pch_udc.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. #include <linux/gpio.h>
  19. #include <linux/irq.h>
  20. /* GPIO port for VBUS detecting */
  21. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  22. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  23. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  24. /* Address offset of Registers */
  25. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  26. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  27. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  28. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  29. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  30. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  31. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  32. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  33. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  34. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  35. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  36. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  37. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  38. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  39. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  40. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  41. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  42. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  43. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  44. /* Endpoint control register */
  45. /* Bit position */
  46. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  47. #define UDC_EPCTL_RRDY (1 << 9)
  48. #define UDC_EPCTL_CNAK (1 << 8)
  49. #define UDC_EPCTL_SNAK (1 << 7)
  50. #define UDC_EPCTL_NAK (1 << 6)
  51. #define UDC_EPCTL_P (1 << 3)
  52. #define UDC_EPCTL_F (1 << 1)
  53. #define UDC_EPCTL_S (1 << 0)
  54. #define UDC_EPCTL_ET_SHIFT 4
  55. /* Mask patern */
  56. #define UDC_EPCTL_ET_MASK 0x00000030
  57. /* Value for ET field */
  58. #define UDC_EPCTL_ET_CONTROL 0
  59. #define UDC_EPCTL_ET_ISO 1
  60. #define UDC_EPCTL_ET_BULK 2
  61. #define UDC_EPCTL_ET_INTERRUPT 3
  62. /* Endpoint status register */
  63. /* Bit position */
  64. #define UDC_EPSTS_XFERDONE (1 << 27)
  65. #define UDC_EPSTS_RSS (1 << 26)
  66. #define UDC_EPSTS_RCS (1 << 25)
  67. #define UDC_EPSTS_TXEMPTY (1 << 24)
  68. #define UDC_EPSTS_TDC (1 << 10)
  69. #define UDC_EPSTS_HE (1 << 9)
  70. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  71. #define UDC_EPSTS_BNA (1 << 7)
  72. #define UDC_EPSTS_IN (1 << 6)
  73. #define UDC_EPSTS_OUT_SHIFT 4
  74. /* Mask patern */
  75. #define UDC_EPSTS_OUT_MASK 0x00000030
  76. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  77. /* Value for OUT field */
  78. #define UDC_EPSTS_OUT_SETUP 2
  79. #define UDC_EPSTS_OUT_DATA 1
  80. /* Device configuration register */
  81. /* Bit position */
  82. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  83. #define UDC_DEVCFG_SP (1 << 3)
  84. /* SPD Valee */
  85. #define UDC_DEVCFG_SPD_HS 0x0
  86. #define UDC_DEVCFG_SPD_FS 0x1
  87. #define UDC_DEVCFG_SPD_LS 0x2
  88. /* Device control register */
  89. /* Bit position */
  90. #define UDC_DEVCTL_THLEN_SHIFT 24
  91. #define UDC_DEVCTL_BRLEN_SHIFT 16
  92. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  93. #define UDC_DEVCTL_SD (1 << 10)
  94. #define UDC_DEVCTL_MODE (1 << 9)
  95. #define UDC_DEVCTL_BREN (1 << 8)
  96. #define UDC_DEVCTL_THE (1 << 7)
  97. #define UDC_DEVCTL_DU (1 << 4)
  98. #define UDC_DEVCTL_TDE (1 << 3)
  99. #define UDC_DEVCTL_RDE (1 << 2)
  100. #define UDC_DEVCTL_RES (1 << 0)
  101. /* Device status register */
  102. /* Bit position */
  103. #define UDC_DEVSTS_TS_SHIFT 18
  104. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  105. #define UDC_DEVSTS_ALT_SHIFT 8
  106. #define UDC_DEVSTS_INTF_SHIFT 4
  107. #define UDC_DEVSTS_CFG_SHIFT 0
  108. /* Mask patern */
  109. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  110. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  111. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  112. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  113. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  114. /* value for maximum speed for SPEED field */
  115. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  116. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  117. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  118. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  119. /* Device irq register */
  120. /* Bit position */
  121. #define UDC_DEVINT_RWKP (1 << 7)
  122. #define UDC_DEVINT_ENUM (1 << 6)
  123. #define UDC_DEVINT_SOF (1 << 5)
  124. #define UDC_DEVINT_US (1 << 4)
  125. #define UDC_DEVINT_UR (1 << 3)
  126. #define UDC_DEVINT_ES (1 << 2)
  127. #define UDC_DEVINT_SI (1 << 1)
  128. #define UDC_DEVINT_SC (1 << 0)
  129. /* Mask patern */
  130. #define UDC_DEVINT_MSK 0x7f
  131. /* Endpoint irq register */
  132. /* Bit position */
  133. #define UDC_EPINT_IN_SHIFT 0
  134. #define UDC_EPINT_OUT_SHIFT 16
  135. #define UDC_EPINT_IN_EP0 (1 << 0)
  136. #define UDC_EPINT_OUT_EP0 (1 << 16)
  137. /* Mask patern */
  138. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  139. /* UDC_CSR_BUSY Status register */
  140. /* Bit position */
  141. #define UDC_CSR_BUSY (1 << 0)
  142. /* SOFT RESET register */
  143. /* Bit position */
  144. #define UDC_PSRST (1 << 1)
  145. #define UDC_SRST (1 << 0)
  146. /* USB_DEVICE endpoint register */
  147. /* Bit position */
  148. #define UDC_CSR_NE_NUM_SHIFT 0
  149. #define UDC_CSR_NE_DIR_SHIFT 4
  150. #define UDC_CSR_NE_TYPE_SHIFT 5
  151. #define UDC_CSR_NE_CFG_SHIFT 7
  152. #define UDC_CSR_NE_INTF_SHIFT 11
  153. #define UDC_CSR_NE_ALT_SHIFT 15
  154. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  155. /* Mask patern */
  156. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  157. #define UDC_CSR_NE_DIR_MASK 0x00000010
  158. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  159. #define UDC_CSR_NE_CFG_MASK 0x00000780
  160. #define UDC_CSR_NE_INTF_MASK 0x00007800
  161. #define UDC_CSR_NE_ALT_MASK 0x00078000
  162. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  163. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  164. #define PCH_UDC_EPINT(in, num)\
  165. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  166. /* Index of endpoint */
  167. #define UDC_EP0IN_IDX 0
  168. #define UDC_EP0OUT_IDX 1
  169. #define UDC_EPIN_IDX(ep) (ep * 2)
  170. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  171. #define PCH_UDC_EP0 0
  172. #define PCH_UDC_EP1 1
  173. #define PCH_UDC_EP2 2
  174. #define PCH_UDC_EP3 3
  175. /* Number of endpoint */
  176. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  177. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  178. /* Length Value */
  179. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  180. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  181. /* Value of EP Buffer Size */
  182. #define UDC_EP0IN_BUFF_SIZE 16
  183. #define UDC_EPIN_BUFF_SIZE 256
  184. #define UDC_EP0OUT_BUFF_SIZE 16
  185. #define UDC_EPOUT_BUFF_SIZE 256
  186. /* Value of EP maximum packet size */
  187. #define UDC_EP0IN_MAX_PKT_SIZE 64
  188. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  189. #define UDC_BULK_MAX_PKT_SIZE 512
  190. /* DMA */
  191. #define DMA_DIR_RX 1 /* DMA for data receive */
  192. #define DMA_DIR_TX 2 /* DMA for data transmit */
  193. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  194. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  195. /**
  196. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  197. * for data
  198. * @status: Status quadlet
  199. * @reserved: Reserved
  200. * @dataptr: Buffer descriptor
  201. * @next: Next descriptor
  202. */
  203. struct pch_udc_data_dma_desc {
  204. u32 status;
  205. u32 reserved;
  206. u32 dataptr;
  207. u32 next;
  208. };
  209. /**
  210. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  211. * for control data
  212. * @status: Status
  213. * @reserved: Reserved
  214. * @data12: First setup word
  215. * @data34: Second setup word
  216. */
  217. struct pch_udc_stp_dma_desc {
  218. u32 status;
  219. u32 reserved;
  220. struct usb_ctrlrequest request;
  221. } __attribute((packed));
  222. /* DMA status definitions */
  223. /* Buffer status */
  224. #define PCH_UDC_BUFF_STS 0xC0000000
  225. #define PCH_UDC_BS_HST_RDY 0x00000000
  226. #define PCH_UDC_BS_DMA_BSY 0x40000000
  227. #define PCH_UDC_BS_DMA_DONE 0x80000000
  228. #define PCH_UDC_BS_HST_BSY 0xC0000000
  229. /* Rx/Tx Status */
  230. #define PCH_UDC_RXTX_STS 0x30000000
  231. #define PCH_UDC_RTS_SUCC 0x00000000
  232. #define PCH_UDC_RTS_DESERR 0x10000000
  233. #define PCH_UDC_RTS_BUFERR 0x30000000
  234. /* Last Descriptor Indication */
  235. #define PCH_UDC_DMA_LAST 0x08000000
  236. /* Number of Rx/Tx Bytes Mask */
  237. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  238. /**
  239. * struct pch_udc_cfg_data - Structure to hold current configuration
  240. * and interface information
  241. * @cur_cfg: current configuration in use
  242. * @cur_intf: current interface in use
  243. * @cur_alt: current alt interface in use
  244. */
  245. struct pch_udc_cfg_data {
  246. u16 cur_cfg;
  247. u16 cur_intf;
  248. u16 cur_alt;
  249. };
  250. /**
  251. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  252. * @ep: embedded ep request
  253. * @td_stp_phys: for setup request
  254. * @td_data_phys: for data request
  255. * @td_stp: for setup request
  256. * @td_data: for data request
  257. * @dev: reference to device struct
  258. * @offset_addr: offset address of ep register
  259. * @desc: for this ep
  260. * @queue: queue for requests
  261. * @num: endpoint number
  262. * @in: endpoint is IN
  263. * @halted: endpoint halted?
  264. * @epsts: Endpoint status
  265. */
  266. struct pch_udc_ep {
  267. struct usb_ep ep;
  268. dma_addr_t td_stp_phys;
  269. dma_addr_t td_data_phys;
  270. struct pch_udc_stp_dma_desc *td_stp;
  271. struct pch_udc_data_dma_desc *td_data;
  272. struct pch_udc_dev *dev;
  273. unsigned long offset_addr;
  274. struct list_head queue;
  275. unsigned num:5,
  276. in:1,
  277. halted:1;
  278. unsigned long epsts;
  279. };
  280. /**
  281. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  282. * for detecting VBUS
  283. * @port: gpio port number
  284. * @intr: gpio interrupt number
  285. * @irq_work_fall Structure for WorkQueue
  286. * @irq_work_rise Structure for WorkQueue
  287. */
  288. struct pch_vbus_gpio_data {
  289. int port;
  290. int intr;
  291. struct work_struct irq_work_fall;
  292. struct work_struct irq_work_rise;
  293. };
  294. /**
  295. * struct pch_udc_dev - Structure holding complete information
  296. * of the PCH USB device
  297. * @gadget: gadget driver data
  298. * @driver: reference to gadget driver bound
  299. * @pdev: reference to the PCI device
  300. * @ep: array of endpoints
  301. * @lock: protects all state
  302. * @stall: stall requested
  303. * @prot_stall: protcol stall requested
  304. * @registered: driver registered with system
  305. * @suspended: driver in suspended state
  306. * @connected: gadget driver associated
  307. * @vbus_session: required vbus_session state
  308. * @set_cfg_not_acked: pending acknowledgement 4 setup
  309. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  310. * @data_requests: DMA pool for data requests
  311. * @stp_requests: DMA pool for setup requests
  312. * @dma_addr: DMA pool for received
  313. * @setup_data: Received setup data
  314. * @base_addr: for mapped device memory
  315. * @cfg_data: current cfg, intf, and alt in use
  316. * @vbus_gpio: GPIO informaton for detecting VBUS
  317. */
  318. struct pch_udc_dev {
  319. struct usb_gadget gadget;
  320. struct usb_gadget_driver *driver;
  321. struct pci_dev *pdev;
  322. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  323. spinlock_t lock; /* protects all state */
  324. unsigned
  325. stall:1,
  326. prot_stall:1,
  327. suspended:1,
  328. connected:1,
  329. vbus_session:1,
  330. set_cfg_not_acked:1,
  331. waiting_zlp_ack:1;
  332. struct dma_pool *data_requests;
  333. struct dma_pool *stp_requests;
  334. dma_addr_t dma_addr;
  335. struct usb_ctrlrequest setup_data;
  336. void __iomem *base_addr;
  337. struct pch_udc_cfg_data cfg_data;
  338. struct pch_vbus_gpio_data vbus_gpio;
  339. };
  340. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  341. #define PCH_UDC_PCI_BAR_QUARK_X1000 0
  342. #define PCH_UDC_PCI_BAR 1
  343. #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
  344. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  345. #define PCI_VENDOR_ID_ROHM 0x10DB
  346. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  347. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  348. static const char ep0_string[] = "ep0in";
  349. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  350. static bool speed_fs;
  351. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  352. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  353. /**
  354. * struct pch_udc_request - Structure holding a PCH USB device request packet
  355. * @req: embedded ep request
  356. * @td_data_phys: phys. address
  357. * @td_data: first dma desc. of chain
  358. * @td_data_last: last dma desc. of chain
  359. * @queue: associated queue
  360. * @dma_going: DMA in progress for request
  361. * @dma_mapped: DMA memory mapped for request
  362. * @dma_done: DMA completed for request
  363. * @chain_len: chain length
  364. * @buf: Buffer memory for align adjustment
  365. * @dma: DMA memory for align adjustment
  366. */
  367. struct pch_udc_request {
  368. struct usb_request req;
  369. dma_addr_t td_data_phys;
  370. struct pch_udc_data_dma_desc *td_data;
  371. struct pch_udc_data_dma_desc *td_data_last;
  372. struct list_head queue;
  373. unsigned dma_going:1,
  374. dma_mapped:1,
  375. dma_done:1;
  376. unsigned chain_len;
  377. void *buf;
  378. dma_addr_t dma;
  379. };
  380. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  381. {
  382. return ioread32(dev->base_addr + reg);
  383. }
  384. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  385. unsigned long val, unsigned long reg)
  386. {
  387. iowrite32(val, dev->base_addr + reg);
  388. }
  389. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  390. unsigned long reg,
  391. unsigned long bitmask)
  392. {
  393. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  394. }
  395. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  396. unsigned long reg,
  397. unsigned long bitmask)
  398. {
  399. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  400. }
  401. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  402. {
  403. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  404. }
  405. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  406. unsigned long val, unsigned long reg)
  407. {
  408. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  409. }
  410. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  411. unsigned long reg,
  412. unsigned long bitmask)
  413. {
  414. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  415. }
  416. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  417. unsigned long reg,
  418. unsigned long bitmask)
  419. {
  420. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  421. }
  422. /**
  423. * pch_udc_csr_busy() - Wait till idle.
  424. * @dev: Reference to pch_udc_dev structure
  425. */
  426. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  427. {
  428. unsigned int count = 200;
  429. /* Wait till idle */
  430. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  431. && --count)
  432. cpu_relax();
  433. if (!count)
  434. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  435. }
  436. /**
  437. * pch_udc_write_csr() - Write the command and status registers.
  438. * @dev: Reference to pch_udc_dev structure
  439. * @val: value to be written to CSR register
  440. * @addr: address of CSR register
  441. */
  442. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  443. unsigned int ep)
  444. {
  445. unsigned long reg = PCH_UDC_CSR(ep);
  446. pch_udc_csr_busy(dev); /* Wait till idle */
  447. pch_udc_writel(dev, val, reg);
  448. pch_udc_csr_busy(dev); /* Wait till idle */
  449. }
  450. /**
  451. * pch_udc_read_csr() - Read the command and status registers.
  452. * @dev: Reference to pch_udc_dev structure
  453. * @addr: address of CSR register
  454. *
  455. * Return codes: content of CSR register
  456. */
  457. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  458. {
  459. unsigned long reg = PCH_UDC_CSR(ep);
  460. pch_udc_csr_busy(dev); /* Wait till idle */
  461. pch_udc_readl(dev, reg); /* Dummy read */
  462. pch_udc_csr_busy(dev); /* Wait till idle */
  463. return pch_udc_readl(dev, reg);
  464. }
  465. /**
  466. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  467. * @dev: Reference to pch_udc_dev structure
  468. */
  469. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  470. {
  471. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  472. mdelay(1);
  473. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  474. }
  475. /**
  476. * pch_udc_get_frame() - Get the current frame from device status register
  477. * @dev: Reference to pch_udc_dev structure
  478. * Retern current frame
  479. */
  480. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  481. {
  482. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  483. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  484. }
  485. /**
  486. * pch_udc_clear_selfpowered() - Clear the self power control
  487. * @dev: Reference to pch_udc_regs structure
  488. */
  489. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  490. {
  491. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  492. }
  493. /**
  494. * pch_udc_set_selfpowered() - Set the self power control
  495. * @dev: Reference to pch_udc_regs structure
  496. */
  497. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  498. {
  499. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  500. }
  501. /**
  502. * pch_udc_set_disconnect() - Set the disconnect status.
  503. * @dev: Reference to pch_udc_regs structure
  504. */
  505. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  506. {
  507. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  508. }
  509. /**
  510. * pch_udc_clear_disconnect() - Clear the disconnect status.
  511. * @dev: Reference to pch_udc_regs structure
  512. */
  513. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  514. {
  515. /* Clear the disconnect */
  516. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  517. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  518. mdelay(1);
  519. /* Resume USB signalling */
  520. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  521. }
  522. /**
  523. * pch_udc_reconnect() - This API initializes usb device controller,
  524. * and clear the disconnect status.
  525. * @dev: Reference to pch_udc_regs structure
  526. */
  527. static void pch_udc_init(struct pch_udc_dev *dev);
  528. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  529. {
  530. pch_udc_init(dev);
  531. /* enable device interrupts */
  532. /* pch_udc_enable_interrupts() */
  533. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  534. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  535. /* Clear the disconnect */
  536. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  537. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  538. mdelay(1);
  539. /* Resume USB signalling */
  540. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  541. }
  542. /**
  543. * pch_udc_vbus_session() - set or clearr the disconnect status.
  544. * @dev: Reference to pch_udc_regs structure
  545. * @is_active: Parameter specifying the action
  546. * 0: indicating VBUS power is ending
  547. * !0: indicating VBUS power is starting
  548. */
  549. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  550. int is_active)
  551. {
  552. if (is_active) {
  553. pch_udc_reconnect(dev);
  554. dev->vbus_session = 1;
  555. } else {
  556. if (dev->driver && dev->driver->disconnect) {
  557. spin_lock(&dev->lock);
  558. dev->driver->disconnect(&dev->gadget);
  559. spin_unlock(&dev->lock);
  560. }
  561. pch_udc_set_disconnect(dev);
  562. dev->vbus_session = 0;
  563. }
  564. }
  565. /**
  566. * pch_udc_ep_set_stall() - Set the stall of endpoint
  567. * @ep: Reference to structure of type pch_udc_ep_regs
  568. */
  569. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  570. {
  571. if (ep->in) {
  572. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  573. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  574. } else {
  575. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  576. }
  577. }
  578. /**
  579. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  580. * @ep: Reference to structure of type pch_udc_ep_regs
  581. */
  582. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  583. {
  584. /* Clear the stall */
  585. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  586. /* Clear NAK by writing CNAK */
  587. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  588. }
  589. /**
  590. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  591. * @ep: Reference to structure of type pch_udc_ep_regs
  592. * @type: Type of endpoint
  593. */
  594. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  595. u8 type)
  596. {
  597. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  598. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  599. }
  600. /**
  601. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  602. * @ep: Reference to structure of type pch_udc_ep_regs
  603. * @buf_size: The buffer word size
  604. */
  605. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  606. u32 buf_size, u32 ep_in)
  607. {
  608. u32 data;
  609. if (ep_in) {
  610. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  611. data = (data & 0xffff0000) | (buf_size & 0xffff);
  612. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  613. } else {
  614. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  615. data = (buf_size << 16) | (data & 0xffff);
  616. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  617. }
  618. }
  619. /**
  620. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  621. * @ep: Reference to structure of type pch_udc_ep_regs
  622. * @pkt_size: The packet byte size
  623. */
  624. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  625. {
  626. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  627. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  628. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  629. }
  630. /**
  631. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  632. * @ep: Reference to structure of type pch_udc_ep_regs
  633. * @addr: Address of the register
  634. */
  635. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  636. {
  637. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  638. }
  639. /**
  640. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  641. * @ep: Reference to structure of type pch_udc_ep_regs
  642. * @addr: Address of the register
  643. */
  644. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  645. {
  646. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  647. }
  648. /**
  649. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  650. * @ep: Reference to structure of type pch_udc_ep_regs
  651. */
  652. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  653. {
  654. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  655. }
  656. /**
  657. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  658. * @ep: Reference to structure of type pch_udc_ep_regs
  659. */
  660. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  661. {
  662. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  663. }
  664. /**
  665. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  666. * @ep: Reference to structure of type pch_udc_ep_regs
  667. */
  668. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  669. {
  670. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  671. }
  672. /**
  673. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  674. * register depending on the direction specified
  675. * @dev: Reference to structure of type pch_udc_regs
  676. * @dir: whether Tx or Rx
  677. * DMA_DIR_RX: Receive
  678. * DMA_DIR_TX: Transmit
  679. */
  680. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  681. {
  682. if (dir == DMA_DIR_RX)
  683. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  684. else if (dir == DMA_DIR_TX)
  685. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  686. }
  687. /**
  688. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  689. * register depending on the direction specified
  690. * @dev: Reference to structure of type pch_udc_regs
  691. * @dir: Whether Tx or Rx
  692. * DMA_DIR_RX: Receive
  693. * DMA_DIR_TX: Transmit
  694. */
  695. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  696. {
  697. if (dir == DMA_DIR_RX)
  698. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  699. else if (dir == DMA_DIR_TX)
  700. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  701. }
  702. /**
  703. * pch_udc_set_csr_done() - Set the device control register
  704. * CSR done field (bit 13)
  705. * @dev: reference to structure of type pch_udc_regs
  706. */
  707. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  708. {
  709. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  710. }
  711. /**
  712. * pch_udc_disable_interrupts() - Disables the specified interrupts
  713. * @dev: Reference to structure of type pch_udc_regs
  714. * @mask: Mask to disable interrupts
  715. */
  716. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  717. u32 mask)
  718. {
  719. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  720. }
  721. /**
  722. * pch_udc_enable_interrupts() - Enable the specified interrupts
  723. * @dev: Reference to structure of type pch_udc_regs
  724. * @mask: Mask to enable interrupts
  725. */
  726. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  727. u32 mask)
  728. {
  729. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  730. }
  731. /**
  732. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  733. * @dev: Reference to structure of type pch_udc_regs
  734. * @mask: Mask to disable interrupts
  735. */
  736. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  737. u32 mask)
  738. {
  739. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  740. }
  741. /**
  742. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  743. * @dev: Reference to structure of type pch_udc_regs
  744. * @mask: Mask to enable interrupts
  745. */
  746. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  747. u32 mask)
  748. {
  749. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  750. }
  751. /**
  752. * pch_udc_read_device_interrupts() - Read the device interrupts
  753. * @dev: Reference to structure of type pch_udc_regs
  754. * Retern The device interrupts
  755. */
  756. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  757. {
  758. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  759. }
  760. /**
  761. * pch_udc_write_device_interrupts() - Write device interrupts
  762. * @dev: Reference to structure of type pch_udc_regs
  763. * @val: The value to be written to interrupt register
  764. */
  765. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  766. u32 val)
  767. {
  768. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  769. }
  770. /**
  771. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  772. * @dev: Reference to structure of type pch_udc_regs
  773. * Retern The endpoint interrupt
  774. */
  775. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  776. {
  777. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  778. }
  779. /**
  780. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  781. * @dev: Reference to structure of type pch_udc_regs
  782. * @val: The value to be written to interrupt register
  783. */
  784. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  785. u32 val)
  786. {
  787. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  788. }
  789. /**
  790. * pch_udc_read_device_status() - Read the device status
  791. * @dev: Reference to structure of type pch_udc_regs
  792. * Retern The device status
  793. */
  794. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  795. {
  796. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  797. }
  798. /**
  799. * pch_udc_read_ep_control() - Read the endpoint control
  800. * @ep: Reference to structure of type pch_udc_ep_regs
  801. * Retern The endpoint control register value
  802. */
  803. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  804. {
  805. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  806. }
  807. /**
  808. * pch_udc_clear_ep_control() - Clear the endpoint control register
  809. * @ep: Reference to structure of type pch_udc_ep_regs
  810. * Retern The endpoint control register value
  811. */
  812. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  813. {
  814. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  815. }
  816. /**
  817. * pch_udc_read_ep_status() - Read the endpoint status
  818. * @ep: Reference to structure of type pch_udc_ep_regs
  819. * Retern The endpoint status
  820. */
  821. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  822. {
  823. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  824. }
  825. /**
  826. * pch_udc_clear_ep_status() - Clear the endpoint status
  827. * @ep: Reference to structure of type pch_udc_ep_regs
  828. * @stat: Endpoint status
  829. */
  830. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  831. u32 stat)
  832. {
  833. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  834. }
  835. /**
  836. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  837. * of the endpoint control register
  838. * @ep: Reference to structure of type pch_udc_ep_regs
  839. */
  840. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  841. {
  842. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  843. }
  844. /**
  845. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  846. * of the endpoint control register
  847. * @ep: reference to structure of type pch_udc_ep_regs
  848. */
  849. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  850. {
  851. unsigned int loopcnt = 0;
  852. struct pch_udc_dev *dev = ep->dev;
  853. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  854. return;
  855. if (!ep->in) {
  856. loopcnt = 10000;
  857. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  858. --loopcnt)
  859. udelay(5);
  860. if (!loopcnt)
  861. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  862. __func__);
  863. }
  864. loopcnt = 10000;
  865. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  866. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  867. udelay(5);
  868. }
  869. if (!loopcnt)
  870. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  871. __func__, ep->num, (ep->in ? "in" : "out"));
  872. }
  873. /**
  874. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  875. * @ep: reference to structure of type pch_udc_ep_regs
  876. * @dir: direction of endpoint
  877. * 0: endpoint is OUT
  878. * !0: endpoint is IN
  879. */
  880. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  881. {
  882. if (dir) { /* IN ep */
  883. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  884. return;
  885. }
  886. }
  887. /**
  888. * pch_udc_ep_enable() - This api enables endpoint
  889. * @regs: Reference to structure pch_udc_ep_regs
  890. * @desc: endpoint descriptor
  891. */
  892. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  893. struct pch_udc_cfg_data *cfg,
  894. const struct usb_endpoint_descriptor *desc)
  895. {
  896. u32 val = 0;
  897. u32 buff_size = 0;
  898. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  899. if (ep->in)
  900. buff_size = UDC_EPIN_BUFF_SIZE;
  901. else
  902. buff_size = UDC_EPOUT_BUFF_SIZE;
  903. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  904. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  905. pch_udc_ep_set_nak(ep);
  906. pch_udc_ep_fifo_flush(ep, ep->in);
  907. /* Configure the endpoint */
  908. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  909. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  910. UDC_CSR_NE_TYPE_SHIFT) |
  911. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  912. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  913. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  914. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  915. if (ep->in)
  916. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  917. else
  918. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  919. }
  920. /**
  921. * pch_udc_ep_disable() - This api disables endpoint
  922. * @regs: Reference to structure pch_udc_ep_regs
  923. */
  924. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  925. {
  926. if (ep->in) {
  927. /* flush the fifo */
  928. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  929. /* set NAK */
  930. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  931. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  932. } else {
  933. /* set NAK */
  934. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  935. }
  936. /* reset desc pointer */
  937. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  938. }
  939. /**
  940. * pch_udc_wait_ep_stall() - Wait EP stall.
  941. * @dev: Reference to pch_udc_dev structure
  942. */
  943. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  944. {
  945. unsigned int count = 10000;
  946. /* Wait till idle */
  947. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  948. udelay(5);
  949. if (!count)
  950. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  951. }
  952. /**
  953. * pch_udc_init() - This API initializes usb device controller
  954. * @dev: Rreference to pch_udc_regs structure
  955. */
  956. static void pch_udc_init(struct pch_udc_dev *dev)
  957. {
  958. if (NULL == dev) {
  959. pr_err("%s: Invalid address\n", __func__);
  960. return;
  961. }
  962. /* Soft Reset and Reset PHY */
  963. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  964. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  965. mdelay(1);
  966. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  967. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  968. mdelay(1);
  969. /* mask and clear all device interrupts */
  970. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  971. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  972. /* mask and clear all ep interrupts */
  973. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  974. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  975. /* enable dynamic CSR programmingi, self powered and device speed */
  976. if (speed_fs)
  977. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  978. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  979. else /* defaul high speed */
  980. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  981. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  982. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  983. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  984. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  985. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  986. UDC_DEVCTL_THE);
  987. }
  988. /**
  989. * pch_udc_exit() - This API exit usb device controller
  990. * @dev: Reference to pch_udc_regs structure
  991. */
  992. static void pch_udc_exit(struct pch_udc_dev *dev)
  993. {
  994. /* mask all device interrupts */
  995. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  996. /* mask all ep interrupts */
  997. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  998. /* put device in disconnected state */
  999. pch_udc_set_disconnect(dev);
  1000. }
  1001. /**
  1002. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1003. * @gadget: Reference to the gadget driver
  1004. *
  1005. * Return codes:
  1006. * 0: Success
  1007. * -EINVAL: If the gadget passed is NULL
  1008. */
  1009. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1010. {
  1011. struct pch_udc_dev *dev;
  1012. if (!gadget)
  1013. return -EINVAL;
  1014. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1015. return pch_udc_get_frame(dev);
  1016. }
  1017. /**
  1018. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1019. * @gadget: Reference to the gadget driver
  1020. *
  1021. * Return codes:
  1022. * 0: Success
  1023. * -EINVAL: If the gadget passed is NULL
  1024. */
  1025. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1026. {
  1027. struct pch_udc_dev *dev;
  1028. unsigned long flags;
  1029. if (!gadget)
  1030. return -EINVAL;
  1031. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1032. spin_lock_irqsave(&dev->lock, flags);
  1033. pch_udc_rmt_wakeup(dev);
  1034. spin_unlock_irqrestore(&dev->lock, flags);
  1035. return 0;
  1036. }
  1037. /**
  1038. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1039. * is self powered or not
  1040. * @gadget: Reference to the gadget driver
  1041. * @value: Specifies self powered or not
  1042. *
  1043. * Return codes:
  1044. * 0: Success
  1045. * -EINVAL: If the gadget passed is NULL
  1046. */
  1047. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1048. {
  1049. struct pch_udc_dev *dev;
  1050. if (!gadget)
  1051. return -EINVAL;
  1052. gadget->is_selfpowered = (value != 0);
  1053. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1054. if (value)
  1055. pch_udc_set_selfpowered(dev);
  1056. else
  1057. pch_udc_clear_selfpowered(dev);
  1058. return 0;
  1059. }
  1060. /**
  1061. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1062. * visible/invisible to the host
  1063. * @gadget: Reference to the gadget driver
  1064. * @is_on: Specifies whether the pull up is made active or inactive
  1065. *
  1066. * Return codes:
  1067. * 0: Success
  1068. * -EINVAL: If the gadget passed is NULL
  1069. */
  1070. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1071. {
  1072. struct pch_udc_dev *dev;
  1073. if (!gadget)
  1074. return -EINVAL;
  1075. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1076. if (is_on) {
  1077. pch_udc_reconnect(dev);
  1078. } else {
  1079. if (dev->driver && dev->driver->disconnect) {
  1080. spin_lock(&dev->lock);
  1081. dev->driver->disconnect(&dev->gadget);
  1082. spin_unlock(&dev->lock);
  1083. }
  1084. pch_udc_set_disconnect(dev);
  1085. }
  1086. return 0;
  1087. }
  1088. /**
  1089. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1090. * transceiver (or GPIO) that
  1091. * detects a VBUS power session starting/ending
  1092. * @gadget: Reference to the gadget driver
  1093. * @is_active: specifies whether the session is starting or ending
  1094. *
  1095. * Return codes:
  1096. * 0: Success
  1097. * -EINVAL: If the gadget passed is NULL
  1098. */
  1099. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1100. {
  1101. struct pch_udc_dev *dev;
  1102. if (!gadget)
  1103. return -EINVAL;
  1104. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1105. pch_udc_vbus_session(dev, is_active);
  1106. return 0;
  1107. }
  1108. /**
  1109. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1110. * SET_CONFIGURATION calls to
  1111. * specify how much power the device can consume
  1112. * @gadget: Reference to the gadget driver
  1113. * @mA: specifies the current limit in 2mA unit
  1114. *
  1115. * Return codes:
  1116. * -EINVAL: If the gadget passed is NULL
  1117. * -EOPNOTSUPP:
  1118. */
  1119. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1120. {
  1121. return -EOPNOTSUPP;
  1122. }
  1123. static int pch_udc_start(struct usb_gadget *g,
  1124. struct usb_gadget_driver *driver);
  1125. static int pch_udc_stop(struct usb_gadget *g);
  1126. static const struct usb_gadget_ops pch_udc_ops = {
  1127. .get_frame = pch_udc_pcd_get_frame,
  1128. .wakeup = pch_udc_pcd_wakeup,
  1129. .set_selfpowered = pch_udc_pcd_selfpowered,
  1130. .pullup = pch_udc_pcd_pullup,
  1131. .vbus_session = pch_udc_pcd_vbus_session,
  1132. .vbus_draw = pch_udc_pcd_vbus_draw,
  1133. .udc_start = pch_udc_start,
  1134. .udc_stop = pch_udc_stop,
  1135. };
  1136. /**
  1137. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1138. * @dev: Reference to the driver structure
  1139. *
  1140. * Return value:
  1141. * 1: VBUS is high
  1142. * 0: VBUS is low
  1143. * -1: It is not enable to detect VBUS using GPIO
  1144. */
  1145. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1146. {
  1147. int vbus = 0;
  1148. if (dev->vbus_gpio.port)
  1149. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1150. else
  1151. vbus = -1;
  1152. return vbus;
  1153. }
  1154. /**
  1155. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1156. * If VBUS is Low, disconnect is processed
  1157. * @irq_work: Structure for WorkQueue
  1158. *
  1159. */
  1160. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1161. {
  1162. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1163. struct pch_vbus_gpio_data, irq_work_fall);
  1164. struct pch_udc_dev *dev =
  1165. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1166. int vbus_saved = -1;
  1167. int vbus;
  1168. int count;
  1169. if (!dev->vbus_gpio.port)
  1170. return;
  1171. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1172. count++) {
  1173. vbus = pch_vbus_gpio_get_value(dev);
  1174. if ((vbus_saved == vbus) && (vbus == 0)) {
  1175. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1176. if (dev->driver
  1177. && dev->driver->disconnect) {
  1178. dev->driver->disconnect(
  1179. &dev->gadget);
  1180. }
  1181. if (dev->vbus_gpio.intr)
  1182. pch_udc_init(dev);
  1183. else
  1184. pch_udc_reconnect(dev);
  1185. return;
  1186. }
  1187. vbus_saved = vbus;
  1188. mdelay(PCH_VBUS_INTERVAL);
  1189. }
  1190. }
  1191. /**
  1192. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1193. * If VBUS is High, connect is processed
  1194. * @irq_work: Structure for WorkQueue
  1195. *
  1196. */
  1197. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1198. {
  1199. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1200. struct pch_vbus_gpio_data, irq_work_rise);
  1201. struct pch_udc_dev *dev =
  1202. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1203. int vbus;
  1204. if (!dev->vbus_gpio.port)
  1205. return;
  1206. mdelay(PCH_VBUS_INTERVAL);
  1207. vbus = pch_vbus_gpio_get_value(dev);
  1208. if (vbus == 1) {
  1209. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1210. pch_udc_reconnect(dev);
  1211. return;
  1212. }
  1213. }
  1214. /**
  1215. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1216. * @irq: Interrupt request number
  1217. * @dev: Reference to the device structure
  1218. *
  1219. * Return codes:
  1220. * 0: Success
  1221. * -EINVAL: GPIO port is invalid or can't be initialized.
  1222. */
  1223. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1224. {
  1225. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1226. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1227. return IRQ_NONE;
  1228. if (pch_vbus_gpio_get_value(dev))
  1229. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1230. else
  1231. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1232. return IRQ_HANDLED;
  1233. }
  1234. /**
  1235. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1236. * @dev: Reference to the driver structure
  1237. * @vbus_gpio Number of GPIO port to detect gpio
  1238. *
  1239. * Return codes:
  1240. * 0: Success
  1241. * -EINVAL: GPIO port is invalid or can't be initialized.
  1242. */
  1243. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1244. {
  1245. int err;
  1246. int irq_num = 0;
  1247. dev->vbus_gpio.port = 0;
  1248. dev->vbus_gpio.intr = 0;
  1249. if (vbus_gpio_port <= -1)
  1250. return -EINVAL;
  1251. err = gpio_is_valid(vbus_gpio_port);
  1252. if (!err) {
  1253. pr_err("%s: gpio port %d is invalid\n",
  1254. __func__, vbus_gpio_port);
  1255. return -EINVAL;
  1256. }
  1257. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1258. if (err) {
  1259. pr_err("%s: can't request gpio port %d, err: %d\n",
  1260. __func__, vbus_gpio_port, err);
  1261. return -EINVAL;
  1262. }
  1263. dev->vbus_gpio.port = vbus_gpio_port;
  1264. gpio_direction_input(vbus_gpio_port);
  1265. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1266. irq_num = gpio_to_irq(vbus_gpio_port);
  1267. if (irq_num > 0) {
  1268. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1269. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1270. "vbus_detect", dev);
  1271. if (!err) {
  1272. dev->vbus_gpio.intr = irq_num;
  1273. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1274. pch_vbus_gpio_work_rise);
  1275. } else {
  1276. pr_err("%s: can't request irq %d, err: %d\n",
  1277. __func__, irq_num, err);
  1278. }
  1279. }
  1280. return 0;
  1281. }
  1282. /**
  1283. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1284. * @dev: Reference to the driver structure
  1285. */
  1286. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1287. {
  1288. if (dev->vbus_gpio.intr)
  1289. free_irq(dev->vbus_gpio.intr, dev);
  1290. if (dev->vbus_gpio.port)
  1291. gpio_free(dev->vbus_gpio.port);
  1292. }
  1293. /**
  1294. * complete_req() - This API is invoked from the driver when processing
  1295. * of a request is complete
  1296. * @ep: Reference to the endpoint structure
  1297. * @req: Reference to the request structure
  1298. * @status: Indicates the success/failure of completion
  1299. */
  1300. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1301. int status)
  1302. __releases(&dev->lock)
  1303. __acquires(&dev->lock)
  1304. {
  1305. struct pch_udc_dev *dev;
  1306. unsigned halted = ep->halted;
  1307. list_del_init(&req->queue);
  1308. /* set new status if pending */
  1309. if (req->req.status == -EINPROGRESS)
  1310. req->req.status = status;
  1311. else
  1312. status = req->req.status;
  1313. dev = ep->dev;
  1314. if (req->dma_mapped) {
  1315. if (req->dma == DMA_ADDR_INVALID) {
  1316. if (ep->in)
  1317. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1318. req->req.length,
  1319. DMA_TO_DEVICE);
  1320. else
  1321. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1322. req->req.length,
  1323. DMA_FROM_DEVICE);
  1324. req->req.dma = DMA_ADDR_INVALID;
  1325. } else {
  1326. if (ep->in)
  1327. dma_unmap_single(&dev->pdev->dev, req->dma,
  1328. req->req.length,
  1329. DMA_TO_DEVICE);
  1330. else {
  1331. dma_unmap_single(&dev->pdev->dev, req->dma,
  1332. req->req.length,
  1333. DMA_FROM_DEVICE);
  1334. memcpy(req->req.buf, req->buf, req->req.length);
  1335. }
  1336. kfree(req->buf);
  1337. req->dma = DMA_ADDR_INVALID;
  1338. }
  1339. req->dma_mapped = 0;
  1340. }
  1341. ep->halted = 1;
  1342. spin_unlock(&dev->lock);
  1343. if (!ep->in)
  1344. pch_udc_ep_clear_rrdy(ep);
  1345. usb_gadget_giveback_request(&ep->ep, &req->req);
  1346. spin_lock(&dev->lock);
  1347. ep->halted = halted;
  1348. }
  1349. /**
  1350. * empty_req_queue() - This API empties the request queue of an endpoint
  1351. * @ep: Reference to the endpoint structure
  1352. */
  1353. static void empty_req_queue(struct pch_udc_ep *ep)
  1354. {
  1355. struct pch_udc_request *req;
  1356. ep->halted = 1;
  1357. while (!list_empty(&ep->queue)) {
  1358. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1359. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1360. }
  1361. }
  1362. /**
  1363. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1364. * for the request
  1365. * @dev Reference to the driver structure
  1366. * @req Reference to the request to be freed
  1367. *
  1368. * Return codes:
  1369. * 0: Success
  1370. */
  1371. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1372. struct pch_udc_request *req)
  1373. {
  1374. struct pch_udc_data_dma_desc *td = req->td_data;
  1375. unsigned i = req->chain_len;
  1376. dma_addr_t addr2;
  1377. dma_addr_t addr = (dma_addr_t)td->next;
  1378. td->next = 0x00;
  1379. for (; i > 1; --i) {
  1380. /* do not free first desc., will be done by free for request */
  1381. td = phys_to_virt(addr);
  1382. addr2 = (dma_addr_t)td->next;
  1383. dma_pool_free(dev->data_requests, td, addr);
  1384. td->next = 0x00;
  1385. addr = addr2;
  1386. }
  1387. req->chain_len = 1;
  1388. }
  1389. /**
  1390. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1391. * a DMA chain
  1392. * @ep: Reference to the endpoint structure
  1393. * @req: Reference to the request
  1394. * @buf_len: The buffer length
  1395. * @gfp_flags: Flags to be used while mapping the data buffer
  1396. *
  1397. * Return codes:
  1398. * 0: success,
  1399. * -ENOMEM: dma_pool_alloc invocation fails
  1400. */
  1401. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1402. struct pch_udc_request *req,
  1403. unsigned long buf_len,
  1404. gfp_t gfp_flags)
  1405. {
  1406. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1407. unsigned long bytes = req->req.length, i = 0;
  1408. dma_addr_t dma_addr;
  1409. unsigned len = 1;
  1410. if (req->chain_len > 1)
  1411. pch_udc_free_dma_chain(ep->dev, req);
  1412. if (req->dma == DMA_ADDR_INVALID)
  1413. td->dataptr = req->req.dma;
  1414. else
  1415. td->dataptr = req->dma;
  1416. td->status = PCH_UDC_BS_HST_BSY;
  1417. for (; ; bytes -= buf_len, ++len) {
  1418. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1419. if (bytes <= buf_len)
  1420. break;
  1421. last = td;
  1422. td = dma_pool_alloc(ep->dev->data_requests, gfp_flags,
  1423. &dma_addr);
  1424. if (!td)
  1425. goto nomem;
  1426. i += buf_len;
  1427. td->dataptr = req->td_data->dataptr + i;
  1428. last->next = dma_addr;
  1429. }
  1430. req->td_data_last = td;
  1431. td->status |= PCH_UDC_DMA_LAST;
  1432. td->next = req->td_data_phys;
  1433. req->chain_len = len;
  1434. return 0;
  1435. nomem:
  1436. if (len > 1) {
  1437. req->chain_len = len;
  1438. pch_udc_free_dma_chain(ep->dev, req);
  1439. }
  1440. req->chain_len = 1;
  1441. return -ENOMEM;
  1442. }
  1443. /**
  1444. * prepare_dma() - This function creates and initializes the DMA chain
  1445. * for the request
  1446. * @ep: Reference to the endpoint structure
  1447. * @req: Reference to the request
  1448. * @gfp: Flag to be used while mapping the data buffer
  1449. *
  1450. * Return codes:
  1451. * 0: Success
  1452. * Other 0: linux error number on failure
  1453. */
  1454. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1455. gfp_t gfp)
  1456. {
  1457. int retval;
  1458. /* Allocate and create a DMA chain */
  1459. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1460. if (retval) {
  1461. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1462. return retval;
  1463. }
  1464. if (ep->in)
  1465. req->td_data->status = (req->td_data->status &
  1466. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1467. return 0;
  1468. }
  1469. /**
  1470. * process_zlp() - This function process zero length packets
  1471. * from the gadget driver
  1472. * @ep: Reference to the endpoint structure
  1473. * @req: Reference to the request
  1474. */
  1475. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1476. {
  1477. struct pch_udc_dev *dev = ep->dev;
  1478. /* IN zlp's are handled by hardware */
  1479. complete_req(ep, req, 0);
  1480. /* if set_config or set_intf is waiting for ack by zlp
  1481. * then set CSR_DONE
  1482. */
  1483. if (dev->set_cfg_not_acked) {
  1484. pch_udc_set_csr_done(dev);
  1485. dev->set_cfg_not_acked = 0;
  1486. }
  1487. /* setup command is ACK'ed now by zlp */
  1488. if (!dev->stall && dev->waiting_zlp_ack) {
  1489. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1490. dev->waiting_zlp_ack = 0;
  1491. }
  1492. }
  1493. /**
  1494. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1495. * @ep: Reference to the endpoint structure
  1496. * @req: Reference to the request structure
  1497. */
  1498. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1499. struct pch_udc_request *req)
  1500. {
  1501. struct pch_udc_data_dma_desc *td_data;
  1502. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1503. td_data = req->td_data;
  1504. /* Set the status bits for all descriptors */
  1505. while (1) {
  1506. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1507. PCH_UDC_BS_HST_RDY;
  1508. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1509. break;
  1510. td_data = phys_to_virt(td_data->next);
  1511. }
  1512. /* Write the descriptor pointer */
  1513. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1514. req->dma_going = 1;
  1515. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1516. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1517. pch_udc_ep_clear_nak(ep);
  1518. pch_udc_ep_set_rrdy(ep);
  1519. }
  1520. /**
  1521. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1522. * from gadget driver
  1523. * @usbep: Reference to the USB endpoint structure
  1524. * @desc: Reference to the USB endpoint descriptor structure
  1525. *
  1526. * Return codes:
  1527. * 0: Success
  1528. * -EINVAL:
  1529. * -ESHUTDOWN:
  1530. */
  1531. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1532. const struct usb_endpoint_descriptor *desc)
  1533. {
  1534. struct pch_udc_ep *ep;
  1535. struct pch_udc_dev *dev;
  1536. unsigned long iflags;
  1537. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1538. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1539. return -EINVAL;
  1540. ep = container_of(usbep, struct pch_udc_ep, ep);
  1541. dev = ep->dev;
  1542. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1543. return -ESHUTDOWN;
  1544. spin_lock_irqsave(&dev->lock, iflags);
  1545. ep->ep.desc = desc;
  1546. ep->halted = 0;
  1547. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1548. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1549. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1550. spin_unlock_irqrestore(&dev->lock, iflags);
  1551. return 0;
  1552. }
  1553. /**
  1554. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1555. * from gadget driver
  1556. * @usbep Reference to the USB endpoint structure
  1557. *
  1558. * Return codes:
  1559. * 0: Success
  1560. * -EINVAL:
  1561. */
  1562. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1563. {
  1564. struct pch_udc_ep *ep;
  1565. unsigned long iflags;
  1566. if (!usbep)
  1567. return -EINVAL;
  1568. ep = container_of(usbep, struct pch_udc_ep, ep);
  1569. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1570. return -EINVAL;
  1571. spin_lock_irqsave(&ep->dev->lock, iflags);
  1572. empty_req_queue(ep);
  1573. ep->halted = 1;
  1574. pch_udc_ep_disable(ep);
  1575. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1576. ep->ep.desc = NULL;
  1577. INIT_LIST_HEAD(&ep->queue);
  1578. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1579. return 0;
  1580. }
  1581. /**
  1582. * pch_udc_alloc_request() - This function allocates request structure.
  1583. * It is called by gadget driver
  1584. * @usbep: Reference to the USB endpoint structure
  1585. * @gfp: Flag to be used while allocating memory
  1586. *
  1587. * Return codes:
  1588. * NULL: Failure
  1589. * Allocated address: Success
  1590. */
  1591. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1592. gfp_t gfp)
  1593. {
  1594. struct pch_udc_request *req;
  1595. struct pch_udc_ep *ep;
  1596. struct pch_udc_data_dma_desc *dma_desc;
  1597. if (!usbep)
  1598. return NULL;
  1599. ep = container_of(usbep, struct pch_udc_ep, ep);
  1600. req = kzalloc(sizeof *req, gfp);
  1601. if (!req)
  1602. return NULL;
  1603. req->req.dma = DMA_ADDR_INVALID;
  1604. req->dma = DMA_ADDR_INVALID;
  1605. INIT_LIST_HEAD(&req->queue);
  1606. if (!ep->dev->dma_addr)
  1607. return &req->req;
  1608. /* ep0 in requests are allocated from data pool here */
  1609. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  1610. &req->td_data_phys);
  1611. if (NULL == dma_desc) {
  1612. kfree(req);
  1613. return NULL;
  1614. }
  1615. /* prevent from using desc. - set HOST BUSY */
  1616. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1617. dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
  1618. req->td_data = dma_desc;
  1619. req->td_data_last = dma_desc;
  1620. req->chain_len = 1;
  1621. return &req->req;
  1622. }
  1623. /**
  1624. * pch_udc_free_request() - This function frees request structure.
  1625. * It is called by gadget driver
  1626. * @usbep: Reference to the USB endpoint structure
  1627. * @usbreq: Reference to the USB request
  1628. */
  1629. static void pch_udc_free_request(struct usb_ep *usbep,
  1630. struct usb_request *usbreq)
  1631. {
  1632. struct pch_udc_ep *ep;
  1633. struct pch_udc_request *req;
  1634. struct pch_udc_dev *dev;
  1635. if (!usbep || !usbreq)
  1636. return;
  1637. ep = container_of(usbep, struct pch_udc_ep, ep);
  1638. req = container_of(usbreq, struct pch_udc_request, req);
  1639. dev = ep->dev;
  1640. if (!list_empty(&req->queue))
  1641. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1642. __func__, usbep->name, req);
  1643. if (req->td_data != NULL) {
  1644. if (req->chain_len > 1)
  1645. pch_udc_free_dma_chain(ep->dev, req);
  1646. dma_pool_free(ep->dev->data_requests, req->td_data,
  1647. req->td_data_phys);
  1648. }
  1649. kfree(req);
  1650. }
  1651. /**
  1652. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1653. * by gadget driver
  1654. * @usbep: Reference to the USB endpoint structure
  1655. * @usbreq: Reference to the USB request
  1656. * @gfp: Flag to be used while mapping the data buffer
  1657. *
  1658. * Return codes:
  1659. * 0: Success
  1660. * linux error number: Failure
  1661. */
  1662. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1663. gfp_t gfp)
  1664. {
  1665. int retval = 0;
  1666. struct pch_udc_ep *ep;
  1667. struct pch_udc_dev *dev;
  1668. struct pch_udc_request *req;
  1669. unsigned long iflags;
  1670. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1671. return -EINVAL;
  1672. ep = container_of(usbep, struct pch_udc_ep, ep);
  1673. dev = ep->dev;
  1674. if (!ep->ep.desc && ep->num)
  1675. return -EINVAL;
  1676. req = container_of(usbreq, struct pch_udc_request, req);
  1677. if (!list_empty(&req->queue))
  1678. return -EINVAL;
  1679. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1680. return -ESHUTDOWN;
  1681. spin_lock_irqsave(&dev->lock, iflags);
  1682. /* map the buffer for dma */
  1683. if (usbreq->length &&
  1684. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1685. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1686. if (ep->in)
  1687. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1688. usbreq->buf,
  1689. usbreq->length,
  1690. DMA_TO_DEVICE);
  1691. else
  1692. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1693. usbreq->buf,
  1694. usbreq->length,
  1695. DMA_FROM_DEVICE);
  1696. } else {
  1697. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1698. if (!req->buf) {
  1699. retval = -ENOMEM;
  1700. goto probe_end;
  1701. }
  1702. if (ep->in) {
  1703. memcpy(req->buf, usbreq->buf, usbreq->length);
  1704. req->dma = dma_map_single(&dev->pdev->dev,
  1705. req->buf,
  1706. usbreq->length,
  1707. DMA_TO_DEVICE);
  1708. } else
  1709. req->dma = dma_map_single(&dev->pdev->dev,
  1710. req->buf,
  1711. usbreq->length,
  1712. DMA_FROM_DEVICE);
  1713. }
  1714. req->dma_mapped = 1;
  1715. }
  1716. if (usbreq->length > 0) {
  1717. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1718. if (retval)
  1719. goto probe_end;
  1720. }
  1721. usbreq->actual = 0;
  1722. usbreq->status = -EINPROGRESS;
  1723. req->dma_done = 0;
  1724. if (list_empty(&ep->queue) && !ep->halted) {
  1725. /* no pending transfer, so start this req */
  1726. if (!usbreq->length) {
  1727. process_zlp(ep, req);
  1728. retval = 0;
  1729. goto probe_end;
  1730. }
  1731. if (!ep->in) {
  1732. pch_udc_start_rxrequest(ep, req);
  1733. } else {
  1734. /*
  1735. * For IN trfr the descriptors will be programmed and
  1736. * P bit will be set when
  1737. * we get an IN token
  1738. */
  1739. pch_udc_wait_ep_stall(ep);
  1740. pch_udc_ep_clear_nak(ep);
  1741. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1742. }
  1743. }
  1744. /* Now add this request to the ep's pending requests */
  1745. if (req != NULL)
  1746. list_add_tail(&req->queue, &ep->queue);
  1747. probe_end:
  1748. spin_unlock_irqrestore(&dev->lock, iflags);
  1749. return retval;
  1750. }
  1751. /**
  1752. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1753. * It is called by gadget driver
  1754. * @usbep: Reference to the USB endpoint structure
  1755. * @usbreq: Reference to the USB request
  1756. *
  1757. * Return codes:
  1758. * 0: Success
  1759. * linux error number: Failure
  1760. */
  1761. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1762. struct usb_request *usbreq)
  1763. {
  1764. struct pch_udc_ep *ep;
  1765. struct pch_udc_request *req;
  1766. unsigned long flags;
  1767. int ret = -EINVAL;
  1768. ep = container_of(usbep, struct pch_udc_ep, ep);
  1769. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1770. return ret;
  1771. req = container_of(usbreq, struct pch_udc_request, req);
  1772. spin_lock_irqsave(&ep->dev->lock, flags);
  1773. /* make sure it's still queued on this endpoint */
  1774. list_for_each_entry(req, &ep->queue, queue) {
  1775. if (&req->req == usbreq) {
  1776. pch_udc_ep_set_nak(ep);
  1777. if (!list_empty(&req->queue))
  1778. complete_req(ep, req, -ECONNRESET);
  1779. ret = 0;
  1780. break;
  1781. }
  1782. }
  1783. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1784. return ret;
  1785. }
  1786. /**
  1787. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1788. * feature
  1789. * @usbep: Reference to the USB endpoint structure
  1790. * @halt: Specifies whether to set or clear the feature
  1791. *
  1792. * Return codes:
  1793. * 0: Success
  1794. * linux error number: Failure
  1795. */
  1796. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1797. {
  1798. struct pch_udc_ep *ep;
  1799. unsigned long iflags;
  1800. int ret;
  1801. if (!usbep)
  1802. return -EINVAL;
  1803. ep = container_of(usbep, struct pch_udc_ep, ep);
  1804. if (!ep->ep.desc && !ep->num)
  1805. return -EINVAL;
  1806. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1807. return -ESHUTDOWN;
  1808. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1809. if (list_empty(&ep->queue)) {
  1810. if (halt) {
  1811. if (ep->num == PCH_UDC_EP0)
  1812. ep->dev->stall = 1;
  1813. pch_udc_ep_set_stall(ep);
  1814. pch_udc_enable_ep_interrupts(
  1815. ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1816. } else {
  1817. pch_udc_ep_clear_stall(ep);
  1818. }
  1819. ret = 0;
  1820. } else {
  1821. ret = -EAGAIN;
  1822. }
  1823. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1824. return ret;
  1825. }
  1826. /**
  1827. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1828. * halt feature
  1829. * @usbep: Reference to the USB endpoint structure
  1830. * @halt: Specifies whether to set or clear the feature
  1831. *
  1832. * Return codes:
  1833. * 0: Success
  1834. * linux error number: Failure
  1835. */
  1836. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1837. {
  1838. struct pch_udc_ep *ep;
  1839. unsigned long iflags;
  1840. int ret;
  1841. if (!usbep)
  1842. return -EINVAL;
  1843. ep = container_of(usbep, struct pch_udc_ep, ep);
  1844. if (!ep->ep.desc && !ep->num)
  1845. return -EINVAL;
  1846. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1847. return -ESHUTDOWN;
  1848. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1849. if (!list_empty(&ep->queue)) {
  1850. ret = -EAGAIN;
  1851. } else {
  1852. if (ep->num == PCH_UDC_EP0)
  1853. ep->dev->stall = 1;
  1854. pch_udc_ep_set_stall(ep);
  1855. pch_udc_enable_ep_interrupts(ep->dev,
  1856. PCH_UDC_EPINT(ep->in, ep->num));
  1857. ep->dev->prot_stall = 1;
  1858. ret = 0;
  1859. }
  1860. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1861. return ret;
  1862. }
  1863. /**
  1864. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1865. * @usbep: Reference to the USB endpoint structure
  1866. */
  1867. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1868. {
  1869. struct pch_udc_ep *ep;
  1870. if (!usbep)
  1871. return;
  1872. ep = container_of(usbep, struct pch_udc_ep, ep);
  1873. if (ep->ep.desc || !ep->num)
  1874. pch_udc_ep_fifo_flush(ep, ep->in);
  1875. }
  1876. static const struct usb_ep_ops pch_udc_ep_ops = {
  1877. .enable = pch_udc_pcd_ep_enable,
  1878. .disable = pch_udc_pcd_ep_disable,
  1879. .alloc_request = pch_udc_alloc_request,
  1880. .free_request = pch_udc_free_request,
  1881. .queue = pch_udc_pcd_queue,
  1882. .dequeue = pch_udc_pcd_dequeue,
  1883. .set_halt = pch_udc_pcd_set_halt,
  1884. .set_wedge = pch_udc_pcd_set_wedge,
  1885. .fifo_status = NULL,
  1886. .fifo_flush = pch_udc_pcd_fifo_flush,
  1887. };
  1888. /**
  1889. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1890. * @td_stp: Reference to the SETP buffer structure
  1891. */
  1892. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1893. {
  1894. static u32 pky_marker;
  1895. if (!td_stp)
  1896. return;
  1897. td_stp->reserved = ++pky_marker;
  1898. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1899. td_stp->status = PCH_UDC_BS_HST_RDY;
  1900. }
  1901. /**
  1902. * pch_udc_start_next_txrequest() - This function starts
  1903. * the next transmission requirement
  1904. * @ep: Reference to the endpoint structure
  1905. */
  1906. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1907. {
  1908. struct pch_udc_request *req;
  1909. struct pch_udc_data_dma_desc *td_data;
  1910. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1911. return;
  1912. if (list_empty(&ep->queue))
  1913. return;
  1914. /* next request */
  1915. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1916. if (req->dma_going)
  1917. return;
  1918. if (!req->td_data)
  1919. return;
  1920. pch_udc_wait_ep_stall(ep);
  1921. req->dma_going = 1;
  1922. pch_udc_ep_set_ddptr(ep, 0);
  1923. td_data = req->td_data;
  1924. while (1) {
  1925. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1926. PCH_UDC_BS_HST_RDY;
  1927. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1928. break;
  1929. td_data = phys_to_virt(td_data->next);
  1930. }
  1931. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1932. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1933. pch_udc_ep_set_pd(ep);
  1934. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1935. pch_udc_ep_clear_nak(ep);
  1936. }
  1937. /**
  1938. * pch_udc_complete_transfer() - This function completes a transfer
  1939. * @ep: Reference to the endpoint structure
  1940. */
  1941. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1942. {
  1943. struct pch_udc_request *req;
  1944. struct pch_udc_dev *dev = ep->dev;
  1945. if (list_empty(&ep->queue))
  1946. return;
  1947. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1948. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1949. PCH_UDC_BS_DMA_DONE)
  1950. return;
  1951. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1952. PCH_UDC_RTS_SUCC) {
  1953. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1954. "epstatus=0x%08x\n",
  1955. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1956. (int)(ep->epsts));
  1957. return;
  1958. }
  1959. req->req.actual = req->req.length;
  1960. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1961. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1962. complete_req(ep, req, 0);
  1963. req->dma_going = 0;
  1964. if (!list_empty(&ep->queue)) {
  1965. pch_udc_wait_ep_stall(ep);
  1966. pch_udc_ep_clear_nak(ep);
  1967. pch_udc_enable_ep_interrupts(ep->dev,
  1968. PCH_UDC_EPINT(ep->in, ep->num));
  1969. } else {
  1970. pch_udc_disable_ep_interrupts(ep->dev,
  1971. PCH_UDC_EPINT(ep->in, ep->num));
  1972. }
  1973. }
  1974. /**
  1975. * pch_udc_complete_receiver() - This function completes a receiver
  1976. * @ep: Reference to the endpoint structure
  1977. */
  1978. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1979. {
  1980. struct pch_udc_request *req;
  1981. struct pch_udc_dev *dev = ep->dev;
  1982. unsigned int count;
  1983. struct pch_udc_data_dma_desc *td;
  1984. dma_addr_t addr;
  1985. if (list_empty(&ep->queue))
  1986. return;
  1987. /* next request */
  1988. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1989. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1990. pch_udc_ep_set_ddptr(ep, 0);
  1991. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1992. PCH_UDC_BS_DMA_DONE)
  1993. td = req->td_data_last;
  1994. else
  1995. td = req->td_data;
  1996. while (1) {
  1997. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1998. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1999. "epstatus=0x%08x\n",
  2000. (req->td_data->status & PCH_UDC_RXTX_STS),
  2001. (int)(ep->epsts));
  2002. return;
  2003. }
  2004. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2005. if (td->status & PCH_UDC_DMA_LAST) {
  2006. count = td->status & PCH_UDC_RXTX_BYTES;
  2007. break;
  2008. }
  2009. if (td == req->td_data_last) {
  2010. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2011. return;
  2012. }
  2013. addr = (dma_addr_t)td->next;
  2014. td = phys_to_virt(addr);
  2015. }
  2016. /* on 64k packets the RXBYTES field is zero */
  2017. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2018. count = UDC_DMA_MAXPACKET;
  2019. req->td_data->status |= PCH_UDC_DMA_LAST;
  2020. td->status |= PCH_UDC_BS_HST_BSY;
  2021. req->dma_going = 0;
  2022. req->req.actual = count;
  2023. complete_req(ep, req, 0);
  2024. /* If there is a new/failed requests try that now */
  2025. if (!list_empty(&ep->queue)) {
  2026. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2027. pch_udc_start_rxrequest(ep, req);
  2028. }
  2029. }
  2030. /**
  2031. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2032. * for IN endpoints
  2033. * @dev: Reference to the device structure
  2034. * @ep_num: Endpoint that generated the interrupt
  2035. */
  2036. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2037. {
  2038. u32 epsts;
  2039. struct pch_udc_ep *ep;
  2040. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2041. epsts = ep->epsts;
  2042. ep->epsts = 0;
  2043. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2044. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2045. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2046. return;
  2047. if ((epsts & UDC_EPSTS_BNA))
  2048. return;
  2049. if (epsts & UDC_EPSTS_HE)
  2050. return;
  2051. if (epsts & UDC_EPSTS_RSS) {
  2052. pch_udc_ep_set_stall(ep);
  2053. pch_udc_enable_ep_interrupts(ep->dev,
  2054. PCH_UDC_EPINT(ep->in, ep->num));
  2055. }
  2056. if (epsts & UDC_EPSTS_RCS) {
  2057. if (!dev->prot_stall) {
  2058. pch_udc_ep_clear_stall(ep);
  2059. } else {
  2060. pch_udc_ep_set_stall(ep);
  2061. pch_udc_enable_ep_interrupts(ep->dev,
  2062. PCH_UDC_EPINT(ep->in, ep->num));
  2063. }
  2064. }
  2065. if (epsts & UDC_EPSTS_TDC)
  2066. pch_udc_complete_transfer(ep);
  2067. /* On IN interrupt, provide data if we have any */
  2068. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2069. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2070. pch_udc_start_next_txrequest(ep);
  2071. }
  2072. /**
  2073. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2074. * @dev: Reference to the device structure
  2075. * @ep_num: Endpoint that generated the interrupt
  2076. */
  2077. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2078. {
  2079. u32 epsts;
  2080. struct pch_udc_ep *ep;
  2081. struct pch_udc_request *req = NULL;
  2082. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2083. epsts = ep->epsts;
  2084. ep->epsts = 0;
  2085. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2086. /* next request */
  2087. req = list_entry(ep->queue.next, struct pch_udc_request,
  2088. queue);
  2089. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2090. PCH_UDC_BS_DMA_DONE) {
  2091. if (!req->dma_going)
  2092. pch_udc_start_rxrequest(ep, req);
  2093. return;
  2094. }
  2095. }
  2096. if (epsts & UDC_EPSTS_HE)
  2097. return;
  2098. if (epsts & UDC_EPSTS_RSS) {
  2099. pch_udc_ep_set_stall(ep);
  2100. pch_udc_enable_ep_interrupts(ep->dev,
  2101. PCH_UDC_EPINT(ep->in, ep->num));
  2102. }
  2103. if (epsts & UDC_EPSTS_RCS) {
  2104. if (!dev->prot_stall) {
  2105. pch_udc_ep_clear_stall(ep);
  2106. } else {
  2107. pch_udc_ep_set_stall(ep);
  2108. pch_udc_enable_ep_interrupts(ep->dev,
  2109. PCH_UDC_EPINT(ep->in, ep->num));
  2110. }
  2111. }
  2112. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2113. UDC_EPSTS_OUT_DATA) {
  2114. if (ep->dev->prot_stall == 1) {
  2115. pch_udc_ep_set_stall(ep);
  2116. pch_udc_enable_ep_interrupts(ep->dev,
  2117. PCH_UDC_EPINT(ep->in, ep->num));
  2118. } else {
  2119. pch_udc_complete_receiver(ep);
  2120. }
  2121. }
  2122. if (list_empty(&ep->queue))
  2123. pch_udc_set_dma(dev, DMA_DIR_RX);
  2124. }
  2125. /**
  2126. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2127. * @dev: Reference to the device structure
  2128. */
  2129. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2130. {
  2131. u32 epsts;
  2132. struct pch_udc_ep *ep;
  2133. struct pch_udc_ep *ep_out;
  2134. ep = &dev->ep[UDC_EP0IN_IDX];
  2135. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2136. epsts = ep->epsts;
  2137. ep->epsts = 0;
  2138. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2139. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2140. UDC_EPSTS_XFERDONE)))
  2141. return;
  2142. if ((epsts & UDC_EPSTS_BNA))
  2143. return;
  2144. if (epsts & UDC_EPSTS_HE)
  2145. return;
  2146. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2147. pch_udc_complete_transfer(ep);
  2148. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2149. ep_out->td_data->status = (ep_out->td_data->status &
  2150. ~PCH_UDC_BUFF_STS) |
  2151. PCH_UDC_BS_HST_RDY;
  2152. pch_udc_ep_clear_nak(ep_out);
  2153. pch_udc_set_dma(dev, DMA_DIR_RX);
  2154. pch_udc_ep_set_rrdy(ep_out);
  2155. }
  2156. /* On IN interrupt, provide data if we have any */
  2157. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2158. !(epsts & UDC_EPSTS_TXEMPTY))
  2159. pch_udc_start_next_txrequest(ep);
  2160. }
  2161. /**
  2162. * pch_udc_svc_control_out() - Routine that handle Control
  2163. * OUT endpoint interrupts
  2164. * @dev: Reference to the device structure
  2165. */
  2166. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2167. __releases(&dev->lock)
  2168. __acquires(&dev->lock)
  2169. {
  2170. u32 stat;
  2171. int setup_supported;
  2172. struct pch_udc_ep *ep;
  2173. ep = &dev->ep[UDC_EP0OUT_IDX];
  2174. stat = ep->epsts;
  2175. ep->epsts = 0;
  2176. /* If setup data */
  2177. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2178. UDC_EPSTS_OUT_SETUP) {
  2179. dev->stall = 0;
  2180. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2181. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2182. dev->setup_data = ep->td_stp->request;
  2183. pch_udc_init_setup_buff(ep->td_stp);
  2184. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2185. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2186. dev->ep[UDC_EP0IN_IDX].in);
  2187. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2188. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2189. else /* OUT */
  2190. dev->gadget.ep0 = &ep->ep;
  2191. spin_lock(&dev->lock);
  2192. /* If Mass storage Reset */
  2193. if ((dev->setup_data.bRequestType == 0x21) &&
  2194. (dev->setup_data.bRequest == 0xFF))
  2195. dev->prot_stall = 0;
  2196. /* call gadget with setup data received */
  2197. setup_supported = dev->driver->setup(&dev->gadget,
  2198. &dev->setup_data);
  2199. spin_unlock(&dev->lock);
  2200. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2201. ep->td_data->status = (ep->td_data->status &
  2202. ~PCH_UDC_BUFF_STS) |
  2203. PCH_UDC_BS_HST_RDY;
  2204. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2205. }
  2206. /* ep0 in returns data on IN phase */
  2207. if (setup_supported >= 0 && setup_supported <
  2208. UDC_EP0IN_MAX_PKT_SIZE) {
  2209. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2210. /* Gadget would have queued a request when
  2211. * we called the setup */
  2212. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2213. pch_udc_set_dma(dev, DMA_DIR_RX);
  2214. pch_udc_ep_clear_nak(ep);
  2215. }
  2216. } else if (setup_supported < 0) {
  2217. /* if unsupported request, then stall */
  2218. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2219. pch_udc_enable_ep_interrupts(ep->dev,
  2220. PCH_UDC_EPINT(ep->in, ep->num));
  2221. dev->stall = 0;
  2222. pch_udc_set_dma(dev, DMA_DIR_RX);
  2223. } else {
  2224. dev->waiting_zlp_ack = 1;
  2225. }
  2226. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2227. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2228. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2229. pch_udc_ep_set_ddptr(ep, 0);
  2230. if (!list_empty(&ep->queue)) {
  2231. ep->epsts = stat;
  2232. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2233. }
  2234. pch_udc_set_dma(dev, DMA_DIR_RX);
  2235. }
  2236. pch_udc_ep_set_rrdy(ep);
  2237. }
  2238. /**
  2239. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2240. * and clears NAK status
  2241. * @dev: Reference to the device structure
  2242. * @ep_num: End point number
  2243. */
  2244. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2245. {
  2246. struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2247. if (list_empty(&ep->queue))
  2248. return;
  2249. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  2250. pch_udc_ep_clear_nak(ep);
  2251. }
  2252. /**
  2253. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2254. * @dev: Reference to the device structure
  2255. * @ep_intr: Status of endpoint interrupt
  2256. */
  2257. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2258. {
  2259. int i;
  2260. struct pch_udc_ep *ep;
  2261. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2262. /* IN */
  2263. if (ep_intr & (0x1 << i)) {
  2264. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2265. ep->epsts = pch_udc_read_ep_status(ep);
  2266. pch_udc_clear_ep_status(ep, ep->epsts);
  2267. }
  2268. /* OUT */
  2269. if (ep_intr & (0x10000 << i)) {
  2270. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2271. ep->epsts = pch_udc_read_ep_status(ep);
  2272. pch_udc_clear_ep_status(ep, ep->epsts);
  2273. }
  2274. }
  2275. }
  2276. /**
  2277. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2278. * for traffic after a reset
  2279. * @dev: Reference to the device structure
  2280. */
  2281. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2282. {
  2283. struct pch_udc_ep *ep;
  2284. u32 val;
  2285. /* Setup the IN endpoint */
  2286. ep = &dev->ep[UDC_EP0IN_IDX];
  2287. pch_udc_clear_ep_control(ep);
  2288. pch_udc_ep_fifo_flush(ep, ep->in);
  2289. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2290. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2291. /* Initialize the IN EP Descriptor */
  2292. ep->td_data = NULL;
  2293. ep->td_stp = NULL;
  2294. ep->td_data_phys = 0;
  2295. ep->td_stp_phys = 0;
  2296. /* Setup the OUT endpoint */
  2297. ep = &dev->ep[UDC_EP0OUT_IDX];
  2298. pch_udc_clear_ep_control(ep);
  2299. pch_udc_ep_fifo_flush(ep, ep->in);
  2300. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2301. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2302. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2303. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2304. /* Initialize the SETUP buffer */
  2305. pch_udc_init_setup_buff(ep->td_stp);
  2306. /* Write the pointer address of dma descriptor */
  2307. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2308. /* Write the pointer address of Setup descriptor */
  2309. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2310. /* Initialize the dma descriptor */
  2311. ep->td_data->status = PCH_UDC_DMA_LAST;
  2312. ep->td_data->dataptr = dev->dma_addr;
  2313. ep->td_data->next = ep->td_data_phys;
  2314. pch_udc_ep_clear_nak(ep);
  2315. }
  2316. /**
  2317. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2318. * @dev: Reference to driver structure
  2319. */
  2320. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2321. {
  2322. struct pch_udc_ep *ep;
  2323. int i;
  2324. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2325. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2326. /* Mask all endpoint interrupts */
  2327. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2328. /* clear all endpoint interrupts */
  2329. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2330. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2331. ep = &dev->ep[i];
  2332. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2333. pch_udc_clear_ep_control(ep);
  2334. pch_udc_ep_set_ddptr(ep, 0);
  2335. pch_udc_write_csr(ep->dev, 0x00, i);
  2336. }
  2337. dev->stall = 0;
  2338. dev->prot_stall = 0;
  2339. dev->waiting_zlp_ack = 0;
  2340. dev->set_cfg_not_acked = 0;
  2341. /* disable ep to empty req queue. Skip the control EP's */
  2342. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2343. ep = &dev->ep[i];
  2344. pch_udc_ep_set_nak(ep);
  2345. pch_udc_ep_fifo_flush(ep, ep->in);
  2346. /* Complete request queue */
  2347. empty_req_queue(ep);
  2348. }
  2349. if (dev->driver) {
  2350. spin_unlock(&dev->lock);
  2351. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2352. spin_lock(&dev->lock);
  2353. }
  2354. }
  2355. /**
  2356. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2357. * done interrupt
  2358. * @dev: Reference to driver structure
  2359. */
  2360. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2361. {
  2362. u32 dev_stat, dev_speed;
  2363. u32 speed = USB_SPEED_FULL;
  2364. dev_stat = pch_udc_read_device_status(dev);
  2365. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2366. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2367. switch (dev_speed) {
  2368. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2369. speed = USB_SPEED_HIGH;
  2370. break;
  2371. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2372. speed = USB_SPEED_FULL;
  2373. break;
  2374. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2375. speed = USB_SPEED_LOW;
  2376. break;
  2377. default:
  2378. BUG();
  2379. }
  2380. dev->gadget.speed = speed;
  2381. pch_udc_activate_control_ep(dev);
  2382. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2383. pch_udc_set_dma(dev, DMA_DIR_TX);
  2384. pch_udc_set_dma(dev, DMA_DIR_RX);
  2385. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2386. /* enable device interrupts */
  2387. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2388. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2389. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2390. }
  2391. /**
  2392. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2393. * interrupt
  2394. * @dev: Reference to driver structure
  2395. */
  2396. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2397. {
  2398. u32 reg, dev_stat = 0;
  2399. int i;
  2400. dev_stat = pch_udc_read_device_status(dev);
  2401. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2402. UDC_DEVSTS_INTF_SHIFT;
  2403. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2404. UDC_DEVSTS_ALT_SHIFT;
  2405. dev->set_cfg_not_acked = 1;
  2406. /* Construct the usb request for gadget driver and inform it */
  2407. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2408. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2409. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2410. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2411. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2412. /* programm the Endpoint Cfg registers */
  2413. /* Only one end point cfg register */
  2414. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2415. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2416. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2417. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2418. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2419. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2420. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2421. /* clear stall bits */
  2422. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2423. dev->ep[i].halted = 0;
  2424. }
  2425. dev->stall = 0;
  2426. spin_unlock(&dev->lock);
  2427. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2428. spin_lock(&dev->lock);
  2429. }
  2430. /**
  2431. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2432. * interrupt
  2433. * @dev: Reference to driver structure
  2434. */
  2435. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2436. {
  2437. int i;
  2438. u32 reg, dev_stat = 0;
  2439. dev_stat = pch_udc_read_device_status(dev);
  2440. dev->set_cfg_not_acked = 1;
  2441. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2442. UDC_DEVSTS_CFG_SHIFT;
  2443. /* make usb request for gadget driver */
  2444. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2445. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2446. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2447. /* program the NE registers */
  2448. /* Only one end point cfg register */
  2449. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2450. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2451. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2452. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2453. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2454. /* clear stall bits */
  2455. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2456. dev->ep[i].halted = 0;
  2457. }
  2458. dev->stall = 0;
  2459. /* call gadget zero with setup data received */
  2460. spin_unlock(&dev->lock);
  2461. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2462. spin_lock(&dev->lock);
  2463. }
  2464. /**
  2465. * pch_udc_dev_isr() - This function services device interrupts
  2466. * by invoking appropriate routines.
  2467. * @dev: Reference to the device structure
  2468. * @dev_intr: The Device interrupt status.
  2469. */
  2470. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2471. {
  2472. int vbus;
  2473. /* USB Reset Interrupt */
  2474. if (dev_intr & UDC_DEVINT_UR) {
  2475. pch_udc_svc_ur_interrupt(dev);
  2476. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2477. }
  2478. /* Enumeration Done Interrupt */
  2479. if (dev_intr & UDC_DEVINT_ENUM) {
  2480. pch_udc_svc_enum_interrupt(dev);
  2481. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2482. }
  2483. /* Set Interface Interrupt */
  2484. if (dev_intr & UDC_DEVINT_SI)
  2485. pch_udc_svc_intf_interrupt(dev);
  2486. /* Set Config Interrupt */
  2487. if (dev_intr & UDC_DEVINT_SC)
  2488. pch_udc_svc_cfg_interrupt(dev);
  2489. /* USB Suspend interrupt */
  2490. if (dev_intr & UDC_DEVINT_US) {
  2491. if (dev->driver
  2492. && dev->driver->suspend) {
  2493. spin_unlock(&dev->lock);
  2494. dev->driver->suspend(&dev->gadget);
  2495. spin_lock(&dev->lock);
  2496. }
  2497. vbus = pch_vbus_gpio_get_value(dev);
  2498. if ((dev->vbus_session == 0)
  2499. && (vbus != 1)) {
  2500. if (dev->driver && dev->driver->disconnect) {
  2501. spin_unlock(&dev->lock);
  2502. dev->driver->disconnect(&dev->gadget);
  2503. spin_lock(&dev->lock);
  2504. }
  2505. pch_udc_reconnect(dev);
  2506. } else if ((dev->vbus_session == 0)
  2507. && (vbus == 1)
  2508. && !dev->vbus_gpio.intr)
  2509. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2510. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2511. }
  2512. /* Clear the SOF interrupt, if enabled */
  2513. if (dev_intr & UDC_DEVINT_SOF)
  2514. dev_dbg(&dev->pdev->dev, "SOF\n");
  2515. /* ES interrupt, IDLE > 3ms on the USB */
  2516. if (dev_intr & UDC_DEVINT_ES)
  2517. dev_dbg(&dev->pdev->dev, "ES\n");
  2518. /* RWKP interrupt */
  2519. if (dev_intr & UDC_DEVINT_RWKP)
  2520. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2521. }
  2522. /**
  2523. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2524. * @irq: Interrupt request number
  2525. * @dev: Reference to the device structure
  2526. */
  2527. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2528. {
  2529. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2530. u32 dev_intr, ep_intr;
  2531. int i;
  2532. dev_intr = pch_udc_read_device_interrupts(dev);
  2533. ep_intr = pch_udc_read_ep_interrupts(dev);
  2534. /* For a hot plug, this find that the controller is hung up. */
  2535. if (dev_intr == ep_intr)
  2536. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2537. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2538. /* The controller is reset */
  2539. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2540. return IRQ_HANDLED;
  2541. }
  2542. if (dev_intr)
  2543. /* Clear device interrupts */
  2544. pch_udc_write_device_interrupts(dev, dev_intr);
  2545. if (ep_intr)
  2546. /* Clear ep interrupts */
  2547. pch_udc_write_ep_interrupts(dev, ep_intr);
  2548. if (!dev_intr && !ep_intr)
  2549. return IRQ_NONE;
  2550. spin_lock(&dev->lock);
  2551. if (dev_intr)
  2552. pch_udc_dev_isr(dev, dev_intr);
  2553. if (ep_intr) {
  2554. pch_udc_read_all_epstatus(dev, ep_intr);
  2555. /* Process Control In interrupts, if present */
  2556. if (ep_intr & UDC_EPINT_IN_EP0) {
  2557. pch_udc_svc_control_in(dev);
  2558. pch_udc_postsvc_epinters(dev, 0);
  2559. }
  2560. /* Process Control Out interrupts, if present */
  2561. if (ep_intr & UDC_EPINT_OUT_EP0)
  2562. pch_udc_svc_control_out(dev);
  2563. /* Process data in end point interrupts */
  2564. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2565. if (ep_intr & (1 << i)) {
  2566. pch_udc_svc_data_in(dev, i);
  2567. pch_udc_postsvc_epinters(dev, i);
  2568. }
  2569. }
  2570. /* Process data out end point interrupts */
  2571. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2572. PCH_UDC_USED_EP_NUM); i++)
  2573. if (ep_intr & (1 << i))
  2574. pch_udc_svc_data_out(dev, i -
  2575. UDC_EPINT_OUT_SHIFT);
  2576. }
  2577. spin_unlock(&dev->lock);
  2578. return IRQ_HANDLED;
  2579. }
  2580. /**
  2581. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2582. * @dev: Reference to the device structure
  2583. */
  2584. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2585. {
  2586. /* enable ep0 interrupts */
  2587. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2588. UDC_EPINT_OUT_EP0);
  2589. /* enable device interrupts */
  2590. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2591. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2592. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2593. }
  2594. /**
  2595. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2596. * @dev: Reference to the driver structure
  2597. */
  2598. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2599. {
  2600. const char *const ep_string[] = {
  2601. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2602. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2603. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2604. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2605. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2606. "ep15in", "ep15out",
  2607. };
  2608. int i;
  2609. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2610. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2611. /* Initialize the endpoints structures */
  2612. memset(dev->ep, 0, sizeof dev->ep);
  2613. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2614. struct pch_udc_ep *ep = &dev->ep[i];
  2615. ep->dev = dev;
  2616. ep->halted = 1;
  2617. ep->num = i / 2;
  2618. ep->in = ~i & 1;
  2619. ep->ep.name = ep_string[i];
  2620. ep->ep.ops = &pch_udc_ep_ops;
  2621. if (ep->in) {
  2622. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2623. ep->ep.caps.dir_in = true;
  2624. } else {
  2625. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2626. UDC_EP_REG_SHIFT;
  2627. ep->ep.caps.dir_out = true;
  2628. }
  2629. if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
  2630. ep->ep.caps.type_control = true;
  2631. } else {
  2632. ep->ep.caps.type_iso = true;
  2633. ep->ep.caps.type_bulk = true;
  2634. ep->ep.caps.type_int = true;
  2635. }
  2636. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2637. usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
  2638. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2639. INIT_LIST_HEAD(&ep->queue);
  2640. }
  2641. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
  2642. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2643. /* remove ep0 in and out from the list. They have own pointer */
  2644. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2645. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2646. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2647. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2648. }
  2649. /**
  2650. * pch_udc_pcd_init() - This API initializes the driver structure
  2651. * @dev: Reference to the driver structure
  2652. *
  2653. * Return codes:
  2654. * 0: Success
  2655. */
  2656. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2657. {
  2658. pch_udc_init(dev);
  2659. pch_udc_pcd_reinit(dev);
  2660. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2661. return 0;
  2662. }
  2663. /**
  2664. * init_dma_pools() - create dma pools during initialization
  2665. * @pdev: reference to struct pci_dev
  2666. */
  2667. static int init_dma_pools(struct pch_udc_dev *dev)
  2668. {
  2669. struct pch_udc_stp_dma_desc *td_stp;
  2670. struct pch_udc_data_dma_desc *td_data;
  2671. void *ep0out_buf;
  2672. /* DMA setup */
  2673. dev->data_requests = dma_pool_create("data_requests", &dev->pdev->dev,
  2674. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2675. if (!dev->data_requests) {
  2676. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2677. __func__);
  2678. return -ENOMEM;
  2679. }
  2680. /* dma desc for setup data */
  2681. dev->stp_requests = dma_pool_create("setup requests", &dev->pdev->dev,
  2682. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2683. if (!dev->stp_requests) {
  2684. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2685. __func__);
  2686. return -ENOMEM;
  2687. }
  2688. /* setup */
  2689. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2690. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2691. if (!td_stp) {
  2692. dev_err(&dev->pdev->dev,
  2693. "%s: can't allocate setup dma descriptor\n", __func__);
  2694. return -ENOMEM;
  2695. }
  2696. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2697. /* data: 0 packets !? */
  2698. td_data = dma_pool_alloc(dev->data_requests, GFP_KERNEL,
  2699. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2700. if (!td_data) {
  2701. dev_err(&dev->pdev->dev,
  2702. "%s: can't allocate data dma descriptor\n", __func__);
  2703. return -ENOMEM;
  2704. }
  2705. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2706. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2707. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2708. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2709. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2710. ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
  2711. GFP_KERNEL);
  2712. if (!ep0out_buf)
  2713. return -ENOMEM;
  2714. dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
  2715. UDC_EP0OUT_BUFF_SIZE * 4,
  2716. DMA_FROM_DEVICE);
  2717. return 0;
  2718. }
  2719. static int pch_udc_start(struct usb_gadget *g,
  2720. struct usb_gadget_driver *driver)
  2721. {
  2722. struct pch_udc_dev *dev = to_pch_udc(g);
  2723. driver->driver.bus = NULL;
  2724. dev->driver = driver;
  2725. /* get ready for ep0 traffic */
  2726. pch_udc_setup_ep0(dev);
  2727. /* clear SD */
  2728. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2729. pch_udc_clear_disconnect(dev);
  2730. dev->connected = 1;
  2731. return 0;
  2732. }
  2733. static int pch_udc_stop(struct usb_gadget *g)
  2734. {
  2735. struct pch_udc_dev *dev = to_pch_udc(g);
  2736. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2737. /* Assures that there are no pending requests with this driver */
  2738. dev->driver = NULL;
  2739. dev->connected = 0;
  2740. /* set SD */
  2741. pch_udc_set_disconnect(dev);
  2742. return 0;
  2743. }
  2744. static void pch_udc_shutdown(struct pci_dev *pdev)
  2745. {
  2746. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2747. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2748. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2749. /* disable the pullup so the host will think we're gone */
  2750. pch_udc_set_disconnect(dev);
  2751. }
  2752. static void pch_udc_remove(struct pci_dev *pdev)
  2753. {
  2754. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2755. usb_del_gadget_udc(&dev->gadget);
  2756. /* gadget driver must not be registered */
  2757. if (dev->driver)
  2758. dev_err(&pdev->dev,
  2759. "%s: gadget driver still bound!!!\n", __func__);
  2760. /* dma pool cleanup */
  2761. dma_pool_destroy(dev->data_requests);
  2762. if (dev->stp_requests) {
  2763. /* cleanup DMA desc's for ep0in */
  2764. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2765. dma_pool_free(dev->stp_requests,
  2766. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2767. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2768. }
  2769. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2770. dma_pool_free(dev->stp_requests,
  2771. dev->ep[UDC_EP0OUT_IDX].td_data,
  2772. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2773. }
  2774. dma_pool_destroy(dev->stp_requests);
  2775. }
  2776. if (dev->dma_addr)
  2777. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2778. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2779. pch_vbus_gpio_free(dev);
  2780. pch_udc_exit(dev);
  2781. }
  2782. #ifdef CONFIG_PM_SLEEP
  2783. static int pch_udc_suspend(struct device *d)
  2784. {
  2785. struct pci_dev *pdev = to_pci_dev(d);
  2786. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2787. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2788. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2789. return 0;
  2790. }
  2791. static int pch_udc_resume(struct device *d)
  2792. {
  2793. return 0;
  2794. }
  2795. static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
  2796. #define PCH_UDC_PM_OPS (&pch_udc_pm)
  2797. #else
  2798. #define PCH_UDC_PM_OPS NULL
  2799. #endif /* CONFIG_PM_SLEEP */
  2800. static int pch_udc_probe(struct pci_dev *pdev,
  2801. const struct pci_device_id *id)
  2802. {
  2803. int bar;
  2804. int retval;
  2805. struct pch_udc_dev *dev;
  2806. /* init */
  2807. dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
  2808. if (!dev)
  2809. return -ENOMEM;
  2810. /* pci setup */
  2811. retval = pcim_enable_device(pdev);
  2812. if (retval)
  2813. return retval;
  2814. pci_set_drvdata(pdev, dev);
  2815. /* Determine BAR based on PCI ID */
  2816. if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
  2817. bar = PCH_UDC_PCI_BAR_QUARK_X1000;
  2818. else
  2819. bar = PCH_UDC_PCI_BAR;
  2820. /* PCI resource allocation */
  2821. retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
  2822. if (retval)
  2823. return retval;
  2824. dev->base_addr = pcim_iomap_table(pdev)[bar];
  2825. /* initialize the hardware */
  2826. if (pch_udc_pcd_init(dev))
  2827. return -ENODEV;
  2828. pci_enable_msi(pdev);
  2829. retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
  2830. IRQF_SHARED, KBUILD_MODNAME, dev);
  2831. if (retval) {
  2832. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2833. pdev->irq);
  2834. goto finished;
  2835. }
  2836. pci_set_master(pdev);
  2837. pci_try_set_mwi(pdev);
  2838. /* device struct setup */
  2839. spin_lock_init(&dev->lock);
  2840. dev->pdev = pdev;
  2841. dev->gadget.ops = &pch_udc_ops;
  2842. retval = init_dma_pools(dev);
  2843. if (retval)
  2844. goto finished;
  2845. dev->gadget.name = KBUILD_MODNAME;
  2846. dev->gadget.max_speed = USB_SPEED_HIGH;
  2847. /* Put the device in disconnected state till a driver is bound */
  2848. pch_udc_set_disconnect(dev);
  2849. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2850. if (retval)
  2851. goto finished;
  2852. return 0;
  2853. finished:
  2854. pch_udc_remove(pdev);
  2855. return retval;
  2856. }
  2857. static const struct pci_device_id pch_udc_pcidev_id[] = {
  2858. {
  2859. PCI_DEVICE(PCI_VENDOR_ID_INTEL,
  2860. PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
  2861. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2862. .class_mask = 0xffffffff,
  2863. },
  2864. {
  2865. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2866. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2867. .class_mask = 0xffffffff,
  2868. },
  2869. {
  2870. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2871. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2872. .class_mask = 0xffffffff,
  2873. },
  2874. {
  2875. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2876. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2877. .class_mask = 0xffffffff,
  2878. },
  2879. { 0 },
  2880. };
  2881. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2882. static struct pci_driver pch_udc_driver = {
  2883. .name = KBUILD_MODNAME,
  2884. .id_table = pch_udc_pcidev_id,
  2885. .probe = pch_udc_probe,
  2886. .remove = pch_udc_remove,
  2887. .shutdown = pch_udc_shutdown,
  2888. .driver = {
  2889. .pm = PCH_UDC_PM_OPS,
  2890. },
  2891. };
  2892. module_pci_driver(pch_udc_driver);
  2893. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2894. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2895. MODULE_LICENSE("GPL");