amd5536udc.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * This file does the core driver implementation for the UDC that is based
  14. * on Synopsys device controller IP (different than HS OTG IP) that is either
  15. * connected through PCI bus or integrated to SoC platforms.
  16. */
  17. /* Driver strings */
  18. #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
  19. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  20. #include <linux/module.h>
  21. #include <linux/pci.h>
  22. #include <linux/kernel.h>
  23. #include <linux/delay.h>
  24. #include <linux/ioport.h>
  25. #include <linux/sched.h>
  26. #include <linux/slab.h>
  27. #include <linux/errno.h>
  28. #include <linux/timer.h>
  29. #include <linux/list.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ioctl.h>
  32. #include <linux/fs.h>
  33. #include <linux/dmapool.h>
  34. #include <linux/prefetch.h>
  35. #include <linux/moduleparam.h>
  36. #include <asm/byteorder.h>
  37. #include <asm/unaligned.h>
  38. #include "amd5536udc.h"
  39. static void udc_tasklet_disconnect(unsigned long);
  40. static void empty_req_queue(struct udc_ep *);
  41. static void udc_setup_endpoints(struct udc *dev);
  42. static void udc_soft_reset(struct udc *dev);
  43. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  44. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  45. /* description */
  46. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  47. static const char name[] = "udc";
  48. /* structure to hold endpoint function pointers */
  49. static const struct usb_ep_ops udc_ep_ops;
  50. /* received setup data */
  51. static union udc_setup_data setup_data;
  52. /* pointer to device object */
  53. static struct udc *udc;
  54. /* irq spin lock for soft reset */
  55. static DEFINE_SPINLOCK(udc_irq_spinlock);
  56. /* stall spin lock */
  57. static DEFINE_SPINLOCK(udc_stall_spinlock);
  58. /*
  59. * slave mode: pending bytes in rx fifo after nyet,
  60. * used if EPIN irq came but no req was available
  61. */
  62. static unsigned int udc_rxfifo_pending;
  63. /* count soft resets after suspend to avoid loop */
  64. static int soft_reset_occured;
  65. static int soft_reset_after_usbreset_occured;
  66. /* timer */
  67. static struct timer_list udc_timer;
  68. static int stop_timer;
  69. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  70. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  71. * all OUT endpoints. So we have to handle race conditions like
  72. * when OUT data reaches the fifo but no request was queued yet.
  73. * This cannot be solved by letting the RX DMA disabled until a
  74. * request gets queued because there may be other OUT packets
  75. * in the FIFO (important for not blocking control traffic).
  76. * The value of set_rde controls the correspondig timer.
  77. *
  78. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  79. * set_rde 0 == do not touch RDE, do no start the RDE timer
  80. * set_rde 1 == timer function will look whether FIFO has data
  81. * set_rde 2 == set by timer function to enable RX DMA on next call
  82. */
  83. static int set_rde = -1;
  84. static DECLARE_COMPLETION(on_exit);
  85. static struct timer_list udc_pollstall_timer;
  86. static int stop_pollstall_timer;
  87. static DECLARE_COMPLETION(on_pollstall_exit);
  88. /* tasklet for usb disconnect */
  89. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  90. (unsigned long) &udc);
  91. /* endpoint names used for print */
  92. static const char ep0_string[] = "ep0in";
  93. static const struct {
  94. const char *name;
  95. const struct usb_ep_caps caps;
  96. } ep_info[] = {
  97. #define EP_INFO(_name, _caps) \
  98. { \
  99. .name = _name, \
  100. .caps = _caps, \
  101. }
  102. EP_INFO(ep0_string,
  103. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
  104. EP_INFO("ep1in-int",
  105. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  106. EP_INFO("ep2in-bulk",
  107. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  108. EP_INFO("ep3in-bulk",
  109. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  110. EP_INFO("ep4in-bulk",
  111. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  112. EP_INFO("ep5in-bulk",
  113. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  114. EP_INFO("ep6in-bulk",
  115. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  116. EP_INFO("ep7in-bulk",
  117. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  118. EP_INFO("ep8in-bulk",
  119. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  120. EP_INFO("ep9in-bulk",
  121. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  122. EP_INFO("ep10in-bulk",
  123. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  124. EP_INFO("ep11in-bulk",
  125. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  126. EP_INFO("ep12in-bulk",
  127. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  128. EP_INFO("ep13in-bulk",
  129. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  130. EP_INFO("ep14in-bulk",
  131. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  132. EP_INFO("ep15in-bulk",
  133. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  134. EP_INFO("ep0out",
  135. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
  136. EP_INFO("ep1out-bulk",
  137. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  138. EP_INFO("ep2out-bulk",
  139. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  140. EP_INFO("ep3out-bulk",
  141. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  142. EP_INFO("ep4out-bulk",
  143. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  144. EP_INFO("ep5out-bulk",
  145. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  146. EP_INFO("ep6out-bulk",
  147. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  148. EP_INFO("ep7out-bulk",
  149. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  150. EP_INFO("ep8out-bulk",
  151. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  152. EP_INFO("ep9out-bulk",
  153. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  154. EP_INFO("ep10out-bulk",
  155. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  156. EP_INFO("ep11out-bulk",
  157. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  158. EP_INFO("ep12out-bulk",
  159. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  160. EP_INFO("ep13out-bulk",
  161. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  162. EP_INFO("ep14out-bulk",
  163. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  164. EP_INFO("ep15out-bulk",
  165. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  166. #undef EP_INFO
  167. };
  168. /* buffer fill mode */
  169. static int use_dma_bufferfill_mode;
  170. /* tx buffer size for high speed */
  171. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  172. /*---------------------------------------------------------------------------*/
  173. /* Prints UDC device registers and endpoint irq registers */
  174. static void print_regs(struct udc *dev)
  175. {
  176. DBG(dev, "------- Device registers -------\n");
  177. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  178. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  179. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  180. DBG(dev, "\n");
  181. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  182. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  183. DBG(dev, "\n");
  184. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  185. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  186. DBG(dev, "\n");
  187. DBG(dev, "USE DMA = %d\n", use_dma);
  188. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  189. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  190. "WITHOUT desc. update)\n");
  191. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  192. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  193. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  194. "WITH desc. update)\n");
  195. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  196. }
  197. if (use_dma && use_dma_bufferfill_mode) {
  198. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  199. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  200. }
  201. if (!use_dma)
  202. dev_info(&dev->pdev->dev, "FIFO mode\n");
  203. DBG(dev, "-------------------------------------------------------\n");
  204. }
  205. /* Masks unused interrupts */
  206. int udc_mask_unused_interrupts(struct udc *dev)
  207. {
  208. u32 tmp;
  209. /* mask all dev interrupts */
  210. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  211. AMD_BIT(UDC_DEVINT_ENUM) |
  212. AMD_BIT(UDC_DEVINT_US) |
  213. AMD_BIT(UDC_DEVINT_UR) |
  214. AMD_BIT(UDC_DEVINT_ES) |
  215. AMD_BIT(UDC_DEVINT_SI) |
  216. AMD_BIT(UDC_DEVINT_SOF)|
  217. AMD_BIT(UDC_DEVINT_SC);
  218. writel(tmp, &dev->regs->irqmsk);
  219. /* mask all ep interrupts */
  220. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  221. return 0;
  222. }
  223. EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
  224. /* Enables endpoint 0 interrupts */
  225. static int udc_enable_ep0_interrupts(struct udc *dev)
  226. {
  227. u32 tmp;
  228. DBG(dev, "udc_enable_ep0_interrupts()\n");
  229. /* read irq mask */
  230. tmp = readl(&dev->regs->ep_irqmsk);
  231. /* enable ep0 irq's */
  232. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  233. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  234. writel(tmp, &dev->regs->ep_irqmsk);
  235. return 0;
  236. }
  237. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  238. int udc_enable_dev_setup_interrupts(struct udc *dev)
  239. {
  240. u32 tmp;
  241. DBG(dev, "enable device interrupts for setup data\n");
  242. /* read irq mask */
  243. tmp = readl(&dev->regs->irqmsk);
  244. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  245. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  246. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  247. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  248. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  249. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  250. writel(tmp, &dev->regs->irqmsk);
  251. return 0;
  252. }
  253. EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
  254. /* Calculates fifo start of endpoint based on preceding endpoints */
  255. static int udc_set_txfifo_addr(struct udc_ep *ep)
  256. {
  257. struct udc *dev;
  258. u32 tmp;
  259. int i;
  260. if (!ep || !(ep->in))
  261. return -EINVAL;
  262. dev = ep->dev;
  263. ep->txfifo = dev->txfifo;
  264. /* traverse ep's */
  265. for (i = 0; i < ep->num; i++) {
  266. if (dev->ep[i].regs) {
  267. /* read fifo size */
  268. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  269. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  270. ep->txfifo += tmp;
  271. }
  272. }
  273. return 0;
  274. }
  275. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  276. static u32 cnak_pending;
  277. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  278. {
  279. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  280. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  281. cnak_pending |= 1 << (num);
  282. ep->naking = 1;
  283. } else
  284. cnak_pending = cnak_pending & (~(1 << (num)));
  285. }
  286. /* Enables endpoint, is called by gadget driver */
  287. static int
  288. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  289. {
  290. struct udc_ep *ep;
  291. struct udc *dev;
  292. u32 tmp;
  293. unsigned long iflags;
  294. u8 udc_csr_epix;
  295. unsigned maxpacket;
  296. if (!usbep
  297. || usbep->name == ep0_string
  298. || !desc
  299. || desc->bDescriptorType != USB_DT_ENDPOINT)
  300. return -EINVAL;
  301. ep = container_of(usbep, struct udc_ep, ep);
  302. dev = ep->dev;
  303. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  304. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  305. return -ESHUTDOWN;
  306. spin_lock_irqsave(&dev->lock, iflags);
  307. ep->ep.desc = desc;
  308. ep->halted = 0;
  309. /* set traffic type */
  310. tmp = readl(&dev->ep[ep->num].regs->ctl);
  311. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  312. writel(tmp, &dev->ep[ep->num].regs->ctl);
  313. /* set max packet size */
  314. maxpacket = usb_endpoint_maxp(desc);
  315. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  316. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  317. ep->ep.maxpacket = maxpacket;
  318. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  319. /* IN ep */
  320. if (ep->in) {
  321. /* ep ix in UDC CSR register space */
  322. udc_csr_epix = ep->num;
  323. /* set buffer size (tx fifo entries) */
  324. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  325. /* double buffering: fifo size = 2 x max packet size */
  326. tmp = AMD_ADDBITS(
  327. tmp,
  328. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  329. / UDC_DWORD_BYTES,
  330. UDC_EPIN_BUFF_SIZE);
  331. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  332. /* calc. tx fifo base addr */
  333. udc_set_txfifo_addr(ep);
  334. /* flush fifo */
  335. tmp = readl(&ep->regs->ctl);
  336. tmp |= AMD_BIT(UDC_EPCTL_F);
  337. writel(tmp, &ep->regs->ctl);
  338. /* OUT ep */
  339. } else {
  340. /* ep ix in UDC CSR register space */
  341. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  342. /* set max packet size UDC CSR */
  343. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  344. tmp = AMD_ADDBITS(tmp, maxpacket,
  345. UDC_CSR_NE_MAX_PKT);
  346. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  347. if (use_dma && !ep->in) {
  348. /* alloc and init BNA dummy request */
  349. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  350. ep->bna_occurred = 0;
  351. }
  352. if (ep->num != UDC_EP0OUT_IX)
  353. dev->data_ep_enabled = 1;
  354. }
  355. /* set ep values */
  356. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  357. /* max packet */
  358. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  359. /* ep number */
  360. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  361. /* ep direction */
  362. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  363. /* ep type */
  364. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  365. /* ep config */
  366. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  367. /* ep interface */
  368. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  369. /* ep alt */
  370. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  371. /* write reg */
  372. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  373. /* enable ep irq */
  374. tmp = readl(&dev->regs->ep_irqmsk);
  375. tmp &= AMD_UNMASK_BIT(ep->num);
  376. writel(tmp, &dev->regs->ep_irqmsk);
  377. /*
  378. * clear NAK by writing CNAK
  379. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  380. */
  381. if (!use_dma || ep->in) {
  382. tmp = readl(&ep->regs->ctl);
  383. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  384. writel(tmp, &ep->regs->ctl);
  385. ep->naking = 0;
  386. UDC_QUEUE_CNAK(ep, ep->num);
  387. }
  388. tmp = desc->bEndpointAddress;
  389. DBG(dev, "%s enabled\n", usbep->name);
  390. spin_unlock_irqrestore(&dev->lock, iflags);
  391. return 0;
  392. }
  393. /* Resets endpoint */
  394. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  395. {
  396. u32 tmp;
  397. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  398. ep->ep.desc = NULL;
  399. ep->ep.ops = &udc_ep_ops;
  400. INIT_LIST_HEAD(&ep->queue);
  401. usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
  402. /* set NAK */
  403. tmp = readl(&ep->regs->ctl);
  404. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  405. writel(tmp, &ep->regs->ctl);
  406. ep->naking = 1;
  407. /* disable interrupt */
  408. tmp = readl(&regs->ep_irqmsk);
  409. tmp |= AMD_BIT(ep->num);
  410. writel(tmp, &regs->ep_irqmsk);
  411. if (ep->in) {
  412. /* unset P and IN bit of potential former DMA */
  413. tmp = readl(&ep->regs->ctl);
  414. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  415. writel(tmp, &ep->regs->ctl);
  416. tmp = readl(&ep->regs->sts);
  417. tmp |= AMD_BIT(UDC_EPSTS_IN);
  418. writel(tmp, &ep->regs->sts);
  419. /* flush the fifo */
  420. tmp = readl(&ep->regs->ctl);
  421. tmp |= AMD_BIT(UDC_EPCTL_F);
  422. writel(tmp, &ep->regs->ctl);
  423. }
  424. /* reset desc pointer */
  425. writel(0, &ep->regs->desptr);
  426. }
  427. /* Disables endpoint, is called by gadget driver */
  428. static int udc_ep_disable(struct usb_ep *usbep)
  429. {
  430. struct udc_ep *ep = NULL;
  431. unsigned long iflags;
  432. if (!usbep)
  433. return -EINVAL;
  434. ep = container_of(usbep, struct udc_ep, ep);
  435. if (usbep->name == ep0_string || !ep->ep.desc)
  436. return -EINVAL;
  437. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  438. spin_lock_irqsave(&ep->dev->lock, iflags);
  439. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  440. empty_req_queue(ep);
  441. ep_init(ep->dev->regs, ep);
  442. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  443. return 0;
  444. }
  445. /* Allocates request packet, called by gadget driver */
  446. static struct usb_request *
  447. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  448. {
  449. struct udc_request *req;
  450. struct udc_data_dma *dma_desc;
  451. struct udc_ep *ep;
  452. if (!usbep)
  453. return NULL;
  454. ep = container_of(usbep, struct udc_ep, ep);
  455. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  456. req = kzalloc(sizeof(struct udc_request), gfp);
  457. if (!req)
  458. return NULL;
  459. req->req.dma = DMA_DONT_USE;
  460. INIT_LIST_HEAD(&req->queue);
  461. if (ep->dma) {
  462. /* ep0 in requests are allocated from data pool here */
  463. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  464. &req->td_phys);
  465. if (!dma_desc) {
  466. kfree(req);
  467. return NULL;
  468. }
  469. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  470. "td_phys = %lx\n",
  471. req, dma_desc,
  472. (unsigned long)req->td_phys);
  473. /* prevent from using desc. - set HOST BUSY */
  474. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  475. UDC_DMA_STP_STS_BS_HOST_BUSY,
  476. UDC_DMA_STP_STS_BS);
  477. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  478. req->td_data = dma_desc;
  479. req->td_data_last = NULL;
  480. req->chain_len = 1;
  481. }
  482. return &req->req;
  483. }
  484. /* frees pci pool descriptors of a DMA chain */
  485. static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  486. {
  487. struct udc_data_dma *td = req->td_data;
  488. unsigned int i;
  489. dma_addr_t addr_next = 0x00;
  490. dma_addr_t addr = (dma_addr_t)td->next;
  491. DBG(dev, "free chain req = %p\n", req);
  492. /* do not free first desc., will be done by free for request */
  493. for (i = 1; i < req->chain_len; i++) {
  494. td = phys_to_virt(addr);
  495. addr_next = (dma_addr_t)td->next;
  496. dma_pool_free(dev->data_requests, td, addr);
  497. addr = addr_next;
  498. }
  499. }
  500. /* Frees request packet, called by gadget driver */
  501. static void
  502. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  503. {
  504. struct udc_ep *ep;
  505. struct udc_request *req;
  506. if (!usbep || !usbreq)
  507. return;
  508. ep = container_of(usbep, struct udc_ep, ep);
  509. req = container_of(usbreq, struct udc_request, req);
  510. VDBG(ep->dev, "free_req req=%p\n", req);
  511. BUG_ON(!list_empty(&req->queue));
  512. if (req->td_data) {
  513. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  514. /* free dma chain if created */
  515. if (req->chain_len > 1)
  516. udc_free_dma_chain(ep->dev, req);
  517. dma_pool_free(ep->dev->data_requests, req->td_data,
  518. req->td_phys);
  519. }
  520. kfree(req);
  521. }
  522. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  523. static void udc_init_bna_dummy(struct udc_request *req)
  524. {
  525. if (req) {
  526. /* set last bit */
  527. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  528. /* set next pointer to itself */
  529. req->td_data->next = req->td_phys;
  530. /* set HOST BUSY */
  531. req->td_data->status
  532. = AMD_ADDBITS(req->td_data->status,
  533. UDC_DMA_STP_STS_BS_DMA_DONE,
  534. UDC_DMA_STP_STS_BS);
  535. #ifdef UDC_VERBOSE
  536. pr_debug("bna desc = %p, sts = %08x\n",
  537. req->td_data, req->td_data->status);
  538. #endif
  539. }
  540. }
  541. /* Allocate BNA dummy descriptor */
  542. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  543. {
  544. struct udc_request *req = NULL;
  545. struct usb_request *_req = NULL;
  546. /* alloc the dummy request */
  547. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  548. if (_req) {
  549. req = container_of(_req, struct udc_request, req);
  550. ep->bna_dummy_req = req;
  551. udc_init_bna_dummy(req);
  552. }
  553. return req;
  554. }
  555. /* Write data to TX fifo for IN packets */
  556. static void
  557. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  558. {
  559. u8 *req_buf;
  560. u32 *buf;
  561. int i, j;
  562. unsigned bytes = 0;
  563. unsigned remaining = 0;
  564. if (!req || !ep)
  565. return;
  566. req_buf = req->buf + req->actual;
  567. prefetch(req_buf);
  568. remaining = req->length - req->actual;
  569. buf = (u32 *) req_buf;
  570. bytes = ep->ep.maxpacket;
  571. if (bytes > remaining)
  572. bytes = remaining;
  573. /* dwords first */
  574. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  575. writel(*(buf + i), ep->txfifo);
  576. /* remaining bytes must be written by byte access */
  577. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  578. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  579. ep->txfifo);
  580. }
  581. /* dummy write confirm */
  582. writel(0, &ep->regs->confirm);
  583. }
  584. /* Read dwords from RX fifo for OUT transfers */
  585. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  586. {
  587. int i;
  588. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  589. for (i = 0; i < dwords; i++)
  590. *(buf + i) = readl(dev->rxfifo);
  591. return 0;
  592. }
  593. /* Read bytes from RX fifo for OUT transfers */
  594. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  595. {
  596. int i, j;
  597. u32 tmp;
  598. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  599. /* dwords first */
  600. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  601. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  602. /* remaining bytes must be read by byte access */
  603. if (bytes % UDC_DWORD_BYTES) {
  604. tmp = readl(dev->rxfifo);
  605. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  606. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  607. tmp = tmp >> UDC_BITS_PER_BYTE;
  608. }
  609. }
  610. return 0;
  611. }
  612. /* Read data from RX fifo for OUT transfers */
  613. static int
  614. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  615. {
  616. u8 *buf;
  617. unsigned buf_space;
  618. unsigned bytes = 0;
  619. unsigned finished = 0;
  620. /* received number bytes */
  621. bytes = readl(&ep->regs->sts);
  622. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  623. buf_space = req->req.length - req->req.actual;
  624. buf = req->req.buf + req->req.actual;
  625. if (bytes > buf_space) {
  626. if ((buf_space % ep->ep.maxpacket) != 0) {
  627. DBG(ep->dev,
  628. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  629. ep->ep.name, bytes, buf_space);
  630. req->req.status = -EOVERFLOW;
  631. }
  632. bytes = buf_space;
  633. }
  634. req->req.actual += bytes;
  635. /* last packet ? */
  636. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  637. || ((req->req.actual == req->req.length) && !req->req.zero))
  638. finished = 1;
  639. /* read rx fifo bytes */
  640. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  641. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  642. return finished;
  643. }
  644. /* Creates or re-inits a DMA chain */
  645. static int udc_create_dma_chain(
  646. struct udc_ep *ep,
  647. struct udc_request *req,
  648. unsigned long buf_len, gfp_t gfp_flags
  649. )
  650. {
  651. unsigned long bytes = req->req.length;
  652. unsigned int i;
  653. dma_addr_t dma_addr;
  654. struct udc_data_dma *td = NULL;
  655. struct udc_data_dma *last = NULL;
  656. unsigned long txbytes;
  657. unsigned create_new_chain = 0;
  658. unsigned len;
  659. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  660. bytes, buf_len);
  661. dma_addr = DMA_DONT_USE;
  662. /* unset L bit in first desc for OUT */
  663. if (!ep->in)
  664. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  665. /* alloc only new desc's if not already available */
  666. len = req->req.length / ep->ep.maxpacket;
  667. if (req->req.length % ep->ep.maxpacket)
  668. len++;
  669. if (len > req->chain_len) {
  670. /* shorter chain already allocated before */
  671. if (req->chain_len > 1)
  672. udc_free_dma_chain(ep->dev, req);
  673. req->chain_len = len;
  674. create_new_chain = 1;
  675. }
  676. td = req->td_data;
  677. /* gen. required number of descriptors and buffers */
  678. for (i = buf_len; i < bytes; i += buf_len) {
  679. /* create or determine next desc. */
  680. if (create_new_chain) {
  681. td = dma_pool_alloc(ep->dev->data_requests,
  682. gfp_flags, &dma_addr);
  683. if (!td)
  684. return -ENOMEM;
  685. td->status = 0;
  686. } else if (i == buf_len) {
  687. /* first td */
  688. td = (struct udc_data_dma *)phys_to_virt(
  689. req->td_data->next);
  690. td->status = 0;
  691. } else {
  692. td = (struct udc_data_dma *)phys_to_virt(last->next);
  693. td->status = 0;
  694. }
  695. if (td)
  696. td->bufptr = req->req.dma + i; /* assign buffer */
  697. else
  698. break;
  699. /* short packet ? */
  700. if ((bytes - i) >= buf_len) {
  701. txbytes = buf_len;
  702. } else {
  703. /* short packet */
  704. txbytes = bytes - i;
  705. }
  706. /* link td and assign tx bytes */
  707. if (i == buf_len) {
  708. if (create_new_chain)
  709. req->td_data->next = dma_addr;
  710. /*
  711. * else
  712. * req->td_data->next = virt_to_phys(td);
  713. */
  714. /* write tx bytes */
  715. if (ep->in) {
  716. /* first desc */
  717. req->td_data->status =
  718. AMD_ADDBITS(req->td_data->status,
  719. ep->ep.maxpacket,
  720. UDC_DMA_IN_STS_TXBYTES);
  721. /* second desc */
  722. td->status = AMD_ADDBITS(td->status,
  723. txbytes,
  724. UDC_DMA_IN_STS_TXBYTES);
  725. }
  726. } else {
  727. if (create_new_chain)
  728. last->next = dma_addr;
  729. /*
  730. * else
  731. * last->next = virt_to_phys(td);
  732. */
  733. if (ep->in) {
  734. /* write tx bytes */
  735. td->status = AMD_ADDBITS(td->status,
  736. txbytes,
  737. UDC_DMA_IN_STS_TXBYTES);
  738. }
  739. }
  740. last = td;
  741. }
  742. /* set last bit */
  743. if (td) {
  744. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  745. /* last desc. points to itself */
  746. req->td_data_last = td;
  747. }
  748. return 0;
  749. }
  750. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  751. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  752. {
  753. int retval = 0;
  754. u32 tmp;
  755. VDBG(ep->dev, "prep_dma\n");
  756. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  757. ep->num, req->td_data);
  758. /* set buffer pointer */
  759. req->td_data->bufptr = req->req.dma;
  760. /* set last bit */
  761. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  762. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  763. if (use_dma_ppb) {
  764. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  765. if (retval != 0) {
  766. if (retval == -ENOMEM)
  767. DBG(ep->dev, "Out of DMA memory\n");
  768. return retval;
  769. }
  770. if (ep->in) {
  771. if (req->req.length == ep->ep.maxpacket) {
  772. /* write tx bytes */
  773. req->td_data->status =
  774. AMD_ADDBITS(req->td_data->status,
  775. ep->ep.maxpacket,
  776. UDC_DMA_IN_STS_TXBYTES);
  777. }
  778. }
  779. }
  780. if (ep->in) {
  781. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  782. "maxpacket=%d ep%d\n",
  783. use_dma_ppb, req->req.length,
  784. ep->ep.maxpacket, ep->num);
  785. /*
  786. * if bytes < max packet then tx bytes must
  787. * be written in packet per buffer mode
  788. */
  789. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  790. || ep->num == UDC_EP0OUT_IX
  791. || ep->num == UDC_EP0IN_IX) {
  792. /* write tx bytes */
  793. req->td_data->status =
  794. AMD_ADDBITS(req->td_data->status,
  795. req->req.length,
  796. UDC_DMA_IN_STS_TXBYTES);
  797. /* reset frame num */
  798. req->td_data->status =
  799. AMD_ADDBITS(req->td_data->status,
  800. 0,
  801. UDC_DMA_IN_STS_FRAMENUM);
  802. }
  803. /* set HOST BUSY */
  804. req->td_data->status =
  805. AMD_ADDBITS(req->td_data->status,
  806. UDC_DMA_STP_STS_BS_HOST_BUSY,
  807. UDC_DMA_STP_STS_BS);
  808. } else {
  809. VDBG(ep->dev, "OUT set host ready\n");
  810. /* set HOST READY */
  811. req->td_data->status =
  812. AMD_ADDBITS(req->td_data->status,
  813. UDC_DMA_STP_STS_BS_HOST_READY,
  814. UDC_DMA_STP_STS_BS);
  815. /* clear NAK by writing CNAK */
  816. if (ep->naking) {
  817. tmp = readl(&ep->regs->ctl);
  818. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  819. writel(tmp, &ep->regs->ctl);
  820. ep->naking = 0;
  821. UDC_QUEUE_CNAK(ep, ep->num);
  822. }
  823. }
  824. return retval;
  825. }
  826. /* Completes request packet ... caller MUST hold lock */
  827. static void
  828. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  829. __releases(ep->dev->lock)
  830. __acquires(ep->dev->lock)
  831. {
  832. struct udc *dev;
  833. unsigned halted;
  834. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  835. dev = ep->dev;
  836. /* unmap DMA */
  837. if (ep->dma)
  838. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  839. halted = ep->halted;
  840. ep->halted = 1;
  841. /* set new status if pending */
  842. if (req->req.status == -EINPROGRESS)
  843. req->req.status = sts;
  844. /* remove from ep queue */
  845. list_del_init(&req->queue);
  846. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  847. &req->req, req->req.length, ep->ep.name, sts);
  848. spin_unlock(&dev->lock);
  849. usb_gadget_giveback_request(&ep->ep, &req->req);
  850. spin_lock(&dev->lock);
  851. ep->halted = halted;
  852. }
  853. /* Iterates to the end of a DMA chain and returns last descriptor */
  854. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  855. {
  856. struct udc_data_dma *td;
  857. td = req->td_data;
  858. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  859. td = phys_to_virt(td->next);
  860. return td;
  861. }
  862. /* Iterates to the end of a DMA chain and counts bytes received */
  863. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  864. {
  865. struct udc_data_dma *td;
  866. u32 count;
  867. td = req->td_data;
  868. /* received number bytes */
  869. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  870. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  871. td = phys_to_virt(td->next);
  872. /* received number bytes */
  873. if (td) {
  874. count += AMD_GETBITS(td->status,
  875. UDC_DMA_OUT_STS_RXBYTES);
  876. }
  877. }
  878. return count;
  879. }
  880. /* Enabling RX DMA */
  881. static void udc_set_rde(struct udc *dev)
  882. {
  883. u32 tmp;
  884. VDBG(dev, "udc_set_rde()\n");
  885. /* stop RDE timer */
  886. if (timer_pending(&udc_timer)) {
  887. set_rde = 0;
  888. mod_timer(&udc_timer, jiffies - 1);
  889. }
  890. /* set RDE */
  891. tmp = readl(&dev->regs->ctl);
  892. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  893. writel(tmp, &dev->regs->ctl);
  894. }
  895. /* Queues a request packet, called by gadget driver */
  896. static int
  897. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  898. {
  899. int retval = 0;
  900. u8 open_rxfifo = 0;
  901. unsigned long iflags;
  902. struct udc_ep *ep;
  903. struct udc_request *req;
  904. struct udc *dev;
  905. u32 tmp;
  906. /* check the inputs */
  907. req = container_of(usbreq, struct udc_request, req);
  908. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  909. || !list_empty(&req->queue))
  910. return -EINVAL;
  911. ep = container_of(usbep, struct udc_ep, ep);
  912. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  913. return -EINVAL;
  914. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  915. dev = ep->dev;
  916. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  917. return -ESHUTDOWN;
  918. /* map dma (usually done before) */
  919. if (ep->dma) {
  920. VDBG(dev, "DMA map req %p\n", req);
  921. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  922. if (retval)
  923. return retval;
  924. }
  925. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  926. usbep->name, usbreq, usbreq->length,
  927. req->td_data, usbreq->buf);
  928. spin_lock_irqsave(&dev->lock, iflags);
  929. usbreq->actual = 0;
  930. usbreq->status = -EINPROGRESS;
  931. req->dma_done = 0;
  932. /* on empty queue just do first transfer */
  933. if (list_empty(&ep->queue)) {
  934. /* zlp */
  935. if (usbreq->length == 0) {
  936. /* IN zlp's are handled by hardware */
  937. complete_req(ep, req, 0);
  938. VDBG(dev, "%s: zlp\n", ep->ep.name);
  939. /*
  940. * if set_config or set_intf is waiting for ack by zlp
  941. * then set CSR_DONE
  942. */
  943. if (dev->set_cfg_not_acked) {
  944. tmp = readl(&dev->regs->ctl);
  945. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  946. writel(tmp, &dev->regs->ctl);
  947. dev->set_cfg_not_acked = 0;
  948. }
  949. /* setup command is ACK'ed now by zlp */
  950. if (dev->waiting_zlp_ack_ep0in) {
  951. /* clear NAK by writing CNAK in EP0_IN */
  952. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  953. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  954. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  955. dev->ep[UDC_EP0IN_IX].naking = 0;
  956. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  957. UDC_EP0IN_IX);
  958. dev->waiting_zlp_ack_ep0in = 0;
  959. }
  960. goto finished;
  961. }
  962. if (ep->dma) {
  963. retval = prep_dma(ep, req, GFP_ATOMIC);
  964. if (retval != 0)
  965. goto finished;
  966. /* write desc pointer to enable DMA */
  967. if (ep->in) {
  968. /* set HOST READY */
  969. req->td_data->status =
  970. AMD_ADDBITS(req->td_data->status,
  971. UDC_DMA_IN_STS_BS_HOST_READY,
  972. UDC_DMA_IN_STS_BS);
  973. }
  974. /* disabled rx dma while descriptor update */
  975. if (!ep->in) {
  976. /* stop RDE timer */
  977. if (timer_pending(&udc_timer)) {
  978. set_rde = 0;
  979. mod_timer(&udc_timer, jiffies - 1);
  980. }
  981. /* clear RDE */
  982. tmp = readl(&dev->regs->ctl);
  983. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  984. writel(tmp, &dev->regs->ctl);
  985. open_rxfifo = 1;
  986. /*
  987. * if BNA occurred then let BNA dummy desc.
  988. * point to current desc.
  989. */
  990. if (ep->bna_occurred) {
  991. VDBG(dev, "copy to BNA dummy desc.\n");
  992. memcpy(ep->bna_dummy_req->td_data,
  993. req->td_data,
  994. sizeof(struct udc_data_dma));
  995. }
  996. }
  997. /* write desc pointer */
  998. writel(req->td_phys, &ep->regs->desptr);
  999. /* clear NAK by writing CNAK */
  1000. if (ep->naking) {
  1001. tmp = readl(&ep->regs->ctl);
  1002. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1003. writel(tmp, &ep->regs->ctl);
  1004. ep->naking = 0;
  1005. UDC_QUEUE_CNAK(ep, ep->num);
  1006. }
  1007. if (ep->in) {
  1008. /* enable ep irq */
  1009. tmp = readl(&dev->regs->ep_irqmsk);
  1010. tmp &= AMD_UNMASK_BIT(ep->num);
  1011. writel(tmp, &dev->regs->ep_irqmsk);
  1012. }
  1013. } else if (ep->in) {
  1014. /* enable ep irq */
  1015. tmp = readl(&dev->regs->ep_irqmsk);
  1016. tmp &= AMD_UNMASK_BIT(ep->num);
  1017. writel(tmp, &dev->regs->ep_irqmsk);
  1018. }
  1019. } else if (ep->dma) {
  1020. /*
  1021. * prep_dma not used for OUT ep's, this is not possible
  1022. * for PPB modes, because of chain creation reasons
  1023. */
  1024. if (ep->in) {
  1025. retval = prep_dma(ep, req, GFP_ATOMIC);
  1026. if (retval != 0)
  1027. goto finished;
  1028. }
  1029. }
  1030. VDBG(dev, "list_add\n");
  1031. /* add request to ep queue */
  1032. if (req) {
  1033. list_add_tail(&req->queue, &ep->queue);
  1034. /* open rxfifo if out data queued */
  1035. if (open_rxfifo) {
  1036. /* enable DMA */
  1037. req->dma_going = 1;
  1038. udc_set_rde(dev);
  1039. if (ep->num != UDC_EP0OUT_IX)
  1040. dev->data_ep_queued = 1;
  1041. }
  1042. /* stop OUT naking */
  1043. if (!ep->in) {
  1044. if (!use_dma && udc_rxfifo_pending) {
  1045. DBG(dev, "udc_queue(): pending bytes in "
  1046. "rxfifo after nyet\n");
  1047. /*
  1048. * read pending bytes afer nyet:
  1049. * referring to isr
  1050. */
  1051. if (udc_rxfifo_read(ep, req)) {
  1052. /* finish */
  1053. complete_req(ep, req, 0);
  1054. }
  1055. udc_rxfifo_pending = 0;
  1056. }
  1057. }
  1058. }
  1059. finished:
  1060. spin_unlock_irqrestore(&dev->lock, iflags);
  1061. return retval;
  1062. }
  1063. /* Empty request queue of an endpoint; caller holds spinlock */
  1064. static void empty_req_queue(struct udc_ep *ep)
  1065. {
  1066. struct udc_request *req;
  1067. ep->halted = 1;
  1068. while (!list_empty(&ep->queue)) {
  1069. req = list_entry(ep->queue.next,
  1070. struct udc_request,
  1071. queue);
  1072. complete_req(ep, req, -ESHUTDOWN);
  1073. }
  1074. }
  1075. /* Dequeues a request packet, called by gadget driver */
  1076. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1077. {
  1078. struct udc_ep *ep;
  1079. struct udc_request *req;
  1080. unsigned halted;
  1081. unsigned long iflags;
  1082. ep = container_of(usbep, struct udc_ep, ep);
  1083. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1084. && ep->num != UDC_EP0OUT_IX)))
  1085. return -EINVAL;
  1086. req = container_of(usbreq, struct udc_request, req);
  1087. spin_lock_irqsave(&ep->dev->lock, iflags);
  1088. halted = ep->halted;
  1089. ep->halted = 1;
  1090. /* request in processing or next one */
  1091. if (ep->queue.next == &req->queue) {
  1092. if (ep->dma && req->dma_going) {
  1093. if (ep->in)
  1094. ep->cancel_transfer = 1;
  1095. else {
  1096. u32 tmp;
  1097. u32 dma_sts;
  1098. /* stop potential receive DMA */
  1099. tmp = readl(&udc->regs->ctl);
  1100. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1101. &udc->regs->ctl);
  1102. /*
  1103. * Cancel transfer later in ISR
  1104. * if descriptor was touched.
  1105. */
  1106. dma_sts = AMD_GETBITS(req->td_data->status,
  1107. UDC_DMA_OUT_STS_BS);
  1108. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1109. ep->cancel_transfer = 1;
  1110. else {
  1111. udc_init_bna_dummy(ep->req);
  1112. writel(ep->bna_dummy_req->td_phys,
  1113. &ep->regs->desptr);
  1114. }
  1115. writel(tmp, &udc->regs->ctl);
  1116. }
  1117. }
  1118. }
  1119. complete_req(ep, req, -ECONNRESET);
  1120. ep->halted = halted;
  1121. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1122. return 0;
  1123. }
  1124. /* Halt or clear halt of endpoint */
  1125. static int
  1126. udc_set_halt(struct usb_ep *usbep, int halt)
  1127. {
  1128. struct udc_ep *ep;
  1129. u32 tmp;
  1130. unsigned long iflags;
  1131. int retval = 0;
  1132. if (!usbep)
  1133. return -EINVAL;
  1134. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1135. ep = container_of(usbep, struct udc_ep, ep);
  1136. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1137. return -EINVAL;
  1138. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1139. return -ESHUTDOWN;
  1140. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1141. /* halt or clear halt */
  1142. if (halt) {
  1143. if (ep->num == 0)
  1144. ep->dev->stall_ep0in = 1;
  1145. else {
  1146. /*
  1147. * set STALL
  1148. * rxfifo empty not taken into acount
  1149. */
  1150. tmp = readl(&ep->regs->ctl);
  1151. tmp |= AMD_BIT(UDC_EPCTL_S);
  1152. writel(tmp, &ep->regs->ctl);
  1153. ep->halted = 1;
  1154. /* setup poll timer */
  1155. if (!timer_pending(&udc_pollstall_timer)) {
  1156. udc_pollstall_timer.expires = jiffies +
  1157. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1158. / (1000 * 1000);
  1159. if (!stop_pollstall_timer) {
  1160. DBG(ep->dev, "start polltimer\n");
  1161. add_timer(&udc_pollstall_timer);
  1162. }
  1163. }
  1164. }
  1165. } else {
  1166. /* ep is halted by set_halt() before */
  1167. if (ep->halted) {
  1168. tmp = readl(&ep->regs->ctl);
  1169. /* clear stall bit */
  1170. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1171. /* clear NAK by writing CNAK */
  1172. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1173. writel(tmp, &ep->regs->ctl);
  1174. ep->halted = 0;
  1175. UDC_QUEUE_CNAK(ep, ep->num);
  1176. }
  1177. }
  1178. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1179. return retval;
  1180. }
  1181. /* gadget interface */
  1182. static const struct usb_ep_ops udc_ep_ops = {
  1183. .enable = udc_ep_enable,
  1184. .disable = udc_ep_disable,
  1185. .alloc_request = udc_alloc_request,
  1186. .free_request = udc_free_request,
  1187. .queue = udc_queue,
  1188. .dequeue = udc_dequeue,
  1189. .set_halt = udc_set_halt,
  1190. /* fifo ops not implemented */
  1191. };
  1192. /*-------------------------------------------------------------------------*/
  1193. /* Get frame counter (not implemented) */
  1194. static int udc_get_frame(struct usb_gadget *gadget)
  1195. {
  1196. return -EOPNOTSUPP;
  1197. }
  1198. /* Initiates a remote wakeup */
  1199. static int udc_remote_wakeup(struct udc *dev)
  1200. {
  1201. unsigned long flags;
  1202. u32 tmp;
  1203. DBG(dev, "UDC initiates remote wakeup\n");
  1204. spin_lock_irqsave(&dev->lock, flags);
  1205. tmp = readl(&dev->regs->ctl);
  1206. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  1207. writel(tmp, &dev->regs->ctl);
  1208. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  1209. writel(tmp, &dev->regs->ctl);
  1210. spin_unlock_irqrestore(&dev->lock, flags);
  1211. return 0;
  1212. }
  1213. /* Remote wakeup gadget interface */
  1214. static int udc_wakeup(struct usb_gadget *gadget)
  1215. {
  1216. struct udc *dev;
  1217. if (!gadget)
  1218. return -EINVAL;
  1219. dev = container_of(gadget, struct udc, gadget);
  1220. udc_remote_wakeup(dev);
  1221. return 0;
  1222. }
  1223. static int amd5536_udc_start(struct usb_gadget *g,
  1224. struct usb_gadget_driver *driver);
  1225. static int amd5536_udc_stop(struct usb_gadget *g);
  1226. static const struct usb_gadget_ops udc_ops = {
  1227. .wakeup = udc_wakeup,
  1228. .get_frame = udc_get_frame,
  1229. .udc_start = amd5536_udc_start,
  1230. .udc_stop = amd5536_udc_stop,
  1231. };
  1232. /* Setups endpoint parameters, adds endpoints to linked list */
  1233. static void make_ep_lists(struct udc *dev)
  1234. {
  1235. /* make gadget ep lists */
  1236. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1237. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1238. &dev->gadget.ep_list);
  1239. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1240. &dev->gadget.ep_list);
  1241. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1242. &dev->gadget.ep_list);
  1243. /* fifo config */
  1244. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1245. if (dev->gadget.speed == USB_SPEED_FULL)
  1246. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1247. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1248. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1249. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1250. }
  1251. /* Inits UDC context */
  1252. void udc_basic_init(struct udc *dev)
  1253. {
  1254. u32 tmp;
  1255. DBG(dev, "udc_basic_init()\n");
  1256. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1257. /* stop RDE timer */
  1258. if (timer_pending(&udc_timer)) {
  1259. set_rde = 0;
  1260. mod_timer(&udc_timer, jiffies - 1);
  1261. }
  1262. /* stop poll stall timer */
  1263. if (timer_pending(&udc_pollstall_timer))
  1264. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1265. /* disable DMA */
  1266. tmp = readl(&dev->regs->ctl);
  1267. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1268. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1269. writel(tmp, &dev->regs->ctl);
  1270. /* enable dynamic CSR programming */
  1271. tmp = readl(&dev->regs->cfg);
  1272. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1273. /* set self powered */
  1274. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1275. /* set remote wakeupable */
  1276. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1277. writel(tmp, &dev->regs->cfg);
  1278. make_ep_lists(dev);
  1279. dev->data_ep_enabled = 0;
  1280. dev->data_ep_queued = 0;
  1281. }
  1282. EXPORT_SYMBOL_GPL(udc_basic_init);
  1283. /* init registers at driver load time */
  1284. static int startup_registers(struct udc *dev)
  1285. {
  1286. u32 tmp;
  1287. /* init controller by soft reset */
  1288. udc_soft_reset(dev);
  1289. /* mask not needed interrupts */
  1290. udc_mask_unused_interrupts(dev);
  1291. /* put into initial config */
  1292. udc_basic_init(dev);
  1293. /* link up all endpoints */
  1294. udc_setup_endpoints(dev);
  1295. /* program speed */
  1296. tmp = readl(&dev->regs->cfg);
  1297. if (use_fullspeed)
  1298. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1299. else
  1300. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1301. writel(tmp, &dev->regs->cfg);
  1302. return 0;
  1303. }
  1304. /* Sets initial endpoint parameters */
  1305. static void udc_setup_endpoints(struct udc *dev)
  1306. {
  1307. struct udc_ep *ep;
  1308. u32 tmp;
  1309. u32 reg;
  1310. DBG(dev, "udc_setup_endpoints()\n");
  1311. /* read enum speed */
  1312. tmp = readl(&dev->regs->sts);
  1313. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1314. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1315. dev->gadget.speed = USB_SPEED_HIGH;
  1316. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1317. dev->gadget.speed = USB_SPEED_FULL;
  1318. /* set basic ep parameters */
  1319. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1320. ep = &dev->ep[tmp];
  1321. ep->dev = dev;
  1322. ep->ep.name = ep_info[tmp].name;
  1323. ep->ep.caps = ep_info[tmp].caps;
  1324. ep->num = tmp;
  1325. /* txfifo size is calculated at enable time */
  1326. ep->txfifo = dev->txfifo;
  1327. /* fifo size */
  1328. if (tmp < UDC_EPIN_NUM) {
  1329. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1330. ep->in = 1;
  1331. } else {
  1332. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1333. ep->in = 0;
  1334. }
  1335. ep->regs = &dev->ep_regs[tmp];
  1336. /*
  1337. * ep will be reset only if ep was not enabled before to avoid
  1338. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1339. * not enabled by gadget driver
  1340. */
  1341. if (!ep->ep.desc)
  1342. ep_init(dev->regs, ep);
  1343. if (use_dma) {
  1344. /*
  1345. * ep->dma is not really used, just to indicate that
  1346. * DMA is active: remove this
  1347. * dma regs = dev control regs
  1348. */
  1349. ep->dma = &dev->regs->ctl;
  1350. /* nak OUT endpoints until enable - not for ep0 */
  1351. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1352. && tmp > UDC_EPIN_NUM) {
  1353. /* set NAK */
  1354. reg = readl(&dev->ep[tmp].regs->ctl);
  1355. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1356. writel(reg, &dev->ep[tmp].regs->ctl);
  1357. dev->ep[tmp].naking = 1;
  1358. }
  1359. }
  1360. }
  1361. /* EP0 max packet */
  1362. if (dev->gadget.speed == USB_SPEED_FULL) {
  1363. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1364. UDC_FS_EP0IN_MAX_PKT_SIZE);
  1365. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1366. UDC_FS_EP0OUT_MAX_PKT_SIZE);
  1367. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1368. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1369. UDC_EP0IN_MAX_PKT_SIZE);
  1370. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1371. UDC_EP0OUT_MAX_PKT_SIZE);
  1372. }
  1373. /*
  1374. * with suspend bug workaround, ep0 params for gadget driver
  1375. * are set at gadget driver bind() call
  1376. */
  1377. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1378. dev->ep[UDC_EP0IN_IX].halted = 0;
  1379. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1380. /* init cfg/alt/int */
  1381. dev->cur_config = 0;
  1382. dev->cur_intf = 0;
  1383. dev->cur_alt = 0;
  1384. }
  1385. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1386. static void usb_connect(struct udc *dev)
  1387. {
  1388. dev_info(&dev->pdev->dev, "USB Connect\n");
  1389. dev->connected = 1;
  1390. /* put into initial config */
  1391. udc_basic_init(dev);
  1392. /* enable device setup interrupts */
  1393. udc_enable_dev_setup_interrupts(dev);
  1394. }
  1395. /*
  1396. * Calls gadget with disconnect event and resets the UDC and makes
  1397. * initial bringup to be ready for ep0 events
  1398. */
  1399. static void usb_disconnect(struct udc *dev)
  1400. {
  1401. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1402. dev->connected = 0;
  1403. /* mask interrupts */
  1404. udc_mask_unused_interrupts(dev);
  1405. /* REVISIT there doesn't seem to be a point to having this
  1406. * talk to a tasklet ... do it directly, we already hold
  1407. * the spinlock needed to process the disconnect.
  1408. */
  1409. tasklet_schedule(&disconnect_tasklet);
  1410. }
  1411. /* Tasklet for disconnect to be outside of interrupt context */
  1412. static void udc_tasklet_disconnect(unsigned long par)
  1413. {
  1414. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1415. u32 tmp;
  1416. DBG(dev, "Tasklet disconnect\n");
  1417. spin_lock_irq(&dev->lock);
  1418. if (dev->driver) {
  1419. spin_unlock(&dev->lock);
  1420. dev->driver->disconnect(&dev->gadget);
  1421. spin_lock(&dev->lock);
  1422. /* empty queues */
  1423. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1424. empty_req_queue(&dev->ep[tmp]);
  1425. }
  1426. /* disable ep0 */
  1427. ep_init(dev->regs,
  1428. &dev->ep[UDC_EP0IN_IX]);
  1429. if (!soft_reset_occured) {
  1430. /* init controller by soft reset */
  1431. udc_soft_reset(dev);
  1432. soft_reset_occured++;
  1433. }
  1434. /* re-enable dev interrupts */
  1435. udc_enable_dev_setup_interrupts(dev);
  1436. /* back to full speed ? */
  1437. if (use_fullspeed) {
  1438. tmp = readl(&dev->regs->cfg);
  1439. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1440. writel(tmp, &dev->regs->cfg);
  1441. }
  1442. spin_unlock_irq(&dev->lock);
  1443. }
  1444. /* Reset the UDC core */
  1445. static void udc_soft_reset(struct udc *dev)
  1446. {
  1447. unsigned long flags;
  1448. DBG(dev, "Soft reset\n");
  1449. /*
  1450. * reset possible waiting interrupts, because int.
  1451. * status is lost after soft reset,
  1452. * ep int. status reset
  1453. */
  1454. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1455. /* device int. status reset */
  1456. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1457. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1458. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1459. readl(&dev->regs->cfg);
  1460. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1461. }
  1462. /* RDE timer callback to set RDE bit */
  1463. static void udc_timer_function(unsigned long v)
  1464. {
  1465. u32 tmp;
  1466. spin_lock_irq(&udc_irq_spinlock);
  1467. if (set_rde > 0) {
  1468. /*
  1469. * open the fifo if fifo was filled on last timer call
  1470. * conditionally
  1471. */
  1472. if (set_rde > 1) {
  1473. /* set RDE to receive setup data */
  1474. tmp = readl(&udc->regs->ctl);
  1475. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1476. writel(tmp, &udc->regs->ctl);
  1477. set_rde = -1;
  1478. } else if (readl(&udc->regs->sts)
  1479. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1480. /*
  1481. * if fifo empty setup polling, do not just
  1482. * open the fifo
  1483. */
  1484. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1485. if (!stop_timer)
  1486. add_timer(&udc_timer);
  1487. } else {
  1488. /*
  1489. * fifo contains data now, setup timer for opening
  1490. * the fifo when timer expires to be able to receive
  1491. * setup packets, when data packets gets queued by
  1492. * gadget layer then timer will forced to expire with
  1493. * set_rde=0 (RDE is set in udc_queue())
  1494. */
  1495. set_rde++;
  1496. /* debug: lhadmot_timer_start = 221070 */
  1497. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1498. if (!stop_timer)
  1499. add_timer(&udc_timer);
  1500. }
  1501. } else
  1502. set_rde = -1; /* RDE was set by udc_queue() */
  1503. spin_unlock_irq(&udc_irq_spinlock);
  1504. if (stop_timer)
  1505. complete(&on_exit);
  1506. }
  1507. /* Handle halt state, used in stall poll timer */
  1508. static void udc_handle_halt_state(struct udc_ep *ep)
  1509. {
  1510. u32 tmp;
  1511. /* set stall as long not halted */
  1512. if (ep->halted == 1) {
  1513. tmp = readl(&ep->regs->ctl);
  1514. /* STALL cleared ? */
  1515. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1516. /*
  1517. * FIXME: MSC spec requires that stall remains
  1518. * even on receivng of CLEAR_FEATURE HALT. So
  1519. * we would set STALL again here to be compliant.
  1520. * But with current mass storage drivers this does
  1521. * not work (would produce endless host retries).
  1522. * So we clear halt on CLEAR_FEATURE.
  1523. *
  1524. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1525. tmp |= AMD_BIT(UDC_EPCTL_S);
  1526. writel(tmp, &ep->regs->ctl);*/
  1527. /* clear NAK by writing CNAK */
  1528. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1529. writel(tmp, &ep->regs->ctl);
  1530. ep->halted = 0;
  1531. UDC_QUEUE_CNAK(ep, ep->num);
  1532. }
  1533. }
  1534. }
  1535. /* Stall timer callback to poll S bit and set it again after */
  1536. static void udc_pollstall_timer_function(unsigned long v)
  1537. {
  1538. struct udc_ep *ep;
  1539. int halted = 0;
  1540. spin_lock_irq(&udc_stall_spinlock);
  1541. /*
  1542. * only one IN and OUT endpoints are handled
  1543. * IN poll stall
  1544. */
  1545. ep = &udc->ep[UDC_EPIN_IX];
  1546. udc_handle_halt_state(ep);
  1547. if (ep->halted)
  1548. halted = 1;
  1549. /* OUT poll stall */
  1550. ep = &udc->ep[UDC_EPOUT_IX];
  1551. udc_handle_halt_state(ep);
  1552. if (ep->halted)
  1553. halted = 1;
  1554. /* setup timer again when still halted */
  1555. if (!stop_pollstall_timer && halted) {
  1556. udc_pollstall_timer.expires = jiffies +
  1557. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1558. / (1000 * 1000);
  1559. add_timer(&udc_pollstall_timer);
  1560. }
  1561. spin_unlock_irq(&udc_stall_spinlock);
  1562. if (stop_pollstall_timer)
  1563. complete(&on_pollstall_exit);
  1564. }
  1565. /* Inits endpoint 0 so that SETUP packets are processed */
  1566. static void activate_control_endpoints(struct udc *dev)
  1567. {
  1568. u32 tmp;
  1569. DBG(dev, "activate_control_endpoints\n");
  1570. /* flush fifo */
  1571. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1572. tmp |= AMD_BIT(UDC_EPCTL_F);
  1573. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1574. /* set ep0 directions */
  1575. dev->ep[UDC_EP0IN_IX].in = 1;
  1576. dev->ep[UDC_EP0OUT_IX].in = 0;
  1577. /* set buffer size (tx fifo entries) of EP0_IN */
  1578. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1579. if (dev->gadget.speed == USB_SPEED_FULL)
  1580. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1581. UDC_EPIN_BUFF_SIZE);
  1582. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1583. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1584. UDC_EPIN_BUFF_SIZE);
  1585. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1586. /* set max packet size of EP0_IN */
  1587. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1588. if (dev->gadget.speed == USB_SPEED_FULL)
  1589. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1590. UDC_EP_MAX_PKT_SIZE);
  1591. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1592. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1593. UDC_EP_MAX_PKT_SIZE);
  1594. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1595. /* set max packet size of EP0_OUT */
  1596. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1597. if (dev->gadget.speed == USB_SPEED_FULL)
  1598. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1599. UDC_EP_MAX_PKT_SIZE);
  1600. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1601. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1602. UDC_EP_MAX_PKT_SIZE);
  1603. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1604. /* set max packet size of EP0 in UDC CSR */
  1605. tmp = readl(&dev->csr->ne[0]);
  1606. if (dev->gadget.speed == USB_SPEED_FULL)
  1607. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1608. UDC_CSR_NE_MAX_PKT);
  1609. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1610. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1611. UDC_CSR_NE_MAX_PKT);
  1612. writel(tmp, &dev->csr->ne[0]);
  1613. if (use_dma) {
  1614. dev->ep[UDC_EP0OUT_IX].td->status |=
  1615. AMD_BIT(UDC_DMA_OUT_STS_L);
  1616. /* write dma desc address */
  1617. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1618. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1619. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1620. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1621. /* stop RDE timer */
  1622. if (timer_pending(&udc_timer)) {
  1623. set_rde = 0;
  1624. mod_timer(&udc_timer, jiffies - 1);
  1625. }
  1626. /* stop pollstall timer */
  1627. if (timer_pending(&udc_pollstall_timer))
  1628. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1629. /* enable DMA */
  1630. tmp = readl(&dev->regs->ctl);
  1631. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1632. | AMD_BIT(UDC_DEVCTL_RDE)
  1633. | AMD_BIT(UDC_DEVCTL_TDE);
  1634. if (use_dma_bufferfill_mode)
  1635. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1636. else if (use_dma_ppb_du)
  1637. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1638. writel(tmp, &dev->regs->ctl);
  1639. }
  1640. /* clear NAK by writing CNAK for EP0IN */
  1641. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1642. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1643. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1644. dev->ep[UDC_EP0IN_IX].naking = 0;
  1645. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1646. /* clear NAK by writing CNAK for EP0OUT */
  1647. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1648. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1649. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1650. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1651. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1652. }
  1653. /* Make endpoint 0 ready for control traffic */
  1654. static int setup_ep0(struct udc *dev)
  1655. {
  1656. activate_control_endpoints(dev);
  1657. /* enable ep0 interrupts */
  1658. udc_enable_ep0_interrupts(dev);
  1659. /* enable device setup interrupts */
  1660. udc_enable_dev_setup_interrupts(dev);
  1661. return 0;
  1662. }
  1663. /* Called by gadget driver to register itself */
  1664. static int amd5536_udc_start(struct usb_gadget *g,
  1665. struct usb_gadget_driver *driver)
  1666. {
  1667. struct udc *dev = to_amd5536_udc(g);
  1668. u32 tmp;
  1669. driver->driver.bus = NULL;
  1670. dev->driver = driver;
  1671. /* Some gadget drivers use both ep0 directions.
  1672. * NOTE: to gadget driver, ep0 is just one endpoint...
  1673. */
  1674. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1675. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1676. /* get ready for ep0 traffic */
  1677. setup_ep0(dev);
  1678. /* clear SD */
  1679. tmp = readl(&dev->regs->ctl);
  1680. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1681. writel(tmp, &dev->regs->ctl);
  1682. usb_connect(dev);
  1683. return 0;
  1684. }
  1685. /* shutdown requests and disconnect from gadget */
  1686. static void
  1687. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1688. __releases(dev->lock)
  1689. __acquires(dev->lock)
  1690. {
  1691. int tmp;
  1692. /* empty queues and init hardware */
  1693. udc_basic_init(dev);
  1694. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1695. empty_req_queue(&dev->ep[tmp]);
  1696. udc_setup_endpoints(dev);
  1697. }
  1698. /* Called by gadget driver to unregister itself */
  1699. static int amd5536_udc_stop(struct usb_gadget *g)
  1700. {
  1701. struct udc *dev = to_amd5536_udc(g);
  1702. unsigned long flags;
  1703. u32 tmp;
  1704. spin_lock_irqsave(&dev->lock, flags);
  1705. udc_mask_unused_interrupts(dev);
  1706. shutdown(dev, NULL);
  1707. spin_unlock_irqrestore(&dev->lock, flags);
  1708. dev->driver = NULL;
  1709. /* set SD */
  1710. tmp = readl(&dev->regs->ctl);
  1711. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1712. writel(tmp, &dev->regs->ctl);
  1713. return 0;
  1714. }
  1715. /* Clear pending NAK bits */
  1716. static void udc_process_cnak_queue(struct udc *dev)
  1717. {
  1718. u32 tmp;
  1719. u32 reg;
  1720. /* check epin's */
  1721. DBG(dev, "CNAK pending queue processing\n");
  1722. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1723. if (cnak_pending & (1 << tmp)) {
  1724. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1725. /* clear NAK by writing CNAK */
  1726. reg = readl(&dev->ep[tmp].regs->ctl);
  1727. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1728. writel(reg, &dev->ep[tmp].regs->ctl);
  1729. dev->ep[tmp].naking = 0;
  1730. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1731. }
  1732. }
  1733. /* ... and ep0out */
  1734. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1735. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1736. /* clear NAK by writing CNAK */
  1737. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1738. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1739. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1740. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1741. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1742. dev->ep[UDC_EP0OUT_IX].num);
  1743. }
  1744. }
  1745. /* Enabling RX DMA after setup packet */
  1746. static void udc_ep0_set_rde(struct udc *dev)
  1747. {
  1748. if (use_dma) {
  1749. /*
  1750. * only enable RXDMA when no data endpoint enabled
  1751. * or data is queued
  1752. */
  1753. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1754. udc_set_rde(dev);
  1755. } else {
  1756. /*
  1757. * setup timer for enabling RDE (to not enable
  1758. * RXFIFO DMA for data endpoints to early)
  1759. */
  1760. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1761. udc_timer.expires =
  1762. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1763. set_rde = 1;
  1764. if (!stop_timer)
  1765. add_timer(&udc_timer);
  1766. }
  1767. }
  1768. }
  1769. }
  1770. /* Interrupt handler for data OUT traffic */
  1771. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1772. {
  1773. irqreturn_t ret_val = IRQ_NONE;
  1774. u32 tmp;
  1775. struct udc_ep *ep;
  1776. struct udc_request *req;
  1777. unsigned int count;
  1778. struct udc_data_dma *td = NULL;
  1779. unsigned dma_done;
  1780. VDBG(dev, "ep%d irq\n", ep_ix);
  1781. ep = &dev->ep[ep_ix];
  1782. tmp = readl(&ep->regs->sts);
  1783. if (use_dma) {
  1784. /* BNA event ? */
  1785. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1786. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1787. ep->num, readl(&ep->regs->desptr));
  1788. /* clear BNA */
  1789. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1790. if (!ep->cancel_transfer)
  1791. ep->bna_occurred = 1;
  1792. else
  1793. ep->cancel_transfer = 0;
  1794. ret_val = IRQ_HANDLED;
  1795. goto finished;
  1796. }
  1797. }
  1798. /* HE event ? */
  1799. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1800. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1801. /* clear HE */
  1802. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1803. ret_val = IRQ_HANDLED;
  1804. goto finished;
  1805. }
  1806. if (!list_empty(&ep->queue)) {
  1807. /* next request */
  1808. req = list_entry(ep->queue.next,
  1809. struct udc_request, queue);
  1810. } else {
  1811. req = NULL;
  1812. udc_rxfifo_pending = 1;
  1813. }
  1814. VDBG(dev, "req = %p\n", req);
  1815. /* fifo mode */
  1816. if (!use_dma) {
  1817. /* read fifo */
  1818. if (req && udc_rxfifo_read(ep, req)) {
  1819. ret_val = IRQ_HANDLED;
  1820. /* finish */
  1821. complete_req(ep, req, 0);
  1822. /* next request */
  1823. if (!list_empty(&ep->queue) && !ep->halted) {
  1824. req = list_entry(ep->queue.next,
  1825. struct udc_request, queue);
  1826. } else
  1827. req = NULL;
  1828. }
  1829. /* DMA */
  1830. } else if (!ep->cancel_transfer && req) {
  1831. ret_val = IRQ_HANDLED;
  1832. /* check for DMA done */
  1833. if (!use_dma_ppb) {
  1834. dma_done = AMD_GETBITS(req->td_data->status,
  1835. UDC_DMA_OUT_STS_BS);
  1836. /* packet per buffer mode - rx bytes */
  1837. } else {
  1838. /*
  1839. * if BNA occurred then recover desc. from
  1840. * BNA dummy desc.
  1841. */
  1842. if (ep->bna_occurred) {
  1843. VDBG(dev, "Recover desc. from BNA dummy\n");
  1844. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1845. sizeof(struct udc_data_dma));
  1846. ep->bna_occurred = 0;
  1847. udc_init_bna_dummy(ep->req);
  1848. }
  1849. td = udc_get_last_dma_desc(req);
  1850. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1851. }
  1852. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1853. /* buffer fill mode - rx bytes */
  1854. if (!use_dma_ppb) {
  1855. /* received number bytes */
  1856. count = AMD_GETBITS(req->td_data->status,
  1857. UDC_DMA_OUT_STS_RXBYTES);
  1858. VDBG(dev, "rx bytes=%u\n", count);
  1859. /* packet per buffer mode - rx bytes */
  1860. } else {
  1861. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1862. VDBG(dev, "last desc = %p\n", td);
  1863. /* received number bytes */
  1864. if (use_dma_ppb_du) {
  1865. /* every desc. counts bytes */
  1866. count = udc_get_ppbdu_rxbytes(req);
  1867. } else {
  1868. /* last desc. counts bytes */
  1869. count = AMD_GETBITS(td->status,
  1870. UDC_DMA_OUT_STS_RXBYTES);
  1871. if (!count && req->req.length
  1872. == UDC_DMA_MAXPACKET) {
  1873. /*
  1874. * on 64k packets the RXBYTES
  1875. * field is zero
  1876. */
  1877. count = UDC_DMA_MAXPACKET;
  1878. }
  1879. }
  1880. VDBG(dev, "last desc rx bytes=%u\n", count);
  1881. }
  1882. tmp = req->req.length - req->req.actual;
  1883. if (count > tmp) {
  1884. if ((tmp % ep->ep.maxpacket) != 0) {
  1885. DBG(dev, "%s: rx %db, space=%db\n",
  1886. ep->ep.name, count, tmp);
  1887. req->req.status = -EOVERFLOW;
  1888. }
  1889. count = tmp;
  1890. }
  1891. req->req.actual += count;
  1892. req->dma_going = 0;
  1893. /* complete request */
  1894. complete_req(ep, req, 0);
  1895. /* next request */
  1896. if (!list_empty(&ep->queue) && !ep->halted) {
  1897. req = list_entry(ep->queue.next,
  1898. struct udc_request,
  1899. queue);
  1900. /*
  1901. * DMA may be already started by udc_queue()
  1902. * called by gadget drivers completion
  1903. * routine. This happens when queue
  1904. * holds one request only.
  1905. */
  1906. if (req->dma_going == 0) {
  1907. /* next dma */
  1908. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1909. goto finished;
  1910. /* write desc pointer */
  1911. writel(req->td_phys,
  1912. &ep->regs->desptr);
  1913. req->dma_going = 1;
  1914. /* enable DMA */
  1915. udc_set_rde(dev);
  1916. }
  1917. } else {
  1918. /*
  1919. * implant BNA dummy descriptor to allow
  1920. * RXFIFO opening by RDE
  1921. */
  1922. if (ep->bna_dummy_req) {
  1923. /* write desc pointer */
  1924. writel(ep->bna_dummy_req->td_phys,
  1925. &ep->regs->desptr);
  1926. ep->bna_occurred = 0;
  1927. }
  1928. /*
  1929. * schedule timer for setting RDE if queue
  1930. * remains empty to allow ep0 packets pass
  1931. * through
  1932. */
  1933. if (set_rde != 0
  1934. && !timer_pending(&udc_timer)) {
  1935. udc_timer.expires =
  1936. jiffies
  1937. + HZ*UDC_RDE_TIMER_SECONDS;
  1938. set_rde = 1;
  1939. if (!stop_timer)
  1940. add_timer(&udc_timer);
  1941. }
  1942. if (ep->num != UDC_EP0OUT_IX)
  1943. dev->data_ep_queued = 0;
  1944. }
  1945. } else {
  1946. /*
  1947. * RX DMA must be reenabled for each desc in PPBDU mode
  1948. * and must be enabled for PPBNDU mode in case of BNA
  1949. */
  1950. udc_set_rde(dev);
  1951. }
  1952. } else if (ep->cancel_transfer) {
  1953. ret_val = IRQ_HANDLED;
  1954. ep->cancel_transfer = 0;
  1955. }
  1956. /* check pending CNAKS */
  1957. if (cnak_pending) {
  1958. /* CNAk processing when rxfifo empty only */
  1959. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1960. udc_process_cnak_queue(dev);
  1961. }
  1962. /* clear OUT bits in ep status */
  1963. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1964. finished:
  1965. return ret_val;
  1966. }
  1967. /* Interrupt handler for data IN traffic */
  1968. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1969. {
  1970. irqreturn_t ret_val = IRQ_NONE;
  1971. u32 tmp;
  1972. u32 epsts;
  1973. struct udc_ep *ep;
  1974. struct udc_request *req;
  1975. struct udc_data_dma *td;
  1976. unsigned len;
  1977. ep = &dev->ep[ep_ix];
  1978. epsts = readl(&ep->regs->sts);
  1979. if (use_dma) {
  1980. /* BNA ? */
  1981. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1982. dev_err(&dev->pdev->dev,
  1983. "BNA ep%din occurred - DESPTR = %08lx\n",
  1984. ep->num,
  1985. (unsigned long) readl(&ep->regs->desptr));
  1986. /* clear BNA */
  1987. writel(epsts, &ep->regs->sts);
  1988. ret_val = IRQ_HANDLED;
  1989. goto finished;
  1990. }
  1991. }
  1992. /* HE event ? */
  1993. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1994. dev_err(&dev->pdev->dev,
  1995. "HE ep%dn occurred - DESPTR = %08lx\n",
  1996. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1997. /* clear HE */
  1998. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1999. ret_val = IRQ_HANDLED;
  2000. goto finished;
  2001. }
  2002. /* DMA completion */
  2003. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2004. VDBG(dev, "TDC set- completion\n");
  2005. ret_val = IRQ_HANDLED;
  2006. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2007. req = list_entry(ep->queue.next,
  2008. struct udc_request, queue);
  2009. /*
  2010. * length bytes transferred
  2011. * check dma done of last desc. in PPBDU mode
  2012. */
  2013. if (use_dma_ppb_du) {
  2014. td = udc_get_last_dma_desc(req);
  2015. if (td)
  2016. req->req.actual = req->req.length;
  2017. } else {
  2018. /* assume all bytes transferred */
  2019. req->req.actual = req->req.length;
  2020. }
  2021. if (req->req.actual == req->req.length) {
  2022. /* complete req */
  2023. complete_req(ep, req, 0);
  2024. req->dma_going = 0;
  2025. /* further request available ? */
  2026. if (list_empty(&ep->queue)) {
  2027. /* disable interrupt */
  2028. tmp = readl(&dev->regs->ep_irqmsk);
  2029. tmp |= AMD_BIT(ep->num);
  2030. writel(tmp, &dev->regs->ep_irqmsk);
  2031. }
  2032. }
  2033. }
  2034. ep->cancel_transfer = 0;
  2035. }
  2036. /*
  2037. * status reg has IN bit set and TDC not set (if TDC was handled,
  2038. * IN must not be handled (UDC defect) ?
  2039. */
  2040. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2041. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2042. ret_val = IRQ_HANDLED;
  2043. if (!list_empty(&ep->queue)) {
  2044. /* next request */
  2045. req = list_entry(ep->queue.next,
  2046. struct udc_request, queue);
  2047. /* FIFO mode */
  2048. if (!use_dma) {
  2049. /* write fifo */
  2050. udc_txfifo_write(ep, &req->req);
  2051. len = req->req.length - req->req.actual;
  2052. if (len > ep->ep.maxpacket)
  2053. len = ep->ep.maxpacket;
  2054. req->req.actual += len;
  2055. if (req->req.actual == req->req.length
  2056. || (len != ep->ep.maxpacket)) {
  2057. /* complete req */
  2058. complete_req(ep, req, 0);
  2059. }
  2060. /* DMA */
  2061. } else if (req && !req->dma_going) {
  2062. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2063. req, req->td_data);
  2064. if (req->td_data) {
  2065. req->dma_going = 1;
  2066. /*
  2067. * unset L bit of first desc.
  2068. * for chain
  2069. */
  2070. if (use_dma_ppb && req->req.length >
  2071. ep->ep.maxpacket) {
  2072. req->td_data->status &=
  2073. AMD_CLEAR_BIT(
  2074. UDC_DMA_IN_STS_L);
  2075. }
  2076. /* write desc pointer */
  2077. writel(req->td_phys, &ep->regs->desptr);
  2078. /* set HOST READY */
  2079. req->td_data->status =
  2080. AMD_ADDBITS(
  2081. req->td_data->status,
  2082. UDC_DMA_IN_STS_BS_HOST_READY,
  2083. UDC_DMA_IN_STS_BS);
  2084. /* set poll demand bit */
  2085. tmp = readl(&ep->regs->ctl);
  2086. tmp |= AMD_BIT(UDC_EPCTL_P);
  2087. writel(tmp, &ep->regs->ctl);
  2088. }
  2089. }
  2090. } else if (!use_dma && ep->in) {
  2091. /* disable interrupt */
  2092. tmp = readl(
  2093. &dev->regs->ep_irqmsk);
  2094. tmp |= AMD_BIT(ep->num);
  2095. writel(tmp,
  2096. &dev->regs->ep_irqmsk);
  2097. }
  2098. }
  2099. /* clear status bits */
  2100. writel(epsts, &ep->regs->sts);
  2101. finished:
  2102. return ret_val;
  2103. }
  2104. /* Interrupt handler for Control OUT traffic */
  2105. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2106. __releases(dev->lock)
  2107. __acquires(dev->lock)
  2108. {
  2109. irqreturn_t ret_val = IRQ_NONE;
  2110. u32 tmp;
  2111. int setup_supported;
  2112. u32 count;
  2113. int set = 0;
  2114. struct udc_ep *ep;
  2115. struct udc_ep *ep_tmp;
  2116. ep = &dev->ep[UDC_EP0OUT_IX];
  2117. /* clear irq */
  2118. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2119. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2120. /* check BNA and clear if set */
  2121. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2122. VDBG(dev, "ep0: BNA set\n");
  2123. writel(AMD_BIT(UDC_EPSTS_BNA),
  2124. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2125. ep->bna_occurred = 1;
  2126. ret_val = IRQ_HANDLED;
  2127. goto finished;
  2128. }
  2129. /* type of data: SETUP or DATA 0 bytes */
  2130. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2131. VDBG(dev, "data_typ = %x\n", tmp);
  2132. /* setup data */
  2133. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2134. ret_val = IRQ_HANDLED;
  2135. ep->dev->stall_ep0in = 0;
  2136. dev->waiting_zlp_ack_ep0in = 0;
  2137. /* set NAK for EP0_IN */
  2138. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2139. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2140. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2141. dev->ep[UDC_EP0IN_IX].naking = 1;
  2142. /* get setup data */
  2143. if (use_dma) {
  2144. /* clear OUT bits in ep status */
  2145. writel(UDC_EPSTS_OUT_CLEAR,
  2146. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2147. setup_data.data[0] =
  2148. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2149. setup_data.data[1] =
  2150. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2151. /* set HOST READY */
  2152. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2153. UDC_DMA_STP_STS_BS_HOST_READY;
  2154. } else {
  2155. /* read fifo */
  2156. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2157. }
  2158. /* determine direction of control data */
  2159. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2160. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2161. /* enable RDE */
  2162. udc_ep0_set_rde(dev);
  2163. set = 0;
  2164. } else {
  2165. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2166. /*
  2167. * implant BNA dummy descriptor to allow RXFIFO opening
  2168. * by RDE
  2169. */
  2170. if (ep->bna_dummy_req) {
  2171. /* write desc pointer */
  2172. writel(ep->bna_dummy_req->td_phys,
  2173. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2174. ep->bna_occurred = 0;
  2175. }
  2176. set = 1;
  2177. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2178. /*
  2179. * setup timer for enabling RDE (to not enable
  2180. * RXFIFO DMA for data to early)
  2181. */
  2182. set_rde = 1;
  2183. if (!timer_pending(&udc_timer)) {
  2184. udc_timer.expires = jiffies +
  2185. HZ/UDC_RDE_TIMER_DIV;
  2186. if (!stop_timer)
  2187. add_timer(&udc_timer);
  2188. }
  2189. }
  2190. /*
  2191. * mass storage reset must be processed here because
  2192. * next packet may be a CLEAR_FEATURE HALT which would not
  2193. * clear the stall bit when no STALL handshake was received
  2194. * before (autostall can cause this)
  2195. */
  2196. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2197. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2198. DBG(dev, "MSC Reset\n");
  2199. /*
  2200. * clear stall bits
  2201. * only one IN and OUT endpoints are handled
  2202. */
  2203. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2204. udc_set_halt(&ep_tmp->ep, 0);
  2205. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2206. udc_set_halt(&ep_tmp->ep, 0);
  2207. }
  2208. /* call gadget with setup data received */
  2209. spin_unlock(&dev->lock);
  2210. setup_supported = dev->driver->setup(&dev->gadget,
  2211. &setup_data.request);
  2212. spin_lock(&dev->lock);
  2213. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2214. /* ep0 in returns data (not zlp) on IN phase */
  2215. if (setup_supported >= 0 && setup_supported <
  2216. UDC_EP0IN_MAXPACKET) {
  2217. /* clear NAK by writing CNAK in EP0_IN */
  2218. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2219. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2220. dev->ep[UDC_EP0IN_IX].naking = 0;
  2221. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2222. /* if unsupported request then stall */
  2223. } else if (setup_supported < 0) {
  2224. tmp |= AMD_BIT(UDC_EPCTL_S);
  2225. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2226. } else
  2227. dev->waiting_zlp_ack_ep0in = 1;
  2228. /* clear NAK by writing CNAK in EP0_OUT */
  2229. if (!set) {
  2230. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2231. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2232. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2233. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2234. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2235. }
  2236. if (!use_dma) {
  2237. /* clear OUT bits in ep status */
  2238. writel(UDC_EPSTS_OUT_CLEAR,
  2239. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2240. }
  2241. /* data packet 0 bytes */
  2242. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2243. /* clear OUT bits in ep status */
  2244. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2245. /* get setup data: only 0 packet */
  2246. if (use_dma) {
  2247. /* no req if 0 packet, just reactivate */
  2248. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2249. VDBG(dev, "ZLP\n");
  2250. /* set HOST READY */
  2251. dev->ep[UDC_EP0OUT_IX].td->status =
  2252. AMD_ADDBITS(
  2253. dev->ep[UDC_EP0OUT_IX].td->status,
  2254. UDC_DMA_OUT_STS_BS_HOST_READY,
  2255. UDC_DMA_OUT_STS_BS);
  2256. /* enable RDE */
  2257. udc_ep0_set_rde(dev);
  2258. ret_val = IRQ_HANDLED;
  2259. } else {
  2260. /* control write */
  2261. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2262. /* re-program desc. pointer for possible ZLPs */
  2263. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2264. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2265. /* enable RDE */
  2266. udc_ep0_set_rde(dev);
  2267. }
  2268. } else {
  2269. /* received number bytes */
  2270. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2271. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2272. /* out data for fifo mode not working */
  2273. count = 0;
  2274. /* 0 packet or real data ? */
  2275. if (count != 0) {
  2276. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2277. } else {
  2278. /* dummy read confirm */
  2279. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2280. ret_val = IRQ_HANDLED;
  2281. }
  2282. }
  2283. }
  2284. /* check pending CNAKS */
  2285. if (cnak_pending) {
  2286. /* CNAk processing when rxfifo empty only */
  2287. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2288. udc_process_cnak_queue(dev);
  2289. }
  2290. finished:
  2291. return ret_val;
  2292. }
  2293. /* Interrupt handler for Control IN traffic */
  2294. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2295. {
  2296. irqreturn_t ret_val = IRQ_NONE;
  2297. u32 tmp;
  2298. struct udc_ep *ep;
  2299. struct udc_request *req;
  2300. unsigned len;
  2301. ep = &dev->ep[UDC_EP0IN_IX];
  2302. /* clear irq */
  2303. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2304. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2305. /* DMA completion */
  2306. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2307. VDBG(dev, "isr: TDC clear\n");
  2308. ret_val = IRQ_HANDLED;
  2309. /* clear TDC bit */
  2310. writel(AMD_BIT(UDC_EPSTS_TDC),
  2311. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2312. /* status reg has IN bit set ? */
  2313. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2314. ret_val = IRQ_HANDLED;
  2315. if (ep->dma) {
  2316. /* clear IN bit */
  2317. writel(AMD_BIT(UDC_EPSTS_IN),
  2318. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2319. }
  2320. if (dev->stall_ep0in) {
  2321. DBG(dev, "stall ep0in\n");
  2322. /* halt ep0in */
  2323. tmp = readl(&ep->regs->ctl);
  2324. tmp |= AMD_BIT(UDC_EPCTL_S);
  2325. writel(tmp, &ep->regs->ctl);
  2326. } else {
  2327. if (!list_empty(&ep->queue)) {
  2328. /* next request */
  2329. req = list_entry(ep->queue.next,
  2330. struct udc_request, queue);
  2331. if (ep->dma) {
  2332. /* write desc pointer */
  2333. writel(req->td_phys, &ep->regs->desptr);
  2334. /* set HOST READY */
  2335. req->td_data->status =
  2336. AMD_ADDBITS(
  2337. req->td_data->status,
  2338. UDC_DMA_STP_STS_BS_HOST_READY,
  2339. UDC_DMA_STP_STS_BS);
  2340. /* set poll demand bit */
  2341. tmp =
  2342. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2343. tmp |= AMD_BIT(UDC_EPCTL_P);
  2344. writel(tmp,
  2345. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2346. /* all bytes will be transferred */
  2347. req->req.actual = req->req.length;
  2348. /* complete req */
  2349. complete_req(ep, req, 0);
  2350. } else {
  2351. /* write fifo */
  2352. udc_txfifo_write(ep, &req->req);
  2353. /* lengh bytes transferred */
  2354. len = req->req.length - req->req.actual;
  2355. if (len > ep->ep.maxpacket)
  2356. len = ep->ep.maxpacket;
  2357. req->req.actual += len;
  2358. if (req->req.actual == req->req.length
  2359. || (len != ep->ep.maxpacket)) {
  2360. /* complete req */
  2361. complete_req(ep, req, 0);
  2362. }
  2363. }
  2364. }
  2365. }
  2366. ep->halted = 0;
  2367. dev->stall_ep0in = 0;
  2368. if (!ep->dma) {
  2369. /* clear IN bit */
  2370. writel(AMD_BIT(UDC_EPSTS_IN),
  2371. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2372. }
  2373. }
  2374. return ret_val;
  2375. }
  2376. /* Interrupt handler for global device events */
  2377. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2378. __releases(dev->lock)
  2379. __acquires(dev->lock)
  2380. {
  2381. irqreturn_t ret_val = IRQ_NONE;
  2382. u32 tmp;
  2383. u32 cfg;
  2384. struct udc_ep *ep;
  2385. u16 i;
  2386. u8 udc_csr_epix;
  2387. /* SET_CONFIG irq ? */
  2388. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2389. ret_val = IRQ_HANDLED;
  2390. /* read config value */
  2391. tmp = readl(&dev->regs->sts);
  2392. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2393. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2394. dev->cur_config = cfg;
  2395. dev->set_cfg_not_acked = 1;
  2396. /* make usb request for gadget driver */
  2397. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2398. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2399. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2400. /* programm the NE registers */
  2401. for (i = 0; i < UDC_EP_NUM; i++) {
  2402. ep = &dev->ep[i];
  2403. if (ep->in) {
  2404. /* ep ix in UDC CSR register space */
  2405. udc_csr_epix = ep->num;
  2406. /* OUT ep */
  2407. } else {
  2408. /* ep ix in UDC CSR register space */
  2409. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2410. }
  2411. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2412. /* ep cfg */
  2413. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2414. UDC_CSR_NE_CFG);
  2415. /* write reg */
  2416. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2417. /* clear stall bits */
  2418. ep->halted = 0;
  2419. tmp = readl(&ep->regs->ctl);
  2420. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2421. writel(tmp, &ep->regs->ctl);
  2422. }
  2423. /* call gadget zero with setup data received */
  2424. spin_unlock(&dev->lock);
  2425. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2426. spin_lock(&dev->lock);
  2427. } /* SET_INTERFACE ? */
  2428. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2429. ret_val = IRQ_HANDLED;
  2430. dev->set_cfg_not_acked = 1;
  2431. /* read interface and alt setting values */
  2432. tmp = readl(&dev->regs->sts);
  2433. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2434. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2435. /* make usb request for gadget driver */
  2436. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2437. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2438. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2439. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2440. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2441. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2442. dev->cur_alt, dev->cur_intf);
  2443. /* programm the NE registers */
  2444. for (i = 0; i < UDC_EP_NUM; i++) {
  2445. ep = &dev->ep[i];
  2446. if (ep->in) {
  2447. /* ep ix in UDC CSR register space */
  2448. udc_csr_epix = ep->num;
  2449. /* OUT ep */
  2450. } else {
  2451. /* ep ix in UDC CSR register space */
  2452. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2453. }
  2454. /* UDC CSR reg */
  2455. /* set ep values */
  2456. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2457. /* ep interface */
  2458. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2459. UDC_CSR_NE_INTF);
  2460. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2461. /* ep alt */
  2462. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2463. UDC_CSR_NE_ALT);
  2464. /* write reg */
  2465. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2466. /* clear stall bits */
  2467. ep->halted = 0;
  2468. tmp = readl(&ep->regs->ctl);
  2469. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2470. writel(tmp, &ep->regs->ctl);
  2471. }
  2472. /* call gadget zero with setup data received */
  2473. spin_unlock(&dev->lock);
  2474. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2475. spin_lock(&dev->lock);
  2476. } /* USB reset */
  2477. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2478. DBG(dev, "USB Reset interrupt\n");
  2479. ret_val = IRQ_HANDLED;
  2480. /* allow soft reset when suspend occurs */
  2481. soft_reset_occured = 0;
  2482. dev->waiting_zlp_ack_ep0in = 0;
  2483. dev->set_cfg_not_acked = 0;
  2484. /* mask not needed interrupts */
  2485. udc_mask_unused_interrupts(dev);
  2486. /* call gadget to resume and reset configs etc. */
  2487. spin_unlock(&dev->lock);
  2488. if (dev->sys_suspended && dev->driver->resume) {
  2489. dev->driver->resume(&dev->gadget);
  2490. dev->sys_suspended = 0;
  2491. }
  2492. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2493. spin_lock(&dev->lock);
  2494. /* disable ep0 to empty req queue */
  2495. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2496. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2497. /* soft reset when rxfifo not empty */
  2498. tmp = readl(&dev->regs->sts);
  2499. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2500. && !soft_reset_after_usbreset_occured) {
  2501. udc_soft_reset(dev);
  2502. soft_reset_after_usbreset_occured++;
  2503. }
  2504. /*
  2505. * DMA reset to kill potential old DMA hw hang,
  2506. * POLL bit is already reset by ep_init() through
  2507. * disconnect()
  2508. */
  2509. DBG(dev, "DMA machine reset\n");
  2510. tmp = readl(&dev->regs->cfg);
  2511. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2512. writel(tmp, &dev->regs->cfg);
  2513. /* put into initial config */
  2514. udc_basic_init(dev);
  2515. /* enable device setup interrupts */
  2516. udc_enable_dev_setup_interrupts(dev);
  2517. /* enable suspend interrupt */
  2518. tmp = readl(&dev->regs->irqmsk);
  2519. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2520. writel(tmp, &dev->regs->irqmsk);
  2521. } /* USB suspend */
  2522. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2523. DBG(dev, "USB Suspend interrupt\n");
  2524. ret_val = IRQ_HANDLED;
  2525. if (dev->driver->suspend) {
  2526. spin_unlock(&dev->lock);
  2527. dev->sys_suspended = 1;
  2528. dev->driver->suspend(&dev->gadget);
  2529. spin_lock(&dev->lock);
  2530. }
  2531. } /* new speed ? */
  2532. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2533. DBG(dev, "ENUM interrupt\n");
  2534. ret_val = IRQ_HANDLED;
  2535. soft_reset_after_usbreset_occured = 0;
  2536. /* disable ep0 to empty req queue */
  2537. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2538. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2539. /* link up all endpoints */
  2540. udc_setup_endpoints(dev);
  2541. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2542. usb_speed_string(dev->gadget.speed));
  2543. /* init ep 0 */
  2544. activate_control_endpoints(dev);
  2545. /* enable ep0 interrupts */
  2546. udc_enable_ep0_interrupts(dev);
  2547. }
  2548. /* session valid change interrupt */
  2549. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2550. DBG(dev, "USB SVC interrupt\n");
  2551. ret_val = IRQ_HANDLED;
  2552. /* check that session is not valid to detect disconnect */
  2553. tmp = readl(&dev->regs->sts);
  2554. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2555. /* disable suspend interrupt */
  2556. tmp = readl(&dev->regs->irqmsk);
  2557. tmp |= AMD_BIT(UDC_DEVINT_US);
  2558. writel(tmp, &dev->regs->irqmsk);
  2559. DBG(dev, "USB Disconnect (session valid low)\n");
  2560. /* cleanup on disconnect */
  2561. usb_disconnect(udc);
  2562. }
  2563. }
  2564. return ret_val;
  2565. }
  2566. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2567. irqreturn_t udc_irq(int irq, void *pdev)
  2568. {
  2569. struct udc *dev = pdev;
  2570. u32 reg;
  2571. u16 i;
  2572. u32 ep_irq;
  2573. irqreturn_t ret_val = IRQ_NONE;
  2574. spin_lock(&dev->lock);
  2575. /* check for ep irq */
  2576. reg = readl(&dev->regs->ep_irqsts);
  2577. if (reg) {
  2578. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2579. ret_val |= udc_control_out_isr(dev);
  2580. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2581. ret_val |= udc_control_in_isr(dev);
  2582. /*
  2583. * data endpoint
  2584. * iterate ep's
  2585. */
  2586. for (i = 1; i < UDC_EP_NUM; i++) {
  2587. ep_irq = 1 << i;
  2588. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2589. continue;
  2590. /* clear irq status */
  2591. writel(ep_irq, &dev->regs->ep_irqsts);
  2592. /* irq for out ep ? */
  2593. if (i > UDC_EPIN_NUM)
  2594. ret_val |= udc_data_out_isr(dev, i);
  2595. else
  2596. ret_val |= udc_data_in_isr(dev, i);
  2597. }
  2598. }
  2599. /* check for dev irq */
  2600. reg = readl(&dev->regs->irqsts);
  2601. if (reg) {
  2602. /* clear irq */
  2603. writel(reg, &dev->regs->irqsts);
  2604. ret_val |= udc_dev_isr(dev, reg);
  2605. }
  2606. spin_unlock(&dev->lock);
  2607. return ret_val;
  2608. }
  2609. EXPORT_SYMBOL_GPL(udc_irq);
  2610. /* Tears down device */
  2611. void gadget_release(struct device *pdev)
  2612. {
  2613. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2614. kfree(dev);
  2615. }
  2616. EXPORT_SYMBOL_GPL(gadget_release);
  2617. /* Cleanup on device remove */
  2618. void udc_remove(struct udc *dev)
  2619. {
  2620. /* remove timer */
  2621. stop_timer++;
  2622. if (timer_pending(&udc_timer))
  2623. wait_for_completion(&on_exit);
  2624. if (udc_timer.data)
  2625. del_timer_sync(&udc_timer);
  2626. /* remove pollstall timer */
  2627. stop_pollstall_timer++;
  2628. if (timer_pending(&udc_pollstall_timer))
  2629. wait_for_completion(&on_pollstall_exit);
  2630. if (udc_pollstall_timer.data)
  2631. del_timer_sync(&udc_pollstall_timer);
  2632. udc = NULL;
  2633. }
  2634. EXPORT_SYMBOL_GPL(udc_remove);
  2635. /* free all the dma pools */
  2636. void free_dma_pools(struct udc *dev)
  2637. {
  2638. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
  2639. dev->ep[UDC_EP0OUT_IX].td_phys);
  2640. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
  2641. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2642. dma_pool_destroy(dev->stp_requests);
  2643. dma_pool_destroy(dev->data_requests);
  2644. }
  2645. EXPORT_SYMBOL_GPL(free_dma_pools);
  2646. /* create dma pools on init */
  2647. int init_dma_pools(struct udc *dev)
  2648. {
  2649. struct udc_stp_dma *td_stp;
  2650. struct udc_data_dma *td_data;
  2651. int retval;
  2652. /* consistent DMA mode setting ? */
  2653. if (use_dma_ppb) {
  2654. use_dma_bufferfill_mode = 0;
  2655. } else {
  2656. use_dma_ppb_du = 0;
  2657. use_dma_bufferfill_mode = 1;
  2658. }
  2659. /* DMA setup */
  2660. dev->data_requests = dma_pool_create("data_requests", NULL,
  2661. sizeof(struct udc_data_dma), 0, 0);
  2662. if (!dev->data_requests) {
  2663. DBG(dev, "can't get request data pool\n");
  2664. return -ENOMEM;
  2665. }
  2666. /* EP0 in dma regs = dev control regs */
  2667. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2668. /* dma desc for setup data */
  2669. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2670. sizeof(struct udc_stp_dma), 0, 0);
  2671. if (!dev->stp_requests) {
  2672. DBG(dev, "can't get stp request pool\n");
  2673. retval = -ENOMEM;
  2674. goto err_create_dma_pool;
  2675. }
  2676. /* setup */
  2677. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2678. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2679. if (!td_stp) {
  2680. retval = -ENOMEM;
  2681. goto err_alloc_dma;
  2682. }
  2683. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2684. /* data: 0 packets !? */
  2685. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2686. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2687. if (!td_data) {
  2688. retval = -ENOMEM;
  2689. goto err_alloc_phys;
  2690. }
  2691. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2692. return 0;
  2693. err_alloc_phys:
  2694. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
  2695. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2696. err_alloc_dma:
  2697. dma_pool_destroy(dev->stp_requests);
  2698. dev->stp_requests = NULL;
  2699. err_create_dma_pool:
  2700. dma_pool_destroy(dev->data_requests);
  2701. dev->data_requests = NULL;
  2702. return retval;
  2703. }
  2704. EXPORT_SYMBOL_GPL(init_dma_pools);
  2705. /* general probe */
  2706. int udc_probe(struct udc *dev)
  2707. {
  2708. char tmp[128];
  2709. u32 reg;
  2710. int retval;
  2711. /* mark timer as not initialized */
  2712. udc_timer.data = 0;
  2713. udc_pollstall_timer.data = 0;
  2714. /* device struct setup */
  2715. dev->gadget.ops = &udc_ops;
  2716. dev_set_name(&dev->gadget.dev, "gadget");
  2717. dev->gadget.name = name;
  2718. dev->gadget.max_speed = USB_SPEED_HIGH;
  2719. /* init registers, interrupts, ... */
  2720. startup_registers(dev);
  2721. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2722. snprintf(tmp, sizeof(tmp), "%d", dev->irq);
  2723. dev_info(&dev->pdev->dev,
  2724. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2725. tmp, dev->phys_addr, dev->chiprev,
  2726. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2727. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2728. if (dev->chiprev == UDC_HSA0_REV) {
  2729. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2730. retval = -ENODEV;
  2731. goto finished;
  2732. }
  2733. dev_info(&dev->pdev->dev,
  2734. "driver version: %s(for Geode5536 B1)\n", tmp);
  2735. udc = dev;
  2736. retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
  2737. gadget_release);
  2738. if (retval)
  2739. goto finished;
  2740. /* timer init */
  2741. init_timer(&udc_timer);
  2742. udc_timer.function = udc_timer_function;
  2743. udc_timer.data = 1;
  2744. /* timer pollstall init */
  2745. init_timer(&udc_pollstall_timer);
  2746. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2747. udc_pollstall_timer.data = 1;
  2748. /* set SD */
  2749. reg = readl(&dev->regs->ctl);
  2750. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2751. writel(reg, &dev->regs->ctl);
  2752. /* print dev register info */
  2753. print_regs(dev);
  2754. return 0;
  2755. finished:
  2756. return retval;
  2757. }
  2758. EXPORT_SYMBOL_GPL(udc_probe);
  2759. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2760. MODULE_AUTHOR("Thomas Dahlmann");
  2761. MODULE_LICENSE("GPL");