rdma.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/string.h>
  20. #include <linux/atomic.h>
  21. #include <linux/blk-mq.h>
  22. #include <linux/types.h>
  23. #include <linux/list.h>
  24. #include <linux/mutex.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/nvme.h>
  27. #include <asm/unaligned.h>
  28. #include <rdma/ib_verbs.h>
  29. #include <rdma/rdma_cm.h>
  30. #include <linux/nvme-rdma.h>
  31. #include "nvme.h"
  32. #include "fabrics.h"
  33. #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
  34. #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
  35. #define NVME_RDMA_MAX_SEGMENTS 256
  36. #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
  37. /*
  38. * We handle AEN commands ourselves and don't even let the
  39. * block layer know about them.
  40. */
  41. #define NVME_RDMA_NR_AEN_COMMANDS 1
  42. #define NVME_RDMA_AQ_BLKMQ_DEPTH \
  43. (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
  44. struct nvme_rdma_device {
  45. struct ib_device *dev;
  46. struct ib_pd *pd;
  47. struct kref ref;
  48. struct list_head entry;
  49. };
  50. struct nvme_rdma_qe {
  51. struct ib_cqe cqe;
  52. void *data;
  53. u64 dma;
  54. };
  55. struct nvme_rdma_queue;
  56. struct nvme_rdma_request {
  57. struct nvme_request req;
  58. struct ib_mr *mr;
  59. struct nvme_rdma_qe sqe;
  60. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  61. u32 num_sge;
  62. int nents;
  63. bool inline_data;
  64. struct ib_reg_wr reg_wr;
  65. struct ib_cqe reg_cqe;
  66. struct nvme_rdma_queue *queue;
  67. struct sg_table sg_table;
  68. struct scatterlist first_sgl[];
  69. };
  70. enum nvme_rdma_queue_flags {
  71. NVME_RDMA_Q_CONNECTED = (1 << 0),
  72. NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
  73. NVME_RDMA_Q_DELETING = (1 << 2),
  74. NVME_RDMA_Q_LIVE = (1 << 3),
  75. };
  76. struct nvme_rdma_queue {
  77. struct nvme_rdma_qe *rsp_ring;
  78. u8 sig_count;
  79. int queue_size;
  80. size_t cmnd_capsule_len;
  81. struct nvme_rdma_ctrl *ctrl;
  82. struct nvme_rdma_device *device;
  83. struct ib_cq *ib_cq;
  84. struct ib_qp *qp;
  85. unsigned long flags;
  86. struct rdma_cm_id *cm_id;
  87. int cm_error;
  88. struct completion cm_done;
  89. };
  90. struct nvme_rdma_ctrl {
  91. /* read and written in the hot path */
  92. spinlock_t lock;
  93. /* read only in the hot path */
  94. struct nvme_rdma_queue *queues;
  95. u32 queue_count;
  96. /* other member variables */
  97. struct blk_mq_tag_set tag_set;
  98. struct work_struct delete_work;
  99. struct work_struct reset_work;
  100. struct work_struct err_work;
  101. struct nvme_rdma_qe async_event_sqe;
  102. struct delayed_work reconnect_work;
  103. struct list_head list;
  104. struct blk_mq_tag_set admin_tag_set;
  105. struct nvme_rdma_device *device;
  106. u64 cap;
  107. u32 max_fr_pages;
  108. struct sockaddr_storage addr;
  109. struct sockaddr_storage src_addr;
  110. struct nvme_ctrl ctrl;
  111. };
  112. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  113. {
  114. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  115. }
  116. static LIST_HEAD(device_list);
  117. static DEFINE_MUTEX(device_list_mutex);
  118. static LIST_HEAD(nvme_rdma_ctrl_list);
  119. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  120. static struct workqueue_struct *nvme_rdma_wq;
  121. /*
  122. * Disabling this option makes small I/O goes faster, but is fundamentally
  123. * unsafe. With it turned off we will have to register a global rkey that
  124. * allows read and write access to all physical memory.
  125. */
  126. static bool register_always = true;
  127. module_param(register_always, bool, 0444);
  128. MODULE_PARM_DESC(register_always,
  129. "Use memory registration even for contiguous memory regions");
  130. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  131. struct rdma_cm_event *event);
  132. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  133. /* XXX: really should move to a generic header sooner or later.. */
  134. static inline void put_unaligned_le24(u32 val, u8 *p)
  135. {
  136. *p++ = val;
  137. *p++ = val >> 8;
  138. *p++ = val >> 16;
  139. }
  140. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  141. {
  142. return queue - queue->ctrl->queues;
  143. }
  144. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  145. {
  146. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  147. }
  148. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  149. size_t capsule_size, enum dma_data_direction dir)
  150. {
  151. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  152. kfree(qe->data);
  153. }
  154. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  155. size_t capsule_size, enum dma_data_direction dir)
  156. {
  157. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  158. if (!qe->data)
  159. return -ENOMEM;
  160. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  161. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  162. kfree(qe->data);
  163. return -ENOMEM;
  164. }
  165. return 0;
  166. }
  167. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  168. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  169. size_t capsule_size, enum dma_data_direction dir)
  170. {
  171. int i;
  172. for (i = 0; i < ib_queue_size; i++)
  173. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  174. kfree(ring);
  175. }
  176. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  177. size_t ib_queue_size, size_t capsule_size,
  178. enum dma_data_direction dir)
  179. {
  180. struct nvme_rdma_qe *ring;
  181. int i;
  182. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  183. if (!ring)
  184. return NULL;
  185. for (i = 0; i < ib_queue_size; i++) {
  186. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  187. goto out_free_ring;
  188. }
  189. return ring;
  190. out_free_ring:
  191. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  192. return NULL;
  193. }
  194. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  195. {
  196. pr_debug("QP event %s (%d)\n",
  197. ib_event_msg(event->event), event->event);
  198. }
  199. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  200. {
  201. wait_for_completion_interruptible_timeout(&queue->cm_done,
  202. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  203. return queue->cm_error;
  204. }
  205. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  206. {
  207. struct nvme_rdma_device *dev = queue->device;
  208. struct ib_qp_init_attr init_attr;
  209. int ret;
  210. memset(&init_attr, 0, sizeof(init_attr));
  211. init_attr.event_handler = nvme_rdma_qp_event;
  212. /* +1 for drain */
  213. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  214. /* +1 for drain */
  215. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  216. init_attr.cap.max_recv_sge = 1;
  217. init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
  218. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  219. init_attr.qp_type = IB_QPT_RC;
  220. init_attr.send_cq = queue->ib_cq;
  221. init_attr.recv_cq = queue->ib_cq;
  222. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  223. queue->qp = queue->cm_id->qp;
  224. return ret;
  225. }
  226. static int nvme_rdma_reinit_request(void *data, struct request *rq)
  227. {
  228. struct nvme_rdma_ctrl *ctrl = data;
  229. struct nvme_rdma_device *dev = ctrl->device;
  230. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  231. int ret = 0;
  232. if (!req->mr->need_inval)
  233. goto out;
  234. ib_dereg_mr(req->mr);
  235. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  236. ctrl->max_fr_pages);
  237. if (IS_ERR(req->mr)) {
  238. ret = PTR_ERR(req->mr);
  239. req->mr = NULL;
  240. goto out;
  241. }
  242. req->mr->need_inval = false;
  243. out:
  244. return ret;
  245. }
  246. static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
  247. struct request *rq, unsigned int queue_idx)
  248. {
  249. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  250. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  251. struct nvme_rdma_device *dev = queue->device;
  252. if (req->mr)
  253. ib_dereg_mr(req->mr);
  254. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  255. DMA_TO_DEVICE);
  256. }
  257. static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
  258. struct request *rq, unsigned int hctx_idx)
  259. {
  260. return __nvme_rdma_exit_request(set->driver_data, rq, hctx_idx + 1);
  261. }
  262. static void nvme_rdma_exit_admin_request(struct blk_mq_tag_set *set,
  263. struct request *rq, unsigned int hctx_idx)
  264. {
  265. return __nvme_rdma_exit_request(set->driver_data, rq, 0);
  266. }
  267. static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
  268. struct request *rq, unsigned int queue_idx)
  269. {
  270. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  271. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  272. struct nvme_rdma_device *dev = queue->device;
  273. struct ib_device *ibdev = dev->dev;
  274. int ret;
  275. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  276. DMA_TO_DEVICE);
  277. if (ret)
  278. return ret;
  279. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  280. ctrl->max_fr_pages);
  281. if (IS_ERR(req->mr)) {
  282. ret = PTR_ERR(req->mr);
  283. goto out_free_qe;
  284. }
  285. req->queue = queue;
  286. return 0;
  287. out_free_qe:
  288. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  289. DMA_TO_DEVICE);
  290. return -ENOMEM;
  291. }
  292. static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
  293. struct request *rq, unsigned int hctx_idx,
  294. unsigned int numa_node)
  295. {
  296. return __nvme_rdma_init_request(set->driver_data, rq, hctx_idx + 1);
  297. }
  298. static int nvme_rdma_init_admin_request(struct blk_mq_tag_set *set,
  299. struct request *rq, unsigned int hctx_idx,
  300. unsigned int numa_node)
  301. {
  302. return __nvme_rdma_init_request(set->driver_data, rq, 0);
  303. }
  304. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  305. unsigned int hctx_idx)
  306. {
  307. struct nvme_rdma_ctrl *ctrl = data;
  308. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  309. BUG_ON(hctx_idx >= ctrl->queue_count);
  310. hctx->driver_data = queue;
  311. return 0;
  312. }
  313. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  314. unsigned int hctx_idx)
  315. {
  316. struct nvme_rdma_ctrl *ctrl = data;
  317. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  318. BUG_ON(hctx_idx != 0);
  319. hctx->driver_data = queue;
  320. return 0;
  321. }
  322. static void nvme_rdma_free_dev(struct kref *ref)
  323. {
  324. struct nvme_rdma_device *ndev =
  325. container_of(ref, struct nvme_rdma_device, ref);
  326. mutex_lock(&device_list_mutex);
  327. list_del(&ndev->entry);
  328. mutex_unlock(&device_list_mutex);
  329. ib_dealloc_pd(ndev->pd);
  330. kfree(ndev);
  331. }
  332. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  333. {
  334. kref_put(&dev->ref, nvme_rdma_free_dev);
  335. }
  336. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  337. {
  338. return kref_get_unless_zero(&dev->ref);
  339. }
  340. static struct nvme_rdma_device *
  341. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  342. {
  343. struct nvme_rdma_device *ndev;
  344. mutex_lock(&device_list_mutex);
  345. list_for_each_entry(ndev, &device_list, entry) {
  346. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  347. nvme_rdma_dev_get(ndev))
  348. goto out_unlock;
  349. }
  350. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  351. if (!ndev)
  352. goto out_err;
  353. ndev->dev = cm_id->device;
  354. kref_init(&ndev->ref);
  355. ndev->pd = ib_alloc_pd(ndev->dev,
  356. register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
  357. if (IS_ERR(ndev->pd))
  358. goto out_free_dev;
  359. if (!(ndev->dev->attrs.device_cap_flags &
  360. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  361. dev_err(&ndev->dev->dev,
  362. "Memory registrations not supported.\n");
  363. goto out_free_pd;
  364. }
  365. list_add(&ndev->entry, &device_list);
  366. out_unlock:
  367. mutex_unlock(&device_list_mutex);
  368. return ndev;
  369. out_free_pd:
  370. ib_dealloc_pd(ndev->pd);
  371. out_free_dev:
  372. kfree(ndev);
  373. out_err:
  374. mutex_unlock(&device_list_mutex);
  375. return NULL;
  376. }
  377. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  378. {
  379. struct nvme_rdma_device *dev;
  380. struct ib_device *ibdev;
  381. if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
  382. return;
  383. dev = queue->device;
  384. ibdev = dev->dev;
  385. rdma_destroy_qp(queue->cm_id);
  386. ib_free_cq(queue->ib_cq);
  387. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  388. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  389. nvme_rdma_dev_put(dev);
  390. }
  391. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
  392. struct nvme_rdma_device *dev)
  393. {
  394. struct ib_device *ibdev = dev->dev;
  395. const int send_wr_factor = 3; /* MR, SEND, INV */
  396. const int cq_factor = send_wr_factor + 1; /* + RECV */
  397. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  398. int ret;
  399. queue->device = dev;
  400. /*
  401. * The admin queue is barely used once the controller is live, so don't
  402. * bother to spread it out.
  403. */
  404. if (idx == 0)
  405. comp_vector = 0;
  406. else
  407. comp_vector = idx % ibdev->num_comp_vectors;
  408. /* +1 for ib_stop_cq */
  409. queue->ib_cq = ib_alloc_cq(dev->dev, queue,
  410. cq_factor * queue->queue_size + 1, comp_vector,
  411. IB_POLL_SOFTIRQ);
  412. if (IS_ERR(queue->ib_cq)) {
  413. ret = PTR_ERR(queue->ib_cq);
  414. goto out;
  415. }
  416. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  417. if (ret)
  418. goto out_destroy_ib_cq;
  419. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  420. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  421. if (!queue->rsp_ring) {
  422. ret = -ENOMEM;
  423. goto out_destroy_qp;
  424. }
  425. set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
  426. return 0;
  427. out_destroy_qp:
  428. ib_destroy_qp(queue->qp);
  429. out_destroy_ib_cq:
  430. ib_free_cq(queue->ib_cq);
  431. out:
  432. return ret;
  433. }
  434. static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
  435. int idx, size_t queue_size)
  436. {
  437. struct nvme_rdma_queue *queue;
  438. struct sockaddr *src_addr = NULL;
  439. int ret;
  440. queue = &ctrl->queues[idx];
  441. queue->ctrl = ctrl;
  442. init_completion(&queue->cm_done);
  443. if (idx > 0)
  444. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  445. else
  446. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  447. queue->queue_size = queue_size;
  448. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  449. RDMA_PS_TCP, IB_QPT_RC);
  450. if (IS_ERR(queue->cm_id)) {
  451. dev_info(ctrl->ctrl.device,
  452. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  453. return PTR_ERR(queue->cm_id);
  454. }
  455. if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  456. src_addr = (struct sockaddr *)&ctrl->src_addr;
  457. queue->cm_error = -ETIMEDOUT;
  458. ret = rdma_resolve_addr(queue->cm_id, src_addr,
  459. (struct sockaddr *)&ctrl->addr,
  460. NVME_RDMA_CONNECT_TIMEOUT_MS);
  461. if (ret) {
  462. dev_info(ctrl->ctrl.device,
  463. "rdma_resolve_addr failed (%d).\n", ret);
  464. goto out_destroy_cm_id;
  465. }
  466. ret = nvme_rdma_wait_for_cm(queue);
  467. if (ret) {
  468. dev_info(ctrl->ctrl.device,
  469. "rdma_resolve_addr wait failed (%d).\n", ret);
  470. goto out_destroy_cm_id;
  471. }
  472. clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
  473. set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
  474. return 0;
  475. out_destroy_cm_id:
  476. nvme_rdma_destroy_queue_ib(queue);
  477. rdma_destroy_id(queue->cm_id);
  478. return ret;
  479. }
  480. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  481. {
  482. rdma_disconnect(queue->cm_id);
  483. ib_drain_qp(queue->qp);
  484. }
  485. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  486. {
  487. nvme_rdma_destroy_queue_ib(queue);
  488. rdma_destroy_id(queue->cm_id);
  489. }
  490. static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
  491. {
  492. if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
  493. return;
  494. nvme_rdma_stop_queue(queue);
  495. nvme_rdma_free_queue(queue);
  496. }
  497. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  498. {
  499. int i;
  500. for (i = 1; i < ctrl->queue_count; i++)
  501. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  502. }
  503. static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
  504. {
  505. int i, ret = 0;
  506. for (i = 1; i < ctrl->queue_count; i++) {
  507. ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
  508. if (ret) {
  509. dev_info(ctrl->ctrl.device,
  510. "failed to connect i/o queue: %d\n", ret);
  511. goto out_free_queues;
  512. }
  513. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
  514. }
  515. return 0;
  516. out_free_queues:
  517. nvme_rdma_free_io_queues(ctrl);
  518. return ret;
  519. }
  520. static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
  521. {
  522. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  523. unsigned int nr_io_queues;
  524. int i, ret;
  525. nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
  526. ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
  527. if (ret)
  528. return ret;
  529. ctrl->queue_count = nr_io_queues + 1;
  530. if (ctrl->queue_count < 2)
  531. return 0;
  532. dev_info(ctrl->ctrl.device,
  533. "creating %d I/O queues.\n", nr_io_queues);
  534. for (i = 1; i < ctrl->queue_count; i++) {
  535. ret = nvme_rdma_init_queue(ctrl, i,
  536. ctrl->ctrl.opts->queue_size);
  537. if (ret) {
  538. dev_info(ctrl->ctrl.device,
  539. "failed to initialize i/o queue: %d\n", ret);
  540. goto out_free_queues;
  541. }
  542. }
  543. return 0;
  544. out_free_queues:
  545. for (i--; i >= 1; i--)
  546. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  547. return ret;
  548. }
  549. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
  550. {
  551. nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
  552. sizeof(struct nvme_command), DMA_TO_DEVICE);
  553. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  554. blk_cleanup_queue(ctrl->ctrl.admin_q);
  555. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  556. nvme_rdma_dev_put(ctrl->device);
  557. }
  558. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  559. {
  560. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  561. if (list_empty(&ctrl->list))
  562. goto free_ctrl;
  563. mutex_lock(&nvme_rdma_ctrl_mutex);
  564. list_del(&ctrl->list);
  565. mutex_unlock(&nvme_rdma_ctrl_mutex);
  566. kfree(ctrl->queues);
  567. nvmf_free_options(nctrl->opts);
  568. free_ctrl:
  569. kfree(ctrl);
  570. }
  571. static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
  572. {
  573. /* If we are resetting/deleting then do nothing */
  574. if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
  575. WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
  576. ctrl->ctrl.state == NVME_CTRL_LIVE);
  577. return;
  578. }
  579. if (nvmf_should_reconnect(&ctrl->ctrl)) {
  580. dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
  581. ctrl->ctrl.opts->reconnect_delay);
  582. queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
  583. ctrl->ctrl.opts->reconnect_delay * HZ);
  584. } else {
  585. dev_info(ctrl->ctrl.device, "Removing controller...\n");
  586. queue_work(nvme_rdma_wq, &ctrl->delete_work);
  587. }
  588. }
  589. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  590. {
  591. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  592. struct nvme_rdma_ctrl, reconnect_work);
  593. bool changed;
  594. int ret;
  595. ++ctrl->ctrl.opts->nr_reconnects;
  596. if (ctrl->queue_count > 1) {
  597. nvme_rdma_free_io_queues(ctrl);
  598. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  599. if (ret)
  600. goto requeue;
  601. }
  602. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  603. ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
  604. if (ret)
  605. goto requeue;
  606. ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  607. if (ret)
  608. goto requeue;
  609. blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
  610. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  611. if (ret)
  612. goto stop_admin_q;
  613. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
  614. ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  615. if (ret)
  616. goto stop_admin_q;
  617. nvme_start_keep_alive(&ctrl->ctrl);
  618. if (ctrl->queue_count > 1) {
  619. ret = nvme_rdma_init_io_queues(ctrl);
  620. if (ret)
  621. goto stop_admin_q;
  622. ret = nvme_rdma_connect_io_queues(ctrl);
  623. if (ret)
  624. goto stop_admin_q;
  625. }
  626. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  627. WARN_ON_ONCE(!changed);
  628. ctrl->ctrl.opts->nr_reconnects = 0;
  629. if (ctrl->queue_count > 1) {
  630. nvme_start_queues(&ctrl->ctrl);
  631. nvme_queue_scan(&ctrl->ctrl);
  632. nvme_queue_async_events(&ctrl->ctrl);
  633. }
  634. dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
  635. return;
  636. stop_admin_q:
  637. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  638. requeue:
  639. dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
  640. ctrl->ctrl.opts->nr_reconnects);
  641. nvme_rdma_reconnect_or_remove(ctrl);
  642. }
  643. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  644. {
  645. struct nvme_rdma_ctrl *ctrl = container_of(work,
  646. struct nvme_rdma_ctrl, err_work);
  647. int i;
  648. nvme_stop_keep_alive(&ctrl->ctrl);
  649. for (i = 0; i < ctrl->queue_count; i++) {
  650. clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
  651. clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
  652. }
  653. if (ctrl->queue_count > 1)
  654. nvme_stop_queues(&ctrl->ctrl);
  655. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  656. /* We must take care of fastfail/requeue all our inflight requests */
  657. if (ctrl->queue_count > 1)
  658. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  659. nvme_cancel_request, &ctrl->ctrl);
  660. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  661. nvme_cancel_request, &ctrl->ctrl);
  662. nvme_rdma_reconnect_or_remove(ctrl);
  663. }
  664. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  665. {
  666. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
  667. return;
  668. queue_work(nvme_rdma_wq, &ctrl->err_work);
  669. }
  670. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  671. const char *op)
  672. {
  673. struct nvme_rdma_queue *queue = cq->cq_context;
  674. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  675. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  676. dev_info(ctrl->ctrl.device,
  677. "%s for CQE 0x%p failed with status %s (%d)\n",
  678. op, wc->wr_cqe,
  679. ib_wc_status_msg(wc->status), wc->status);
  680. nvme_rdma_error_recovery(ctrl);
  681. }
  682. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  683. {
  684. if (unlikely(wc->status != IB_WC_SUCCESS))
  685. nvme_rdma_wr_error(cq, wc, "MEMREG");
  686. }
  687. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  688. {
  689. if (unlikely(wc->status != IB_WC_SUCCESS))
  690. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  691. }
  692. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  693. struct nvme_rdma_request *req)
  694. {
  695. struct ib_send_wr *bad_wr;
  696. struct ib_send_wr wr = {
  697. .opcode = IB_WR_LOCAL_INV,
  698. .next = NULL,
  699. .num_sge = 0,
  700. .send_flags = 0,
  701. .ex.invalidate_rkey = req->mr->rkey,
  702. };
  703. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  704. wr.wr_cqe = &req->reg_cqe;
  705. return ib_post_send(queue->qp, &wr, &bad_wr);
  706. }
  707. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  708. struct request *rq)
  709. {
  710. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  711. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  712. struct nvme_rdma_device *dev = queue->device;
  713. struct ib_device *ibdev = dev->dev;
  714. int res;
  715. if (!blk_rq_bytes(rq))
  716. return;
  717. if (req->mr->need_inval) {
  718. res = nvme_rdma_inv_rkey(queue, req);
  719. if (res < 0) {
  720. dev_err(ctrl->ctrl.device,
  721. "Queueing INV WR for rkey %#x failed (%d)\n",
  722. req->mr->rkey, res);
  723. nvme_rdma_error_recovery(queue->ctrl);
  724. }
  725. }
  726. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  727. req->nents, rq_data_dir(rq) ==
  728. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  729. nvme_cleanup_cmd(rq);
  730. sg_free_table_chained(&req->sg_table, true);
  731. }
  732. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  733. {
  734. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  735. sg->addr = 0;
  736. put_unaligned_le24(0, sg->length);
  737. put_unaligned_le32(0, sg->key);
  738. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  739. return 0;
  740. }
  741. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  742. struct nvme_rdma_request *req, struct nvme_command *c)
  743. {
  744. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  745. req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
  746. req->sge[1].length = sg_dma_len(req->sg_table.sgl);
  747. req->sge[1].lkey = queue->device->pd->local_dma_lkey;
  748. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  749. sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
  750. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  751. req->inline_data = true;
  752. req->num_sge++;
  753. return 0;
  754. }
  755. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  756. struct nvme_rdma_request *req, struct nvme_command *c)
  757. {
  758. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  759. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  760. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  761. put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
  762. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  763. return 0;
  764. }
  765. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  766. struct nvme_rdma_request *req, struct nvme_command *c,
  767. int count)
  768. {
  769. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  770. int nr;
  771. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
  772. if (nr < count) {
  773. if (nr < 0)
  774. return nr;
  775. return -EINVAL;
  776. }
  777. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  778. req->reg_cqe.done = nvme_rdma_memreg_done;
  779. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  780. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  781. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  782. req->reg_wr.wr.num_sge = 0;
  783. req->reg_wr.mr = req->mr;
  784. req->reg_wr.key = req->mr->rkey;
  785. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  786. IB_ACCESS_REMOTE_READ |
  787. IB_ACCESS_REMOTE_WRITE;
  788. req->mr->need_inval = true;
  789. sg->addr = cpu_to_le64(req->mr->iova);
  790. put_unaligned_le24(req->mr->length, sg->length);
  791. put_unaligned_le32(req->mr->rkey, sg->key);
  792. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  793. NVME_SGL_FMT_INVALIDATE;
  794. return 0;
  795. }
  796. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  797. struct request *rq, struct nvme_command *c)
  798. {
  799. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  800. struct nvme_rdma_device *dev = queue->device;
  801. struct ib_device *ibdev = dev->dev;
  802. int count, ret;
  803. req->num_sge = 1;
  804. req->inline_data = false;
  805. req->mr->need_inval = false;
  806. c->common.flags |= NVME_CMD_SGL_METABUF;
  807. if (!blk_rq_bytes(rq))
  808. return nvme_rdma_set_sg_null(c);
  809. req->sg_table.sgl = req->first_sgl;
  810. ret = sg_alloc_table_chained(&req->sg_table,
  811. blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
  812. if (ret)
  813. return -ENOMEM;
  814. req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  815. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
  816. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  817. if (unlikely(count <= 0)) {
  818. sg_free_table_chained(&req->sg_table, true);
  819. return -EIO;
  820. }
  821. if (count == 1) {
  822. if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
  823. blk_rq_payload_bytes(rq) <=
  824. nvme_rdma_inline_data_size(queue))
  825. return nvme_rdma_map_sg_inline(queue, req, c);
  826. if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  827. return nvme_rdma_map_sg_single(queue, req, c);
  828. }
  829. return nvme_rdma_map_sg_fr(queue, req, c, count);
  830. }
  831. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  832. {
  833. if (unlikely(wc->status != IB_WC_SUCCESS))
  834. nvme_rdma_wr_error(cq, wc, "SEND");
  835. }
  836. static inline int nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
  837. {
  838. int sig_limit;
  839. /*
  840. * We signal completion every queue depth/2 and also handle the
  841. * degenerated case of a device with queue_depth=1, where we
  842. * would need to signal every message.
  843. */
  844. sig_limit = max(queue->queue_size / 2, 1);
  845. return (++queue->sig_count % sig_limit) == 0;
  846. }
  847. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  848. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  849. struct ib_send_wr *first, bool flush)
  850. {
  851. struct ib_send_wr wr, *bad_wr;
  852. int ret;
  853. sge->addr = qe->dma;
  854. sge->length = sizeof(struct nvme_command),
  855. sge->lkey = queue->device->pd->local_dma_lkey;
  856. qe->cqe.done = nvme_rdma_send_done;
  857. wr.next = NULL;
  858. wr.wr_cqe = &qe->cqe;
  859. wr.sg_list = sge;
  860. wr.num_sge = num_sge;
  861. wr.opcode = IB_WR_SEND;
  862. wr.send_flags = 0;
  863. /*
  864. * Unsignalled send completions are another giant desaster in the
  865. * IB Verbs spec: If we don't regularly post signalled sends
  866. * the send queue will fill up and only a QP reset will rescue us.
  867. * Would have been way to obvious to handle this in hardware or
  868. * at least the RDMA stack..
  869. *
  870. * Always signal the flushes. The magic request used for the flush
  871. * sequencer is not allocated in our driver's tagset and it's
  872. * triggered to be freed by blk_cleanup_queue(). So we need to
  873. * always mark it as signaled to ensure that the "wr_cqe", which is
  874. * embedded in request's payload, is not freed when __ib_process_cq()
  875. * calls wr_cqe->done().
  876. */
  877. if (nvme_rdma_queue_sig_limit(queue) || flush)
  878. wr.send_flags |= IB_SEND_SIGNALED;
  879. if (first)
  880. first->next = &wr;
  881. else
  882. first = &wr;
  883. ret = ib_post_send(queue->qp, first, &bad_wr);
  884. if (ret) {
  885. dev_err(queue->ctrl->ctrl.device,
  886. "%s failed with error code %d\n", __func__, ret);
  887. }
  888. return ret;
  889. }
  890. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  891. struct nvme_rdma_qe *qe)
  892. {
  893. struct ib_recv_wr wr, *bad_wr;
  894. struct ib_sge list;
  895. int ret;
  896. list.addr = qe->dma;
  897. list.length = sizeof(struct nvme_completion);
  898. list.lkey = queue->device->pd->local_dma_lkey;
  899. qe->cqe.done = nvme_rdma_recv_done;
  900. wr.next = NULL;
  901. wr.wr_cqe = &qe->cqe;
  902. wr.sg_list = &list;
  903. wr.num_sge = 1;
  904. ret = ib_post_recv(queue->qp, &wr, &bad_wr);
  905. if (ret) {
  906. dev_err(queue->ctrl->ctrl.device,
  907. "%s failed with error code %d\n", __func__, ret);
  908. }
  909. return ret;
  910. }
  911. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  912. {
  913. u32 queue_idx = nvme_rdma_queue_idx(queue);
  914. if (queue_idx == 0)
  915. return queue->ctrl->admin_tag_set.tags[queue_idx];
  916. return queue->ctrl->tag_set.tags[queue_idx - 1];
  917. }
  918. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
  919. {
  920. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  921. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  922. struct ib_device *dev = queue->device->dev;
  923. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  924. struct nvme_command *cmd = sqe->data;
  925. struct ib_sge sge;
  926. int ret;
  927. if (WARN_ON_ONCE(aer_idx != 0))
  928. return;
  929. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  930. memset(cmd, 0, sizeof(*cmd));
  931. cmd->common.opcode = nvme_admin_async_event;
  932. cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
  933. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  934. nvme_rdma_set_sg_null(cmd);
  935. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  936. DMA_TO_DEVICE);
  937. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
  938. WARN_ON_ONCE(ret);
  939. }
  940. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  941. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  942. {
  943. struct request *rq;
  944. struct nvme_rdma_request *req;
  945. int ret = 0;
  946. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  947. if (!rq) {
  948. dev_err(queue->ctrl->ctrl.device,
  949. "tag 0x%x on QP %#x not found\n",
  950. cqe->command_id, queue->qp->qp_num);
  951. nvme_rdma_error_recovery(queue->ctrl);
  952. return ret;
  953. }
  954. req = blk_mq_rq_to_pdu(rq);
  955. if (rq->tag == tag)
  956. ret = 1;
  957. if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
  958. wc->ex.invalidate_rkey == req->mr->rkey)
  959. req->mr->need_inval = false;
  960. nvme_end_request(rq, cqe->status, cqe->result);
  961. return ret;
  962. }
  963. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  964. {
  965. struct nvme_rdma_qe *qe =
  966. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  967. struct nvme_rdma_queue *queue = cq->cq_context;
  968. struct ib_device *ibdev = queue->device->dev;
  969. struct nvme_completion *cqe = qe->data;
  970. const size_t len = sizeof(struct nvme_completion);
  971. int ret = 0;
  972. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  973. nvme_rdma_wr_error(cq, wc, "RECV");
  974. return 0;
  975. }
  976. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  977. /*
  978. * AEN requests are special as they don't time out and can
  979. * survive any kind of queue freeze and often don't respond to
  980. * aborts. We don't even bother to allocate a struct request
  981. * for them but rather special case them here.
  982. */
  983. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  984. cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
  985. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  986. &cqe->result);
  987. else
  988. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  989. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  990. nvme_rdma_post_recv(queue, qe);
  991. return ret;
  992. }
  993. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  994. {
  995. __nvme_rdma_recv_done(cq, wc, -1);
  996. }
  997. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  998. {
  999. int ret, i;
  1000. for (i = 0; i < queue->queue_size; i++) {
  1001. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  1002. if (ret)
  1003. goto out_destroy_queue_ib;
  1004. }
  1005. return 0;
  1006. out_destroy_queue_ib:
  1007. nvme_rdma_destroy_queue_ib(queue);
  1008. return ret;
  1009. }
  1010. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  1011. struct rdma_cm_event *ev)
  1012. {
  1013. struct rdma_cm_id *cm_id = queue->cm_id;
  1014. int status = ev->status;
  1015. const char *rej_msg;
  1016. const struct nvme_rdma_cm_rej *rej_data;
  1017. u8 rej_data_len;
  1018. rej_msg = rdma_reject_msg(cm_id, status);
  1019. rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
  1020. if (rej_data && rej_data_len >= sizeof(u16)) {
  1021. u16 sts = le16_to_cpu(rej_data->sts);
  1022. dev_err(queue->ctrl->ctrl.device,
  1023. "Connect rejected: status %d (%s) nvme status %d (%s).\n",
  1024. status, rej_msg, sts, nvme_rdma_cm_msg(sts));
  1025. } else {
  1026. dev_err(queue->ctrl->ctrl.device,
  1027. "Connect rejected: status %d (%s).\n", status, rej_msg);
  1028. }
  1029. return -ECONNRESET;
  1030. }
  1031. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  1032. {
  1033. struct nvme_rdma_device *dev;
  1034. int ret;
  1035. dev = nvme_rdma_find_get_device(queue->cm_id);
  1036. if (!dev) {
  1037. dev_err(queue->cm_id->device->dev.parent,
  1038. "no client data found!\n");
  1039. return -ECONNREFUSED;
  1040. }
  1041. ret = nvme_rdma_create_queue_ib(queue, dev);
  1042. if (ret) {
  1043. nvme_rdma_dev_put(dev);
  1044. goto out;
  1045. }
  1046. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1047. if (ret) {
  1048. dev_err(queue->ctrl->ctrl.device,
  1049. "rdma_resolve_route failed (%d).\n",
  1050. queue->cm_error);
  1051. goto out_destroy_queue;
  1052. }
  1053. return 0;
  1054. out_destroy_queue:
  1055. nvme_rdma_destroy_queue_ib(queue);
  1056. out:
  1057. return ret;
  1058. }
  1059. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1060. {
  1061. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1062. struct rdma_conn_param param = { };
  1063. struct nvme_rdma_cm_req priv = { };
  1064. int ret;
  1065. param.qp_num = queue->qp->qp_num;
  1066. param.flow_control = 1;
  1067. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1068. /* maximum retry count */
  1069. param.retry_count = 7;
  1070. param.rnr_retry_count = 7;
  1071. param.private_data = &priv;
  1072. param.private_data_len = sizeof(priv);
  1073. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1074. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1075. /*
  1076. * set the admin queue depth to the minimum size
  1077. * specified by the Fabrics standard.
  1078. */
  1079. if (priv.qid == 0) {
  1080. priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
  1081. priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
  1082. } else {
  1083. /*
  1084. * current interpretation of the fabrics spec
  1085. * is at minimum you make hrqsize sqsize+1, or a
  1086. * 1's based representation of sqsize.
  1087. */
  1088. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1089. priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
  1090. }
  1091. ret = rdma_connect(queue->cm_id, &param);
  1092. if (ret) {
  1093. dev_err(ctrl->ctrl.device,
  1094. "rdma_connect failed (%d).\n", ret);
  1095. goto out_destroy_queue_ib;
  1096. }
  1097. return 0;
  1098. out_destroy_queue_ib:
  1099. nvme_rdma_destroy_queue_ib(queue);
  1100. return ret;
  1101. }
  1102. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1103. struct rdma_cm_event *ev)
  1104. {
  1105. struct nvme_rdma_queue *queue = cm_id->context;
  1106. int cm_error = 0;
  1107. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1108. rdma_event_msg(ev->event), ev->event,
  1109. ev->status, cm_id);
  1110. switch (ev->event) {
  1111. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1112. cm_error = nvme_rdma_addr_resolved(queue);
  1113. break;
  1114. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1115. cm_error = nvme_rdma_route_resolved(queue);
  1116. break;
  1117. case RDMA_CM_EVENT_ESTABLISHED:
  1118. queue->cm_error = nvme_rdma_conn_established(queue);
  1119. /* complete cm_done regardless of success/failure */
  1120. complete(&queue->cm_done);
  1121. return 0;
  1122. case RDMA_CM_EVENT_REJECTED:
  1123. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1124. break;
  1125. case RDMA_CM_EVENT_ADDR_ERROR:
  1126. case RDMA_CM_EVENT_ROUTE_ERROR:
  1127. case RDMA_CM_EVENT_CONNECT_ERROR:
  1128. case RDMA_CM_EVENT_UNREACHABLE:
  1129. dev_dbg(queue->ctrl->ctrl.device,
  1130. "CM error event %d\n", ev->event);
  1131. cm_error = -ECONNRESET;
  1132. break;
  1133. case RDMA_CM_EVENT_DISCONNECTED:
  1134. case RDMA_CM_EVENT_ADDR_CHANGE:
  1135. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1136. dev_dbg(queue->ctrl->ctrl.device,
  1137. "disconnect received - connection closed\n");
  1138. nvme_rdma_error_recovery(queue->ctrl);
  1139. break;
  1140. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1141. /* device removal is handled via the ib_client API */
  1142. break;
  1143. default:
  1144. dev_err(queue->ctrl->ctrl.device,
  1145. "Unexpected RDMA CM event (%d)\n", ev->event);
  1146. nvme_rdma_error_recovery(queue->ctrl);
  1147. break;
  1148. }
  1149. if (cm_error) {
  1150. queue->cm_error = cm_error;
  1151. complete(&queue->cm_done);
  1152. }
  1153. return 0;
  1154. }
  1155. static enum blk_eh_timer_return
  1156. nvme_rdma_timeout(struct request *rq, bool reserved)
  1157. {
  1158. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1159. /* queue error recovery */
  1160. nvme_rdma_error_recovery(req->queue->ctrl);
  1161. /* fail with DNR on cmd timeout */
  1162. nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
  1163. return BLK_EH_HANDLED;
  1164. }
  1165. /*
  1166. * We cannot accept any other command until the Connect command has completed.
  1167. */
  1168. static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
  1169. struct request *rq)
  1170. {
  1171. if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
  1172. struct nvme_command *cmd = nvme_req(rq)->cmd;
  1173. if (!blk_rq_is_passthrough(rq) ||
  1174. cmd->common.opcode != nvme_fabrics_command ||
  1175. cmd->fabrics.fctype != nvme_fabrics_type_connect)
  1176. return false;
  1177. }
  1178. return true;
  1179. }
  1180. static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1181. const struct blk_mq_queue_data *bd)
  1182. {
  1183. struct nvme_ns *ns = hctx->queue->queuedata;
  1184. struct nvme_rdma_queue *queue = hctx->driver_data;
  1185. struct request *rq = bd->rq;
  1186. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1187. struct nvme_rdma_qe *sqe = &req->sqe;
  1188. struct nvme_command *c = sqe->data;
  1189. bool flush = false;
  1190. struct ib_device *dev;
  1191. int ret;
  1192. WARN_ON_ONCE(rq->tag < 0);
  1193. if (!nvme_rdma_queue_is_ready(queue, rq))
  1194. return BLK_MQ_RQ_QUEUE_BUSY;
  1195. dev = queue->device->dev;
  1196. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1197. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1198. ret = nvme_setup_cmd(ns, rq, c);
  1199. if (ret != BLK_MQ_RQ_QUEUE_OK)
  1200. return ret;
  1201. blk_mq_start_request(rq);
  1202. ret = nvme_rdma_map_data(queue, rq, c);
  1203. if (ret < 0) {
  1204. dev_err(queue->ctrl->ctrl.device,
  1205. "Failed to map data (%d)\n", ret);
  1206. nvme_cleanup_cmd(rq);
  1207. goto err;
  1208. }
  1209. ib_dma_sync_single_for_device(dev, sqe->dma,
  1210. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1211. if (req_op(rq) == REQ_OP_FLUSH)
  1212. flush = true;
  1213. ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1214. req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
  1215. if (ret) {
  1216. nvme_rdma_unmap_data(queue, rq);
  1217. goto err;
  1218. }
  1219. return BLK_MQ_RQ_QUEUE_OK;
  1220. err:
  1221. return (ret == -ENOMEM || ret == -EAGAIN) ?
  1222. BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
  1223. }
  1224. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1225. {
  1226. struct nvme_rdma_queue *queue = hctx->driver_data;
  1227. struct ib_cq *cq = queue->ib_cq;
  1228. struct ib_wc wc;
  1229. int found = 0;
  1230. ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
  1231. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1232. struct ib_cqe *cqe = wc.wr_cqe;
  1233. if (cqe) {
  1234. if (cqe->done == nvme_rdma_recv_done)
  1235. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1236. else
  1237. cqe->done(cq, &wc);
  1238. }
  1239. }
  1240. return found;
  1241. }
  1242. static void nvme_rdma_complete_rq(struct request *rq)
  1243. {
  1244. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1245. nvme_rdma_unmap_data(req->queue, rq);
  1246. nvme_complete_rq(rq);
  1247. }
  1248. static const struct blk_mq_ops nvme_rdma_mq_ops = {
  1249. .queue_rq = nvme_rdma_queue_rq,
  1250. .complete = nvme_rdma_complete_rq,
  1251. .init_request = nvme_rdma_init_request,
  1252. .exit_request = nvme_rdma_exit_request,
  1253. .reinit_request = nvme_rdma_reinit_request,
  1254. .init_hctx = nvme_rdma_init_hctx,
  1255. .poll = nvme_rdma_poll,
  1256. .timeout = nvme_rdma_timeout,
  1257. };
  1258. static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1259. .queue_rq = nvme_rdma_queue_rq,
  1260. .complete = nvme_rdma_complete_rq,
  1261. .init_request = nvme_rdma_init_admin_request,
  1262. .exit_request = nvme_rdma_exit_admin_request,
  1263. .reinit_request = nvme_rdma_reinit_request,
  1264. .init_hctx = nvme_rdma_init_admin_hctx,
  1265. .timeout = nvme_rdma_timeout,
  1266. };
  1267. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
  1268. {
  1269. int error;
  1270. error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  1271. if (error)
  1272. return error;
  1273. ctrl->device = ctrl->queues[0].device;
  1274. /*
  1275. * We need a reference on the device as long as the tag_set is alive,
  1276. * as the MRs in the request structures need a valid ib_device.
  1277. */
  1278. error = -EINVAL;
  1279. if (!nvme_rdma_dev_get(ctrl->device))
  1280. goto out_free_queue;
  1281. ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  1282. ctrl->device->dev->attrs.max_fast_reg_page_list_len);
  1283. memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
  1284. ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
  1285. ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
  1286. ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
  1287. ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
  1288. ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1289. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1290. ctrl->admin_tag_set.driver_data = ctrl;
  1291. ctrl->admin_tag_set.nr_hw_queues = 1;
  1292. ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
  1293. error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
  1294. if (error)
  1295. goto out_put_dev;
  1296. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  1297. if (IS_ERR(ctrl->ctrl.admin_q)) {
  1298. error = PTR_ERR(ctrl->ctrl.admin_q);
  1299. goto out_free_tagset;
  1300. }
  1301. error = nvmf_connect_admin_queue(&ctrl->ctrl);
  1302. if (error)
  1303. goto out_cleanup_queue;
  1304. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
  1305. error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
  1306. if (error) {
  1307. dev_err(ctrl->ctrl.device,
  1308. "prop_get NVME_REG_CAP failed\n");
  1309. goto out_cleanup_queue;
  1310. }
  1311. ctrl->ctrl.sqsize =
  1312. min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
  1313. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  1314. if (error)
  1315. goto out_cleanup_queue;
  1316. ctrl->ctrl.max_hw_sectors =
  1317. (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
  1318. error = nvme_init_identify(&ctrl->ctrl);
  1319. if (error)
  1320. goto out_cleanup_queue;
  1321. error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
  1322. &ctrl->async_event_sqe, sizeof(struct nvme_command),
  1323. DMA_TO_DEVICE);
  1324. if (error)
  1325. goto out_cleanup_queue;
  1326. nvme_start_keep_alive(&ctrl->ctrl);
  1327. return 0;
  1328. out_cleanup_queue:
  1329. blk_cleanup_queue(ctrl->ctrl.admin_q);
  1330. out_free_tagset:
  1331. /* disconnect and drain the queue before freeing the tagset */
  1332. nvme_rdma_stop_queue(&ctrl->queues[0]);
  1333. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  1334. out_put_dev:
  1335. nvme_rdma_dev_put(ctrl->device);
  1336. out_free_queue:
  1337. nvme_rdma_free_queue(&ctrl->queues[0]);
  1338. return error;
  1339. }
  1340. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
  1341. {
  1342. nvme_stop_keep_alive(&ctrl->ctrl);
  1343. cancel_work_sync(&ctrl->err_work);
  1344. cancel_delayed_work_sync(&ctrl->reconnect_work);
  1345. if (ctrl->queue_count > 1) {
  1346. nvme_stop_queues(&ctrl->ctrl);
  1347. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  1348. nvme_cancel_request, &ctrl->ctrl);
  1349. nvme_rdma_free_io_queues(ctrl);
  1350. }
  1351. if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
  1352. nvme_shutdown_ctrl(&ctrl->ctrl);
  1353. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  1354. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  1355. nvme_cancel_request, &ctrl->ctrl);
  1356. nvme_rdma_destroy_admin_queue(ctrl);
  1357. }
  1358. static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1359. {
  1360. nvme_uninit_ctrl(&ctrl->ctrl);
  1361. if (shutdown)
  1362. nvme_rdma_shutdown_ctrl(ctrl);
  1363. if (ctrl->ctrl.tagset) {
  1364. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1365. blk_mq_free_tag_set(&ctrl->tag_set);
  1366. nvme_rdma_dev_put(ctrl->device);
  1367. }
  1368. nvme_put_ctrl(&ctrl->ctrl);
  1369. }
  1370. static void nvme_rdma_del_ctrl_work(struct work_struct *work)
  1371. {
  1372. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1373. struct nvme_rdma_ctrl, delete_work);
  1374. __nvme_rdma_remove_ctrl(ctrl, true);
  1375. }
  1376. static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
  1377. {
  1378. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
  1379. return -EBUSY;
  1380. if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
  1381. return -EBUSY;
  1382. return 0;
  1383. }
  1384. static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
  1385. {
  1386. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  1387. int ret = 0;
  1388. /*
  1389. * Keep a reference until all work is flushed since
  1390. * __nvme_rdma_del_ctrl can free the ctrl mem
  1391. */
  1392. if (!kref_get_unless_zero(&ctrl->ctrl.kref))
  1393. return -EBUSY;
  1394. ret = __nvme_rdma_del_ctrl(ctrl);
  1395. if (!ret)
  1396. flush_work(&ctrl->delete_work);
  1397. nvme_put_ctrl(&ctrl->ctrl);
  1398. return ret;
  1399. }
  1400. static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
  1401. {
  1402. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1403. struct nvme_rdma_ctrl, delete_work);
  1404. __nvme_rdma_remove_ctrl(ctrl, false);
  1405. }
  1406. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1407. {
  1408. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1409. struct nvme_rdma_ctrl, reset_work);
  1410. int ret;
  1411. bool changed;
  1412. nvme_rdma_shutdown_ctrl(ctrl);
  1413. ret = nvme_rdma_configure_admin_queue(ctrl);
  1414. if (ret) {
  1415. /* ctrl is already shutdown, just remove the ctrl */
  1416. INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
  1417. goto del_dead_ctrl;
  1418. }
  1419. if (ctrl->queue_count > 1) {
  1420. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  1421. if (ret)
  1422. goto del_dead_ctrl;
  1423. ret = nvme_rdma_init_io_queues(ctrl);
  1424. if (ret)
  1425. goto del_dead_ctrl;
  1426. ret = nvme_rdma_connect_io_queues(ctrl);
  1427. if (ret)
  1428. goto del_dead_ctrl;
  1429. }
  1430. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1431. WARN_ON_ONCE(!changed);
  1432. if (ctrl->queue_count > 1) {
  1433. nvme_start_queues(&ctrl->ctrl);
  1434. nvme_queue_scan(&ctrl->ctrl);
  1435. nvme_queue_async_events(&ctrl->ctrl);
  1436. }
  1437. return;
  1438. del_dead_ctrl:
  1439. /* Deleting this dead controller... */
  1440. dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
  1441. WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
  1442. }
  1443. static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
  1444. {
  1445. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  1446. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
  1447. return -EBUSY;
  1448. if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
  1449. return -EBUSY;
  1450. flush_work(&ctrl->reset_work);
  1451. return 0;
  1452. }
  1453. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1454. .name = "rdma",
  1455. .module = THIS_MODULE,
  1456. .flags = NVME_F_FABRICS,
  1457. .reg_read32 = nvmf_reg_read32,
  1458. .reg_read64 = nvmf_reg_read64,
  1459. .reg_write32 = nvmf_reg_write32,
  1460. .reset_ctrl = nvme_rdma_reset_ctrl,
  1461. .free_ctrl = nvme_rdma_free_ctrl,
  1462. .submit_async_event = nvme_rdma_submit_async_event,
  1463. .delete_ctrl = nvme_rdma_del_ctrl,
  1464. .get_subsysnqn = nvmf_get_subsysnqn,
  1465. .get_address = nvmf_get_address,
  1466. };
  1467. static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
  1468. {
  1469. int ret;
  1470. ret = nvme_rdma_init_io_queues(ctrl);
  1471. if (ret)
  1472. return ret;
  1473. /*
  1474. * We need a reference on the device as long as the tag_set is alive,
  1475. * as the MRs in the request structures need a valid ib_device.
  1476. */
  1477. ret = -EINVAL;
  1478. if (!nvme_rdma_dev_get(ctrl->device))
  1479. goto out_free_io_queues;
  1480. memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
  1481. ctrl->tag_set.ops = &nvme_rdma_mq_ops;
  1482. ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
  1483. ctrl->tag_set.reserved_tags = 1; /* fabric connect */
  1484. ctrl->tag_set.numa_node = NUMA_NO_NODE;
  1485. ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
  1486. ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1487. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1488. ctrl->tag_set.driver_data = ctrl;
  1489. ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
  1490. ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
  1491. ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
  1492. if (ret)
  1493. goto out_put_dev;
  1494. ctrl->ctrl.tagset = &ctrl->tag_set;
  1495. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  1496. if (IS_ERR(ctrl->ctrl.connect_q)) {
  1497. ret = PTR_ERR(ctrl->ctrl.connect_q);
  1498. goto out_free_tag_set;
  1499. }
  1500. ret = nvme_rdma_connect_io_queues(ctrl);
  1501. if (ret)
  1502. goto out_cleanup_connect_q;
  1503. return 0;
  1504. out_cleanup_connect_q:
  1505. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1506. out_free_tag_set:
  1507. blk_mq_free_tag_set(&ctrl->tag_set);
  1508. out_put_dev:
  1509. nvme_rdma_dev_put(ctrl->device);
  1510. out_free_io_queues:
  1511. nvme_rdma_free_io_queues(ctrl);
  1512. return ret;
  1513. }
  1514. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1515. struct nvmf_ctrl_options *opts)
  1516. {
  1517. struct nvme_rdma_ctrl *ctrl;
  1518. int ret;
  1519. bool changed;
  1520. char *port;
  1521. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1522. if (!ctrl)
  1523. return ERR_PTR(-ENOMEM);
  1524. ctrl->ctrl.opts = opts;
  1525. INIT_LIST_HEAD(&ctrl->list);
  1526. if (opts->mask & NVMF_OPT_TRSVCID)
  1527. port = opts->trsvcid;
  1528. else
  1529. port = __stringify(NVME_RDMA_IP_PORT);
  1530. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1531. opts->traddr, port, &ctrl->addr);
  1532. if (ret) {
  1533. pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
  1534. goto out_free_ctrl;
  1535. }
  1536. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  1537. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1538. opts->host_traddr, NULL, &ctrl->src_addr);
  1539. if (ret) {
  1540. pr_err("malformed src address passed: %s\n",
  1541. opts->host_traddr);
  1542. goto out_free_ctrl;
  1543. }
  1544. }
  1545. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1546. 0 /* no quirks, we're perfect! */);
  1547. if (ret)
  1548. goto out_free_ctrl;
  1549. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1550. nvme_rdma_reconnect_ctrl_work);
  1551. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1552. INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
  1553. INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
  1554. spin_lock_init(&ctrl->lock);
  1555. ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1556. ctrl->ctrl.sqsize = opts->queue_size - 1;
  1557. ctrl->ctrl.kato = opts->kato;
  1558. ret = -ENOMEM;
  1559. ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
  1560. GFP_KERNEL);
  1561. if (!ctrl->queues)
  1562. goto out_uninit_ctrl;
  1563. ret = nvme_rdma_configure_admin_queue(ctrl);
  1564. if (ret)
  1565. goto out_kfree_queues;
  1566. /* sanity check icdoff */
  1567. if (ctrl->ctrl.icdoff) {
  1568. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  1569. goto out_remove_admin_queue;
  1570. }
  1571. /* sanity check keyed sgls */
  1572. if (!(ctrl->ctrl.sgls & (1 << 20))) {
  1573. dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
  1574. goto out_remove_admin_queue;
  1575. }
  1576. if (opts->queue_size > ctrl->ctrl.maxcmd) {
  1577. /* warn if maxcmd is lower than queue_size */
  1578. dev_warn(ctrl->ctrl.device,
  1579. "queue_size %zu > ctrl maxcmd %u, clamping down\n",
  1580. opts->queue_size, ctrl->ctrl.maxcmd);
  1581. opts->queue_size = ctrl->ctrl.maxcmd;
  1582. }
  1583. if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
  1584. /* warn if sqsize is lower than queue_size */
  1585. dev_warn(ctrl->ctrl.device,
  1586. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  1587. opts->queue_size, ctrl->ctrl.sqsize + 1);
  1588. opts->queue_size = ctrl->ctrl.sqsize + 1;
  1589. }
  1590. if (opts->nr_io_queues) {
  1591. ret = nvme_rdma_create_io_queues(ctrl);
  1592. if (ret)
  1593. goto out_remove_admin_queue;
  1594. }
  1595. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1596. WARN_ON_ONCE(!changed);
  1597. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
  1598. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1599. kref_get(&ctrl->ctrl.kref);
  1600. mutex_lock(&nvme_rdma_ctrl_mutex);
  1601. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1602. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1603. if (opts->nr_io_queues) {
  1604. nvme_queue_scan(&ctrl->ctrl);
  1605. nvme_queue_async_events(&ctrl->ctrl);
  1606. }
  1607. return &ctrl->ctrl;
  1608. out_remove_admin_queue:
  1609. nvme_stop_keep_alive(&ctrl->ctrl);
  1610. nvme_rdma_destroy_admin_queue(ctrl);
  1611. out_kfree_queues:
  1612. kfree(ctrl->queues);
  1613. out_uninit_ctrl:
  1614. nvme_uninit_ctrl(&ctrl->ctrl);
  1615. nvme_put_ctrl(&ctrl->ctrl);
  1616. if (ret > 0)
  1617. ret = -EIO;
  1618. return ERR_PTR(ret);
  1619. out_free_ctrl:
  1620. kfree(ctrl);
  1621. return ERR_PTR(ret);
  1622. }
  1623. static struct nvmf_transport_ops nvme_rdma_transport = {
  1624. .name = "rdma",
  1625. .required_opts = NVMF_OPT_TRADDR,
  1626. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  1627. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
  1628. .create_ctrl = nvme_rdma_create_ctrl,
  1629. };
  1630. static void nvme_rdma_add_one(struct ib_device *ib_device)
  1631. {
  1632. }
  1633. static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1634. {
  1635. struct nvme_rdma_ctrl *ctrl;
  1636. /* Delete all controllers using this device */
  1637. mutex_lock(&nvme_rdma_ctrl_mutex);
  1638. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1639. if (ctrl->device->dev != ib_device)
  1640. continue;
  1641. dev_info(ctrl->ctrl.device,
  1642. "Removing ctrl: NQN \"%s\", addr %pISp\n",
  1643. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1644. __nvme_rdma_del_ctrl(ctrl);
  1645. }
  1646. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1647. flush_workqueue(nvme_rdma_wq);
  1648. }
  1649. static struct ib_client nvme_rdma_ib_client = {
  1650. .name = "nvme_rdma",
  1651. .add = nvme_rdma_add_one,
  1652. .remove = nvme_rdma_remove_one
  1653. };
  1654. static int __init nvme_rdma_init_module(void)
  1655. {
  1656. int ret;
  1657. nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
  1658. if (!nvme_rdma_wq)
  1659. return -ENOMEM;
  1660. ret = ib_register_client(&nvme_rdma_ib_client);
  1661. if (ret)
  1662. goto err_destroy_wq;
  1663. ret = nvmf_register_transport(&nvme_rdma_transport);
  1664. if (ret)
  1665. goto err_unreg_client;
  1666. return 0;
  1667. err_unreg_client:
  1668. ib_unregister_client(&nvme_rdma_ib_client);
  1669. err_destroy_wq:
  1670. destroy_workqueue(nvme_rdma_wq);
  1671. return ret;
  1672. }
  1673. static void __exit nvme_rdma_cleanup_module(void)
  1674. {
  1675. nvmf_unregister_transport(&nvme_rdma_transport);
  1676. ib_unregister_client(&nvme_rdma_ib_client);
  1677. destroy_workqueue(nvme_rdma_wq);
  1678. }
  1679. module_init(nvme_rdma_init_module);
  1680. module_exit(nvme_rdma_cleanup_module);
  1681. MODULE_LICENSE("GPL v2");