core.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #ifdef CONFIG_GPIOLIB
  30. #include <asm-generic/gpio.h>
  31. #endif
  32. #include "core.h"
  33. #include "devicetree.h"
  34. #include "pinmux.h"
  35. #include "pinconf.h"
  36. static bool pinctrl_dummy_state;
  37. /* Mutex taken to protect pinctrl_list */
  38. static DEFINE_MUTEX(pinctrl_list_mutex);
  39. /* Mutex taken to protect pinctrl_maps */
  40. DEFINE_MUTEX(pinctrl_maps_mutex);
  41. /* Mutex taken to protect pinctrldev_list */
  42. static DEFINE_MUTEX(pinctrldev_list_mutex);
  43. /* Global list of pin control devices (struct pinctrl_dev) */
  44. static LIST_HEAD(pinctrldev_list);
  45. /* List of pin controller handles (struct pinctrl) */
  46. static LIST_HEAD(pinctrl_list);
  47. /* List of pinctrl maps (struct pinctrl_maps) */
  48. LIST_HEAD(pinctrl_maps);
  49. /**
  50. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  51. *
  52. * Usually this function is called by platforms without pinctrl driver support
  53. * but run with some shared drivers using pinctrl APIs.
  54. * After calling this function, the pinctrl core will return successfully
  55. * with creating a dummy state for the driver to keep going smoothly.
  56. */
  57. void pinctrl_provide_dummies(void)
  58. {
  59. pinctrl_dummy_state = true;
  60. }
  61. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  62. {
  63. /* We're not allowed to register devices without name */
  64. return pctldev->desc->name;
  65. }
  66. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  67. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  68. {
  69. return dev_name(pctldev->dev);
  70. }
  71. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  72. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  73. {
  74. return pctldev->driver_data;
  75. }
  76. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  77. /**
  78. * get_pinctrl_dev_from_devname() - look up pin controller device
  79. * @devname: the name of a device instance, as returned by dev_name()
  80. *
  81. * Looks up a pin control device matching a certain device name or pure device
  82. * pointer, the pure device pointer will take precedence.
  83. */
  84. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  85. {
  86. struct pinctrl_dev *pctldev = NULL;
  87. if (!devname)
  88. return NULL;
  89. mutex_lock(&pinctrldev_list_mutex);
  90. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  91. if (!strcmp(dev_name(pctldev->dev), devname)) {
  92. /* Matched on device name */
  93. mutex_unlock(&pinctrldev_list_mutex);
  94. return pctldev;
  95. }
  96. }
  97. mutex_unlock(&pinctrldev_list_mutex);
  98. return NULL;
  99. }
  100. struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
  101. {
  102. struct pinctrl_dev *pctldev;
  103. mutex_lock(&pinctrldev_list_mutex);
  104. list_for_each_entry(pctldev, &pinctrldev_list, node)
  105. if (pctldev->dev->of_node == np) {
  106. mutex_unlock(&pinctrldev_list_mutex);
  107. return pctldev;
  108. }
  109. mutex_unlock(&pinctrldev_list_mutex);
  110. return NULL;
  111. }
  112. /**
  113. * pin_get_from_name() - look up a pin number from a name
  114. * @pctldev: the pin control device to lookup the pin on
  115. * @name: the name of the pin to look up
  116. */
  117. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  118. {
  119. unsigned i, pin;
  120. /* The pin number can be retrived from the pin controller descriptor */
  121. for (i = 0; i < pctldev->desc->npins; i++) {
  122. struct pin_desc *desc;
  123. pin = pctldev->desc->pins[i].number;
  124. desc = pin_desc_get(pctldev, pin);
  125. /* Pin space may be sparse */
  126. if (desc && !strcmp(name, desc->name))
  127. return pin;
  128. }
  129. return -EINVAL;
  130. }
  131. /**
  132. * pin_get_name_from_id() - look up a pin name from a pin id
  133. * @pctldev: the pin control device to lookup the pin on
  134. * @name: the name of the pin to look up
  135. */
  136. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  137. {
  138. const struct pin_desc *desc;
  139. desc = pin_desc_get(pctldev, pin);
  140. if (desc == NULL) {
  141. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  142. pin);
  143. return NULL;
  144. }
  145. return desc->name;
  146. }
  147. /**
  148. * pin_is_valid() - check if pin exists on controller
  149. * @pctldev: the pin control device to check the pin on
  150. * @pin: pin to check, use the local pin controller index number
  151. *
  152. * This tells us whether a certain pin exist on a certain pin controller or
  153. * not. Pin lists may be sparse, so some pins may not exist.
  154. */
  155. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  156. {
  157. struct pin_desc *pindesc;
  158. if (pin < 0)
  159. return false;
  160. mutex_lock(&pctldev->mutex);
  161. pindesc = pin_desc_get(pctldev, pin);
  162. mutex_unlock(&pctldev->mutex);
  163. return pindesc != NULL;
  164. }
  165. EXPORT_SYMBOL_GPL(pin_is_valid);
  166. /* Deletes a range of pin descriptors */
  167. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  168. const struct pinctrl_pin_desc *pins,
  169. unsigned num_pins)
  170. {
  171. int i;
  172. for (i = 0; i < num_pins; i++) {
  173. struct pin_desc *pindesc;
  174. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  175. pins[i].number);
  176. if (pindesc != NULL) {
  177. radix_tree_delete(&pctldev->pin_desc_tree,
  178. pins[i].number);
  179. if (pindesc->dynamic_name)
  180. kfree(pindesc->name);
  181. }
  182. kfree(pindesc);
  183. }
  184. }
  185. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  186. const struct pinctrl_pin_desc *pin)
  187. {
  188. struct pin_desc *pindesc;
  189. pindesc = pin_desc_get(pctldev, pin->number);
  190. if (pindesc != NULL) {
  191. dev_err(pctldev->dev, "pin %d already registered\n",
  192. pin->number);
  193. return -EINVAL;
  194. }
  195. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  196. if (!pindesc)
  197. return -ENOMEM;
  198. /* Set owner */
  199. pindesc->pctldev = pctldev;
  200. /* Copy basic pin info */
  201. if (pin->name) {
  202. pindesc->name = pin->name;
  203. } else {
  204. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
  205. if (pindesc->name == NULL) {
  206. kfree(pindesc);
  207. return -ENOMEM;
  208. }
  209. pindesc->dynamic_name = true;
  210. }
  211. pindesc->drv_data = pin->drv_data;
  212. radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
  213. pr_debug("registered pin %d (%s) on %s\n",
  214. pin->number, pindesc->name, pctldev->desc->name);
  215. return 0;
  216. }
  217. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  218. struct pinctrl_pin_desc const *pins,
  219. unsigned num_descs)
  220. {
  221. unsigned i;
  222. int ret = 0;
  223. for (i = 0; i < num_descs; i++) {
  224. ret = pinctrl_register_one_pin(pctldev, &pins[i]);
  225. if (ret)
  226. return ret;
  227. }
  228. return 0;
  229. }
  230. /**
  231. * gpio_to_pin() - GPIO range GPIO number to pin number translation
  232. * @range: GPIO range used for the translation
  233. * @gpio: gpio pin to translate to a pin number
  234. *
  235. * Finds the pin number for a given GPIO using the specified GPIO range
  236. * as a base for translation. The distinction between linear GPIO ranges
  237. * and pin list based GPIO ranges is managed correctly by this function.
  238. *
  239. * This function assumes the gpio is part of the specified GPIO range, use
  240. * only after making sure this is the case (e.g. by calling it on the
  241. * result of successful pinctrl_get_device_gpio_range calls)!
  242. */
  243. static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
  244. unsigned int gpio)
  245. {
  246. unsigned int offset = gpio - range->base;
  247. if (range->pins)
  248. return range->pins[offset];
  249. else
  250. return range->pin_base + offset;
  251. }
  252. /**
  253. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  254. * @pctldev: pin controller device to check
  255. * @gpio: gpio pin to check taken from the global GPIO pin space
  256. *
  257. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  258. * controller, return the range or NULL
  259. */
  260. static struct pinctrl_gpio_range *
  261. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  262. {
  263. struct pinctrl_gpio_range *range = NULL;
  264. mutex_lock(&pctldev->mutex);
  265. /* Loop over the ranges */
  266. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  267. /* Check if we're in the valid range */
  268. if (gpio >= range->base &&
  269. gpio < range->base + range->npins) {
  270. mutex_unlock(&pctldev->mutex);
  271. return range;
  272. }
  273. }
  274. mutex_unlock(&pctldev->mutex);
  275. return NULL;
  276. }
  277. /**
  278. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  279. * the same GPIO chip are in range
  280. * @gpio: gpio pin to check taken from the global GPIO pin space
  281. *
  282. * This function is complement of pinctrl_match_gpio_range(). If the return
  283. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  284. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  285. * of the same GPIO chip don't have back-end pinctrl interface.
  286. * If the return value is true, it means that pinctrl device is ready & the
  287. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  288. * is false, it means that pinctrl device may not be ready.
  289. */
  290. #ifdef CONFIG_GPIOLIB
  291. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  292. {
  293. struct pinctrl_dev *pctldev;
  294. struct pinctrl_gpio_range *range = NULL;
  295. struct gpio_chip *chip = gpio_to_chip(gpio);
  296. if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
  297. return false;
  298. mutex_lock(&pinctrldev_list_mutex);
  299. /* Loop over the pin controllers */
  300. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  301. /* Loop over the ranges */
  302. mutex_lock(&pctldev->mutex);
  303. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  304. /* Check if any gpio range overlapped with gpio chip */
  305. if (range->base + range->npins - 1 < chip->base ||
  306. range->base > chip->base + chip->ngpio - 1)
  307. continue;
  308. mutex_unlock(&pctldev->mutex);
  309. mutex_unlock(&pinctrldev_list_mutex);
  310. return true;
  311. }
  312. mutex_unlock(&pctldev->mutex);
  313. }
  314. mutex_unlock(&pinctrldev_list_mutex);
  315. return false;
  316. }
  317. #else
  318. static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
  319. #endif
  320. /**
  321. * pinctrl_get_device_gpio_range() - find device for GPIO range
  322. * @gpio: the pin to locate the pin controller for
  323. * @outdev: the pin control device if found
  324. * @outrange: the GPIO range if found
  325. *
  326. * Find the pin controller handling a certain GPIO pin from the pinspace of
  327. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  328. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  329. * may still have not been registered.
  330. */
  331. static int pinctrl_get_device_gpio_range(unsigned gpio,
  332. struct pinctrl_dev **outdev,
  333. struct pinctrl_gpio_range **outrange)
  334. {
  335. struct pinctrl_dev *pctldev = NULL;
  336. mutex_lock(&pinctrldev_list_mutex);
  337. /* Loop over the pin controllers */
  338. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  339. struct pinctrl_gpio_range *range;
  340. range = pinctrl_match_gpio_range(pctldev, gpio);
  341. if (range != NULL) {
  342. *outdev = pctldev;
  343. *outrange = range;
  344. mutex_unlock(&pinctrldev_list_mutex);
  345. return 0;
  346. }
  347. }
  348. mutex_unlock(&pinctrldev_list_mutex);
  349. return -EPROBE_DEFER;
  350. }
  351. /**
  352. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  353. * @pctldev: pin controller device to add the range to
  354. * @range: the GPIO range to add
  355. *
  356. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  357. * this to register handled ranges after registering your pin controller.
  358. */
  359. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  360. struct pinctrl_gpio_range *range)
  361. {
  362. mutex_lock(&pctldev->mutex);
  363. list_add_tail(&range->node, &pctldev->gpio_ranges);
  364. mutex_unlock(&pctldev->mutex);
  365. }
  366. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  367. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  368. struct pinctrl_gpio_range *ranges,
  369. unsigned nranges)
  370. {
  371. int i;
  372. for (i = 0; i < nranges; i++)
  373. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  374. }
  375. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  376. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  377. struct pinctrl_gpio_range *range)
  378. {
  379. struct pinctrl_dev *pctldev;
  380. pctldev = get_pinctrl_dev_from_devname(devname);
  381. /*
  382. * If we can't find this device, let's assume that is because
  383. * it has not probed yet, so the driver trying to register this
  384. * range need to defer probing.
  385. */
  386. if (!pctldev) {
  387. return ERR_PTR(-EPROBE_DEFER);
  388. }
  389. pinctrl_add_gpio_range(pctldev, range);
  390. return pctldev;
  391. }
  392. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  393. int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
  394. const unsigned **pins, unsigned *num_pins)
  395. {
  396. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  397. int gs;
  398. if (!pctlops->get_group_pins)
  399. return -EINVAL;
  400. gs = pinctrl_get_group_selector(pctldev, pin_group);
  401. if (gs < 0)
  402. return gs;
  403. return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
  404. }
  405. EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
  406. struct pinctrl_gpio_range *
  407. pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
  408. unsigned int pin)
  409. {
  410. struct pinctrl_gpio_range *range;
  411. /* Loop over the ranges */
  412. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  413. /* Check if we're in the valid range */
  414. if (range->pins) {
  415. int a;
  416. for (a = 0; a < range->npins; a++) {
  417. if (range->pins[a] == pin)
  418. return range;
  419. }
  420. } else if (pin >= range->pin_base &&
  421. pin < range->pin_base + range->npins)
  422. return range;
  423. }
  424. return NULL;
  425. }
  426. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
  427. /**
  428. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  429. * @pctldev: the pin controller device to look in
  430. * @pin: a controller-local number to find the range for
  431. */
  432. struct pinctrl_gpio_range *
  433. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  434. unsigned int pin)
  435. {
  436. struct pinctrl_gpio_range *range;
  437. mutex_lock(&pctldev->mutex);
  438. range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
  439. mutex_unlock(&pctldev->mutex);
  440. return range;
  441. }
  442. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  443. /**
  444. * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
  445. * @pctldev: pin controller device to remove the range from
  446. * @range: the GPIO range to remove
  447. */
  448. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  449. struct pinctrl_gpio_range *range)
  450. {
  451. mutex_lock(&pctldev->mutex);
  452. list_del(&range->node);
  453. mutex_unlock(&pctldev->mutex);
  454. }
  455. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  456. #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
  457. /**
  458. * pinctrl_generic_get_group_count() - returns the number of pin groups
  459. * @pctldev: pin controller device
  460. */
  461. int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
  462. {
  463. return pctldev->num_groups;
  464. }
  465. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
  466. /**
  467. * pinctrl_generic_get_group_name() - returns the name of a pin group
  468. * @pctldev: pin controller device
  469. * @selector: group number
  470. */
  471. const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
  472. unsigned int selector)
  473. {
  474. struct group_desc *group;
  475. group = radix_tree_lookup(&pctldev->pin_group_tree,
  476. selector);
  477. if (!group)
  478. return NULL;
  479. return group->name;
  480. }
  481. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
  482. /**
  483. * pinctrl_generic_get_group_pins() - gets the pin group pins
  484. * @pctldev: pin controller device
  485. * @selector: group number
  486. * @pins: pins in the group
  487. * @num_pins: number of pins in the group
  488. */
  489. int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
  490. unsigned int selector,
  491. const unsigned int **pins,
  492. unsigned int *num_pins)
  493. {
  494. struct group_desc *group;
  495. group = radix_tree_lookup(&pctldev->pin_group_tree,
  496. selector);
  497. if (!group) {
  498. dev_err(pctldev->dev, "%s could not find pingroup%i\n",
  499. __func__, selector);
  500. return -EINVAL;
  501. }
  502. *pins = group->pins;
  503. *num_pins = group->num_pins;
  504. return 0;
  505. }
  506. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
  507. /**
  508. * pinctrl_generic_get_group() - returns a pin group based on the number
  509. * @pctldev: pin controller device
  510. * @gselector: group number
  511. */
  512. struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
  513. unsigned int selector)
  514. {
  515. struct group_desc *group;
  516. group = radix_tree_lookup(&pctldev->pin_group_tree,
  517. selector);
  518. if (!group)
  519. return NULL;
  520. return group;
  521. }
  522. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
  523. /**
  524. * pinctrl_generic_add_group() - adds a new pin group
  525. * @pctldev: pin controller device
  526. * @name: name of the pin group
  527. * @pins: pins in the pin group
  528. * @num_pins: number of pins in the pin group
  529. * @data: pin controller driver specific data
  530. *
  531. * Note that the caller must take care of locking.
  532. */
  533. int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
  534. int *pins, int num_pins, void *data)
  535. {
  536. struct group_desc *group;
  537. group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
  538. if (!group)
  539. return -ENOMEM;
  540. group->name = name;
  541. group->pins = pins;
  542. group->num_pins = num_pins;
  543. group->data = data;
  544. radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
  545. group);
  546. pctldev->num_groups++;
  547. return 0;
  548. }
  549. EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
  550. /**
  551. * pinctrl_generic_remove_group() - removes a numbered pin group
  552. * @pctldev: pin controller device
  553. * @selector: group number
  554. *
  555. * Note that the caller must take care of locking.
  556. */
  557. int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
  558. unsigned int selector)
  559. {
  560. struct group_desc *group;
  561. group = radix_tree_lookup(&pctldev->pin_group_tree,
  562. selector);
  563. if (!group)
  564. return -ENOENT;
  565. radix_tree_delete(&pctldev->pin_group_tree, selector);
  566. devm_kfree(pctldev->dev, group);
  567. pctldev->num_groups--;
  568. return 0;
  569. }
  570. EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
  571. /**
  572. * pinctrl_generic_free_groups() - removes all pin groups
  573. * @pctldev: pin controller device
  574. *
  575. * Note that the caller must take care of locking. The pinctrl groups
  576. * are allocated with devm_kzalloc() so no need to free them here.
  577. */
  578. static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
  579. {
  580. struct radix_tree_iter iter;
  581. void **slot;
  582. radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
  583. radix_tree_delete(&pctldev->pin_group_tree, iter.index);
  584. pctldev->num_groups = 0;
  585. }
  586. #else
  587. static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
  588. {
  589. }
  590. #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
  591. /**
  592. * pinctrl_get_group_selector() - returns the group selector for a group
  593. * @pctldev: the pin controller handling the group
  594. * @pin_group: the pin group to look up
  595. */
  596. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  597. const char *pin_group)
  598. {
  599. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  600. unsigned ngroups = pctlops->get_groups_count(pctldev);
  601. unsigned group_selector = 0;
  602. while (group_selector < ngroups) {
  603. const char *gname = pctlops->get_group_name(pctldev,
  604. group_selector);
  605. if (!strcmp(gname, pin_group)) {
  606. dev_dbg(pctldev->dev,
  607. "found group selector %u for %s\n",
  608. group_selector,
  609. pin_group);
  610. return group_selector;
  611. }
  612. group_selector++;
  613. }
  614. dev_err(pctldev->dev, "does not have pin group %s\n",
  615. pin_group);
  616. return -EINVAL;
  617. }
  618. /**
  619. * pinctrl_request_gpio() - request a single pin to be used as GPIO
  620. * @gpio: the GPIO pin number from the GPIO subsystem number space
  621. *
  622. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  623. * as part of their gpio_request() semantics, platforms and individual drivers
  624. * shall *NOT* request GPIO pins to be muxed in.
  625. */
  626. int pinctrl_request_gpio(unsigned gpio)
  627. {
  628. struct pinctrl_dev *pctldev;
  629. struct pinctrl_gpio_range *range;
  630. int ret;
  631. int pin;
  632. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  633. if (ret) {
  634. if (pinctrl_ready_for_gpio_range(gpio))
  635. ret = 0;
  636. return ret;
  637. }
  638. mutex_lock(&pctldev->mutex);
  639. /* Convert to the pin controllers number space */
  640. pin = gpio_to_pin(range, gpio);
  641. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  642. mutex_unlock(&pctldev->mutex);
  643. return ret;
  644. }
  645. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  646. /**
  647. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  648. * @gpio: the GPIO pin number from the GPIO subsystem number space
  649. *
  650. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  651. * as part of their gpio_free() semantics, platforms and individual drivers
  652. * shall *NOT* request GPIO pins to be muxed out.
  653. */
  654. void pinctrl_free_gpio(unsigned gpio)
  655. {
  656. struct pinctrl_dev *pctldev;
  657. struct pinctrl_gpio_range *range;
  658. int ret;
  659. int pin;
  660. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  661. if (ret) {
  662. return;
  663. }
  664. mutex_lock(&pctldev->mutex);
  665. /* Convert to the pin controllers number space */
  666. pin = gpio_to_pin(range, gpio);
  667. pinmux_free_gpio(pctldev, pin, range);
  668. mutex_unlock(&pctldev->mutex);
  669. }
  670. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  671. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  672. {
  673. struct pinctrl_dev *pctldev;
  674. struct pinctrl_gpio_range *range;
  675. int ret;
  676. int pin;
  677. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  678. if (ret) {
  679. return ret;
  680. }
  681. mutex_lock(&pctldev->mutex);
  682. /* Convert to the pin controllers number space */
  683. pin = gpio_to_pin(range, gpio);
  684. ret = pinmux_gpio_direction(pctldev, range, pin, input);
  685. mutex_unlock(&pctldev->mutex);
  686. return ret;
  687. }
  688. /**
  689. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  690. * @gpio: the GPIO pin number from the GPIO subsystem number space
  691. *
  692. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  693. * as part of their gpio_direction_input() semantics, platforms and individual
  694. * drivers shall *NOT* touch pin control GPIO calls.
  695. */
  696. int pinctrl_gpio_direction_input(unsigned gpio)
  697. {
  698. return pinctrl_gpio_direction(gpio, true);
  699. }
  700. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  701. /**
  702. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  703. * @gpio: the GPIO pin number from the GPIO subsystem number space
  704. *
  705. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  706. * as part of their gpio_direction_output() semantics, platforms and individual
  707. * drivers shall *NOT* touch pin control GPIO calls.
  708. */
  709. int pinctrl_gpio_direction_output(unsigned gpio)
  710. {
  711. return pinctrl_gpio_direction(gpio, false);
  712. }
  713. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  714. /**
  715. * pinctrl_gpio_set_config() - Apply config to given GPIO pin
  716. * @gpio: the GPIO pin number from the GPIO subsystem number space
  717. * @config: the configuration to apply to the GPIO
  718. *
  719. * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
  720. * they need to call the underlying pin controller to change GPIO config
  721. * (for example set debounce time).
  722. */
  723. int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
  724. {
  725. unsigned long configs[] = { config };
  726. struct pinctrl_gpio_range *range;
  727. struct pinctrl_dev *pctldev;
  728. int ret, pin;
  729. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  730. if (ret)
  731. return ret;
  732. mutex_lock(&pctldev->mutex);
  733. pin = gpio_to_pin(range, gpio);
  734. ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
  735. mutex_unlock(&pctldev->mutex);
  736. return ret;
  737. }
  738. EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
  739. static struct pinctrl_state *find_state(struct pinctrl *p,
  740. const char *name)
  741. {
  742. struct pinctrl_state *state;
  743. list_for_each_entry(state, &p->states, node)
  744. if (!strcmp(state->name, name))
  745. return state;
  746. return NULL;
  747. }
  748. static struct pinctrl_state *create_state(struct pinctrl *p,
  749. const char *name)
  750. {
  751. struct pinctrl_state *state;
  752. state = kzalloc(sizeof(*state), GFP_KERNEL);
  753. if (!state)
  754. return ERR_PTR(-ENOMEM);
  755. state->name = name;
  756. INIT_LIST_HEAD(&state->settings);
  757. list_add_tail(&state->node, &p->states);
  758. return state;
  759. }
  760. static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
  761. struct pinctrl_map const *map)
  762. {
  763. struct pinctrl_state *state;
  764. struct pinctrl_setting *setting;
  765. int ret;
  766. state = find_state(p, map->name);
  767. if (!state)
  768. state = create_state(p, map->name);
  769. if (IS_ERR(state))
  770. return PTR_ERR(state);
  771. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  772. return 0;
  773. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  774. if (!setting)
  775. return -ENOMEM;
  776. setting->type = map->type;
  777. if (pctldev)
  778. setting->pctldev = pctldev;
  779. else
  780. setting->pctldev =
  781. get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  782. if (setting->pctldev == NULL) {
  783. kfree(setting);
  784. /* Do not defer probing of hogs (circular loop) */
  785. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  786. return -ENODEV;
  787. /*
  788. * OK let us guess that the driver is not there yet, and
  789. * let's defer obtaining this pinctrl handle to later...
  790. */
  791. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  792. map->ctrl_dev_name);
  793. return -EPROBE_DEFER;
  794. }
  795. setting->dev_name = map->dev_name;
  796. switch (map->type) {
  797. case PIN_MAP_TYPE_MUX_GROUP:
  798. ret = pinmux_map_to_setting(map, setting);
  799. break;
  800. case PIN_MAP_TYPE_CONFIGS_PIN:
  801. case PIN_MAP_TYPE_CONFIGS_GROUP:
  802. ret = pinconf_map_to_setting(map, setting);
  803. break;
  804. default:
  805. ret = -EINVAL;
  806. break;
  807. }
  808. if (ret < 0) {
  809. kfree(setting);
  810. return ret;
  811. }
  812. list_add_tail(&setting->node, &state->settings);
  813. return 0;
  814. }
  815. static struct pinctrl *find_pinctrl(struct device *dev)
  816. {
  817. struct pinctrl *p;
  818. mutex_lock(&pinctrl_list_mutex);
  819. list_for_each_entry(p, &pinctrl_list, node)
  820. if (p->dev == dev) {
  821. mutex_unlock(&pinctrl_list_mutex);
  822. return p;
  823. }
  824. mutex_unlock(&pinctrl_list_mutex);
  825. return NULL;
  826. }
  827. static void pinctrl_free(struct pinctrl *p, bool inlist);
  828. static struct pinctrl *create_pinctrl(struct device *dev,
  829. struct pinctrl_dev *pctldev)
  830. {
  831. struct pinctrl *p;
  832. const char *devname;
  833. struct pinctrl_maps *maps_node;
  834. int i;
  835. struct pinctrl_map const *map;
  836. int ret;
  837. /*
  838. * create the state cookie holder struct pinctrl for each
  839. * mapping, this is what consumers will get when requesting
  840. * a pin control handle with pinctrl_get()
  841. */
  842. p = kzalloc(sizeof(*p), GFP_KERNEL);
  843. if (!p)
  844. return ERR_PTR(-ENOMEM);
  845. p->dev = dev;
  846. INIT_LIST_HEAD(&p->states);
  847. INIT_LIST_HEAD(&p->dt_maps);
  848. ret = pinctrl_dt_to_map(p, pctldev);
  849. if (ret < 0) {
  850. kfree(p);
  851. return ERR_PTR(ret);
  852. }
  853. devname = dev_name(dev);
  854. mutex_lock(&pinctrl_maps_mutex);
  855. /* Iterate over the pin control maps to locate the right ones */
  856. for_each_maps(maps_node, i, map) {
  857. /* Map must be for this device */
  858. if (strcmp(map->dev_name, devname))
  859. continue;
  860. ret = add_setting(p, pctldev, map);
  861. /*
  862. * At this point the adding of a setting may:
  863. *
  864. * - Defer, if the pinctrl device is not yet available
  865. * - Fail, if the pinctrl device is not yet available,
  866. * AND the setting is a hog. We cannot defer that, since
  867. * the hog will kick in immediately after the device
  868. * is registered.
  869. *
  870. * If the error returned was not -EPROBE_DEFER then we
  871. * accumulate the errors to see if we end up with
  872. * an -EPROBE_DEFER later, as that is the worst case.
  873. */
  874. if (ret == -EPROBE_DEFER) {
  875. pinctrl_free(p, false);
  876. mutex_unlock(&pinctrl_maps_mutex);
  877. return ERR_PTR(ret);
  878. }
  879. }
  880. mutex_unlock(&pinctrl_maps_mutex);
  881. if (ret < 0) {
  882. /* If some other error than deferral occurred, return here */
  883. pinctrl_free(p, false);
  884. return ERR_PTR(ret);
  885. }
  886. kref_init(&p->users);
  887. /* Add the pinctrl handle to the global list */
  888. mutex_lock(&pinctrl_list_mutex);
  889. list_add_tail(&p->node, &pinctrl_list);
  890. mutex_unlock(&pinctrl_list_mutex);
  891. return p;
  892. }
  893. /**
  894. * pinctrl_get() - retrieves the pinctrl handle for a device
  895. * @dev: the device to obtain the handle for
  896. */
  897. struct pinctrl *pinctrl_get(struct device *dev)
  898. {
  899. struct pinctrl *p;
  900. if (WARN_ON(!dev))
  901. return ERR_PTR(-EINVAL);
  902. /*
  903. * See if somebody else (such as the device core) has already
  904. * obtained a handle to the pinctrl for this device. In that case,
  905. * return another pointer to it.
  906. */
  907. p = find_pinctrl(dev);
  908. if (p != NULL) {
  909. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  910. kref_get(&p->users);
  911. return p;
  912. }
  913. return create_pinctrl(dev, NULL);
  914. }
  915. EXPORT_SYMBOL_GPL(pinctrl_get);
  916. static void pinctrl_free_setting(bool disable_setting,
  917. struct pinctrl_setting *setting)
  918. {
  919. switch (setting->type) {
  920. case PIN_MAP_TYPE_MUX_GROUP:
  921. if (disable_setting)
  922. pinmux_disable_setting(setting);
  923. pinmux_free_setting(setting);
  924. break;
  925. case PIN_MAP_TYPE_CONFIGS_PIN:
  926. case PIN_MAP_TYPE_CONFIGS_GROUP:
  927. pinconf_free_setting(setting);
  928. break;
  929. default:
  930. break;
  931. }
  932. }
  933. static void pinctrl_free(struct pinctrl *p, bool inlist)
  934. {
  935. struct pinctrl_state *state, *n1;
  936. struct pinctrl_setting *setting, *n2;
  937. mutex_lock(&pinctrl_list_mutex);
  938. list_for_each_entry_safe(state, n1, &p->states, node) {
  939. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  940. pinctrl_free_setting(state == p->state, setting);
  941. list_del(&setting->node);
  942. kfree(setting);
  943. }
  944. list_del(&state->node);
  945. kfree(state);
  946. }
  947. pinctrl_dt_free_maps(p);
  948. if (inlist)
  949. list_del(&p->node);
  950. kfree(p);
  951. mutex_unlock(&pinctrl_list_mutex);
  952. }
  953. /**
  954. * pinctrl_release() - release the pinctrl handle
  955. * @kref: the kref in the pinctrl being released
  956. */
  957. static void pinctrl_release(struct kref *kref)
  958. {
  959. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  960. pinctrl_free(p, true);
  961. }
  962. /**
  963. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  964. * @p: the pinctrl handle to release
  965. */
  966. void pinctrl_put(struct pinctrl *p)
  967. {
  968. kref_put(&p->users, pinctrl_release);
  969. }
  970. EXPORT_SYMBOL_GPL(pinctrl_put);
  971. /**
  972. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  973. * @p: the pinctrl handle to retrieve the state from
  974. * @name: the state name to retrieve
  975. */
  976. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
  977. const char *name)
  978. {
  979. struct pinctrl_state *state;
  980. state = find_state(p, name);
  981. if (!state) {
  982. if (pinctrl_dummy_state) {
  983. /* create dummy state */
  984. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  985. name);
  986. state = create_state(p, name);
  987. } else
  988. state = ERR_PTR(-ENODEV);
  989. }
  990. return state;
  991. }
  992. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  993. /**
  994. * pinctrl_select_state() - select/activate/program a pinctrl state to HW
  995. * @p: the pinctrl handle for the device that requests configuration
  996. * @state: the state handle to select/activate/program
  997. */
  998. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  999. {
  1000. struct pinctrl_setting *setting, *setting2;
  1001. struct pinctrl_state *old_state = p->state;
  1002. int ret;
  1003. if (p->state == state)
  1004. return 0;
  1005. if (p->state) {
  1006. /*
  1007. * For each pinmux setting in the old state, forget SW's record
  1008. * of mux owner for that pingroup. Any pingroups which are
  1009. * still owned by the new state will be re-acquired by the call
  1010. * to pinmux_enable_setting() in the loop below.
  1011. */
  1012. list_for_each_entry(setting, &p->state->settings, node) {
  1013. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  1014. continue;
  1015. pinmux_disable_setting(setting);
  1016. }
  1017. }
  1018. p->state = NULL;
  1019. /* Apply all the settings for the new state */
  1020. list_for_each_entry(setting, &state->settings, node) {
  1021. switch (setting->type) {
  1022. case PIN_MAP_TYPE_MUX_GROUP:
  1023. ret = pinmux_enable_setting(setting);
  1024. break;
  1025. case PIN_MAP_TYPE_CONFIGS_PIN:
  1026. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1027. ret = pinconf_apply_setting(setting);
  1028. break;
  1029. default:
  1030. ret = -EINVAL;
  1031. break;
  1032. }
  1033. if (ret < 0) {
  1034. goto unapply_new_state;
  1035. }
  1036. }
  1037. p->state = state;
  1038. return 0;
  1039. unapply_new_state:
  1040. dev_err(p->dev, "Error applying setting, reverse things back\n");
  1041. list_for_each_entry(setting2, &state->settings, node) {
  1042. if (&setting2->node == &setting->node)
  1043. break;
  1044. /*
  1045. * All we can do here is pinmux_disable_setting.
  1046. * That means that some pins are muxed differently now
  1047. * than they were before applying the setting (We can't
  1048. * "unmux a pin"!), but it's not a big deal since the pins
  1049. * are free to be muxed by another apply_setting.
  1050. */
  1051. if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
  1052. pinmux_disable_setting(setting2);
  1053. }
  1054. /* There's no infinite recursive loop here because p->state is NULL */
  1055. if (old_state)
  1056. pinctrl_select_state(p, old_state);
  1057. return ret;
  1058. }
  1059. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  1060. static void devm_pinctrl_release(struct device *dev, void *res)
  1061. {
  1062. pinctrl_put(*(struct pinctrl **)res);
  1063. }
  1064. /**
  1065. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  1066. * @dev: the device to obtain the handle for
  1067. *
  1068. * If there is a need to explicitly destroy the returned struct pinctrl,
  1069. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  1070. */
  1071. struct pinctrl *devm_pinctrl_get(struct device *dev)
  1072. {
  1073. struct pinctrl **ptr, *p;
  1074. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  1075. if (!ptr)
  1076. return ERR_PTR(-ENOMEM);
  1077. p = pinctrl_get(dev);
  1078. if (!IS_ERR(p)) {
  1079. *ptr = p;
  1080. devres_add(dev, ptr);
  1081. } else {
  1082. devres_free(ptr);
  1083. }
  1084. return p;
  1085. }
  1086. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  1087. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  1088. {
  1089. struct pinctrl **p = res;
  1090. return *p == data;
  1091. }
  1092. /**
  1093. * devm_pinctrl_put() - Resource managed pinctrl_put()
  1094. * @p: the pinctrl handle to release
  1095. *
  1096. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  1097. * this function will not need to be called and the resource management
  1098. * code will ensure that the resource is freed.
  1099. */
  1100. void devm_pinctrl_put(struct pinctrl *p)
  1101. {
  1102. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  1103. devm_pinctrl_match, p));
  1104. }
  1105. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  1106. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  1107. bool dup)
  1108. {
  1109. int i, ret;
  1110. struct pinctrl_maps *maps_node;
  1111. pr_debug("add %u pinctrl maps\n", num_maps);
  1112. /* First sanity check the new mapping */
  1113. for (i = 0; i < num_maps; i++) {
  1114. if (!maps[i].dev_name) {
  1115. pr_err("failed to register map %s (%d): no device given\n",
  1116. maps[i].name, i);
  1117. return -EINVAL;
  1118. }
  1119. if (!maps[i].name) {
  1120. pr_err("failed to register map %d: no map name given\n",
  1121. i);
  1122. return -EINVAL;
  1123. }
  1124. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  1125. !maps[i].ctrl_dev_name) {
  1126. pr_err("failed to register map %s (%d): no pin control device given\n",
  1127. maps[i].name, i);
  1128. return -EINVAL;
  1129. }
  1130. switch (maps[i].type) {
  1131. case PIN_MAP_TYPE_DUMMY_STATE:
  1132. break;
  1133. case PIN_MAP_TYPE_MUX_GROUP:
  1134. ret = pinmux_validate_map(&maps[i], i);
  1135. if (ret < 0)
  1136. return ret;
  1137. break;
  1138. case PIN_MAP_TYPE_CONFIGS_PIN:
  1139. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1140. ret = pinconf_validate_map(&maps[i], i);
  1141. if (ret < 0)
  1142. return ret;
  1143. break;
  1144. default:
  1145. pr_err("failed to register map %s (%d): invalid type given\n",
  1146. maps[i].name, i);
  1147. return -EINVAL;
  1148. }
  1149. }
  1150. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  1151. if (!maps_node)
  1152. return -ENOMEM;
  1153. maps_node->num_maps = num_maps;
  1154. if (dup) {
  1155. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  1156. GFP_KERNEL);
  1157. if (!maps_node->maps) {
  1158. pr_err("failed to duplicate mapping table\n");
  1159. kfree(maps_node);
  1160. return -ENOMEM;
  1161. }
  1162. } else {
  1163. maps_node->maps = maps;
  1164. }
  1165. mutex_lock(&pinctrl_maps_mutex);
  1166. list_add_tail(&maps_node->node, &pinctrl_maps);
  1167. mutex_unlock(&pinctrl_maps_mutex);
  1168. return 0;
  1169. }
  1170. /**
  1171. * pinctrl_register_mappings() - register a set of pin controller mappings
  1172. * @maps: the pincontrol mappings table to register. This should probably be
  1173. * marked with __initdata so it can be discarded after boot. This
  1174. * function will perform a shallow copy for the mapping entries.
  1175. * @num_maps: the number of maps in the mapping table
  1176. */
  1177. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  1178. unsigned num_maps)
  1179. {
  1180. return pinctrl_register_map(maps, num_maps, true);
  1181. }
  1182. void pinctrl_unregister_map(struct pinctrl_map const *map)
  1183. {
  1184. struct pinctrl_maps *maps_node;
  1185. mutex_lock(&pinctrl_maps_mutex);
  1186. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  1187. if (maps_node->maps == map) {
  1188. list_del(&maps_node->node);
  1189. kfree(maps_node);
  1190. mutex_unlock(&pinctrl_maps_mutex);
  1191. return;
  1192. }
  1193. }
  1194. mutex_unlock(&pinctrl_maps_mutex);
  1195. }
  1196. /**
  1197. * pinctrl_force_sleep() - turn a given controller device into sleep state
  1198. * @pctldev: pin controller device
  1199. */
  1200. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  1201. {
  1202. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  1203. return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
  1204. return 0;
  1205. }
  1206. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  1207. /**
  1208. * pinctrl_force_default() - turn a given controller device into default state
  1209. * @pctldev: pin controller device
  1210. */
  1211. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  1212. {
  1213. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  1214. return pinctrl_select_state(pctldev->p, pctldev->hog_default);
  1215. return 0;
  1216. }
  1217. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  1218. /**
  1219. * pinctrl_init_done() - tell pinctrl probe is done
  1220. *
  1221. * We'll use this time to switch the pins from "init" to "default" unless the
  1222. * driver selected some other state.
  1223. *
  1224. * @dev: device to that's done probing
  1225. */
  1226. int pinctrl_init_done(struct device *dev)
  1227. {
  1228. struct dev_pin_info *pins = dev->pins;
  1229. int ret;
  1230. if (!pins)
  1231. return 0;
  1232. if (IS_ERR(pins->init_state))
  1233. return 0; /* No such state */
  1234. if (pins->p->state != pins->init_state)
  1235. return 0; /* Not at init anyway */
  1236. if (IS_ERR(pins->default_state))
  1237. return 0; /* No default state */
  1238. ret = pinctrl_select_state(pins->p, pins->default_state);
  1239. if (ret)
  1240. dev_err(dev, "failed to activate default pinctrl state\n");
  1241. return ret;
  1242. }
  1243. #ifdef CONFIG_PM
  1244. /**
  1245. * pinctrl_pm_select_state() - select pinctrl state for PM
  1246. * @dev: device to select default state for
  1247. * @state: state to set
  1248. */
  1249. static int pinctrl_pm_select_state(struct device *dev,
  1250. struct pinctrl_state *state)
  1251. {
  1252. struct dev_pin_info *pins = dev->pins;
  1253. int ret;
  1254. if (IS_ERR(state))
  1255. return 0; /* No such state */
  1256. ret = pinctrl_select_state(pins->p, state);
  1257. if (ret)
  1258. dev_err(dev, "failed to activate pinctrl state %s\n",
  1259. state->name);
  1260. return ret;
  1261. }
  1262. /**
  1263. * pinctrl_pm_select_default_state() - select default pinctrl state for PM
  1264. * @dev: device to select default state for
  1265. */
  1266. int pinctrl_pm_select_default_state(struct device *dev)
  1267. {
  1268. if (!dev->pins)
  1269. return 0;
  1270. return pinctrl_pm_select_state(dev, dev->pins->default_state);
  1271. }
  1272. EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
  1273. /**
  1274. * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
  1275. * @dev: device to select sleep state for
  1276. */
  1277. int pinctrl_pm_select_sleep_state(struct device *dev)
  1278. {
  1279. if (!dev->pins)
  1280. return 0;
  1281. return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
  1282. }
  1283. EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
  1284. /**
  1285. * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
  1286. * @dev: device to select idle state for
  1287. */
  1288. int pinctrl_pm_select_idle_state(struct device *dev)
  1289. {
  1290. if (!dev->pins)
  1291. return 0;
  1292. return pinctrl_pm_select_state(dev, dev->pins->idle_state);
  1293. }
  1294. EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
  1295. #endif
  1296. #ifdef CONFIG_DEBUG_FS
  1297. static int pinctrl_pins_show(struct seq_file *s, void *what)
  1298. {
  1299. struct pinctrl_dev *pctldev = s->private;
  1300. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1301. unsigned i, pin;
  1302. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  1303. mutex_lock(&pctldev->mutex);
  1304. /* The pin number can be retrived from the pin controller descriptor */
  1305. for (i = 0; i < pctldev->desc->npins; i++) {
  1306. struct pin_desc *desc;
  1307. pin = pctldev->desc->pins[i].number;
  1308. desc = pin_desc_get(pctldev, pin);
  1309. /* Pin space may be sparse */
  1310. if (desc == NULL)
  1311. continue;
  1312. seq_printf(s, "pin %d (%s) ", pin, desc->name);
  1313. /* Driver-specific info per pin */
  1314. if (ops->pin_dbg_show)
  1315. ops->pin_dbg_show(pctldev, s, pin);
  1316. seq_puts(s, "\n");
  1317. }
  1318. mutex_unlock(&pctldev->mutex);
  1319. return 0;
  1320. }
  1321. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1322. {
  1323. struct pinctrl_dev *pctldev = s->private;
  1324. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1325. unsigned ngroups, selector = 0;
  1326. mutex_lock(&pctldev->mutex);
  1327. ngroups = ops->get_groups_count(pctldev);
  1328. seq_puts(s, "registered pin groups:\n");
  1329. while (selector < ngroups) {
  1330. const unsigned *pins = NULL;
  1331. unsigned num_pins = 0;
  1332. const char *gname = ops->get_group_name(pctldev, selector);
  1333. const char *pname;
  1334. int ret = 0;
  1335. int i;
  1336. if (ops->get_group_pins)
  1337. ret = ops->get_group_pins(pctldev, selector,
  1338. &pins, &num_pins);
  1339. if (ret)
  1340. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1341. gname);
  1342. else {
  1343. seq_printf(s, "group: %s\n", gname);
  1344. for (i = 0; i < num_pins; i++) {
  1345. pname = pin_get_name(pctldev, pins[i]);
  1346. if (WARN_ON(!pname)) {
  1347. mutex_unlock(&pctldev->mutex);
  1348. return -EINVAL;
  1349. }
  1350. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1351. }
  1352. seq_puts(s, "\n");
  1353. }
  1354. selector++;
  1355. }
  1356. mutex_unlock(&pctldev->mutex);
  1357. return 0;
  1358. }
  1359. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1360. {
  1361. struct pinctrl_dev *pctldev = s->private;
  1362. struct pinctrl_gpio_range *range = NULL;
  1363. seq_puts(s, "GPIO ranges handled:\n");
  1364. mutex_lock(&pctldev->mutex);
  1365. /* Loop over the ranges */
  1366. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1367. if (range->pins) {
  1368. int a;
  1369. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
  1370. range->id, range->name,
  1371. range->base, (range->base + range->npins - 1));
  1372. for (a = 0; a < range->npins - 1; a++)
  1373. seq_printf(s, "%u, ", range->pins[a]);
  1374. seq_printf(s, "%u}\n", range->pins[a]);
  1375. }
  1376. else
  1377. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1378. range->id, range->name,
  1379. range->base, (range->base + range->npins - 1),
  1380. range->pin_base,
  1381. (range->pin_base + range->npins - 1));
  1382. }
  1383. mutex_unlock(&pctldev->mutex);
  1384. return 0;
  1385. }
  1386. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1387. {
  1388. struct pinctrl_dev *pctldev;
  1389. seq_puts(s, "name [pinmux] [pinconf]\n");
  1390. mutex_lock(&pinctrldev_list_mutex);
  1391. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1392. seq_printf(s, "%s ", pctldev->desc->name);
  1393. if (pctldev->desc->pmxops)
  1394. seq_puts(s, "yes ");
  1395. else
  1396. seq_puts(s, "no ");
  1397. if (pctldev->desc->confops)
  1398. seq_puts(s, "yes");
  1399. else
  1400. seq_puts(s, "no");
  1401. seq_puts(s, "\n");
  1402. }
  1403. mutex_unlock(&pinctrldev_list_mutex);
  1404. return 0;
  1405. }
  1406. static inline const char *map_type(enum pinctrl_map_type type)
  1407. {
  1408. static const char * const names[] = {
  1409. "INVALID",
  1410. "DUMMY_STATE",
  1411. "MUX_GROUP",
  1412. "CONFIGS_PIN",
  1413. "CONFIGS_GROUP",
  1414. };
  1415. if (type >= ARRAY_SIZE(names))
  1416. return "UNKNOWN";
  1417. return names[type];
  1418. }
  1419. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1420. {
  1421. struct pinctrl_maps *maps_node;
  1422. int i;
  1423. struct pinctrl_map const *map;
  1424. seq_puts(s, "Pinctrl maps:\n");
  1425. mutex_lock(&pinctrl_maps_mutex);
  1426. for_each_maps(maps_node, i, map) {
  1427. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1428. map->dev_name, map->name, map_type(map->type),
  1429. map->type);
  1430. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1431. seq_printf(s, "controlling device %s\n",
  1432. map->ctrl_dev_name);
  1433. switch (map->type) {
  1434. case PIN_MAP_TYPE_MUX_GROUP:
  1435. pinmux_show_map(s, map);
  1436. break;
  1437. case PIN_MAP_TYPE_CONFIGS_PIN:
  1438. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1439. pinconf_show_map(s, map);
  1440. break;
  1441. default:
  1442. break;
  1443. }
  1444. seq_printf(s, "\n");
  1445. }
  1446. mutex_unlock(&pinctrl_maps_mutex);
  1447. return 0;
  1448. }
  1449. static int pinctrl_show(struct seq_file *s, void *what)
  1450. {
  1451. struct pinctrl *p;
  1452. struct pinctrl_state *state;
  1453. struct pinctrl_setting *setting;
  1454. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1455. mutex_lock(&pinctrl_list_mutex);
  1456. list_for_each_entry(p, &pinctrl_list, node) {
  1457. seq_printf(s, "device: %s current state: %s\n",
  1458. dev_name(p->dev),
  1459. p->state ? p->state->name : "none");
  1460. list_for_each_entry(state, &p->states, node) {
  1461. seq_printf(s, " state: %s\n", state->name);
  1462. list_for_each_entry(setting, &state->settings, node) {
  1463. struct pinctrl_dev *pctldev = setting->pctldev;
  1464. seq_printf(s, " type: %s controller %s ",
  1465. map_type(setting->type),
  1466. pinctrl_dev_get_name(pctldev));
  1467. switch (setting->type) {
  1468. case PIN_MAP_TYPE_MUX_GROUP:
  1469. pinmux_show_setting(s, setting);
  1470. break;
  1471. case PIN_MAP_TYPE_CONFIGS_PIN:
  1472. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1473. pinconf_show_setting(s, setting);
  1474. break;
  1475. default:
  1476. break;
  1477. }
  1478. }
  1479. }
  1480. }
  1481. mutex_unlock(&pinctrl_list_mutex);
  1482. return 0;
  1483. }
  1484. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1485. {
  1486. return single_open(file, pinctrl_pins_show, inode->i_private);
  1487. }
  1488. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1489. {
  1490. return single_open(file, pinctrl_groups_show, inode->i_private);
  1491. }
  1492. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1493. {
  1494. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1495. }
  1496. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1497. {
  1498. return single_open(file, pinctrl_devices_show, NULL);
  1499. }
  1500. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1501. {
  1502. return single_open(file, pinctrl_maps_show, NULL);
  1503. }
  1504. static int pinctrl_open(struct inode *inode, struct file *file)
  1505. {
  1506. return single_open(file, pinctrl_show, NULL);
  1507. }
  1508. static const struct file_operations pinctrl_pins_ops = {
  1509. .open = pinctrl_pins_open,
  1510. .read = seq_read,
  1511. .llseek = seq_lseek,
  1512. .release = single_release,
  1513. };
  1514. static const struct file_operations pinctrl_groups_ops = {
  1515. .open = pinctrl_groups_open,
  1516. .read = seq_read,
  1517. .llseek = seq_lseek,
  1518. .release = single_release,
  1519. };
  1520. static const struct file_operations pinctrl_gpioranges_ops = {
  1521. .open = pinctrl_gpioranges_open,
  1522. .read = seq_read,
  1523. .llseek = seq_lseek,
  1524. .release = single_release,
  1525. };
  1526. static const struct file_operations pinctrl_devices_ops = {
  1527. .open = pinctrl_devices_open,
  1528. .read = seq_read,
  1529. .llseek = seq_lseek,
  1530. .release = single_release,
  1531. };
  1532. static const struct file_operations pinctrl_maps_ops = {
  1533. .open = pinctrl_maps_open,
  1534. .read = seq_read,
  1535. .llseek = seq_lseek,
  1536. .release = single_release,
  1537. };
  1538. static const struct file_operations pinctrl_ops = {
  1539. .open = pinctrl_open,
  1540. .read = seq_read,
  1541. .llseek = seq_lseek,
  1542. .release = single_release,
  1543. };
  1544. static struct dentry *debugfs_root;
  1545. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1546. {
  1547. struct dentry *device_root;
  1548. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1549. debugfs_root);
  1550. pctldev->device_root = device_root;
  1551. if (IS_ERR(device_root) || !device_root) {
  1552. pr_warn("failed to create debugfs directory for %s\n",
  1553. dev_name(pctldev->dev));
  1554. return;
  1555. }
  1556. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1557. device_root, pctldev, &pinctrl_pins_ops);
  1558. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1559. device_root, pctldev, &pinctrl_groups_ops);
  1560. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1561. device_root, pctldev, &pinctrl_gpioranges_ops);
  1562. if (pctldev->desc->pmxops)
  1563. pinmux_init_device_debugfs(device_root, pctldev);
  1564. if (pctldev->desc->confops)
  1565. pinconf_init_device_debugfs(device_root, pctldev);
  1566. }
  1567. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1568. {
  1569. debugfs_remove_recursive(pctldev->device_root);
  1570. }
  1571. static void pinctrl_init_debugfs(void)
  1572. {
  1573. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1574. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1575. pr_warn("failed to create debugfs directory\n");
  1576. debugfs_root = NULL;
  1577. return;
  1578. }
  1579. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1580. debugfs_root, NULL, &pinctrl_devices_ops);
  1581. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1582. debugfs_root, NULL, &pinctrl_maps_ops);
  1583. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1584. debugfs_root, NULL, &pinctrl_ops);
  1585. }
  1586. #else /* CONFIG_DEBUG_FS */
  1587. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1588. {
  1589. }
  1590. static void pinctrl_init_debugfs(void)
  1591. {
  1592. }
  1593. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1594. {
  1595. }
  1596. #endif
  1597. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1598. {
  1599. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1600. if (!ops ||
  1601. !ops->get_groups_count ||
  1602. !ops->get_group_name)
  1603. return -EINVAL;
  1604. return 0;
  1605. }
  1606. /**
  1607. * pinctrl_init_controller() - init a pin controller device
  1608. * @pctldesc: descriptor for this pin controller
  1609. * @dev: parent device for this pin controller
  1610. * @driver_data: private pin controller data for this pin controller
  1611. */
  1612. static struct pinctrl_dev *
  1613. pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
  1614. void *driver_data)
  1615. {
  1616. struct pinctrl_dev *pctldev;
  1617. int ret;
  1618. if (!pctldesc)
  1619. return ERR_PTR(-EINVAL);
  1620. if (!pctldesc->name)
  1621. return ERR_PTR(-EINVAL);
  1622. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1623. if (!pctldev)
  1624. return ERR_PTR(-ENOMEM);
  1625. /* Initialize pin control device struct */
  1626. pctldev->owner = pctldesc->owner;
  1627. pctldev->desc = pctldesc;
  1628. pctldev->driver_data = driver_data;
  1629. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1630. #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
  1631. INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
  1632. #endif
  1633. #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
  1634. INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
  1635. #endif
  1636. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1637. INIT_LIST_HEAD(&pctldev->node);
  1638. pctldev->dev = dev;
  1639. mutex_init(&pctldev->mutex);
  1640. /* check core ops for sanity */
  1641. ret = pinctrl_check_ops(pctldev);
  1642. if (ret) {
  1643. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1644. goto out_err;
  1645. }
  1646. /* If we're implementing pinmuxing, check the ops for sanity */
  1647. if (pctldesc->pmxops) {
  1648. ret = pinmux_check_ops(pctldev);
  1649. if (ret)
  1650. goto out_err;
  1651. }
  1652. /* If we're implementing pinconfig, check the ops for sanity */
  1653. if (pctldesc->confops) {
  1654. ret = pinconf_check_ops(pctldev);
  1655. if (ret)
  1656. goto out_err;
  1657. }
  1658. /* Register all the pins */
  1659. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1660. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1661. if (ret) {
  1662. dev_err(dev, "error during pin registration\n");
  1663. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1664. pctldesc->npins);
  1665. goto out_err;
  1666. }
  1667. return pctldev;
  1668. out_err:
  1669. mutex_destroy(&pctldev->mutex);
  1670. kfree(pctldev);
  1671. return ERR_PTR(ret);
  1672. }
  1673. static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
  1674. {
  1675. pctldev->p = create_pinctrl(pctldev->dev, pctldev);
  1676. if (PTR_ERR(pctldev->p) == -ENODEV) {
  1677. dev_dbg(pctldev->dev, "no hogs found\n");
  1678. return 0;
  1679. }
  1680. if (IS_ERR(pctldev->p)) {
  1681. dev_err(pctldev->dev, "error claiming hogs: %li\n",
  1682. PTR_ERR(pctldev->p));
  1683. return PTR_ERR(pctldev->p);
  1684. }
  1685. kref_get(&pctldev->p->users);
  1686. pctldev->hog_default =
  1687. pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
  1688. if (IS_ERR(pctldev->hog_default)) {
  1689. dev_dbg(pctldev->dev,
  1690. "failed to lookup the default state\n");
  1691. } else {
  1692. if (pinctrl_select_state(pctldev->p,
  1693. pctldev->hog_default))
  1694. dev_err(pctldev->dev,
  1695. "failed to select default state\n");
  1696. }
  1697. pctldev->hog_sleep =
  1698. pinctrl_lookup_state(pctldev->p,
  1699. PINCTRL_STATE_SLEEP);
  1700. if (IS_ERR(pctldev->hog_sleep))
  1701. dev_dbg(pctldev->dev,
  1702. "failed to lookup the sleep state\n");
  1703. return 0;
  1704. }
  1705. int pinctrl_enable(struct pinctrl_dev *pctldev)
  1706. {
  1707. int error;
  1708. error = pinctrl_claim_hogs(pctldev);
  1709. if (error) {
  1710. dev_err(pctldev->dev, "could not claim hogs: %i\n",
  1711. error);
  1712. mutex_destroy(&pctldev->mutex);
  1713. kfree(pctldev);
  1714. return error;
  1715. }
  1716. mutex_lock(&pinctrldev_list_mutex);
  1717. list_add_tail(&pctldev->node, &pinctrldev_list);
  1718. mutex_unlock(&pinctrldev_list_mutex);
  1719. pinctrl_init_device_debugfs(pctldev);
  1720. return 0;
  1721. }
  1722. EXPORT_SYMBOL_GPL(pinctrl_enable);
  1723. /**
  1724. * pinctrl_register() - register a pin controller device
  1725. * @pctldesc: descriptor for this pin controller
  1726. * @dev: parent device for this pin controller
  1727. * @driver_data: private pin controller data for this pin controller
  1728. *
  1729. * Note that pinctrl_register() is known to have problems as the pin
  1730. * controller driver functions are called before the driver has a
  1731. * struct pinctrl_dev handle. To avoid issues later on, please use the
  1732. * new pinctrl_register_and_init() below instead.
  1733. */
  1734. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1735. struct device *dev, void *driver_data)
  1736. {
  1737. struct pinctrl_dev *pctldev;
  1738. int error;
  1739. pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
  1740. if (IS_ERR(pctldev))
  1741. return pctldev;
  1742. error = pinctrl_enable(pctldev);
  1743. if (error)
  1744. return ERR_PTR(error);
  1745. return pctldev;
  1746. }
  1747. EXPORT_SYMBOL_GPL(pinctrl_register);
  1748. /**
  1749. * pinctrl_register_and_init() - register and init pin controller device
  1750. * @pctldesc: descriptor for this pin controller
  1751. * @dev: parent device for this pin controller
  1752. * @driver_data: private pin controller data for this pin controller
  1753. * @pctldev: pin controller device
  1754. *
  1755. * Note that pinctrl_enable() still needs to be manually called after
  1756. * this once the driver is ready.
  1757. */
  1758. int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
  1759. struct device *dev, void *driver_data,
  1760. struct pinctrl_dev **pctldev)
  1761. {
  1762. struct pinctrl_dev *p;
  1763. p = pinctrl_init_controller(pctldesc, dev, driver_data);
  1764. if (IS_ERR(p))
  1765. return PTR_ERR(p);
  1766. /*
  1767. * We have pinctrl_start() call functions in the pin controller
  1768. * driver with create_pinctrl() for at least dt_node_to_map(). So
  1769. * let's make sure pctldev is properly initialized for the
  1770. * pin controller driver before we do anything.
  1771. */
  1772. *pctldev = p;
  1773. return 0;
  1774. }
  1775. EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
  1776. /**
  1777. * pinctrl_unregister() - unregister pinmux
  1778. * @pctldev: pin controller to unregister
  1779. *
  1780. * Called by pinmux drivers to unregister a pinmux.
  1781. */
  1782. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1783. {
  1784. struct pinctrl_gpio_range *range, *n;
  1785. if (pctldev == NULL)
  1786. return;
  1787. mutex_lock(&pctldev->mutex);
  1788. pinctrl_remove_device_debugfs(pctldev);
  1789. mutex_unlock(&pctldev->mutex);
  1790. if (!IS_ERR_OR_NULL(pctldev->p))
  1791. pinctrl_put(pctldev->p);
  1792. mutex_lock(&pinctrldev_list_mutex);
  1793. mutex_lock(&pctldev->mutex);
  1794. /* TODO: check that no pinmuxes are still active? */
  1795. list_del(&pctldev->node);
  1796. pinmux_generic_free_functions(pctldev);
  1797. pinctrl_generic_free_groups(pctldev);
  1798. /* Destroy descriptor tree */
  1799. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1800. pctldev->desc->npins);
  1801. /* remove gpio ranges map */
  1802. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1803. list_del(&range->node);
  1804. mutex_unlock(&pctldev->mutex);
  1805. mutex_destroy(&pctldev->mutex);
  1806. kfree(pctldev);
  1807. mutex_unlock(&pinctrldev_list_mutex);
  1808. }
  1809. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1810. static void devm_pinctrl_dev_release(struct device *dev, void *res)
  1811. {
  1812. struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
  1813. pinctrl_unregister(pctldev);
  1814. }
  1815. static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
  1816. {
  1817. struct pctldev **r = res;
  1818. if (WARN_ON(!r || !*r))
  1819. return 0;
  1820. return *r == data;
  1821. }
  1822. /**
  1823. * devm_pinctrl_register() - Resource managed version of pinctrl_register().
  1824. * @dev: parent device for this pin controller
  1825. * @pctldesc: descriptor for this pin controller
  1826. * @driver_data: private pin controller data for this pin controller
  1827. *
  1828. * Returns an error pointer if pincontrol register failed. Otherwise
  1829. * it returns valid pinctrl handle.
  1830. *
  1831. * The pinctrl device will be automatically released when the device is unbound.
  1832. */
  1833. struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
  1834. struct pinctrl_desc *pctldesc,
  1835. void *driver_data)
  1836. {
  1837. struct pinctrl_dev **ptr, *pctldev;
  1838. ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
  1839. if (!ptr)
  1840. return ERR_PTR(-ENOMEM);
  1841. pctldev = pinctrl_register(pctldesc, dev, driver_data);
  1842. if (IS_ERR(pctldev)) {
  1843. devres_free(ptr);
  1844. return pctldev;
  1845. }
  1846. *ptr = pctldev;
  1847. devres_add(dev, ptr);
  1848. return pctldev;
  1849. }
  1850. EXPORT_SYMBOL_GPL(devm_pinctrl_register);
  1851. /**
  1852. * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
  1853. * @dev: parent device for this pin controller
  1854. * @pctldesc: descriptor for this pin controller
  1855. * @driver_data: private pin controller data for this pin controller
  1856. *
  1857. * Returns an error pointer if pincontrol register failed. Otherwise
  1858. * it returns valid pinctrl handle.
  1859. *
  1860. * The pinctrl device will be automatically released when the device is unbound.
  1861. */
  1862. int devm_pinctrl_register_and_init(struct device *dev,
  1863. struct pinctrl_desc *pctldesc,
  1864. void *driver_data,
  1865. struct pinctrl_dev **pctldev)
  1866. {
  1867. struct pinctrl_dev **ptr;
  1868. int error;
  1869. ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
  1870. if (!ptr)
  1871. return -ENOMEM;
  1872. error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
  1873. if (error) {
  1874. devres_free(ptr);
  1875. return error;
  1876. }
  1877. *ptr = *pctldev;
  1878. devres_add(dev, ptr);
  1879. return 0;
  1880. }
  1881. EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
  1882. /**
  1883. * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
  1884. * @dev: device for which which resource was allocated
  1885. * @pctldev: the pinctrl device to unregister.
  1886. */
  1887. void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
  1888. {
  1889. WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
  1890. devm_pinctrl_dev_match, pctldev));
  1891. }
  1892. EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
  1893. static int __init pinctrl_init(void)
  1894. {
  1895. pr_info("initialized pinctrl subsystem\n");
  1896. pinctrl_init_debugfs();
  1897. return 0;
  1898. }
  1899. /* init early since many drivers really need to initialized pinmux early */
  1900. core_initcall(pinctrl_init);