev->struct_mutex);
  3512. }
  3513. fs_reclaim_acquire(GFP_KERNEL);
  3514. if (val & DROP_BOUND)
  3515. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
  3516. if (val & DROP_UNBOUND)
  3517. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
  3518. if (val & DROP_SHRINK_ALL)
  3519. i915_gem_shrink_all(dev_priv);
  3520. fs_reclaim_release(GFP_KERNEL);
  3521. if (val & DROP_IDLE)
  3522. drain_delayed_work(&dev_priv->gt.idle_work);
  3523. if (val & DROP_FREED) {
  3524. synchronize_rcu();
  3525. i915_gem_drain_freed_objects(dev_priv);
  3526. }
  3527. return ret;
  3528. }
  3529. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3530. i915_drop_caches_get, i915_drop_caches_set,
  3531. "0x%08llx\n");
  3532. static int
  3533. i915_max_freq_get(void *data, u64 *val)
  3534. {
  3535. struct drm_i915_private *dev_priv = data;
  3536. if (INTEL_GEN(dev_priv) < 6)
  3537. return -ENODEV;
  3538. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
  3539. return 0;
  3540. }
  3541. static int
  3542. i915_max_freq_set(void *data, u64 val)
  3543. {
  3544. struct drm_i915_private *dev_priv = data;
  3545. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3546. u32 hw_max, hw_min;
  3547. int ret;
  3548. if (INTEL_GEN(dev_priv) < 6)
  3549. return -ENODEV;
  3550. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3551. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3552. if (ret)
  3553. return ret;
  3554. /*
  3555. * Turbo will still be enabled, but won't go above the set value.
  3556. */
  3557. val = intel_freq_opcode(dev_priv, val);
  3558. hw_max = rps->max_freq;
  3559. hw_min = rps->min_freq;
  3560. if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
  3561. mutex_unlock(&dev_priv->pcu_lock);
  3562. return -EINVAL;
  3563. }
  3564. rps->max_freq_softlimit = val;
  3565. if (intel_set_rps(dev_priv, val))
  3566. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3567. mutex_unlock(&dev_priv->pcu_lock);
  3568. return 0;
  3569. }
  3570. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3571. i915_max_freq_get, i915_max_freq_set,
  3572. "%llu\n");
  3573. static int
  3574. i915_min_freq_get(void *data, u64 *val)
  3575. {
  3576. struct drm_i915_private *dev_priv = data;
  3577. if (INTEL_GEN(dev_priv) < 6)
  3578. return -ENODEV;
  3579. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
  3580. return 0;
  3581. }
  3582. static int
  3583. i915_min_freq_set(void *data, u64 val)
  3584. {
  3585. struct drm_i915_private *dev_priv = data;
  3586. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3587. u32 hw_max, hw_min;
  3588. int ret;
  3589. if (INTEL_GEN(dev_priv) < 6)
  3590. return -ENODEV;
  3591. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3592. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3593. if (ret)
  3594. return ret;
  3595. /*
  3596. * Turbo will still be enabled, but won't go below the set value.
  3597. */
  3598. val = intel_freq_opcode(dev_priv, val);
  3599. hw_max = rps->max_freq;
  3600. hw_min = rps->min_freq;
  3601. if (val < hw_min ||
  3602. val > hw_max || val > rps->max_freq_softlimit) {
  3603. mutex_unlock(&dev_priv->pcu_lock);
  3604. return -EINVAL;
  3605. }
  3606. rps->min_freq_softlimit = val;
  3607. if (intel_set_rps(dev_priv, val))
  3608. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3609. mutex_unlock(&dev_priv->pcu_lock);
  3610. return 0;
  3611. }
  3612. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3613. i915_min_freq_get, i915_min_freq_set,
  3614. "%llu\n");
  3615. static int
  3616. i915_cache_sharing_get(void *data, u64 *val)
  3617. {
  3618. struct drm_i915_private *dev_priv = data;
  3619. u32 snpcr;
  3620. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3621. return -ENODEV;
  3622. intel_runtime_pm_get(dev_priv);
  3623. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3624. intel_runtime_pm_put(dev_priv);
  3625. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3626. return 0;
  3627. }
  3628. static int
  3629. i915_cache_sharing_set(void *data, u64 val)
  3630. {
  3631. struct drm_i915_private *dev_priv = data;
  3632. u32 snpcr;
  3633. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3634. return -ENODEV;
  3635. if (val > 3)
  3636. return -EINVAL;
  3637. intel_runtime_pm_get(dev_priv);
  3638. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3639. /* Update the cache sharing policy here as well */
  3640. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3641. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3642. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3643. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3644. intel_runtime_pm_put(dev_priv);
  3645. return 0;
  3646. }
  3647. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3648. i915_cache_sharing_get, i915_cache_sharing_set,
  3649. "%llu\n");
  3650. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3651. struct sseu_dev_info *sseu)
  3652. {
  3653. int ss_max = 2;
  3654. int ss;
  3655. u32 sig1[ss_max], sig2[ss_max];
  3656. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3657. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3658. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3659. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3660. for (ss = 0; ss < ss_max; ss++) {
  3661. unsigned int eu_cnt;
  3662. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3663. /* skip disabled subslice */
  3664. continue;
  3665. sseu->slice_mask = BIT(0);
  3666. sseu->subslice_mask |= BIT(ss);
  3667. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3668. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3669. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3670. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3671. sseu->eu_total += eu_cnt;
  3672. sseu->eu_per_subslice = max_t(unsigned int,
  3673. sseu->eu_per_subslice, eu_cnt);
  3674. }
  3675. }
  3676. static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
  3677. struct sseu_dev_info *sseu)
  3678. {
  3679. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3680. int s_max = 6, ss_max = 4;
  3681. int s, ss;
  3682. u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
  3683. for (s = 0; s < s_max; s++) {
  3684. /*
  3685. * FIXME: Valid SS Mask respects the spec and read
  3686. * only valid bits for those registers, excluding reserverd
  3687. * although this seems wrong because it would leave many
  3688. * subslices without ACK.
  3689. */
  3690. s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
  3691. GEN10_PGCTL_VALID_SS_MASK(s);
  3692. eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
  3693. eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
  3694. }
  3695. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3696. GEN9_PGCTL_SSA_EU19_ACK |
  3697. GEN9_PGCTL_SSA_EU210_ACK |
  3698. GEN9_PGCTL_SSA_EU311_ACK;
  3699. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3700. GEN9_PGCTL_SSB_EU19_ACK |
  3701. GEN9_PGCTL_SSB_EU210_ACK |
  3702. GEN9_PGCTL_SSB_EU311_ACK;
  3703. for (s = 0; s < s_max; s++) {
  3704. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3705. /* skip disabled slice */
  3706. continue;
  3707. sseu->slice_mask |= BIT(s);
  3708. sseu->subslice_mask = info->sseu.subslice_mask;
  3709. for (ss = 0; ss < ss_max; ss++) {
  3710. unsigned int eu_cnt;
  3711. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3712. /* skip disabled subslice */
  3713. continue;
  3714. eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
  3715. eu_mask[ss % 2]);
  3716. sseu->eu_total += eu_cnt;
  3717. sseu->eu_per_subslice = max_t(unsigned int,
  3718. sseu->eu_per_subslice,
  3719. eu_cnt);
  3720. }
  3721. }
  3722. }
  3723. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3724. struct sseu_dev_info *sseu)
  3725. {
  3726. int s_max = 3, ss_max = 4;
  3727. int s, ss;
  3728. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3729. /* BXT has a single slice and at most 3 subslices. */
  3730. if (IS_GEN9_LP(dev_priv)) {
  3731. s_max = 1;
  3732. ss_max = 3;
  3733. }
  3734. for (s = 0; s < s_max; s++) {
  3735. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3736. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3737. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3738. }
  3739. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3740. GEN9_PGCTL_SSA_EU19_ACK |
  3741. GEN9_PGCTL_SSA_EU210_ACK |
  3742. GEN9_PGCTL_SSA_EU311_ACK;
  3743. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3744. GEN9_PGCTL_SSB_EU19_ACK |
  3745. GEN9_PGCTL_SSB_EU210_ACK |
  3746. GEN9_PGCTL_SSB_EU311_ACK;
  3747. for (s = 0; s < s_max; s++) {
  3748. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3749. /* skip disabled slice */
  3750. continue;
  3751. sseu->slice_mask |= BIT(s);
  3752. if (IS_GEN9_BC(dev_priv))
  3753. sseu->subslice_mask =
  3754. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3755. for (ss = 0; ss < ss_max; ss++) {
  3756. unsigned int eu_cnt;
  3757. if (IS_GEN9_LP(dev_priv)) {
  3758. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3759. /* skip disabled subslice */
  3760. continue;
  3761. sseu->subslice_mask |= BIT(ss);
  3762. }
  3763. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3764. eu_mask[ss%2]);
  3765. sseu->eu_total += eu_cnt;
  3766. sseu->eu_per_subslice = max_t(unsigned int,
  3767. sseu->eu_per_subslice,
  3768. eu_cnt);
  3769. }
  3770. }
  3771. }
  3772. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3773. struct sseu_dev_info *sseu)
  3774. {
  3775. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3776. int s;
  3777. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3778. if (sseu->slice_mask) {
  3779. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3780. sseu->eu_per_subslice =
  3781. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3782. sseu->eu_total = sseu->eu_per_subslice *
  3783. sseu_subslice_total(sseu);
  3784. /* subtract fused off EU(s) from enabled slice(s) */
  3785. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3786. u8 subslice_7eu =
  3787. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3788. sseu->eu_total -= hweight8(subslice_7eu);
  3789. }
  3790. }
  3791. }
  3792. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3793. const struct sseu_dev_info *sseu)
  3794. {
  3795. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3796. const char *type = is_available_info ? "Available" : "Enabled";
  3797. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3798. sseu->slice_mask);
  3799. seq_printf(m, " %s Slice Total: %u\n", type,
  3800. hweight8(sseu->slice_mask));
  3801. seq_printf(m, " %s Subslice Total: %u\n", type,
  3802. sseu_subslice_total(sseu));
  3803. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3804. sseu->subslice_mask);
  3805. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3806. hweight8(sseu->subslice_mask));
  3807. seq_printf(m, " %s EU Total: %u\n", type,
  3808. sseu->eu_total);
  3809. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3810. sseu->eu_per_subslice);
  3811. if (!is_available_info)
  3812. return;
  3813. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3814. if (HAS_POOLED_EU(dev_priv))
  3815. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3816. seq_printf(m, " Has Slice Power Gating: %s\n",
  3817. yesno(sseu->has_slice_pg));
  3818. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3819. yesno(sseu->has_subslice_pg));
  3820. seq_printf(m, " Has EU Power Gating: %s\n",
  3821. yesno(sseu->has_eu_pg));
  3822. }
  3823. static int i915_sseu_status(struct seq_file *m, void *unused)
  3824. {
  3825. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3826. struct sseu_dev_info sseu;
  3827. if (INTEL_GEN(dev_priv) < 8)
  3828. return -ENODEV;
  3829. seq_puts(m, "SSEU Device Info\n");
  3830. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3831. seq_puts(m, "SSEU Device Status\n");
  3832. memset(&sseu, 0, sizeof(sseu));
  3833. intel_runtime_pm_get(dev_priv);
  3834. if (IS_CHERRYVIEW(dev_priv)) {
  3835. cherryview_sseu_device_status(dev_priv, &sseu);
  3836. } else if (IS_BROADWELL(dev_priv)) {
  3837. broadwell_sseu_device_status(dev_priv, &sseu);
  3838. } else if (IS_GEN9(dev_priv)) {
  3839. gen9_sseu_device_status(dev_priv, &sseu);
  3840. } else if (INTEL_GEN(dev_priv) >= 10) {
  3841. gen10_sseu_device_status(dev_priv, &sseu);
  3842. }
  3843. intel_runtime_pm_put(dev_priv);
  3844. i915_print_sseu_info(m, false, &sseu);
  3845. return 0;
  3846. }
  3847. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3848. {
  3849. struct drm_i915_private *i915 = inode->i_private;
  3850. if (INTEL_GEN(i915) < 6)
  3851. return 0;
  3852. intel_runtime_pm_get(i915);
  3853. intel_uncore_forcewake_user_get(i915);
  3854. return 0;
  3855. }
  3856. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3857. {
  3858. struct drm_i915_private *i915 = inode->i_private;
  3859. if (INTEL_GEN(i915) < 6)
  3860. return 0;
  3861. intel_uncore_forcewake_user_put(i915);
  3862. intel_runtime_pm_put(i915);
  3863. return 0;
  3864. }
  3865. static const struct file_operations i915_forcewake_fops = {
  3866. .owner = THIS_MODULE,
  3867. .open = i915_forcewake_open,
  3868. .release = i915_forcewake_release,
  3869. };
  3870. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3871. {
  3872. struct drm_i915_private *dev_priv = m->private;
  3873. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3874. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3875. seq_printf(m, "Detected: %s\n",
  3876. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3877. return 0;
  3878. }
  3879. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3880. const char __user *ubuf, size_t len,
  3881. loff_t *offp)
  3882. {
  3883. struct seq_file *m = file->private_data;
  3884. struct drm_i915_private *dev_priv = m->private;
  3885. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3886. unsigned int new_threshold;
  3887. int i;
  3888. char *newline;
  3889. char tmp[16];
  3890. if (len >= sizeof(tmp))
  3891. return -EINVAL;
  3892. if (copy_from_user(tmp, ubuf, len))
  3893. return -EFAULT;
  3894. tmp[len] = '\0';
  3895. /* Strip newline, if any */
  3896. newline = strchr(tmp, '\n');
  3897. if (newline)
  3898. *newline = '\0';
  3899. if (strcmp(tmp, "reset") == 0)
  3900. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3901. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3902. return -EINVAL;
  3903. if (new_threshold > 0)
  3904. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3905. new_threshold);
  3906. else
  3907. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3908. spin_lock_irq(&dev_priv->irq_lock);
  3909. hotplug->hpd_storm_threshold = new_threshold;
  3910. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3911. for_each_hpd_pin(i)
  3912. hotplug->stats[i].count = 0;
  3913. spin_unlock_irq(&dev_priv->irq_lock);
  3914. /* Re-enable hpd immediately if we were in an irq storm */
  3915. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3916. return len;
  3917. }
  3918. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3919. {
  3920. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3921. }
  3922. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3923. .owner = THIS_MODULE,
  3924. .open = i915_hpd_storm_ctl_open,
  3925. .read = seq_read,
  3926. .llseek = seq_lseek,
  3927. .release = single_release,
  3928. .write = i915_hpd_storm_ctl_write
  3929. };
  3930. static const struct drm_info_list i915_debugfs_list[] = {
  3931. {"i915_capabilities", i915_capabilities, 0},
  3932. {"i915_gem_objects", i915_gem_object_info, 0},
  3933. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3934. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3935. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3936. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3937. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3938. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3939. {"i915_guc_info", i915_guc_info, 0},
  3940. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3941. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3942. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3943. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3944. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3945. {"i915_frequency_info", i915_frequency_info, 0},
  3946. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3947. {"i915_reset_info", i915_reset_info, 0},
  3948. {"i915_drpc_info", i915_drpc_info, 0},
  3949. {"i915_emon_status", i915_emon_status, 0},
  3950. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3951. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3952. {"i915_fbc_status", i915_fbc_status, 0},
  3953. {"i915_ips_status", i915_ips_status, 0},
  3954. {"i915_sr_status", i915_sr_status, 0},
  3955. {"i915_opregion", i915_opregion, 0},
  3956. {"i915_vbt", i915_vbt, 0},
  3957. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3958. {"i915_context_status", i915_context_status, 0},
  3959. {"i915_dump_lrc", i915_dump_lrc, 0},
  3960. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3961. {"i915_swizzle_info", i915_swizzle_info, 0},
  3962. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3963. {"i915_llc", i915_llc, 0},
  3964. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3965. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3966. {"i915_energy_uJ", i915_energy_uJ, 0},
  3967. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3968. {"i915_power_domain_info", i915_power_domain_info, 0},
  3969. {"i915_dmc_info", i915_dmc_info, 0},
  3970. {"i915_display_info", i915_display_info, 0},
  3971. {"i915_engine_info", i915_engine_info, 0},
  3972. {"i915_shrinker_info", i915_shrinker_info, 0},
  3973. {"i915_semaphore_status", i915_semaphore_status, 0},
  3974. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3975. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3976. {"i915_wa_registers", i915_wa_registers, 0},
  3977. {"i915_ddb_info", i915_ddb_info, 0},
  3978. {"i915_sseu_status", i915_sseu_status, 0},
  3979. {"i915_drrs_status", i915_drrs_status, 0},
  3980. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3981. };
  3982. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3983. static const struct i915_debugfs_files {
  3984. const char *name;
  3985. const struct file_operations *fops;
  3986. } i915_debugfs_files[] = {
  3987. {"i915_wedged", &i915_wedged_fops},
  3988. {"i915_max_freq", &i915_max_freq_fops},
  3989. {"i915_min_freq", &i915_min_freq_fops},
  3990. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3991. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3992. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3993. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3994. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3995. {"i915_error_state", &i915_error_state_fops},
  3996. {"i915_gpu_info", &i915_gpu_info_fops},
  3997. #endif
  3998. {"i915_next_seqno", &i915_next_seqno_fops},
  3999. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4000. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4001. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4002. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4003. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  4004. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4005. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4006. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  4007. {"i915_guc_log_control", &i915_guc_log_control_fops},
  4008. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
  4009. {"i915_ipc_status", &i915_ipc_status_fops}
  4010. };
  4011. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4012. {
  4013. struct drm_minor *minor = dev_priv->drm.primary;
  4014. struct dentry *ent;
  4015. int ret, i;
  4016. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  4017. minor->debugfs_root, to_i915(minor->dev),
  4018. &i915_forcewake_fops);
  4019. if (!ent)
  4020. return -ENOMEM;
  4021. ret = intel_pipe_crc_create(minor);
  4022. if (ret)
  4023. return ret;
  4024. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4025. ent = debugfs_create_file(i915_debugfs_files[i].name,
  4026. S_IRUGO | S_IWUSR,
  4027. minor->debugfs_root,
  4028. to_i915(minor->dev),
  4029. i915_debugfs_files[i].fops);
  4030. if (!ent)
  4031. return -ENOMEM;
  4032. }
  4033. return drm_debugfs_create_files(i915_debugfs_list,
  4034. I915_DEBUGFS_ENTRIES,
  4035. minor->debugfs_root, minor);
  4036. }
  4037. struct dpcd_block {
  4038. /* DPCD dump start address. */
  4039. unsigned int offset;
  4040. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4041. unsigned int end;
  4042. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4043. size_t size;
  4044. /* Only valid for eDP. */
  4045. bool edp;
  4046. };
  4047. static const struct dpcd_block i915_dpcd_debug[] = {
  4048. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4049. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4050. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4051. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4052. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4053. { .offset = DP_SET_POWER },
  4054. { .offset = DP_EDP_DPCD_REV },
  4055. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4056. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4057. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4058. };
  4059. static int i915_dpcd_show(struct seq_file *m, void *data)
  4060. {
  4061. struct drm_connector *connector = m->private;
  4062. struct intel_dp *intel_dp =
  4063. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4064. uint8_t buf[16];
  4065. ssize_t err;
  4066. int i;
  4067. if (connector->status != connector_status_connected)
  4068. return -ENODEV;
  4069. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4070. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4071. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4072. if (b->edp &&
  4073. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4074. continue;
  4075. /* low tech for now */
  4076. if (WARN_ON(size > sizeof(buf)))
  4077. continue;
  4078. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4079. if (err <= 0) {
  4080. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4081. size, b->offset, err);
  4082. continue;
  4083. }
  4084. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4085. }
  4086. return 0;
  4087. }
  4088. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4089. {
  4090. return single_open(file, i915_dpcd_show, inode->i_private);
  4091. }
  4092. static const struct file_operations i915_dpcd_fops = {
  4093. .owner = THIS_MODULE,
  4094. .open = i915_dpcd_open,
  4095. .read = seq_read,
  4096. .llseek = seq_lseek,
  4097. .release = single_release,
  4098. };
  4099. static int i915_panel_show(struct seq_file *m, void *data)
  4100. {
  4101. struct drm_connector *connector = m->private;
  4102. struct intel_dp *intel_dp =
  4103. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4104. if (connector->status != connector_status_connected)
  4105. return -ENODEV;
  4106. seq_printf(m, "Panel power up delay: %d\n",
  4107. intel_dp->panel_power_up_delay);
  4108. seq_printf(m, "Panel power down delay: %d\n",
  4109. intel_dp->panel_power_down_delay);
  4110. seq_printf(m, "Backlight on delay: %d\n",
  4111. intel_dp->backlight_on_delay);
  4112. seq_printf(m, "Backlight off delay: %d\n",
  4113. intel_dp->backlight_off_delay);
  4114. return 0;
  4115. }
  4116. static int i915_panel_open(struct inode *inode, struct file *file)
  4117. {
  4118. return single_open(file, i915_panel_show, inode->i_private);
  4119. }
  4120. static const struct file_operations i915_panel_fops = {
  4121. .owner = THIS_MODULE,
  4122. .open = i915_panel_open,
  4123. .read = seq_read,
  4124. .llseek = seq_lseek,
  4125. .release = single_release,
  4126. };
  4127. /**
  4128. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4129. * @connector: pointer to a registered drm_connector
  4130. *
  4131. * Cleanup will be done by drm_connector_unregister() through a call to
  4132. * drm_debugfs_connector_remove().
  4133. *
  4134. * Returns 0 on success, negative error codes on error.
  4135. */
  4136. int i915_debugfs_connector_add(struct drm_connector *connector)
  4137. {
  4138. struct dentry *root = connector->debugfs_entry;
  4139. /* The connector must have been registered beforehands. */
  4140. if (!root)
  4141. return -ENODEV;
  4142. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4143. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4144. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4145. connector, &i915_dpcd_fops);
  4146. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4147. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4148. connector, &i915_panel_fops);
  4149. return 0;
  4150. }