spi-bcm-qspi.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459
  1. /*
  2. * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
  3. *
  4. * Copyright 2016 Broadcom
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation (the "GPL").
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License version 2 (GPLv2) for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * version 2 (GPLv2) along with this source code.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/delay.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/ioport.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/mtd/spi-nor.h>
  28. #include <linux/of.h>
  29. #include <linux/of_irq.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/slab.h>
  32. #include <linux/spi/spi.h>
  33. #include <linux/sysfs.h>
  34. #include <linux/types.h>
  35. #include "spi-bcm-qspi.h"
  36. #define DRIVER_NAME "bcm_qspi"
  37. /* BSPI register offsets */
  38. #define BSPI_REVISION_ID 0x000
  39. #define BSPI_SCRATCH 0x004
  40. #define BSPI_MAST_N_BOOT_CTRL 0x008
  41. #define BSPI_BUSY_STATUS 0x00c
  42. #define BSPI_INTR_STATUS 0x010
  43. #define BSPI_B0_STATUS 0x014
  44. #define BSPI_B0_CTRL 0x018
  45. #define BSPI_B1_STATUS 0x01c
  46. #define BSPI_B1_CTRL 0x020
  47. #define BSPI_STRAP_OVERRIDE_CTRL 0x024
  48. #define BSPI_FLEX_MODE_ENABLE 0x028
  49. #define BSPI_BITS_PER_CYCLE 0x02c
  50. #define BSPI_BITS_PER_PHASE 0x030
  51. #define BSPI_CMD_AND_MODE_BYTE 0x034
  52. #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
  53. #define BSPI_BSPI_XOR_VALUE 0x03c
  54. #define BSPI_BSPI_XOR_ENABLE 0x040
  55. #define BSPI_BSPI_PIO_MODE_ENABLE 0x044
  56. #define BSPI_BSPI_PIO_IODIR 0x048
  57. #define BSPI_BSPI_PIO_DATA 0x04c
  58. /* RAF register offsets */
  59. #define BSPI_RAF_START_ADDR 0x100
  60. #define BSPI_RAF_NUM_WORDS 0x104
  61. #define BSPI_RAF_CTRL 0x108
  62. #define BSPI_RAF_FULLNESS 0x10c
  63. #define BSPI_RAF_WATERMARK 0x110
  64. #define BSPI_RAF_STATUS 0x114
  65. #define BSPI_RAF_READ_DATA 0x118
  66. #define BSPI_RAF_WORD_CNT 0x11c
  67. #define BSPI_RAF_CURR_ADDR 0x120
  68. /* Override mode masks */
  69. #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
  70. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
  71. #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
  72. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
  73. #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
  74. #define BSPI_ADDRLEN_3BYTES 3
  75. #define BSPI_ADDRLEN_4BYTES 4
  76. #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
  77. #define BSPI_RAF_CTRL_START_MASK BIT(0)
  78. #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
  79. #define BSPI_BPP_MODE_SELECT_MASK BIT(8)
  80. #define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
  81. #define BSPI_READ_LENGTH 512
  82. /* MSPI register offsets */
  83. #define MSPI_SPCR0_LSB 0x000
  84. #define MSPI_SPCR0_MSB 0x004
  85. #define MSPI_SPCR1_LSB 0x008
  86. #define MSPI_SPCR1_MSB 0x00c
  87. #define MSPI_NEWQP 0x010
  88. #define MSPI_ENDQP 0x014
  89. #define MSPI_SPCR2 0x018
  90. #define MSPI_MSPI_STATUS 0x020
  91. #define MSPI_CPTQP 0x024
  92. #define MSPI_SPCR3 0x028
  93. #define MSPI_TXRAM 0x040
  94. #define MSPI_RXRAM 0x0c0
  95. #define MSPI_CDRAM 0x140
  96. #define MSPI_WRITE_LOCK 0x180
  97. #define MSPI_MASTER_BIT BIT(7)
  98. #define MSPI_NUM_CDRAM 16
  99. #define MSPI_CDRAM_CONT_BIT BIT(7)
  100. #define MSPI_CDRAM_BITSE_BIT BIT(6)
  101. #define MSPI_CDRAM_PCS 0xf
  102. #define MSPI_SPCR2_SPE BIT(6)
  103. #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
  104. #define MSPI_MSPI_STATUS_SPIF BIT(0)
  105. #define INTR_BASE_BIT_SHIFT 0x02
  106. #define INTR_COUNT 0x07
  107. #define NUM_CHIPSELECT 4
  108. #define QSPI_SPBR_MIN 8U
  109. #define QSPI_SPBR_MAX 255U
  110. #define OPCODE_DIOR 0xBB
  111. #define OPCODE_QIOR 0xEB
  112. #define OPCODE_DIOR_4B 0xBC
  113. #define OPCODE_QIOR_4B 0xEC
  114. #define MAX_CMD_SIZE 6
  115. #define ADDR_4MB_MASK GENMASK(22, 0)
  116. /* stop at end of transfer, no other reason */
  117. #define TRANS_STATUS_BREAK_NONE 0
  118. /* stop at end of spi_message */
  119. #define TRANS_STATUS_BREAK_EOM 1
  120. /* stop at end of spi_transfer if delay */
  121. #define TRANS_STATUS_BREAK_DELAY 2
  122. /* stop at end of spi_transfer if cs_change */
  123. #define TRANS_STATUS_BREAK_CS_CHANGE 4
  124. /* stop if we run out of bytes */
  125. #define TRANS_STATUS_BREAK_NO_BYTES 8
  126. /* events that make us stop filling TX slots */
  127. #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
  128. TRANS_STATUS_BREAK_DELAY | \
  129. TRANS_STATUS_BREAK_CS_CHANGE)
  130. /* events that make us deassert CS */
  131. #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
  132. TRANS_STATUS_BREAK_CS_CHANGE)
  133. struct bcm_qspi_parms {
  134. u32 speed_hz;
  135. u8 mode;
  136. u8 bits_per_word;
  137. };
  138. struct bcm_xfer_mode {
  139. bool flex_mode;
  140. unsigned int width;
  141. unsigned int addrlen;
  142. unsigned int hp;
  143. };
  144. enum base_type {
  145. MSPI,
  146. BSPI,
  147. CHIP_SELECT,
  148. BASEMAX,
  149. };
  150. enum irq_source {
  151. SINGLE_L2,
  152. MUXED_L1,
  153. };
  154. struct bcm_qspi_irq {
  155. const char *irq_name;
  156. const irq_handler_t irq_handler;
  157. int irq_source;
  158. u32 mask;
  159. };
  160. struct bcm_qspi_dev_id {
  161. const struct bcm_qspi_irq *irqp;
  162. void *dev;
  163. };
  164. struct qspi_trans {
  165. struct spi_transfer *trans;
  166. int byte;
  167. bool mspi_last_trans;
  168. };
  169. struct bcm_qspi {
  170. struct platform_device *pdev;
  171. struct spi_master *master;
  172. struct clk *clk;
  173. u32 base_clk;
  174. u32 max_speed_hz;
  175. void __iomem *base[BASEMAX];
  176. /* Some SoCs provide custom interrupt status register(s) */
  177. struct bcm_qspi_soc_intc *soc_intc;
  178. struct bcm_qspi_parms last_parms;
  179. struct qspi_trans trans_pos;
  180. int curr_cs;
  181. int bspi_maj_rev;
  182. int bspi_min_rev;
  183. int bspi_enabled;
  184. struct spi_flash_read_message *bspi_rf_msg;
  185. u32 bspi_rf_msg_idx;
  186. u32 bspi_rf_msg_len;
  187. u32 bspi_rf_msg_status;
  188. struct bcm_xfer_mode xfer_mode;
  189. u32 s3_strap_override_ctrl;
  190. bool bspi_mode;
  191. bool big_endian;
  192. int num_irqs;
  193. struct bcm_qspi_dev_id *dev_ids;
  194. struct completion mspi_done;
  195. struct completion bspi_done;
  196. };
  197. static inline bool has_bspi(struct bcm_qspi *qspi)
  198. {
  199. return qspi->bspi_mode;
  200. }
  201. /* Read qspi controller register*/
  202. static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
  203. unsigned int offset)
  204. {
  205. return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
  206. }
  207. /* Write qspi controller register*/
  208. static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
  209. unsigned int offset, unsigned int data)
  210. {
  211. bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
  212. }
  213. /* BSPI helpers */
  214. static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
  215. {
  216. int i;
  217. /* this should normally finish within 10us */
  218. for (i = 0; i < 1000; i++) {
  219. if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
  220. return 0;
  221. udelay(1);
  222. }
  223. dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
  224. return -EIO;
  225. }
  226. static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
  227. {
  228. if (qspi->bspi_maj_rev < 4)
  229. return true;
  230. return false;
  231. }
  232. static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
  233. {
  234. bcm_qspi_bspi_busy_poll(qspi);
  235. /* Force rising edge for the b0/b1 'flush' field */
  236. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
  237. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
  238. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  239. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  240. }
  241. static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
  242. {
  243. return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
  244. BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
  245. }
  246. static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
  247. {
  248. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
  249. /* BSPI v3 LR is LE only, convert data to host endianness */
  250. if (bcm_qspi_bspi_ver_three(qspi))
  251. data = le32_to_cpu(data);
  252. return data;
  253. }
  254. static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
  255. {
  256. bcm_qspi_bspi_busy_poll(qspi);
  257. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  258. BSPI_RAF_CTRL_START_MASK);
  259. }
  260. static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
  261. {
  262. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  263. BSPI_RAF_CTRL_CLEAR_MASK);
  264. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  265. }
  266. static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
  267. {
  268. u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
  269. u32 data = 0;
  270. dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
  271. qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
  272. while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
  273. data = bcm_qspi_bspi_lr_read_fifo(qspi);
  274. if (likely(qspi->bspi_rf_msg_len >= 4) &&
  275. IS_ALIGNED((uintptr_t)buf, 4)) {
  276. buf[qspi->bspi_rf_msg_idx++] = data;
  277. qspi->bspi_rf_msg_len -= 4;
  278. } else {
  279. /* Read out remaining bytes, make sure*/
  280. u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
  281. data = cpu_to_le32(data);
  282. while (qspi->bspi_rf_msg_len) {
  283. *cbuf++ = (u8)data;
  284. data >>= 8;
  285. qspi->bspi_rf_msg_len--;
  286. }
  287. }
  288. }
  289. }
  290. static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
  291. int bpp, int bpc, int flex_mode)
  292. {
  293. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
  294. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
  295. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
  296. bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
  297. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
  298. }
  299. static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
  300. int addrlen, int hp)
  301. {
  302. int bpc = 0, bpp = 0;
  303. u8 command = SPINOR_OP_READ_FAST;
  304. int flex_mode = 1, rv = 0;
  305. bool spans_4byte = false;
  306. dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
  307. width, addrlen, hp);
  308. if (addrlen == BSPI_ADDRLEN_4BYTES) {
  309. bpp = BSPI_BPP_ADDR_SELECT_MASK;
  310. spans_4byte = true;
  311. }
  312. bpp |= 8;
  313. switch (width) {
  314. case SPI_NBITS_SINGLE:
  315. if (addrlen == BSPI_ADDRLEN_3BYTES)
  316. /* default mode, does not need flex_cmd */
  317. flex_mode = 0;
  318. else
  319. command = SPINOR_OP_READ_FAST_4B;
  320. break;
  321. case SPI_NBITS_DUAL:
  322. bpc = 0x00000001;
  323. if (hp) {
  324. bpc |= 0x00010100; /* address and mode are 2-bit */
  325. bpp = BSPI_BPP_MODE_SELECT_MASK;
  326. command = OPCODE_DIOR;
  327. if (spans_4byte)
  328. command = OPCODE_DIOR_4B;
  329. } else {
  330. command = SPINOR_OP_READ_1_1_2;
  331. if (spans_4byte)
  332. command = SPINOR_OP_READ_1_1_2_4B;
  333. }
  334. break;
  335. case SPI_NBITS_QUAD:
  336. bpc = 0x00000002;
  337. if (hp) {
  338. bpc |= 0x00020200; /* address and mode are 4-bit */
  339. bpp = 4; /* dummy cycles */
  340. bpp |= BSPI_BPP_ADDR_SELECT_MASK;
  341. command = OPCODE_QIOR;
  342. if (spans_4byte)
  343. command = OPCODE_QIOR_4B;
  344. } else {
  345. command = SPINOR_OP_READ_1_1_4;
  346. if (spans_4byte)
  347. command = SPINOR_OP_READ_1_1_4_4B;
  348. }
  349. break;
  350. default:
  351. rv = -EINVAL;
  352. break;
  353. }
  354. if (rv == 0)
  355. bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
  356. flex_mode);
  357. return rv;
  358. }
  359. static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
  360. int addrlen, int hp)
  361. {
  362. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  363. dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
  364. width, addrlen, hp);
  365. switch (width) {
  366. case SPI_NBITS_SINGLE:
  367. /* clear quad/dual mode */
  368. data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
  369. BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
  370. break;
  371. case SPI_NBITS_QUAD:
  372. /* clear dual mode and set quad mode */
  373. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  374. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  375. break;
  376. case SPI_NBITS_DUAL:
  377. /* clear quad mode set dual mode */
  378. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  379. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  380. break;
  381. default:
  382. return -EINVAL;
  383. }
  384. if (addrlen == BSPI_ADDRLEN_4BYTES)
  385. /* set 4byte mode*/
  386. data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  387. else
  388. /* clear 4 byte mode */
  389. data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  390. /* set the override mode */
  391. data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  392. bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
  393. bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
  394. return 0;
  395. }
  396. static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
  397. int width, int addrlen, int hp)
  398. {
  399. int error = 0;
  400. /* default mode */
  401. qspi->xfer_mode.flex_mode = true;
  402. if (!bcm_qspi_bspi_ver_three(qspi)) {
  403. u32 val, mask;
  404. val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  405. mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  406. if (val & mask || qspi->s3_strap_override_ctrl & mask) {
  407. qspi->xfer_mode.flex_mode = false;
  408. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
  409. 0);
  410. if ((val | qspi->s3_strap_override_ctrl) &
  411. BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
  412. width = SPI_NBITS_DUAL;
  413. else if ((val | qspi->s3_strap_override_ctrl) &
  414. BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
  415. width = SPI_NBITS_QUAD;
  416. error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
  417. hp);
  418. }
  419. }
  420. if (qspi->xfer_mode.flex_mode)
  421. error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
  422. if (error) {
  423. dev_warn(&qspi->pdev->dev,
  424. "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
  425. width, addrlen, hp);
  426. } else if (qspi->xfer_mode.width != width ||
  427. qspi->xfer_mode.addrlen != addrlen ||
  428. qspi->xfer_mode.hp != hp) {
  429. qspi->xfer_mode.width = width;
  430. qspi->xfer_mode.addrlen = addrlen;
  431. qspi->xfer_mode.hp = hp;
  432. dev_dbg(&qspi->pdev->dev,
  433. "cs:%d %d-lane output, %d-byte address%s\n",
  434. qspi->curr_cs,
  435. qspi->xfer_mode.width,
  436. qspi->xfer_mode.addrlen,
  437. qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
  438. }
  439. return error;
  440. }
  441. static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
  442. {
  443. if (!has_bspi(qspi) || (qspi->bspi_enabled))
  444. return;
  445. qspi->bspi_enabled = 1;
  446. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
  447. return;
  448. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  449. udelay(1);
  450. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
  451. udelay(1);
  452. }
  453. static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
  454. {
  455. if (!has_bspi(qspi) || (!qspi->bspi_enabled))
  456. return;
  457. qspi->bspi_enabled = 0;
  458. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
  459. return;
  460. bcm_qspi_bspi_busy_poll(qspi);
  461. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
  462. udelay(1);
  463. }
  464. static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
  465. {
  466. u32 data = 0;
  467. if (qspi->curr_cs == cs)
  468. return;
  469. if (qspi->base[CHIP_SELECT]) {
  470. data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
  471. data = (data & ~0xff) | (1 << cs);
  472. bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
  473. usleep_range(10, 20);
  474. }
  475. qspi->curr_cs = cs;
  476. }
  477. /* MSPI helpers */
  478. static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
  479. const struct bcm_qspi_parms *xp)
  480. {
  481. u32 spcr, spbr = 0;
  482. if (xp->speed_hz)
  483. spbr = qspi->base_clk / (2 * xp->speed_hz);
  484. spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
  485. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
  486. spcr = MSPI_MASTER_BIT;
  487. /* for 16 bit the data should be zero */
  488. if (xp->bits_per_word != 16)
  489. spcr |= xp->bits_per_word << 2;
  490. spcr |= xp->mode & 3;
  491. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
  492. qspi->last_parms = *xp;
  493. }
  494. static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
  495. struct spi_device *spi,
  496. struct spi_transfer *trans)
  497. {
  498. struct bcm_qspi_parms xp;
  499. xp.speed_hz = trans->speed_hz;
  500. xp.bits_per_word = trans->bits_per_word;
  501. xp.mode = spi->mode;
  502. bcm_qspi_hw_set_parms(qspi, &xp);
  503. }
  504. static int bcm_qspi_setup(struct spi_device *spi)
  505. {
  506. struct bcm_qspi_parms *xp;
  507. if (spi->bits_per_word > 16)
  508. return -EINVAL;
  509. xp = spi_get_ctldata(spi);
  510. if (!xp) {
  511. xp = kzalloc(sizeof(*xp), GFP_KERNEL);
  512. if (!xp)
  513. return -ENOMEM;
  514. spi_set_ctldata(spi, xp);
  515. }
  516. xp->speed_hz = spi->max_speed_hz;
  517. xp->mode = spi->mode;
  518. if (spi->bits_per_word)
  519. xp->bits_per_word = spi->bits_per_word;
  520. else
  521. xp->bits_per_word = 8;
  522. return 0;
  523. }
  524. static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
  525. struct qspi_trans *qt)
  526. {
  527. if (qt->mspi_last_trans &&
  528. spi_transfer_is_last(qspi->master, qt->trans))
  529. return true;
  530. else
  531. return false;
  532. }
  533. static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
  534. struct qspi_trans *qt, int flags)
  535. {
  536. int ret = TRANS_STATUS_BREAK_NONE;
  537. /* count the last transferred bytes */
  538. if (qt->trans->bits_per_word <= 8)
  539. qt->byte++;
  540. else
  541. qt->byte += 2;
  542. if (qt->byte >= qt->trans->len) {
  543. /* we're at the end of the spi_transfer */
  544. /* in TX mode, need to pause for a delay or CS change */
  545. if (qt->trans->delay_usecs &&
  546. (flags & TRANS_STATUS_BREAK_DELAY))
  547. ret |= TRANS_STATUS_BREAK_DELAY;
  548. if (qt->trans->cs_change &&
  549. (flags & TRANS_STATUS_BREAK_CS_CHANGE))
  550. ret |= TRANS_STATUS_BREAK_CS_CHANGE;
  551. if (ret)
  552. goto done;
  553. dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
  554. if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
  555. ret = TRANS_STATUS_BREAK_EOM;
  556. else
  557. ret = TRANS_STATUS_BREAK_NO_BYTES;
  558. qt->trans = NULL;
  559. }
  560. done:
  561. dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
  562. qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
  563. return ret;
  564. }
  565. static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
  566. {
  567. u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
  568. /* mask out reserved bits */
  569. return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
  570. }
  571. static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
  572. {
  573. u32 reg_offset = MSPI_RXRAM;
  574. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  575. u32 msb_offset = reg_offset + (slot << 3);
  576. return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
  577. ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
  578. }
  579. static void read_from_hw(struct bcm_qspi *qspi, int slots)
  580. {
  581. struct qspi_trans tp;
  582. int slot;
  583. bcm_qspi_disable_bspi(qspi);
  584. if (slots > MSPI_NUM_CDRAM) {
  585. /* should never happen */
  586. dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
  587. return;
  588. }
  589. tp = qspi->trans_pos;
  590. for (slot = 0; slot < slots; slot++) {
  591. if (tp.trans->bits_per_word <= 8) {
  592. u8 *buf = tp.trans->rx_buf;
  593. if (buf)
  594. buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
  595. dev_dbg(&qspi->pdev->dev, "RD %02x\n",
  596. buf ? buf[tp.byte] : 0xff);
  597. } else {
  598. u16 *buf = tp.trans->rx_buf;
  599. if (buf)
  600. buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
  601. slot);
  602. dev_dbg(&qspi->pdev->dev, "RD %04x\n",
  603. buf ? buf[tp.byte] : 0xffff);
  604. }
  605. update_qspi_trans_byte_count(qspi, &tp,
  606. TRANS_STATUS_BREAK_NONE);
  607. }
  608. qspi->trans_pos = tp;
  609. }
  610. static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
  611. u8 val)
  612. {
  613. u32 reg_offset = MSPI_TXRAM + (slot << 3);
  614. /* mask out reserved bits */
  615. bcm_qspi_write(qspi, MSPI, reg_offset, val);
  616. }
  617. static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
  618. u16 val)
  619. {
  620. u32 reg_offset = MSPI_TXRAM;
  621. u32 msb_offset = reg_offset + (slot << 3);
  622. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  623. bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
  624. bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
  625. }
  626. static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
  627. {
  628. return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
  629. }
  630. static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
  631. {
  632. bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
  633. }
  634. /* Return number of slots written */
  635. static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
  636. {
  637. struct qspi_trans tp;
  638. int slot = 0, tstatus = 0;
  639. u32 mspi_cdram = 0;
  640. bcm_qspi_disable_bspi(qspi);
  641. tp = qspi->trans_pos;
  642. bcm_qspi_update_parms(qspi, spi, tp.trans);
  643. /* Run until end of transfer or reached the max data */
  644. while (!tstatus && slot < MSPI_NUM_CDRAM) {
  645. if (tp.trans->bits_per_word <= 8) {
  646. const u8 *buf = tp.trans->tx_buf;
  647. u8 val = buf ? buf[tp.byte] : 0xff;
  648. write_txram_slot_u8(qspi, slot, val);
  649. dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
  650. } else {
  651. const u16 *buf = tp.trans->tx_buf;
  652. u16 val = buf ? buf[tp.byte / 2] : 0xffff;
  653. write_txram_slot_u16(qspi, slot, val);
  654. dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
  655. }
  656. mspi_cdram = MSPI_CDRAM_CONT_BIT;
  657. mspi_cdram |= (~(1 << spi->chip_select) &
  658. MSPI_CDRAM_PCS);
  659. mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
  660. MSPI_CDRAM_BITSE_BIT);
  661. write_cdram_slot(qspi, slot, mspi_cdram);
  662. tstatus = update_qspi_trans_byte_count(qspi, &tp,
  663. TRANS_STATUS_BREAK_TX);
  664. slot++;
  665. }
  666. if (!slot) {
  667. dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
  668. goto done;
  669. }
  670. dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
  671. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  672. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
  673. if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
  674. mspi_cdram = read_cdram_slot(qspi, slot - 1) &
  675. ~MSPI_CDRAM_CONT_BIT;
  676. write_cdram_slot(qspi, slot - 1, mspi_cdram);
  677. }
  678. if (has_bspi(qspi))
  679. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
  680. /* Must flush previous writes before starting MSPI operation */
  681. mb();
  682. /* Set cont | spe | spifie */
  683. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
  684. done:
  685. return slot;
  686. }
  687. static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
  688. struct spi_flash_read_message *msg)
  689. {
  690. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  691. u32 addr = 0, len, rdlen, len_words;
  692. int ret = 0;
  693. unsigned long timeo = msecs_to_jiffies(100);
  694. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  695. if (bcm_qspi_bspi_ver_three(qspi))
  696. if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
  697. return -EIO;
  698. bcm_qspi_chip_select(qspi, spi->chip_select);
  699. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  700. /*
  701. * when using flex mode we need to send
  702. * the upper address byte to bspi
  703. */
  704. if (bcm_qspi_bspi_ver_three(qspi) == false) {
  705. addr = msg->from & 0xff000000;
  706. bcm_qspi_write(qspi, BSPI,
  707. BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
  708. }
  709. if (!qspi->xfer_mode.flex_mode)
  710. addr = msg->from;
  711. else
  712. addr = msg->from & 0x00ffffff;
  713. if (bcm_qspi_bspi_ver_three(qspi) == true)
  714. addr = (addr + 0xc00000) & 0xffffff;
  715. /*
  716. * read into the entire buffer by breaking the reads
  717. * into RAF buffer read lengths
  718. */
  719. len = msg->len;
  720. qspi->bspi_rf_msg_idx = 0;
  721. do {
  722. if (len > BSPI_READ_LENGTH)
  723. rdlen = BSPI_READ_LENGTH;
  724. else
  725. rdlen = len;
  726. reinit_completion(&qspi->bspi_done);
  727. bcm_qspi_enable_bspi(qspi);
  728. len_words = (rdlen + 3) >> 2;
  729. qspi->bspi_rf_msg = msg;
  730. qspi->bspi_rf_msg_status = 0;
  731. qspi->bspi_rf_msg_len = rdlen;
  732. dev_dbg(&qspi->pdev->dev,
  733. "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
  734. bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
  735. bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
  736. bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
  737. if (qspi->soc_intc) {
  738. /*
  739. * clear soc MSPI and BSPI interrupts and enable
  740. * BSPI interrupts.
  741. */
  742. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
  743. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
  744. }
  745. /* Must flush previous writes before starting BSPI operation */
  746. mb();
  747. bcm_qspi_bspi_lr_start(qspi);
  748. if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
  749. dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
  750. ret = -ETIMEDOUT;
  751. break;
  752. }
  753. /* set msg return length */
  754. msg->retlen += rdlen;
  755. addr += rdlen;
  756. len -= rdlen;
  757. } while (len);
  758. return ret;
  759. }
  760. static int bcm_qspi_transfer_one(struct spi_master *master,
  761. struct spi_device *spi,
  762. struct spi_transfer *trans)
  763. {
  764. struct bcm_qspi *qspi = spi_master_get_devdata(master);
  765. int slots;
  766. unsigned long timeo = msecs_to_jiffies(100);
  767. bcm_qspi_chip_select(qspi, spi->chip_select);
  768. qspi->trans_pos.trans = trans;
  769. qspi->trans_pos.byte = 0;
  770. while (qspi->trans_pos.byte < trans->len) {
  771. reinit_completion(&qspi->mspi_done);
  772. slots = write_to_hw(qspi, spi);
  773. if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
  774. dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
  775. return -ETIMEDOUT;
  776. }
  777. read_from_hw(qspi, slots);
  778. }
  779. return 0;
  780. }
  781. static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
  782. struct spi_flash_read_message *msg)
  783. {
  784. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  785. struct spi_transfer t[2];
  786. u8 cmd[6];
  787. int ret;
  788. memset(cmd, 0, sizeof(cmd));
  789. memset(t, 0, sizeof(t));
  790. /* tx */
  791. /* opcode is in cmd[0] */
  792. cmd[0] = msg->read_opcode;
  793. cmd[1] = msg->from >> (msg->addr_width * 8 - 8);
  794. cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
  795. cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
  796. cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
  797. t[0].tx_buf = cmd;
  798. t[0].len = msg->addr_width + msg->dummy_bytes + 1;
  799. t[0].bits_per_word = spi->bits_per_word;
  800. t[0].tx_nbits = msg->opcode_nbits;
  801. /* lets mspi know that this is not last transfer */
  802. qspi->trans_pos.mspi_last_trans = false;
  803. ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
  804. /* rx */
  805. qspi->trans_pos.mspi_last_trans = true;
  806. if (!ret) {
  807. /* rx */
  808. t[1].rx_buf = msg->buf;
  809. t[1].len = msg->len;
  810. t[1].rx_nbits = msg->data_nbits;
  811. t[1].bits_per_word = spi->bits_per_word;
  812. ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
  813. }
  814. if (!ret)
  815. msg->retlen = msg->len;
  816. return ret;
  817. }
  818. static int bcm_qspi_flash_read(struct spi_device *spi,
  819. struct spi_flash_read_message *msg)
  820. {
  821. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  822. int ret = 0;
  823. bool mspi_read = false;
  824. u32 io_width, addrlen, addr, len;
  825. u_char *buf;
  826. buf = msg->buf;
  827. addr = msg->from;
  828. len = msg->len;
  829. if (bcm_qspi_bspi_ver_three(qspi) == true) {
  830. /*
  831. * The address coming into this function is a raw flash offset.
  832. * But for BSPI <= V3, we need to convert it to a remapped BSPI
  833. * address. If it crosses a 4MB boundary, just revert back to
  834. * using MSPI.
  835. */
  836. addr = (addr + 0xc00000) & 0xffffff;
  837. if ((~ADDR_4MB_MASK & addr) ^
  838. (~ADDR_4MB_MASK & (addr + len - 1)))
  839. mspi_read = true;
  840. }
  841. /* non-aligned and very short transfers are handled by MSPI */
  842. if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
  843. len < 4)
  844. mspi_read = true;
  845. if (mspi_read)
  846. return bcm_qspi_mspi_flash_read(spi, msg);
  847. io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
  848. addrlen = msg->addr_width;
  849. ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
  850. if (!ret)
  851. ret = bcm_qspi_bspi_flash_read(spi, msg);
  852. return ret;
  853. }
  854. static void bcm_qspi_cleanup(struct spi_device *spi)
  855. {
  856. struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
  857. kfree(xp);
  858. }
  859. static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
  860. {
  861. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  862. struct bcm_qspi *qspi = qspi_dev_id->dev;
  863. u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
  864. if (status & MSPI_MSPI_STATUS_SPIF) {
  865. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  866. /* clear interrupt */
  867. status &= ~MSPI_MSPI_STATUS_SPIF;
  868. bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
  869. if (qspi->soc_intc)
  870. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
  871. complete(&qspi->mspi_done);
  872. return IRQ_HANDLED;
  873. }
  874. return IRQ_NONE;
  875. }
  876. static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
  877. {
  878. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  879. struct bcm_qspi *qspi = qspi_dev_id->dev;
  880. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  881. u32 status = qspi_dev_id->irqp->mask;
  882. if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
  883. bcm_qspi_bspi_lr_data_read(qspi);
  884. if (qspi->bspi_rf_msg_len == 0) {
  885. qspi->bspi_rf_msg = NULL;
  886. if (qspi->soc_intc) {
  887. /* disable soc BSPI interrupt */
  888. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
  889. false);
  890. /* indicate done */
  891. status = INTR_BSPI_LR_SESSION_DONE_MASK;
  892. }
  893. if (qspi->bspi_rf_msg_status)
  894. bcm_qspi_bspi_lr_clear(qspi);
  895. else
  896. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  897. }
  898. if (qspi->soc_intc)
  899. /* clear soc BSPI interrupt */
  900. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
  901. }
  902. status &= INTR_BSPI_LR_SESSION_DONE_MASK;
  903. if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
  904. complete(&qspi->bspi_done);
  905. return IRQ_HANDLED;
  906. }
  907. static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
  908. {
  909. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  910. struct bcm_qspi *qspi = qspi_dev_id->dev;
  911. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  912. dev_err(&qspi->pdev->dev, "BSPI INT error\n");
  913. qspi->bspi_rf_msg_status = -EIO;
  914. if (qspi->soc_intc)
  915. /* clear soc interrupt */
  916. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
  917. complete(&qspi->bspi_done);
  918. return IRQ_HANDLED;
  919. }
  920. static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
  921. {
  922. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  923. struct bcm_qspi *qspi = qspi_dev_id->dev;
  924. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  925. irqreturn_t ret = IRQ_NONE;
  926. if (soc_intc) {
  927. u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
  928. if (status & MSPI_DONE)
  929. ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
  930. else if (status & BSPI_DONE)
  931. ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
  932. else if (status & BSPI_ERR)
  933. ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
  934. }
  935. return ret;
  936. }
  937. static const struct bcm_qspi_irq qspi_irq_tab[] = {
  938. {
  939. .irq_name = "spi_lr_fullness_reached",
  940. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  941. .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
  942. },
  943. {
  944. .irq_name = "spi_lr_session_aborted",
  945. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  946. .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
  947. },
  948. {
  949. .irq_name = "spi_lr_impatient",
  950. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  951. .mask = INTR_BSPI_LR_IMPATIENT_MASK,
  952. },
  953. {
  954. .irq_name = "spi_lr_session_done",
  955. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  956. .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
  957. },
  958. #ifdef QSPI_INT_DEBUG
  959. /* this interrupt is for debug purposes only, dont request irq */
  960. {
  961. .irq_name = "spi_lr_overread",
  962. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  963. .mask = INTR_BSPI_LR_OVERREAD_MASK,
  964. },
  965. #endif
  966. {
  967. .irq_name = "mspi_done",
  968. .irq_handler = bcm_qspi_mspi_l2_isr,
  969. .mask = INTR_MSPI_DONE_MASK,
  970. },
  971. {
  972. .irq_name = "mspi_halted",
  973. .irq_handler = bcm_qspi_mspi_l2_isr,
  974. .mask = INTR_MSPI_HALTED_MASK,
  975. },
  976. {
  977. /* single muxed L1 interrupt source */
  978. .irq_name = "spi_l1_intr",
  979. .irq_handler = bcm_qspi_l1_isr,
  980. .irq_source = MUXED_L1,
  981. .mask = QSPI_INTERRUPTS_ALL,
  982. },
  983. };
  984. static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
  985. {
  986. u32 val = 0;
  987. val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
  988. qspi->bspi_maj_rev = (val >> 8) & 0xff;
  989. qspi->bspi_min_rev = val & 0xff;
  990. if (!(bcm_qspi_bspi_ver_three(qspi))) {
  991. /* Force mapping of BSPI address -> flash offset */
  992. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
  993. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
  994. }
  995. qspi->bspi_enabled = 1;
  996. bcm_qspi_disable_bspi(qspi);
  997. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  998. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  999. }
  1000. static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
  1001. {
  1002. struct bcm_qspi_parms parms;
  1003. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
  1004. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
  1005. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  1006. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
  1007. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
  1008. parms.mode = SPI_MODE_3;
  1009. parms.bits_per_word = 8;
  1010. parms.speed_hz = qspi->max_speed_hz;
  1011. bcm_qspi_hw_set_parms(qspi, &parms);
  1012. if (has_bspi(qspi))
  1013. bcm_qspi_bspi_init(qspi);
  1014. }
  1015. static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
  1016. {
  1017. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
  1018. if (has_bspi(qspi))
  1019. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  1020. }
  1021. static const struct of_device_id bcm_qspi_of_match[] = {
  1022. { .compatible = "brcm,spi-bcm-qspi" },
  1023. {},
  1024. };
  1025. MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
  1026. int bcm_qspi_probe(struct platform_device *pdev,
  1027. struct bcm_qspi_soc_intc *soc_intc)
  1028. {
  1029. struct device *dev = &pdev->dev;
  1030. struct bcm_qspi *qspi;
  1031. struct spi_master *master;
  1032. struct resource *res;
  1033. int irq, ret = 0, num_ints = 0;
  1034. u32 val;
  1035. const char *name = NULL;
  1036. int num_irqs = ARRAY_SIZE(qspi_irq_tab);
  1037. /* We only support device-tree instantiation */
  1038. if (!dev->of_node)
  1039. return -ENODEV;
  1040. if (!of_match_node(bcm_qspi_of_match, dev->of_node))
  1041. return -ENODEV;
  1042. master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
  1043. if (!master) {
  1044. dev_err(dev, "error allocating spi_master\n");
  1045. return -ENOMEM;
  1046. }
  1047. qspi = spi_master_get_devdata(master);
  1048. qspi->pdev = pdev;
  1049. qspi->trans_pos.trans = NULL;
  1050. qspi->trans_pos.byte = 0;
  1051. qspi->trans_pos.mspi_last_trans = true;
  1052. qspi->master = master;
  1053. master->bus_num = -1;
  1054. master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
  1055. master->setup = bcm_qspi_setup;
  1056. master->transfer_one = bcm_qspi_transfer_one;
  1057. master->spi_flash_read = bcm_qspi_flash_read;
  1058. master->cleanup = bcm_qspi_cleanup;
  1059. master->dev.of_node = dev->of_node;
  1060. master->num_chipselect = NUM_CHIPSELECT;
  1061. qspi->big_endian = of_device_is_big_endian(dev->of_node);
  1062. if (!of_property_read_u32(dev->of_node, "num-cs", &val))
  1063. master->num_chipselect = val;
  1064. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
  1065. if (!res)
  1066. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1067. "mspi");
  1068. if (res) {
  1069. qspi->base[MSPI] = devm_ioremap_resource(dev, res);
  1070. if (IS_ERR(qspi->base[MSPI])) {
  1071. ret = PTR_ERR(qspi->base[MSPI]);
  1072. goto qspi_probe_err;
  1073. }
  1074. } else {
  1075. goto qspi_probe_err;
  1076. }
  1077. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
  1078. if (res) {
  1079. qspi->base[BSPI] = devm_ioremap_resource(dev, res);
  1080. if (IS_ERR(qspi->base[BSPI])) {
  1081. ret = PTR_ERR(qspi->base[BSPI]);
  1082. goto qspi_probe_err;
  1083. }
  1084. qspi->bspi_mode = true;
  1085. } else {
  1086. qspi->bspi_mode = false;
  1087. }
  1088. dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
  1089. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
  1090. if (res) {
  1091. qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
  1092. if (IS_ERR(qspi->base[CHIP_SELECT])) {
  1093. ret = PTR_ERR(qspi->base[CHIP_SELECT]);
  1094. goto qspi_probe_err;
  1095. }
  1096. }
  1097. qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
  1098. GFP_KERNEL);
  1099. if (!qspi->dev_ids) {
  1100. ret = -ENOMEM;
  1101. goto qspi_probe_err;
  1102. }
  1103. for (val = 0; val < num_irqs; val++) {
  1104. irq = -1;
  1105. name = qspi_irq_tab[val].irq_name;
  1106. if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
  1107. /* get the l2 interrupts */
  1108. irq = platform_get_irq_byname(pdev, name);
  1109. } else if (!num_ints && soc_intc) {
  1110. /* all mspi, bspi intrs muxed to one L1 intr */
  1111. irq = platform_get_irq(pdev, 0);
  1112. }
  1113. if (irq >= 0) {
  1114. ret = devm_request_irq(&pdev->dev, irq,
  1115. qspi_irq_tab[val].irq_handler, 0,
  1116. name,
  1117. &qspi->dev_ids[val]);
  1118. if (ret < 0) {
  1119. dev_err(&pdev->dev, "IRQ %s not found\n", name);
  1120. goto qspi_probe_err;
  1121. }
  1122. qspi->dev_ids[val].dev = qspi;
  1123. qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
  1124. num_ints++;
  1125. dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
  1126. qspi_irq_tab[val].irq_name,
  1127. irq);
  1128. }
  1129. }
  1130. if (!num_ints) {
  1131. dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
  1132. ret = -EINVAL;
  1133. goto qspi_probe_err;
  1134. }
  1135. /*
  1136. * Some SoCs integrate spi controller (e.g., its interrupt bits)
  1137. * in specific ways
  1138. */
  1139. if (soc_intc) {
  1140. qspi->soc_intc = soc_intc;
  1141. soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
  1142. } else {
  1143. qspi->soc_intc = NULL;
  1144. }
  1145. qspi->clk = devm_clk_get(&pdev->dev, NULL);
  1146. if (IS_ERR(qspi->clk)) {
  1147. dev_warn(dev, "unable to get clock\n");
  1148. ret = PTR_ERR(qspi->clk);
  1149. goto qspi_probe_err;
  1150. }
  1151. ret = clk_prepare_enable(qspi->clk);
  1152. if (ret) {
  1153. dev_err(dev, "failed to prepare clock\n");
  1154. goto qspi_probe_err;
  1155. }
  1156. qspi->base_clk = clk_get_rate(qspi->clk);
  1157. qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
  1158. bcm_qspi_hw_init(qspi);
  1159. init_completion(&qspi->mspi_done);
  1160. init_completion(&qspi->bspi_done);
  1161. qspi->curr_cs = -1;
  1162. platform_set_drvdata(pdev, qspi);
  1163. qspi->xfer_mode.width = -1;
  1164. qspi->xfer_mode.addrlen = -1;
  1165. qspi->xfer_mode.hp = -1;
  1166. ret = devm_spi_register_master(&pdev->dev, master);
  1167. if (ret < 0) {
  1168. dev_err(dev, "can't register master\n");
  1169. goto qspi_reg_err;
  1170. }
  1171. return 0;
  1172. qspi_reg_err:
  1173. bcm_qspi_hw_uninit(qspi);
  1174. clk_disable_unprepare(qspi->clk);
  1175. qspi_probe_err:
  1176. spi_master_put(master);
  1177. kfree(qspi->dev_ids);
  1178. return ret;
  1179. }
  1180. /* probe function to be called by SoC specific platform driver probe */
  1181. EXPORT_SYMBOL_GPL(bcm_qspi_probe);
  1182. int bcm_qspi_remove(struct platform_device *pdev)
  1183. {
  1184. struct bcm_qspi *qspi = platform_get_drvdata(pdev);
  1185. bcm_qspi_hw_uninit(qspi);
  1186. clk_disable_unprepare(qspi->clk);
  1187. kfree(qspi->dev_ids);
  1188. spi_unregister_master(qspi->master);
  1189. return 0;
  1190. }
  1191. /* function to be called by SoC specific platform driver remove() */
  1192. EXPORT_SYMBOL_GPL(bcm_qspi_remove);
  1193. static int __maybe_unused bcm_qspi_suspend(struct device *dev)
  1194. {
  1195. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1196. spi_master_suspend(qspi->master);
  1197. clk_disable(qspi->clk);
  1198. bcm_qspi_hw_uninit(qspi);
  1199. return 0;
  1200. };
  1201. static int __maybe_unused bcm_qspi_resume(struct device *dev)
  1202. {
  1203. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1204. int ret = 0;
  1205. bcm_qspi_hw_init(qspi);
  1206. bcm_qspi_chip_select(qspi, qspi->curr_cs);
  1207. if (qspi->soc_intc)
  1208. /* enable MSPI interrupt */
  1209. qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
  1210. true);
  1211. ret = clk_enable(qspi->clk);
  1212. if (!ret)
  1213. spi_master_resume(qspi->master);
  1214. return ret;
  1215. }
  1216. SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
  1217. /* pm_ops to be called by SoC specific platform driver */
  1218. EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
  1219. MODULE_AUTHOR("Kamal Dasu");
  1220. MODULE_DESCRIPTION("Broadcom QSPI driver");
  1221. MODULE_LICENSE("GPL v2");
  1222. MODULE_ALIAS("platform:" DRIVER_NAME);