knav_qmss_queue.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /*
  2. * Keystone Queue Manager subsystem driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Cyril Chemparathy <cyril@ti.com>
  7. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. */
  18. #include <linux/debugfs.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/firmware.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/module.h>
  24. #include <linux/of_address.h>
  25. #include <linux/of_device.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/slab.h>
  29. #include <linux/soc/ti/knav_qmss.h>
  30. #include "knav_qmss.h"
  31. static struct knav_device *kdev;
  32. static DEFINE_MUTEX(knav_dev_lock);
  33. /* Queue manager register indices in DTS */
  34. #define KNAV_QUEUE_PEEK_REG_INDEX 0
  35. #define KNAV_QUEUE_STATUS_REG_INDEX 1
  36. #define KNAV_QUEUE_CONFIG_REG_INDEX 2
  37. #define KNAV_QUEUE_REGION_REG_INDEX 3
  38. #define KNAV_QUEUE_PUSH_REG_INDEX 4
  39. #define KNAV_QUEUE_POP_REG_INDEX 5
  40. /* PDSP register indices in DTS */
  41. #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
  42. #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
  43. #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
  44. #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
  45. #define knav_queue_idx_to_inst(kdev, idx) \
  46. (kdev->instances + (idx << kdev->inst_shift))
  47. #define for_each_handle_rcu(qh, inst) \
  48. list_for_each_entry_rcu(qh, &inst->handles, list)
  49. #define for_each_instance(idx, inst, kdev) \
  50. for (idx = 0, inst = kdev->instances; \
  51. idx < (kdev)->num_queues_in_use; \
  52. idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  53. /* All firmware file names end up here. List the firmware file names below.
  54. * Newest followed by older ones. Search is done from start of the array
  55. * until a firmware file is found.
  56. */
  57. const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  58. /**
  59. * knav_queue_notify: qmss queue notfier call
  60. *
  61. * @inst: qmss queue instance like accumulator
  62. */
  63. void knav_queue_notify(struct knav_queue_inst *inst)
  64. {
  65. struct knav_queue *qh;
  66. if (!inst)
  67. return;
  68. rcu_read_lock();
  69. for_each_handle_rcu(qh, inst) {
  70. if (atomic_read(&qh->notifier_enabled) <= 0)
  71. continue;
  72. if (WARN_ON(!qh->notifier_fn))
  73. continue;
  74. atomic_inc(&qh->stats.notifies);
  75. qh->notifier_fn(qh->notifier_fn_arg);
  76. }
  77. rcu_read_unlock();
  78. }
  79. EXPORT_SYMBOL_GPL(knav_queue_notify);
  80. static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  81. {
  82. struct knav_queue_inst *inst = _instdata;
  83. knav_queue_notify(inst);
  84. return IRQ_HANDLED;
  85. }
  86. static int knav_queue_setup_irq(struct knav_range_info *range,
  87. struct knav_queue_inst *inst)
  88. {
  89. unsigned queue = inst->id - range->queue_base;
  90. unsigned long cpu_map;
  91. int ret = 0, irq;
  92. if (range->flags & RANGE_HAS_IRQ) {
  93. irq = range->irqs[queue].irq;
  94. cpu_map = range->irqs[queue].cpu_map;
  95. ret = request_irq(irq, knav_queue_int_handler, 0,
  96. inst->irq_name, inst);
  97. if (ret)
  98. return ret;
  99. disable_irq(irq);
  100. if (cpu_map) {
  101. ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
  102. if (ret) {
  103. dev_warn(range->kdev->dev,
  104. "Failed to set IRQ affinity\n");
  105. return ret;
  106. }
  107. }
  108. }
  109. return ret;
  110. }
  111. static void knav_queue_free_irq(struct knav_queue_inst *inst)
  112. {
  113. struct knav_range_info *range = inst->range;
  114. unsigned queue = inst->id - inst->range->queue_base;
  115. int irq;
  116. if (range->flags & RANGE_HAS_IRQ) {
  117. irq = range->irqs[queue].irq;
  118. irq_set_affinity_hint(irq, NULL);
  119. free_irq(irq, inst);
  120. }
  121. }
  122. static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
  123. {
  124. return !list_empty(&inst->handles);
  125. }
  126. static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
  127. {
  128. return inst->range->flags & RANGE_RESERVED;
  129. }
  130. static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
  131. {
  132. struct knav_queue *tmp;
  133. rcu_read_lock();
  134. for_each_handle_rcu(tmp, inst) {
  135. if (tmp->flags & KNAV_QUEUE_SHARED) {
  136. rcu_read_unlock();
  137. return true;
  138. }
  139. }
  140. rcu_read_unlock();
  141. return false;
  142. }
  143. static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
  144. unsigned type)
  145. {
  146. if ((type == KNAV_QUEUE_QPEND) &&
  147. (inst->range->flags & RANGE_HAS_IRQ)) {
  148. return true;
  149. } else if ((type == KNAV_QUEUE_ACC) &&
  150. (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
  151. return true;
  152. } else if ((type == KNAV_QUEUE_GP) &&
  153. !(inst->range->flags &
  154. (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
  155. return true;
  156. }
  157. return false;
  158. }
  159. static inline struct knav_queue_inst *
  160. knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
  161. {
  162. struct knav_queue_inst *inst;
  163. int idx;
  164. for_each_instance(idx, inst, kdev) {
  165. if (inst->id == id)
  166. return inst;
  167. }
  168. return NULL;
  169. }
  170. static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
  171. {
  172. if (kdev->base_id <= id &&
  173. kdev->base_id + kdev->num_queues > id) {
  174. id -= kdev->base_id;
  175. return knav_queue_match_id_to_inst(kdev, id);
  176. }
  177. return NULL;
  178. }
  179. static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
  180. const char *name, unsigned flags)
  181. {
  182. struct knav_queue *qh;
  183. unsigned id;
  184. int ret = 0;
  185. qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
  186. if (!qh)
  187. return ERR_PTR(-ENOMEM);
  188. qh->flags = flags;
  189. qh->inst = inst;
  190. id = inst->id - inst->qmgr->start_queue;
  191. qh->reg_push = &inst->qmgr->reg_push[id];
  192. qh->reg_pop = &inst->qmgr->reg_pop[id];
  193. qh->reg_peek = &inst->qmgr->reg_peek[id];
  194. /* first opener? */
  195. if (!knav_queue_is_busy(inst)) {
  196. struct knav_range_info *range = inst->range;
  197. inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  198. if (range->ops && range->ops->open_queue)
  199. ret = range->ops->open_queue(range, inst, flags);
  200. if (ret) {
  201. devm_kfree(inst->kdev->dev, qh);
  202. return ERR_PTR(ret);
  203. }
  204. }
  205. list_add_tail_rcu(&qh->list, &inst->handles);
  206. return qh;
  207. }
  208. static struct knav_queue *
  209. knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
  210. {
  211. struct knav_queue_inst *inst;
  212. struct knav_queue *qh;
  213. mutex_lock(&knav_dev_lock);
  214. qh = ERR_PTR(-ENODEV);
  215. inst = knav_queue_find_by_id(id);
  216. if (!inst)
  217. goto unlock_ret;
  218. qh = ERR_PTR(-EEXIST);
  219. if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
  220. goto unlock_ret;
  221. qh = ERR_PTR(-EBUSY);
  222. if ((flags & KNAV_QUEUE_SHARED) &&
  223. (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
  224. goto unlock_ret;
  225. qh = __knav_queue_open(inst, name, flags);
  226. unlock_ret:
  227. mutex_unlock(&knav_dev_lock);
  228. return qh;
  229. }
  230. static struct knav_queue *knav_queue_open_by_type(const char *name,
  231. unsigned type, unsigned flags)
  232. {
  233. struct knav_queue_inst *inst;
  234. struct knav_queue *qh = ERR_PTR(-EINVAL);
  235. int idx;
  236. mutex_lock(&knav_dev_lock);
  237. for_each_instance(idx, inst, kdev) {
  238. if (knav_queue_is_reserved(inst))
  239. continue;
  240. if (!knav_queue_match_type(inst, type))
  241. continue;
  242. if (knav_queue_is_busy(inst))
  243. continue;
  244. qh = __knav_queue_open(inst, name, flags);
  245. goto unlock_ret;
  246. }
  247. unlock_ret:
  248. mutex_unlock(&knav_dev_lock);
  249. return qh;
  250. }
  251. static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
  252. {
  253. struct knav_range_info *range = inst->range;
  254. if (range->ops && range->ops->set_notify)
  255. range->ops->set_notify(range, inst, enabled);
  256. }
  257. static int knav_queue_enable_notifier(struct knav_queue *qh)
  258. {
  259. struct knav_queue_inst *inst = qh->inst;
  260. bool first;
  261. if (WARN_ON(!qh->notifier_fn))
  262. return -EINVAL;
  263. /* Adjust the per handle notifier count */
  264. first = (atomic_inc_return(&qh->notifier_enabled) == 1);
  265. if (!first)
  266. return 0; /* nothing to do */
  267. /* Now adjust the per instance notifier count */
  268. first = (atomic_inc_return(&inst->num_notifiers) == 1);
  269. if (first)
  270. knav_queue_set_notify(inst, true);
  271. return 0;
  272. }
  273. static int knav_queue_disable_notifier(struct knav_queue *qh)
  274. {
  275. struct knav_queue_inst *inst = qh->inst;
  276. bool last;
  277. last = (atomic_dec_return(&qh->notifier_enabled) == 0);
  278. if (!last)
  279. return 0; /* nothing to do */
  280. last = (atomic_dec_return(&inst->num_notifiers) == 0);
  281. if (last)
  282. knav_queue_set_notify(inst, false);
  283. return 0;
  284. }
  285. static int knav_queue_set_notifier(struct knav_queue *qh,
  286. struct knav_queue_notify_config *cfg)
  287. {
  288. knav_queue_notify_fn old_fn = qh->notifier_fn;
  289. if (!cfg)
  290. return -EINVAL;
  291. if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
  292. return -ENOTSUPP;
  293. if (!cfg->fn && old_fn)
  294. knav_queue_disable_notifier(qh);
  295. qh->notifier_fn = cfg->fn;
  296. qh->notifier_fn_arg = cfg->fn_arg;
  297. if (cfg->fn && !old_fn)
  298. knav_queue_enable_notifier(qh);
  299. return 0;
  300. }
  301. static int knav_gp_set_notify(struct knav_range_info *range,
  302. struct knav_queue_inst *inst,
  303. bool enabled)
  304. {
  305. unsigned queue;
  306. if (range->flags & RANGE_HAS_IRQ) {
  307. queue = inst->id - range->queue_base;
  308. if (enabled)
  309. enable_irq(range->irqs[queue].irq);
  310. else
  311. disable_irq_nosync(range->irqs[queue].irq);
  312. }
  313. return 0;
  314. }
  315. static int knav_gp_open_queue(struct knav_range_info *range,
  316. struct knav_queue_inst *inst, unsigned flags)
  317. {
  318. return knav_queue_setup_irq(range, inst);
  319. }
  320. static int knav_gp_close_queue(struct knav_range_info *range,
  321. struct knav_queue_inst *inst)
  322. {
  323. knav_queue_free_irq(inst);
  324. return 0;
  325. }
  326. struct knav_range_ops knav_gp_range_ops = {
  327. .set_notify = knav_gp_set_notify,
  328. .open_queue = knav_gp_open_queue,
  329. .close_queue = knav_gp_close_queue,
  330. };
  331. static int knav_queue_get_count(void *qhandle)
  332. {
  333. struct knav_queue *qh = qhandle;
  334. struct knav_queue_inst *inst = qh->inst;
  335. return readl_relaxed(&qh->reg_peek[0].entry_count) +
  336. atomic_read(&inst->desc_count);
  337. }
  338. static void knav_queue_debug_show_instance(struct seq_file *s,
  339. struct knav_queue_inst *inst)
  340. {
  341. struct knav_device *kdev = inst->kdev;
  342. struct knav_queue *qh;
  343. if (!knav_queue_is_busy(inst))
  344. return;
  345. seq_printf(s, "\tqueue id %d (%s)\n",
  346. kdev->base_id + inst->id, inst->name);
  347. for_each_handle_rcu(qh, inst) {
  348. seq_printf(s, "\t\thandle %p: ", qh);
  349. seq_printf(s, "pushes %8d, ",
  350. atomic_read(&qh->stats.pushes));
  351. seq_printf(s, "pops %8d, ",
  352. atomic_read(&qh->stats.pops));
  353. seq_printf(s, "count %8d, ",
  354. knav_queue_get_count(qh));
  355. seq_printf(s, "notifies %8d, ",
  356. atomic_read(&qh->stats.notifies));
  357. seq_printf(s, "push errors %8d, ",
  358. atomic_read(&qh->stats.push_errors));
  359. seq_printf(s, "pop errors %8d\n",
  360. atomic_read(&qh->stats.pop_errors));
  361. }
  362. }
  363. static int knav_queue_debug_show(struct seq_file *s, void *v)
  364. {
  365. struct knav_queue_inst *inst;
  366. int idx;
  367. mutex_lock(&knav_dev_lock);
  368. seq_printf(s, "%s: %u-%u\n",
  369. dev_name(kdev->dev), kdev->base_id,
  370. kdev->base_id + kdev->num_queues - 1);
  371. for_each_instance(idx, inst, kdev)
  372. knav_queue_debug_show_instance(s, inst);
  373. mutex_unlock(&knav_dev_lock);
  374. return 0;
  375. }
  376. static int knav_queue_debug_open(struct inode *inode, struct file *file)
  377. {
  378. return single_open(file, knav_queue_debug_show, NULL);
  379. }
  380. static const struct file_operations knav_queue_debug_ops = {
  381. .open = knav_queue_debug_open,
  382. .read = seq_read,
  383. .llseek = seq_lseek,
  384. .release = single_release,
  385. };
  386. static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
  387. u32 flags)
  388. {
  389. unsigned long end;
  390. u32 val = 0;
  391. end = jiffies + msecs_to_jiffies(timeout);
  392. while (time_after(end, jiffies)) {
  393. val = readl_relaxed(addr);
  394. if (flags)
  395. val &= flags;
  396. if (!val)
  397. break;
  398. cpu_relax();
  399. }
  400. return val ? -ETIMEDOUT : 0;
  401. }
  402. static int knav_queue_flush(struct knav_queue *qh)
  403. {
  404. struct knav_queue_inst *inst = qh->inst;
  405. unsigned id = inst->id - inst->qmgr->start_queue;
  406. atomic_set(&inst->desc_count, 0);
  407. writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
  408. return 0;
  409. }
  410. /**
  411. * knav_queue_open() - open a hardware queue
  412. * @name - name to give the queue handle
  413. * @id - desired queue number if any or specifes the type
  414. * of queue
  415. * @flags - the following flags are applicable to queues:
  416. * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
  417. * exclusive by default.
  418. * Subsequent attempts to open a shared queue should
  419. * also have this flag.
  420. *
  421. * Returns a handle to the open hardware queue if successful. Use IS_ERR()
  422. * to check the returned value for error codes.
  423. */
  424. void *knav_queue_open(const char *name, unsigned id,
  425. unsigned flags)
  426. {
  427. struct knav_queue *qh = ERR_PTR(-EINVAL);
  428. switch (id) {
  429. case KNAV_QUEUE_QPEND:
  430. case KNAV_QUEUE_ACC:
  431. case KNAV_QUEUE_GP:
  432. qh = knav_queue_open_by_type(name, id, flags);
  433. break;
  434. default:
  435. qh = knav_queue_open_by_id(name, id, flags);
  436. break;
  437. }
  438. return qh;
  439. }
  440. EXPORT_SYMBOL_GPL(knav_queue_open);
  441. /**
  442. * knav_queue_close() - close a hardware queue handle
  443. * @qh - handle to close
  444. */
  445. void knav_queue_close(void *qhandle)
  446. {
  447. struct knav_queue *qh = qhandle;
  448. struct knav_queue_inst *inst = qh->inst;
  449. while (atomic_read(&qh->notifier_enabled) > 0)
  450. knav_queue_disable_notifier(qh);
  451. mutex_lock(&knav_dev_lock);
  452. list_del_rcu(&qh->list);
  453. mutex_unlock(&knav_dev_lock);
  454. synchronize_rcu();
  455. if (!knav_queue_is_busy(inst)) {
  456. struct knav_range_info *range = inst->range;
  457. if (range->ops && range->ops->close_queue)
  458. range->ops->close_queue(range, inst);
  459. }
  460. devm_kfree(inst->kdev->dev, qh);
  461. }
  462. EXPORT_SYMBOL_GPL(knav_queue_close);
  463. /**
  464. * knav_queue_device_control() - Perform control operations on a queue
  465. * @qh - queue handle
  466. * @cmd - control commands
  467. * @arg - command argument
  468. *
  469. * Returns 0 on success, errno otherwise.
  470. */
  471. int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
  472. unsigned long arg)
  473. {
  474. struct knav_queue *qh = qhandle;
  475. struct knav_queue_notify_config *cfg;
  476. int ret;
  477. switch ((int)cmd) {
  478. case KNAV_QUEUE_GET_ID:
  479. ret = qh->inst->kdev->base_id + qh->inst->id;
  480. break;
  481. case KNAV_QUEUE_FLUSH:
  482. ret = knav_queue_flush(qh);
  483. break;
  484. case KNAV_QUEUE_SET_NOTIFIER:
  485. cfg = (void *)arg;
  486. ret = knav_queue_set_notifier(qh, cfg);
  487. break;
  488. case KNAV_QUEUE_ENABLE_NOTIFY:
  489. ret = knav_queue_enable_notifier(qh);
  490. break;
  491. case KNAV_QUEUE_DISABLE_NOTIFY:
  492. ret = knav_queue_disable_notifier(qh);
  493. break;
  494. case KNAV_QUEUE_GET_COUNT:
  495. ret = knav_queue_get_count(qh);
  496. break;
  497. default:
  498. ret = -ENOTSUPP;
  499. break;
  500. }
  501. return ret;
  502. }
  503. EXPORT_SYMBOL_GPL(knav_queue_device_control);
  504. /**
  505. * knav_queue_push() - push data (or descriptor) to the tail of a queue
  506. * @qh - hardware queue handle
  507. * @data - data to push
  508. * @size - size of data to push
  509. * @flags - can be used to pass additional information
  510. *
  511. * Returns 0 on success, errno otherwise.
  512. */
  513. int knav_queue_push(void *qhandle, dma_addr_t dma,
  514. unsigned size, unsigned flags)
  515. {
  516. struct knav_queue *qh = qhandle;
  517. u32 val;
  518. val = (u32)dma | ((size / 16) - 1);
  519. writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
  520. atomic_inc(&qh->stats.pushes);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(knav_queue_push);
  524. /**
  525. * knav_queue_pop() - pop data (or descriptor) from the head of a queue
  526. * @qh - hardware queue handle
  527. * @size - (optional) size of the data pop'ed.
  528. *
  529. * Returns a DMA address on success, 0 on failure.
  530. */
  531. dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
  532. {
  533. struct knav_queue *qh = qhandle;
  534. struct knav_queue_inst *inst = qh->inst;
  535. dma_addr_t dma;
  536. u32 val, idx;
  537. /* are we accumulated? */
  538. if (inst->descs) {
  539. if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
  540. atomic_inc(&inst->desc_count);
  541. return 0;
  542. }
  543. idx = atomic_inc_return(&inst->desc_head);
  544. idx &= ACC_DESCS_MASK;
  545. val = inst->descs[idx];
  546. } else {
  547. val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
  548. if (unlikely(!val))
  549. return 0;
  550. }
  551. dma = val & DESC_PTR_MASK;
  552. if (size)
  553. *size = ((val & DESC_SIZE_MASK) + 1) * 16;
  554. atomic_inc(&qh->stats.pops);
  555. return dma;
  556. }
  557. EXPORT_SYMBOL_GPL(knav_queue_pop);
  558. /* carve out descriptors and push into queue */
  559. static void kdesc_fill_pool(struct knav_pool *pool)
  560. {
  561. struct knav_region *region;
  562. int i;
  563. region = pool->region;
  564. pool->desc_size = region->desc_size;
  565. for (i = 0; i < pool->num_desc; i++) {
  566. int index = pool->region_offset + i;
  567. dma_addr_t dma_addr;
  568. unsigned dma_size;
  569. dma_addr = region->dma_start + (region->desc_size * index);
  570. dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
  571. dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
  572. DMA_TO_DEVICE);
  573. knav_queue_push(pool->queue, dma_addr, dma_size, 0);
  574. }
  575. }
  576. /* pop out descriptors and close the queue */
  577. static void kdesc_empty_pool(struct knav_pool *pool)
  578. {
  579. dma_addr_t dma;
  580. unsigned size;
  581. void *desc;
  582. int i;
  583. if (!pool->queue)
  584. return;
  585. for (i = 0;; i++) {
  586. dma = knav_queue_pop(pool->queue, &size);
  587. if (!dma)
  588. break;
  589. desc = knav_pool_desc_dma_to_virt(pool, dma);
  590. if (!desc) {
  591. dev_dbg(pool->kdev->dev,
  592. "couldn't unmap desc, continuing\n");
  593. continue;
  594. }
  595. }
  596. WARN_ON(i != pool->num_desc);
  597. knav_queue_close(pool->queue);
  598. }
  599. /* Get the DMA address of a descriptor */
  600. dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
  601. {
  602. struct knav_pool *pool = ph;
  603. return pool->region->dma_start + (virt - pool->region->virt_start);
  604. }
  605. EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
  606. void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
  607. {
  608. struct knav_pool *pool = ph;
  609. return pool->region->virt_start + (dma - pool->region->dma_start);
  610. }
  611. EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
  612. /**
  613. * knav_pool_create() - Create a pool of descriptors
  614. * @name - name to give the pool handle
  615. * @num_desc - numbers of descriptors in the pool
  616. * @region_id - QMSS region id from which the descriptors are to be
  617. * allocated.
  618. *
  619. * Returns a pool handle on success.
  620. * Use IS_ERR_OR_NULL() to identify error values on return.
  621. */
  622. void *knav_pool_create(const char *name,
  623. int num_desc, int region_id)
  624. {
  625. struct knav_region *reg_itr, *region = NULL;
  626. struct knav_pool *pool, *pi;
  627. struct list_head *node;
  628. unsigned last_offset;
  629. bool slot_found;
  630. int ret;
  631. if (!kdev->dev)
  632. return ERR_PTR(-ENODEV);
  633. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  634. if (!pool) {
  635. dev_err(kdev->dev, "out of memory allocating pool\n");
  636. return ERR_PTR(-ENOMEM);
  637. }
  638. for_each_region(kdev, reg_itr) {
  639. if (reg_itr->id != region_id)
  640. continue;
  641. region = reg_itr;
  642. break;
  643. }
  644. if (!region) {
  645. dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
  646. ret = -EINVAL;
  647. goto err;
  648. }
  649. pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  650. if (IS_ERR_OR_NULL(pool->queue)) {
  651. dev_err(kdev->dev,
  652. "failed to open queue for pool(%s), error %ld\n",
  653. name, PTR_ERR(pool->queue));
  654. ret = PTR_ERR(pool->queue);
  655. goto err;
  656. }
  657. pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  658. pool->kdev = kdev;
  659. pool->dev = kdev->dev;
  660. mutex_lock(&knav_dev_lock);
  661. if (num_desc > (region->num_desc - region->used_desc)) {
  662. dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
  663. region_id, name);
  664. ret = -ENOMEM;
  665. goto err_unlock;
  666. }
  667. /* Region maintains a sorted (by region offset) list of pools
  668. * use the first free slot which is large enough to accomodate
  669. * the request
  670. */
  671. last_offset = 0;
  672. slot_found = false;
  673. node = &region->pools;
  674. list_for_each_entry(pi, &region->pools, region_inst) {
  675. if ((pi->region_offset - last_offset) >= num_desc) {
  676. slot_found = true;
  677. break;
  678. }
  679. last_offset = pi->region_offset + pi->num_desc;
  680. }
  681. node = &pi->region_inst;
  682. if (slot_found) {
  683. pool->region = region;
  684. pool->num_desc = num_desc;
  685. pool->region_offset = last_offset;
  686. region->used_desc += num_desc;
  687. list_add_tail(&pool->list, &kdev->pools);
  688. list_add_tail(&pool->region_inst, node);
  689. } else {
  690. dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
  691. name, region_id);
  692. ret = -ENOMEM;
  693. goto err_unlock;
  694. }
  695. mutex_unlock(&knav_dev_lock);
  696. kdesc_fill_pool(pool);
  697. return pool;
  698. err_unlock:
  699. mutex_unlock(&knav_dev_lock);
  700. err:
  701. kfree(pool->name);
  702. devm_kfree(kdev->dev, pool);
  703. return ERR_PTR(ret);
  704. }
  705. EXPORT_SYMBOL_GPL(knav_pool_create);
  706. /**
  707. * knav_pool_destroy() - Free a pool of descriptors
  708. * @pool - pool handle
  709. */
  710. void knav_pool_destroy(void *ph)
  711. {
  712. struct knav_pool *pool = ph;
  713. if (!pool)
  714. return;
  715. if (!pool->region)
  716. return;
  717. kdesc_empty_pool(pool);
  718. mutex_lock(&knav_dev_lock);
  719. pool->region->used_desc -= pool->num_desc;
  720. list_del(&pool->region_inst);
  721. list_del(&pool->list);
  722. mutex_unlock(&knav_dev_lock);
  723. kfree(pool->name);
  724. devm_kfree(kdev->dev, pool);
  725. }
  726. EXPORT_SYMBOL_GPL(knav_pool_destroy);
  727. /**
  728. * knav_pool_desc_get() - Get a descriptor from the pool
  729. * @pool - pool handle
  730. *
  731. * Returns descriptor from the pool.
  732. */
  733. void *knav_pool_desc_get(void *ph)
  734. {
  735. struct knav_pool *pool = ph;
  736. dma_addr_t dma;
  737. unsigned size;
  738. void *data;
  739. dma = knav_queue_pop(pool->queue, &size);
  740. if (unlikely(!dma))
  741. return ERR_PTR(-ENOMEM);
  742. data = knav_pool_desc_dma_to_virt(pool, dma);
  743. return data;
  744. }
  745. EXPORT_SYMBOL_GPL(knav_pool_desc_get);
  746. /**
  747. * knav_pool_desc_put() - return a descriptor to the pool
  748. * @pool - pool handle
  749. */
  750. void knav_pool_desc_put(void *ph, void *desc)
  751. {
  752. struct knav_pool *pool = ph;
  753. dma_addr_t dma;
  754. dma = knav_pool_desc_virt_to_dma(pool, desc);
  755. knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
  756. }
  757. EXPORT_SYMBOL_GPL(knav_pool_desc_put);
  758. /**
  759. * knav_pool_desc_map() - Map descriptor for DMA transfer
  760. * @pool - pool handle
  761. * @desc - address of descriptor to map
  762. * @size - size of descriptor to map
  763. * @dma - DMA address return pointer
  764. * @dma_sz - adjusted return pointer
  765. *
  766. * Returns 0 on success, errno otherwise.
  767. */
  768. int knav_pool_desc_map(void *ph, void *desc, unsigned size,
  769. dma_addr_t *dma, unsigned *dma_sz)
  770. {
  771. struct knav_pool *pool = ph;
  772. *dma = knav_pool_desc_virt_to_dma(pool, desc);
  773. size = min(size, pool->region->desc_size);
  774. size = ALIGN(size, SMP_CACHE_BYTES);
  775. *dma_sz = size;
  776. dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
  777. /* Ensure the descriptor reaches to the memory */
  778. __iowmb();
  779. return 0;
  780. }
  781. EXPORT_SYMBOL_GPL(knav_pool_desc_map);
  782. /**
  783. * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
  784. * @pool - pool handle
  785. * @dma - DMA address of descriptor to unmap
  786. * @dma_sz - size of descriptor to unmap
  787. *
  788. * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
  789. * error values on return.
  790. */
  791. void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
  792. {
  793. struct knav_pool *pool = ph;
  794. unsigned desc_sz;
  795. void *desc;
  796. desc_sz = min(dma_sz, pool->region->desc_size);
  797. desc = knav_pool_desc_dma_to_virt(pool, dma);
  798. dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
  799. prefetch(desc);
  800. return desc;
  801. }
  802. EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
  803. /**
  804. * knav_pool_count() - Get the number of descriptors in pool.
  805. * @pool - pool handle
  806. * Returns number of elements in the pool.
  807. */
  808. int knav_pool_count(void *ph)
  809. {
  810. struct knav_pool *pool = ph;
  811. return knav_queue_get_count(pool->queue);
  812. }
  813. EXPORT_SYMBOL_GPL(knav_pool_count);
  814. static void knav_queue_setup_region(struct knav_device *kdev,
  815. struct knav_region *region)
  816. {
  817. unsigned hw_num_desc, hw_desc_size, size;
  818. struct knav_reg_region __iomem *regs;
  819. struct knav_qmgr_info *qmgr;
  820. struct knav_pool *pool;
  821. int id = region->id;
  822. struct page *page;
  823. /* unused region? */
  824. if (!region->num_desc) {
  825. dev_warn(kdev->dev, "unused region %s\n", region->name);
  826. return;
  827. }
  828. /* get hardware descriptor value */
  829. hw_num_desc = ilog2(region->num_desc - 1) + 1;
  830. /* did we force fit ourselves into nothingness? */
  831. if (region->num_desc < 32) {
  832. region->num_desc = 0;
  833. dev_warn(kdev->dev, "too few descriptors in region %s\n",
  834. region->name);
  835. return;
  836. }
  837. size = region->num_desc * region->desc_size;
  838. region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
  839. GFP_DMA32);
  840. if (!region->virt_start) {
  841. region->num_desc = 0;
  842. dev_err(kdev->dev, "memory alloc failed for region %s\n",
  843. region->name);
  844. return;
  845. }
  846. region->virt_end = region->virt_start + size;
  847. page = virt_to_page(region->virt_start);
  848. region->dma_start = dma_map_page(kdev->dev, page, 0, size,
  849. DMA_BIDIRECTIONAL);
  850. if (dma_mapping_error(kdev->dev, region->dma_start)) {
  851. dev_err(kdev->dev, "dma map failed for region %s\n",
  852. region->name);
  853. goto fail;
  854. }
  855. region->dma_end = region->dma_start + size;
  856. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  857. if (!pool) {
  858. dev_err(kdev->dev, "out of memory allocating dummy pool\n");
  859. goto fail;
  860. }
  861. pool->num_desc = 0;
  862. pool->region_offset = region->num_desc;
  863. list_add(&pool->region_inst, &region->pools);
  864. dev_dbg(kdev->dev,
  865. "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
  866. region->name, id, region->desc_size, region->num_desc,
  867. region->link_index, &region->dma_start, &region->dma_end,
  868. region->virt_start, region->virt_end);
  869. hw_desc_size = (region->desc_size / 16) - 1;
  870. hw_num_desc -= 5;
  871. for_each_qmgr(kdev, qmgr) {
  872. regs = qmgr->reg_region + id;
  873. writel_relaxed((u32)region->dma_start, &regs->base);
  874. writel_relaxed(region->link_index, &regs->start_index);
  875. writel_relaxed(hw_desc_size << 16 | hw_num_desc,
  876. &regs->size_count);
  877. }
  878. return;
  879. fail:
  880. if (region->dma_start)
  881. dma_unmap_page(kdev->dev, region->dma_start, size,
  882. DMA_BIDIRECTIONAL);
  883. if (region->virt_start)
  884. free_pages_exact(region->virt_start, size);
  885. region->num_desc = 0;
  886. return;
  887. }
  888. static const char *knav_queue_find_name(struct device_node *node)
  889. {
  890. const char *name;
  891. if (of_property_read_string(node, "label", &name) < 0)
  892. name = node->name;
  893. if (!name)
  894. name = "unknown";
  895. return name;
  896. }
  897. static int knav_queue_setup_regions(struct knav_device *kdev,
  898. struct device_node *regions)
  899. {
  900. struct device *dev = kdev->dev;
  901. struct knav_region *region;
  902. struct device_node *child;
  903. u32 temp[2];
  904. int ret;
  905. for_each_child_of_node(regions, child) {
  906. region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
  907. if (!region) {
  908. dev_err(dev, "out of memory allocating region\n");
  909. return -ENOMEM;
  910. }
  911. region->name = knav_queue_find_name(child);
  912. of_property_read_u32(child, "id", &region->id);
  913. ret = of_property_read_u32_array(child, "region-spec", temp, 2);
  914. if (!ret) {
  915. region->num_desc = temp[0];
  916. region->desc_size = temp[1];
  917. } else {
  918. dev_err(dev, "invalid region info %s\n", region->name);
  919. devm_kfree(dev, region);
  920. continue;
  921. }
  922. if (!of_get_property(child, "link-index", NULL)) {
  923. dev_err(dev, "No link info for %s\n", region->name);
  924. devm_kfree(dev, region);
  925. continue;
  926. }
  927. ret = of_property_read_u32(child, "link-index",
  928. &region->link_index);
  929. if (ret) {
  930. dev_err(dev, "link index not found for %s\n",
  931. region->name);
  932. devm_kfree(dev, region);
  933. continue;
  934. }
  935. INIT_LIST_HEAD(&region->pools);
  936. list_add_tail(&region->list, &kdev->regions);
  937. }
  938. if (list_empty(&kdev->regions)) {
  939. dev_err(dev, "no valid region information found\n");
  940. return -ENODEV;
  941. }
  942. /* Next, we run through the regions and set things up */
  943. for_each_region(kdev, region)
  944. knav_queue_setup_region(kdev, region);
  945. return 0;
  946. }
  947. static int knav_get_link_ram(struct knav_device *kdev,
  948. const char *name,
  949. struct knav_link_ram_block *block)
  950. {
  951. struct platform_device *pdev = to_platform_device(kdev->dev);
  952. struct device_node *node = pdev->dev.of_node;
  953. u32 temp[2];
  954. /*
  955. * Note: link ram resources are specified in "entry" sized units. In
  956. * reality, although entries are ~40bits in hardware, we treat them as
  957. * 64-bit entities here.
  958. *
  959. * For example, to specify the internal link ram for Keystone-I class
  960. * devices, we would set the linkram0 resource to 0x80000-0x83fff.
  961. *
  962. * This gets a bit weird when other link rams are used. For example,
  963. * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
  964. * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
  965. * which accounts for 64-bits per entry, for 16K entries.
  966. */
  967. if (!of_property_read_u32_array(node, name , temp, 2)) {
  968. if (temp[0]) {
  969. /*
  970. * queue_base specified => using internal or onchip
  971. * link ram WARNING - we do not "reserve" this block
  972. */
  973. block->dma = (dma_addr_t)temp[0];
  974. block->virt = NULL;
  975. block->size = temp[1];
  976. } else {
  977. block->size = temp[1];
  978. /* queue_base not specific => allocate requested size */
  979. block->virt = dmam_alloc_coherent(kdev->dev,
  980. 8 * block->size, &block->dma,
  981. GFP_KERNEL);
  982. if (!block->virt) {
  983. dev_err(kdev->dev, "failed to alloc linkram\n");
  984. return -ENOMEM;
  985. }
  986. }
  987. } else {
  988. return -ENODEV;
  989. }
  990. return 0;
  991. }
  992. static int knav_queue_setup_link_ram(struct knav_device *kdev)
  993. {
  994. struct knav_link_ram_block *block;
  995. struct knav_qmgr_info *qmgr;
  996. for_each_qmgr(kdev, qmgr) {
  997. block = &kdev->link_rams[0];
  998. dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
  999. &block->dma, block->virt, block->size);
  1000. writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
  1001. writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
  1002. block++;
  1003. if (!block->size)
  1004. continue;
  1005. dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
  1006. &block->dma, block->virt, block->size);
  1007. writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
  1008. }
  1009. return 0;
  1010. }
  1011. static int knav_setup_queue_range(struct knav_device *kdev,
  1012. struct device_node *node)
  1013. {
  1014. struct device *dev = kdev->dev;
  1015. struct knav_range_info *range;
  1016. struct knav_qmgr_info *qmgr;
  1017. u32 temp[2], start, end, id, index;
  1018. int ret, i;
  1019. range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
  1020. if (!range) {
  1021. dev_err(dev, "out of memory allocating range\n");
  1022. return -ENOMEM;
  1023. }
  1024. range->kdev = kdev;
  1025. range->name = knav_queue_find_name(node);
  1026. ret = of_property_read_u32_array(node, "qrange", temp, 2);
  1027. if (!ret) {
  1028. range->queue_base = temp[0] - kdev->base_id;
  1029. range->num_queues = temp[1];
  1030. } else {
  1031. dev_err(dev, "invalid queue range %s\n", range->name);
  1032. devm_kfree(dev, range);
  1033. return -EINVAL;
  1034. }
  1035. for (i = 0; i < RANGE_MAX_IRQS; i++) {
  1036. struct of_phandle_args oirq;
  1037. if (of_irq_parse_one(node, i, &oirq))
  1038. break;
  1039. range->irqs[i].irq = irq_create_of_mapping(&oirq);
  1040. if (range->irqs[i].irq == IRQ_NONE)
  1041. break;
  1042. range->num_irqs++;
  1043. if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
  1044. range->irqs[i].cpu_map =
  1045. (oirq.args[2] & 0x0000ff00) >> 8;
  1046. }
  1047. range->num_irqs = min(range->num_irqs, range->num_queues);
  1048. if (range->num_irqs)
  1049. range->flags |= RANGE_HAS_IRQ;
  1050. if (of_get_property(node, "qalloc-by-id", NULL))
  1051. range->flags |= RANGE_RESERVED;
  1052. if (of_get_property(node, "accumulator", NULL)) {
  1053. ret = knav_init_acc_range(kdev, node, range);
  1054. if (ret < 0) {
  1055. devm_kfree(dev, range);
  1056. return ret;
  1057. }
  1058. } else {
  1059. range->ops = &knav_gp_range_ops;
  1060. }
  1061. /* set threshold to 1, and flush out the queues */
  1062. for_each_qmgr(kdev, qmgr) {
  1063. start = max(qmgr->start_queue, range->queue_base);
  1064. end = min(qmgr->start_queue + qmgr->num_queues,
  1065. range->queue_base + range->num_queues);
  1066. for (id = start; id < end; id++) {
  1067. index = id - qmgr->start_queue;
  1068. writel_relaxed(THRESH_GTE | 1,
  1069. &qmgr->reg_peek[index].ptr_size_thresh);
  1070. writel_relaxed(0,
  1071. &qmgr->reg_push[index].ptr_size_thresh);
  1072. }
  1073. }
  1074. list_add_tail(&range->list, &kdev->queue_ranges);
  1075. dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
  1076. range->name, range->queue_base,
  1077. range->queue_base + range->num_queues - 1,
  1078. range->num_irqs,
  1079. (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
  1080. (range->flags & RANGE_RESERVED) ? ", reserved" : "",
  1081. (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
  1082. kdev->num_queues_in_use += range->num_queues;
  1083. return 0;
  1084. }
  1085. static int knav_setup_queue_pools(struct knav_device *kdev,
  1086. struct device_node *queue_pools)
  1087. {
  1088. struct device_node *type, *range;
  1089. int ret;
  1090. for_each_child_of_node(queue_pools, type) {
  1091. for_each_child_of_node(type, range) {
  1092. ret = knav_setup_queue_range(kdev, range);
  1093. /* return value ignored, we init the rest... */
  1094. }
  1095. }
  1096. /* ... and barf if they all failed! */
  1097. if (list_empty(&kdev->queue_ranges)) {
  1098. dev_err(kdev->dev, "no valid queue range found\n");
  1099. return -ENODEV;
  1100. }
  1101. return 0;
  1102. }
  1103. static void knav_free_queue_range(struct knav_device *kdev,
  1104. struct knav_range_info *range)
  1105. {
  1106. if (range->ops && range->ops->free_range)
  1107. range->ops->free_range(range);
  1108. list_del(&range->list);
  1109. devm_kfree(kdev->dev, range);
  1110. }
  1111. static void knav_free_queue_ranges(struct knav_device *kdev)
  1112. {
  1113. struct knav_range_info *range;
  1114. for (;;) {
  1115. range = first_queue_range(kdev);
  1116. if (!range)
  1117. break;
  1118. knav_free_queue_range(kdev, range);
  1119. }
  1120. }
  1121. static void knav_queue_free_regions(struct knav_device *kdev)
  1122. {
  1123. struct knav_region *region;
  1124. struct knav_pool *pool, *tmp;
  1125. unsigned size;
  1126. for (;;) {
  1127. region = first_region(kdev);
  1128. if (!region)
  1129. break;
  1130. list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
  1131. knav_pool_destroy(pool);
  1132. size = region->virt_end - region->virt_start;
  1133. if (size)
  1134. free_pages_exact(region->virt_start, size);
  1135. list_del(&region->list);
  1136. devm_kfree(kdev->dev, region);
  1137. }
  1138. }
  1139. static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
  1140. struct device_node *node, int index)
  1141. {
  1142. struct resource res;
  1143. void __iomem *regs;
  1144. int ret;
  1145. ret = of_address_to_resource(node, index, &res);
  1146. if (ret) {
  1147. dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
  1148. node->name, index);
  1149. return ERR_PTR(ret);
  1150. }
  1151. regs = devm_ioremap_resource(kdev->dev, &res);
  1152. if (IS_ERR(regs))
  1153. dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
  1154. index, node->name);
  1155. return regs;
  1156. }
  1157. static int knav_queue_init_qmgrs(struct knav_device *kdev,
  1158. struct device_node *qmgrs)
  1159. {
  1160. struct device *dev = kdev->dev;
  1161. struct knav_qmgr_info *qmgr;
  1162. struct device_node *child;
  1163. u32 temp[2];
  1164. int ret;
  1165. for_each_child_of_node(qmgrs, child) {
  1166. qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
  1167. if (!qmgr) {
  1168. dev_err(dev, "out of memory allocating qmgr\n");
  1169. return -ENOMEM;
  1170. }
  1171. ret = of_property_read_u32_array(child, "managed-queues",
  1172. temp, 2);
  1173. if (!ret) {
  1174. qmgr->start_queue = temp[0];
  1175. qmgr->num_queues = temp[1];
  1176. } else {
  1177. dev_err(dev, "invalid qmgr queue range\n");
  1178. devm_kfree(dev, qmgr);
  1179. continue;
  1180. }
  1181. dev_info(dev, "qmgr start queue %d, number of queues %d\n",
  1182. qmgr->start_queue, qmgr->num_queues);
  1183. qmgr->reg_peek =
  1184. knav_queue_map_reg(kdev, child,
  1185. KNAV_QUEUE_PEEK_REG_INDEX);
  1186. qmgr->reg_status =
  1187. knav_queue_map_reg(kdev, child,
  1188. KNAV_QUEUE_STATUS_REG_INDEX);
  1189. qmgr->reg_config =
  1190. knav_queue_map_reg(kdev, child,
  1191. KNAV_QUEUE_CONFIG_REG_INDEX);
  1192. qmgr->reg_region =
  1193. knav_queue_map_reg(kdev, child,
  1194. KNAV_QUEUE_REGION_REG_INDEX);
  1195. qmgr->reg_push =
  1196. knav_queue_map_reg(kdev, child,
  1197. KNAV_QUEUE_PUSH_REG_INDEX);
  1198. qmgr->reg_pop =
  1199. knav_queue_map_reg(kdev, child,
  1200. KNAV_QUEUE_POP_REG_INDEX);
  1201. if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
  1202. IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
  1203. IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
  1204. dev_err(dev, "failed to map qmgr regs\n");
  1205. if (!IS_ERR(qmgr->reg_peek))
  1206. devm_iounmap(dev, qmgr->reg_peek);
  1207. if (!IS_ERR(qmgr->reg_status))
  1208. devm_iounmap(dev, qmgr->reg_status);
  1209. if (!IS_ERR(qmgr->reg_config))
  1210. devm_iounmap(dev, qmgr->reg_config);
  1211. if (!IS_ERR(qmgr->reg_region))
  1212. devm_iounmap(dev, qmgr->reg_region);
  1213. if (!IS_ERR(qmgr->reg_push))
  1214. devm_iounmap(dev, qmgr->reg_push);
  1215. if (!IS_ERR(qmgr->reg_pop))
  1216. devm_iounmap(dev, qmgr->reg_pop);
  1217. devm_kfree(dev, qmgr);
  1218. continue;
  1219. }
  1220. list_add_tail(&qmgr->list, &kdev->qmgrs);
  1221. dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
  1222. qmgr->start_queue, qmgr->num_queues,
  1223. qmgr->reg_peek, qmgr->reg_status,
  1224. qmgr->reg_config, qmgr->reg_region,
  1225. qmgr->reg_push, qmgr->reg_pop);
  1226. }
  1227. return 0;
  1228. }
  1229. static int knav_queue_init_pdsps(struct knav_device *kdev,
  1230. struct device_node *pdsps)
  1231. {
  1232. struct device *dev = kdev->dev;
  1233. struct knav_pdsp_info *pdsp;
  1234. struct device_node *child;
  1235. for_each_child_of_node(pdsps, child) {
  1236. pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
  1237. if (!pdsp) {
  1238. dev_err(dev, "out of memory allocating pdsp\n");
  1239. return -ENOMEM;
  1240. }
  1241. pdsp->name = knav_queue_find_name(child);
  1242. pdsp->iram =
  1243. knav_queue_map_reg(kdev, child,
  1244. KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
  1245. pdsp->regs =
  1246. knav_queue_map_reg(kdev, child,
  1247. KNAV_QUEUE_PDSP_REGS_REG_INDEX);
  1248. pdsp->intd =
  1249. knav_queue_map_reg(kdev, child,
  1250. KNAV_QUEUE_PDSP_INTD_REG_INDEX);
  1251. pdsp->command =
  1252. knav_queue_map_reg(kdev, child,
  1253. KNAV_QUEUE_PDSP_CMD_REG_INDEX);
  1254. if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
  1255. IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
  1256. dev_err(dev, "failed to map pdsp %s regs\n",
  1257. pdsp->name);
  1258. if (!IS_ERR(pdsp->command))
  1259. devm_iounmap(dev, pdsp->command);
  1260. if (!IS_ERR(pdsp->iram))
  1261. devm_iounmap(dev, pdsp->iram);
  1262. if (!IS_ERR(pdsp->regs))
  1263. devm_iounmap(dev, pdsp->regs);
  1264. if (!IS_ERR(pdsp->intd))
  1265. devm_iounmap(dev, pdsp->intd);
  1266. devm_kfree(dev, pdsp);
  1267. continue;
  1268. }
  1269. of_property_read_u32(child, "id", &pdsp->id);
  1270. list_add_tail(&pdsp->list, &kdev->pdsps);
  1271. dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
  1272. pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
  1273. pdsp->intd);
  1274. }
  1275. return 0;
  1276. }
  1277. static int knav_queue_stop_pdsp(struct knav_device *kdev,
  1278. struct knav_pdsp_info *pdsp)
  1279. {
  1280. u32 val, timeout = 1000;
  1281. int ret;
  1282. val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
  1283. writel_relaxed(val, &pdsp->regs->control);
  1284. ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
  1285. PDSP_CTRL_RUNNING);
  1286. if (ret < 0) {
  1287. dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
  1288. return ret;
  1289. }
  1290. pdsp->loaded = false;
  1291. pdsp->started = false;
  1292. return 0;
  1293. }
  1294. static int knav_queue_load_pdsp(struct knav_device *kdev,
  1295. struct knav_pdsp_info *pdsp)
  1296. {
  1297. int i, ret, fwlen;
  1298. const struct firmware *fw;
  1299. bool found = false;
  1300. u32 *fwdata;
  1301. for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
  1302. if (knav_acc_firmwares[i]) {
  1303. ret = request_firmware_direct(&fw,
  1304. knav_acc_firmwares[i],
  1305. kdev->dev);
  1306. if (!ret) {
  1307. found = true;
  1308. break;
  1309. }
  1310. }
  1311. }
  1312. if (!found) {
  1313. dev_err(kdev->dev, "failed to get firmware for pdsp\n");
  1314. return -ENODEV;
  1315. }
  1316. dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
  1317. knav_acc_firmwares[i]);
  1318. writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
  1319. /* download the firmware */
  1320. fwdata = (u32 *)fw->data;
  1321. fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
  1322. for (i = 0; i < fwlen; i++)
  1323. writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
  1324. release_firmware(fw);
  1325. return 0;
  1326. }
  1327. static int knav_queue_start_pdsp(struct knav_device *kdev,
  1328. struct knav_pdsp_info *pdsp)
  1329. {
  1330. u32 val, timeout = 1000;
  1331. int ret;
  1332. /* write a command for sync */
  1333. writel_relaxed(0xffffffff, pdsp->command);
  1334. while (readl_relaxed(pdsp->command) != 0xffffffff)
  1335. cpu_relax();
  1336. /* soft reset the PDSP */
  1337. val = readl_relaxed(&pdsp->regs->control);
  1338. val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
  1339. writel_relaxed(val, &pdsp->regs->control);
  1340. /* enable pdsp */
  1341. val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
  1342. writel_relaxed(val, &pdsp->regs->control);
  1343. /* wait for command register to clear */
  1344. ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
  1345. if (ret < 0) {
  1346. dev_err(kdev->dev,
  1347. "timed out on pdsp %s command register wait\n",
  1348. pdsp->name);
  1349. return ret;
  1350. }
  1351. return 0;
  1352. }
  1353. static void knav_queue_stop_pdsps(struct knav_device *kdev)
  1354. {
  1355. struct knav_pdsp_info *pdsp;
  1356. /* disable all pdsps */
  1357. for_each_pdsp(kdev, pdsp)
  1358. knav_queue_stop_pdsp(kdev, pdsp);
  1359. }
  1360. static int knav_queue_start_pdsps(struct knav_device *kdev)
  1361. {
  1362. struct knav_pdsp_info *pdsp;
  1363. int ret;
  1364. knav_queue_stop_pdsps(kdev);
  1365. /* now load them all. We return success even if pdsp
  1366. * is not loaded as acc channels are optional on having
  1367. * firmware availability in the system. We set the loaded
  1368. * and stated flag and when initialize the acc range, check
  1369. * it and init the range only if pdsp is started.
  1370. */
  1371. for_each_pdsp(kdev, pdsp) {
  1372. ret = knav_queue_load_pdsp(kdev, pdsp);
  1373. if (!ret)
  1374. pdsp->loaded = true;
  1375. }
  1376. for_each_pdsp(kdev, pdsp) {
  1377. if (pdsp->loaded) {
  1378. ret = knav_queue_start_pdsp(kdev, pdsp);
  1379. if (!ret)
  1380. pdsp->started = true;
  1381. }
  1382. }
  1383. return 0;
  1384. }
  1385. static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
  1386. {
  1387. struct knav_qmgr_info *qmgr;
  1388. for_each_qmgr(kdev, qmgr) {
  1389. if ((id >= qmgr->start_queue) &&
  1390. (id < qmgr->start_queue + qmgr->num_queues))
  1391. return qmgr;
  1392. }
  1393. return NULL;
  1394. }
  1395. static int knav_queue_init_queue(struct knav_device *kdev,
  1396. struct knav_range_info *range,
  1397. struct knav_queue_inst *inst,
  1398. unsigned id)
  1399. {
  1400. char irq_name[KNAV_NAME_SIZE];
  1401. inst->qmgr = knav_find_qmgr(id);
  1402. if (!inst->qmgr)
  1403. return -1;
  1404. INIT_LIST_HEAD(&inst->handles);
  1405. inst->kdev = kdev;
  1406. inst->range = range;
  1407. inst->irq_num = -1;
  1408. inst->id = id;
  1409. scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
  1410. inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
  1411. if (range->ops && range->ops->init_queue)
  1412. return range->ops->init_queue(range, inst);
  1413. else
  1414. return 0;
  1415. }
  1416. static int knav_queue_init_queues(struct knav_device *kdev)
  1417. {
  1418. struct knav_range_info *range;
  1419. int size, id, base_idx;
  1420. int idx = 0, ret = 0;
  1421. /* how much do we need for instance data? */
  1422. size = sizeof(struct knav_queue_inst);
  1423. /* round this up to a power of 2, keep the index to instance
  1424. * arithmetic fast.
  1425. * */
  1426. kdev->inst_shift = order_base_2(size);
  1427. size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
  1428. kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
  1429. if (!kdev->instances)
  1430. return -ENOMEM;
  1431. for_each_queue_range(kdev, range) {
  1432. if (range->ops && range->ops->init_range)
  1433. range->ops->init_range(range);
  1434. base_idx = idx;
  1435. for (id = range->queue_base;
  1436. id < range->queue_base + range->num_queues; id++, idx++) {
  1437. ret = knav_queue_init_queue(kdev, range,
  1438. knav_queue_idx_to_inst(kdev, idx), id);
  1439. if (ret < 0)
  1440. return ret;
  1441. }
  1442. range->queue_base_inst =
  1443. knav_queue_idx_to_inst(kdev, base_idx);
  1444. }
  1445. return 0;
  1446. }
  1447. static int knav_queue_probe(struct platform_device *pdev)
  1448. {
  1449. struct device_node *node = pdev->dev.of_node;
  1450. struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
  1451. struct device *dev = &pdev->dev;
  1452. u32 temp[2];
  1453. int ret;
  1454. if (!node) {
  1455. dev_err(dev, "device tree info unavailable\n");
  1456. return -ENODEV;
  1457. }
  1458. kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
  1459. if (!kdev) {
  1460. dev_err(dev, "memory allocation failed\n");
  1461. return -ENOMEM;
  1462. }
  1463. platform_set_drvdata(pdev, kdev);
  1464. kdev->dev = dev;
  1465. INIT_LIST_HEAD(&kdev->queue_ranges);
  1466. INIT_LIST_HEAD(&kdev->qmgrs);
  1467. INIT_LIST_HEAD(&kdev->pools);
  1468. INIT_LIST_HEAD(&kdev->regions);
  1469. INIT_LIST_HEAD(&kdev->pdsps);
  1470. pm_runtime_enable(&pdev->dev);
  1471. ret = pm_runtime_get_sync(&pdev->dev);
  1472. if (ret < 0) {
  1473. dev_err(dev, "Failed to enable QMSS\n");
  1474. return ret;
  1475. }
  1476. if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
  1477. dev_err(dev, "queue-range not specified\n");
  1478. ret = -ENODEV;
  1479. goto err;
  1480. }
  1481. kdev->base_id = temp[0];
  1482. kdev->num_queues = temp[1];
  1483. /* Initialize queue managers using device tree configuration */
  1484. qmgrs = of_get_child_by_name(node, "qmgrs");
  1485. if (!qmgrs) {
  1486. dev_err(dev, "queue manager info not specified\n");
  1487. ret = -ENODEV;
  1488. goto err;
  1489. }
  1490. ret = knav_queue_init_qmgrs(kdev, qmgrs);
  1491. of_node_put(qmgrs);
  1492. if (ret)
  1493. goto err;
  1494. /* get pdsp configuration values from device tree */
  1495. pdsps = of_get_child_by_name(node, "pdsps");
  1496. if (pdsps) {
  1497. ret = knav_queue_init_pdsps(kdev, pdsps);
  1498. if (ret)
  1499. goto err;
  1500. ret = knav_queue_start_pdsps(kdev);
  1501. if (ret)
  1502. goto err;
  1503. }
  1504. of_node_put(pdsps);
  1505. /* get usable queue range values from device tree */
  1506. queue_pools = of_get_child_by_name(node, "queue-pools");
  1507. if (!queue_pools) {
  1508. dev_err(dev, "queue-pools not specified\n");
  1509. ret = -ENODEV;
  1510. goto err;
  1511. }
  1512. ret = knav_setup_queue_pools(kdev, queue_pools);
  1513. of_node_put(queue_pools);
  1514. if (ret)
  1515. goto err;
  1516. ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
  1517. if (ret) {
  1518. dev_err(kdev->dev, "could not setup linking ram\n");
  1519. goto err;
  1520. }
  1521. ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
  1522. if (ret) {
  1523. /*
  1524. * nothing really, we have one linking ram already, so we just
  1525. * live within our means
  1526. */
  1527. }
  1528. ret = knav_queue_setup_link_ram(kdev);
  1529. if (ret)
  1530. goto err;
  1531. regions = of_get_child_by_name(node, "descriptor-regions");
  1532. if (!regions) {
  1533. dev_err(dev, "descriptor-regions not specified\n");
  1534. goto err;
  1535. }
  1536. ret = knav_queue_setup_regions(kdev, regions);
  1537. of_node_put(regions);
  1538. if (ret)
  1539. goto err;
  1540. ret = knav_queue_init_queues(kdev);
  1541. if (ret < 0) {
  1542. dev_err(dev, "hwqueue initialization failed\n");
  1543. goto err;
  1544. }
  1545. debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
  1546. &knav_queue_debug_ops);
  1547. return 0;
  1548. err:
  1549. knav_queue_stop_pdsps(kdev);
  1550. knav_queue_free_regions(kdev);
  1551. knav_free_queue_ranges(kdev);
  1552. pm_runtime_put_sync(&pdev->dev);
  1553. pm_runtime_disable(&pdev->dev);
  1554. return ret;
  1555. }
  1556. static int knav_queue_remove(struct platform_device *pdev)
  1557. {
  1558. /* TODO: Free resources */
  1559. pm_runtime_put_sync(&pdev->dev);
  1560. pm_runtime_disable(&pdev->dev);
  1561. return 0;
  1562. }
  1563. /* Match table for of_platform binding */
  1564. static struct of_device_id keystone_qmss_of_match[] = {
  1565. { .compatible = "ti,keystone-navigator-qmss", },
  1566. {},
  1567. };
  1568. MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
  1569. static struct platform_driver keystone_qmss_driver = {
  1570. .probe = knav_queue_probe,
  1571. .remove = knav_queue_remove,
  1572. .driver = {
  1573. .name = "keystone-navigator-qmss",
  1574. .of_match_table = keystone_qmss_of_match,
  1575. },
  1576. };
  1577. module_platform_driver(keystone_qmss_driver);
  1578. MODULE_LICENSE("GPL v2");
  1579. MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
  1580. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
  1581. MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");