hw.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "../wifi.h"
  26. #include "../efuse.h"
  27. #include "../base.h"
  28. #include "../cam.h"
  29. #include "../ps.h"
  30. #include "../usb.h"
  31. #include "reg.h"
  32. #include "def.h"
  33. #include "phy.h"
  34. #include "../rtl8192c/phy_common.h"
  35. #include "mac.h"
  36. #include "dm.h"
  37. #include "../rtl8192c/dm_common.h"
  38. #include "../rtl8192c/fw_common.h"
  39. #include "hw.h"
  40. #include "../rtl8192ce/hw.h"
  41. #include "trx.h"
  42. #include "led.h"
  43. #include "table.h"
  44. static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
  45. {
  46. struct rtl_priv *rtlpriv = rtl_priv(hw);
  47. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  48. struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
  49. rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
  50. rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
  51. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  52. rtlphy->hwparam_tables[PHY_REG_PG].length =
  53. RTL8192CUPHY_REG_Array_PG_HPLength;
  54. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  55. RTL8192CUPHY_REG_Array_PG_HP;
  56. } else {
  57. rtlphy->hwparam_tables[PHY_REG_PG].length =
  58. RTL8192CUPHY_REG_ARRAY_PGLENGTH;
  59. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  60. RTL8192CUPHY_REG_ARRAY_PG;
  61. }
  62. /* 2T */
  63. rtlphy->hwparam_tables[PHY_REG_2T].length =
  64. RTL8192CUPHY_REG_2TARRAY_LENGTH;
  65. rtlphy->hwparam_tables[PHY_REG_2T].pdata =
  66. RTL8192CUPHY_REG_2TARRAY;
  67. rtlphy->hwparam_tables[RADIOA_2T].length =
  68. RTL8192CURADIOA_2TARRAYLENGTH;
  69. rtlphy->hwparam_tables[RADIOA_2T].pdata =
  70. RTL8192CURADIOA_2TARRAY;
  71. rtlphy->hwparam_tables[RADIOB_2T].length =
  72. RTL8192CURADIOB_2TARRAYLENGTH;
  73. rtlphy->hwparam_tables[RADIOB_2T].pdata =
  74. RTL8192CU_RADIOB_2TARRAY;
  75. rtlphy->hwparam_tables[AGCTAB_2T].length =
  76. RTL8192CUAGCTAB_2TARRAYLENGTH;
  77. rtlphy->hwparam_tables[AGCTAB_2T].pdata =
  78. RTL8192CUAGCTAB_2TARRAY;
  79. /* 1T */
  80. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  81. rtlphy->hwparam_tables[PHY_REG_1T].length =
  82. RTL8192CUPHY_REG_1T_HPArrayLength;
  83. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  84. RTL8192CUPHY_REG_1T_HPArray;
  85. rtlphy->hwparam_tables[RADIOA_1T].length =
  86. RTL8192CURadioA_1T_HPArrayLength;
  87. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  88. RTL8192CURadioA_1T_HPArray;
  89. rtlphy->hwparam_tables[RADIOB_1T].length =
  90. RTL8192CURADIOB_1TARRAYLENGTH;
  91. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  92. RTL8192CU_RADIOB_1TARRAY;
  93. rtlphy->hwparam_tables[AGCTAB_1T].length =
  94. RTL8192CUAGCTAB_1T_HPArrayLength;
  95. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  96. Rtl8192CUAGCTAB_1T_HPArray;
  97. } else {
  98. rtlphy->hwparam_tables[PHY_REG_1T].length =
  99. RTL8192CUPHY_REG_1TARRAY_LENGTH;
  100. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  101. RTL8192CUPHY_REG_1TARRAY;
  102. rtlphy->hwparam_tables[RADIOA_1T].length =
  103. RTL8192CURADIOA_1TARRAYLENGTH;
  104. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  105. RTL8192CU_RADIOA_1TARRAY;
  106. rtlphy->hwparam_tables[RADIOB_1T].length =
  107. RTL8192CURADIOB_1TARRAYLENGTH;
  108. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  109. RTL8192CU_RADIOB_1TARRAY;
  110. rtlphy->hwparam_tables[AGCTAB_1T].length =
  111. RTL8192CUAGCTAB_1TARRAYLENGTH;
  112. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  113. RTL8192CUAGCTAB_1TARRAY;
  114. }
  115. }
  116. static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  117. bool autoload_fail,
  118. u8 *hwinfo)
  119. {
  120. struct rtl_priv *rtlpriv = rtl_priv(hw);
  121. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  122. u8 rf_path, index, tempval;
  123. u16 i;
  124. for (rf_path = 0; rf_path < 2; rf_path++) {
  125. for (i = 0; i < 3; i++) {
  126. if (!autoload_fail) {
  127. rtlefuse->
  128. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  129. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  130. rtlefuse->
  131. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  132. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  133. i];
  134. } else {
  135. rtlefuse->
  136. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  137. EEPROM_DEFAULT_TXPOWERLEVEL;
  138. rtlefuse->
  139. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  140. EEPROM_DEFAULT_TXPOWERLEVEL;
  141. }
  142. }
  143. }
  144. for (i = 0; i < 3; i++) {
  145. if (!autoload_fail)
  146. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  147. else
  148. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  149. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  150. (tempval & 0xf);
  151. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  152. ((tempval & 0xf0) >> 4);
  153. }
  154. for (rf_path = 0; rf_path < 2; rf_path++)
  155. for (i = 0; i < 3; i++)
  156. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  157. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  158. rf_path, i,
  159. rtlefuse->
  160. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  161. for (rf_path = 0; rf_path < 2; rf_path++)
  162. for (i = 0; i < 3; i++)
  163. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  164. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  165. rf_path, i,
  166. rtlefuse->
  167. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  168. for (rf_path = 0; rf_path < 2; rf_path++)
  169. for (i = 0; i < 3; i++)
  170. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  171. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  172. rf_path, i,
  173. rtlefuse->
  174. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  175. for (rf_path = 0; rf_path < 2; rf_path++) {
  176. for (i = 0; i < 14; i++) {
  177. index = rtl92c_get_chnl_group((u8)i);
  178. rtlefuse->txpwrlevel_cck[rf_path][i] =
  179. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  180. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  181. rtlefuse->
  182. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  183. if ((rtlefuse->
  184. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  185. rtlefuse->
  186. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  187. > 0) {
  188. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  189. rtlefuse->
  190. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  191. [index] - rtlefuse->
  192. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  193. [index];
  194. } else {
  195. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  196. }
  197. }
  198. for (i = 0; i < 14; i++) {
  199. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  200. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i,
  201. rtlefuse->txpwrlevel_cck[rf_path][i],
  202. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  203. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  204. }
  205. }
  206. for (i = 0; i < 3; i++) {
  207. if (!autoload_fail) {
  208. rtlefuse->eeprom_pwrlimit_ht40[i] =
  209. hwinfo[EEPROM_TXPWR_GROUP + i];
  210. rtlefuse->eeprom_pwrlimit_ht20[i] =
  211. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  212. } else {
  213. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  214. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  215. }
  216. }
  217. for (rf_path = 0; rf_path < 2; rf_path++) {
  218. for (i = 0; i < 14; i++) {
  219. index = rtl92c_get_chnl_group((u8)i);
  220. if (rf_path == RF90_PATH_A) {
  221. rtlefuse->pwrgroup_ht20[rf_path][i] =
  222. (rtlefuse->eeprom_pwrlimit_ht20[index]
  223. & 0xf);
  224. rtlefuse->pwrgroup_ht40[rf_path][i] =
  225. (rtlefuse->eeprom_pwrlimit_ht40[index]
  226. & 0xf);
  227. } else if (rf_path == RF90_PATH_B) {
  228. rtlefuse->pwrgroup_ht20[rf_path][i] =
  229. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  230. & 0xf0) >> 4);
  231. rtlefuse->pwrgroup_ht40[rf_path][i] =
  232. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  233. & 0xf0) >> 4);
  234. }
  235. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  236. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  237. rf_path, i,
  238. rtlefuse->pwrgroup_ht20[rf_path][i]);
  239. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  240. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  241. rf_path, i,
  242. rtlefuse->pwrgroup_ht40[rf_path][i]);
  243. }
  244. }
  245. for (i = 0; i < 14; i++) {
  246. index = rtl92c_get_chnl_group((u8)i);
  247. if (!autoload_fail)
  248. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  249. else
  250. tempval = EEPROM_DEFAULT_HT20_DIFF;
  251. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  252. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  253. ((tempval >> 4) & 0xF);
  254. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  255. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  256. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  257. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  258. index = rtl92c_get_chnl_group((u8)i);
  259. if (!autoload_fail)
  260. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  261. else
  262. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  263. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  264. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  265. ((tempval >> 4) & 0xF);
  266. }
  267. rtlefuse->legacy_ht_txpowerdiff =
  268. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  269. for (i = 0; i < 14; i++)
  270. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  271. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  272. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  273. for (i = 0; i < 14; i++)
  274. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  275. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  276. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  277. for (i = 0; i < 14; i++)
  278. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  279. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  280. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  281. for (i = 0; i < 14; i++)
  282. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  283. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  284. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  285. if (!autoload_fail)
  286. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  287. else
  288. rtlefuse->eeprom_regulatory = 0;
  289. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  290. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  291. if (!autoload_fail) {
  292. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  293. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  294. } else {
  295. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  296. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  297. }
  298. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  299. "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  300. rtlefuse->eeprom_tssi[RF90_PATH_A],
  301. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  302. if (!autoload_fail)
  303. tempval = hwinfo[EEPROM_THERMAL_METER];
  304. else
  305. tempval = EEPROM_DEFAULT_THERMALMETER;
  306. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  307. if (rtlefuse->eeprom_thermalmeter < 0x06 ||
  308. rtlefuse->eeprom_thermalmeter > 0x1c)
  309. rtlefuse->eeprom_thermalmeter = 0x12;
  310. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  311. rtlefuse->apk_thermalmeterignore = true;
  312. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  313. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  314. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  315. }
  316. static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
  317. {
  318. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  319. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  320. u8 boardType;
  321. if (IS_NORMAL_CHIP(rtlhal->version)) {
  322. boardType = ((contents[EEPROM_RF_OPT1]) &
  323. BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
  324. } else {
  325. boardType = contents[EEPROM_RF_OPT4];
  326. boardType &= BOARD_TYPE_TEST_MASK;
  327. }
  328. rtlefuse->board_type = boardType;
  329. if (IS_HIGHT_PA(rtlefuse->board_type))
  330. rtlefuse->external_pa = 1;
  331. pr_info("Board Type %x\n", rtlefuse->board_type);
  332. }
  333. static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
  334. {
  335. struct rtl_priv *rtlpriv = rtl_priv(hw);
  336. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  337. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  338. int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
  339. EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR,
  340. EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
  341. 0};
  342. u8 *hwinfo;
  343. hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
  344. if (!hwinfo)
  345. return;
  346. if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
  347. goto exit;
  348. _rtl92cu_read_txpower_info_from_hwpg(hw,
  349. rtlefuse->autoload_failflag, hwinfo);
  350. _rtl92cu_read_board_type(hw, hwinfo);
  351. rtlefuse->txpwr_fromeprom = true;
  352. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  353. switch (rtlefuse->eeprom_oemid) {
  354. case EEPROM_CID_DEFAULT:
  355. if (rtlefuse->eeprom_did == 0x8176) {
  356. if ((rtlefuse->eeprom_svid == 0x103C &&
  357. rtlefuse->eeprom_smid == 0x1629))
  358. rtlhal->oem_id = RT_CID_819X_HP;
  359. else
  360. rtlhal->oem_id = RT_CID_DEFAULT;
  361. } else {
  362. rtlhal->oem_id = RT_CID_DEFAULT;
  363. }
  364. break;
  365. case EEPROM_CID_TOSHIBA:
  366. rtlhal->oem_id = RT_CID_TOSHIBA;
  367. break;
  368. case EEPROM_CID_QMI:
  369. rtlhal->oem_id = RT_CID_819X_QMI;
  370. break;
  371. case EEPROM_CID_WHQL:
  372. default:
  373. rtlhal->oem_id = RT_CID_DEFAULT;
  374. break;
  375. }
  376. }
  377. exit:
  378. kfree(hwinfo);
  379. }
  380. static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
  381. {
  382. struct rtl_priv *rtlpriv = rtl_priv(hw);
  383. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  384. switch (rtlhal->oem_id) {
  385. case RT_CID_819X_HP:
  386. rtlpriv->ledctl.led_opendrain = true;
  387. break;
  388. case RT_CID_819X_LENOVO:
  389. case RT_CID_DEFAULT:
  390. case RT_CID_TOSHIBA:
  391. case RT_CID_CCX:
  392. case RT_CID_819X_ACER:
  393. case RT_CID_WHQL:
  394. default:
  395. break;
  396. }
  397. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n",
  398. rtlhal->oem_id);
  399. }
  400. void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
  401. {
  402. struct rtl_priv *rtlpriv = rtl_priv(hw);
  403. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  404. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  405. u8 tmp_u1b;
  406. if (!IS_NORMAL_CHIP(rtlhal->version))
  407. return;
  408. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  409. rtlefuse->epromtype = (tmp_u1b & BOOT_FROM_EEPROM) ?
  410. EEPROM_93C46 : EEPROM_BOOT_EFUSE;
  411. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from %s\n",
  412. tmp_u1b & BOOT_FROM_EEPROM ? "EERROM" : "EFUSE");
  413. rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
  414. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload %s\n",
  415. tmp_u1b & EEPROM_EN ? "OK!!" : "ERR!!");
  416. _rtl92cu_read_adapter_info(hw);
  417. _rtl92cu_hal_customized_behavior(hw);
  418. return;
  419. }
  420. static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
  421. {
  422. struct rtl_priv *rtlpriv = rtl_priv(hw);
  423. int status = 0;
  424. u16 value16;
  425. u8 value8;
  426. /* polling autoload done. */
  427. u32 pollingCount = 0;
  428. do {
  429. if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
  430. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  431. "Autoload Done!\n");
  432. break;
  433. }
  434. if (pollingCount++ > 100) {
  435. pr_err("Failed to polling REG_APS_FSMCO[PFM_ALDN] done!\n");
  436. return -ENODEV;
  437. }
  438. } while (true);
  439. /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
  440. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  441. /* Power on when re-enter from IPS/Radio off/card disable */
  442. /* enable SPS into PWM mode */
  443. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  444. udelay(100);
  445. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  446. if (0 == (value8 & LDV12_EN)) {
  447. value8 |= LDV12_EN;
  448. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  449. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  450. " power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x\n",
  451. value8);
  452. udelay(100);
  453. value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  454. value8 &= ~ISO_MD2PP;
  455. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
  456. }
  457. /* auto enable WLAN */
  458. pollingCount = 0;
  459. value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
  460. value16 |= APFM_ONMAC;
  461. rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
  462. do {
  463. if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
  464. pr_info("MAC auto ON okay!\n");
  465. break;
  466. }
  467. if (pollingCount++ > 1000) {
  468. pr_err("Failed to polling REG_APS_FSMCO[APFM_ONMAC] done!\n");
  469. return -ENODEV;
  470. }
  471. } while (true);
  472. /* Enable Radio ,GPIO ,and LED function */
  473. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
  474. /* release RF digital isolation */
  475. value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  476. value16 &= ~ISO_DIOR;
  477. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
  478. /* Reconsider when to do this operation after asking HWSD. */
  479. pollingCount = 0;
  480. rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
  481. REG_APSD_CTRL) & ~BIT(6)));
  482. do {
  483. pollingCount++;
  484. } while ((pollingCount < 200) &&
  485. (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
  486. /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
  487. value16 = rtl_read_word(rtlpriv, REG_CR);
  488. value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
  489. PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
  490. rtl_write_word(rtlpriv, REG_CR, value16);
  491. return status;
  492. }
  493. static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
  494. bool wmm_enable,
  495. u8 out_ep_num,
  496. u8 queue_sel)
  497. {
  498. struct rtl_priv *rtlpriv = rtl_priv(hw);
  499. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  500. bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
  501. u32 outEPNum = (u32)out_ep_num;
  502. u32 numHQ = 0;
  503. u32 numLQ = 0;
  504. u32 numNQ = 0;
  505. u32 numPubQ;
  506. u32 value32;
  507. u8 value8;
  508. u32 txQPageNum, txQPageUnit, txQRemainPage;
  509. if (!wmm_enable) {
  510. numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
  511. CHIP_A_PAGE_NUM_PUBQ;
  512. txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
  513. txQPageUnit = txQPageNum/outEPNum;
  514. txQRemainPage = txQPageNum % outEPNum;
  515. if (queue_sel & TX_SELE_HQ)
  516. numHQ = txQPageUnit;
  517. if (queue_sel & TX_SELE_LQ)
  518. numLQ = txQPageUnit;
  519. /* HIGH priority queue always present in the configuration of
  520. * 2 out-ep. Remainder pages have assigned to High queue */
  521. if ((outEPNum > 1) && (txQRemainPage))
  522. numHQ += txQRemainPage;
  523. /* NOTE: This step done before writting REG_RQPN. */
  524. if (isChipN) {
  525. if (queue_sel & TX_SELE_NQ)
  526. numNQ = txQPageUnit;
  527. value8 = (u8)_NPQ(numNQ);
  528. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  529. }
  530. } else {
  531. /* for WMM ,number of out-ep must more than or equal to 2! */
  532. numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
  533. WMM_CHIP_A_PAGE_NUM_PUBQ;
  534. if (queue_sel & TX_SELE_HQ) {
  535. numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
  536. WMM_CHIP_A_PAGE_NUM_HPQ;
  537. }
  538. if (queue_sel & TX_SELE_LQ) {
  539. numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
  540. WMM_CHIP_A_PAGE_NUM_LPQ;
  541. }
  542. /* NOTE: This step done before writting REG_RQPN. */
  543. if (isChipN) {
  544. if (queue_sel & TX_SELE_NQ)
  545. numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
  546. value8 = (u8)_NPQ(numNQ);
  547. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  548. }
  549. }
  550. /* TX DMA */
  551. value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
  552. rtl_write_dword(rtlpriv, REG_RQPN, value32);
  553. }
  554. static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
  555. {
  556. struct rtl_priv *rtlpriv = rtl_priv(hw);
  557. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  558. u8 txpktbuf_bndy;
  559. u8 value8;
  560. if (!wmm_enable)
  561. txpktbuf_bndy = TX_PAGE_BOUNDARY;
  562. else /* for WMM */
  563. txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
  564. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  565. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  566. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  567. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  568. rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
  569. rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
  570. rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
  571. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  572. value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
  573. rtl_write_byte(rtlpriv, REG_PBP, value8);
  574. }
  575. static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
  576. u16 bkQ, u16 viQ, u16 voQ,
  577. u16 mgtQ, u16 hiQ)
  578. {
  579. struct rtl_priv *rtlpriv = rtl_priv(hw);
  580. u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
  581. value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
  582. _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
  583. _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
  584. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
  585. }
  586. static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
  587. bool wmm_enable,
  588. u8 queue_sel)
  589. {
  590. u16 uninitialized_var(value);
  591. switch (queue_sel) {
  592. case TX_SELE_HQ:
  593. value = QUEUE_HIGH;
  594. break;
  595. case TX_SELE_LQ:
  596. value = QUEUE_LOW;
  597. break;
  598. case TX_SELE_NQ:
  599. value = QUEUE_NORMAL;
  600. break;
  601. default:
  602. WARN_ON(1); /* Shall not reach here! */
  603. break;
  604. }
  605. _rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
  606. value, value);
  607. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  608. }
  609. static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
  610. bool wmm_enable,
  611. u8 queue_sel)
  612. {
  613. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  614. u16 uninitialized_var(valueHi);
  615. u16 uninitialized_var(valueLow);
  616. switch (queue_sel) {
  617. case (TX_SELE_HQ | TX_SELE_LQ):
  618. valueHi = QUEUE_HIGH;
  619. valueLow = QUEUE_LOW;
  620. break;
  621. case (TX_SELE_NQ | TX_SELE_LQ):
  622. valueHi = QUEUE_NORMAL;
  623. valueLow = QUEUE_LOW;
  624. break;
  625. case (TX_SELE_HQ | TX_SELE_NQ):
  626. valueHi = QUEUE_HIGH;
  627. valueLow = QUEUE_NORMAL;
  628. break;
  629. default:
  630. WARN_ON(1);
  631. break;
  632. }
  633. if (!wmm_enable) {
  634. beQ = valueLow;
  635. bkQ = valueLow;
  636. viQ = valueHi;
  637. voQ = valueHi;
  638. mgtQ = valueHi;
  639. hiQ = valueHi;
  640. } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
  641. beQ = valueHi;
  642. bkQ = valueLow;
  643. viQ = valueLow;
  644. voQ = valueHi;
  645. mgtQ = valueHi;
  646. hiQ = valueHi;
  647. }
  648. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  649. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  650. }
  651. static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
  652. bool wmm_enable,
  653. u8 queue_sel)
  654. {
  655. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  656. if (!wmm_enable) { /* typical setting */
  657. beQ = QUEUE_LOW;
  658. bkQ = QUEUE_LOW;
  659. viQ = QUEUE_NORMAL;
  660. voQ = QUEUE_HIGH;
  661. mgtQ = QUEUE_HIGH;
  662. hiQ = QUEUE_HIGH;
  663. } else { /* for WMM */
  664. beQ = QUEUE_LOW;
  665. bkQ = QUEUE_NORMAL;
  666. viQ = QUEUE_NORMAL;
  667. voQ = QUEUE_HIGH;
  668. mgtQ = QUEUE_HIGH;
  669. hiQ = QUEUE_HIGH;
  670. }
  671. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  672. pr_info("Tx queue select :0x%02x..\n", queue_sel);
  673. }
  674. static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
  675. bool wmm_enable,
  676. u8 out_ep_num,
  677. u8 queue_sel)
  678. {
  679. switch (out_ep_num) {
  680. case 1:
  681. _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
  682. queue_sel);
  683. break;
  684. case 2:
  685. _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
  686. queue_sel);
  687. break;
  688. case 3:
  689. _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
  690. queue_sel);
  691. break;
  692. default:
  693. WARN_ON(1); /* Shall not reach here! */
  694. break;
  695. }
  696. }
  697. static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
  698. bool wmm_enable,
  699. u8 out_ep_num,
  700. u8 queue_sel)
  701. {
  702. u8 hq_sele = 0;
  703. struct rtl_priv *rtlpriv = rtl_priv(hw);
  704. switch (out_ep_num) {
  705. case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
  706. if (!wmm_enable) /* typical setting */
  707. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
  708. HQSEL_HIQ;
  709. else /* for WMM */
  710. hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
  711. HQSEL_HIQ;
  712. break;
  713. case 1:
  714. if (TX_SELE_LQ == queue_sel) {
  715. /* map all endpoint to Low queue */
  716. hq_sele = 0;
  717. } else if (TX_SELE_HQ == queue_sel) {
  718. /* map all endpoint to High queue */
  719. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
  720. HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
  721. }
  722. break;
  723. default:
  724. WARN_ON(1); /* Shall not reach here! */
  725. break;
  726. }
  727. rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
  728. pr_info("Tx queue select :0x%02x..\n", hq_sele);
  729. }
  730. static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
  731. bool wmm_enable,
  732. u8 out_ep_num,
  733. u8 queue_sel)
  734. {
  735. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  736. if (IS_NORMAL_CHIP(rtlhal->version))
  737. _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
  738. queue_sel);
  739. else
  740. _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
  741. queue_sel);
  742. }
  743. static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
  744. {
  745. }
  746. static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
  747. {
  748. u16 value16;
  749. u32 value32;
  750. struct rtl_priv *rtlpriv = rtl_priv(hw);
  751. value32 = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APPFCS |
  752. RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
  753. RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
  754. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&value32));
  755. /* Accept all multicast address */
  756. rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
  757. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
  758. /* Accept all management frames */
  759. value16 = 0xFFFF;
  760. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MGT_FILTER,
  761. (u8 *)(&value16));
  762. /* Reject all control frame - default value is 0 */
  763. value16 = 0x0;
  764. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_CTRL_FILTER,
  765. (u8 *)(&value16));
  766. /* Accept all data frames */
  767. value16 = 0xFFFF;
  768. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_DATA_FILTER,
  769. (u8 *)(&value16));
  770. }
  771. static void _rtl92cu_init_beacon_parameters(struct ieee80211_hw *hw)
  772. {
  773. struct rtl_priv *rtlpriv = rtl_priv(hw);
  774. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  775. rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
  776. /* TODO: Remove these magic number */
  777. rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
  778. rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
  779. rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
  780. /* Change beacon AIFS to the largest number
  781. * beacause test chip does not contension before sending beacon.
  782. */
  783. if (IS_NORMAL_CHIP(rtlhal->version))
  784. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
  785. else
  786. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
  787. }
  788. static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
  789. {
  790. struct rtl_priv *rtlpriv = rtl_priv(hw);
  791. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  792. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  793. struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
  794. int err = 0;
  795. u32 boundary = 0;
  796. u8 wmm_enable = false; /* TODO */
  797. u8 out_ep_nums = rtlusb->out_ep_nums;
  798. u8 queue_sel = rtlusb->out_queue_sel;
  799. err = _rtl92cu_init_power_on(hw);
  800. if (err) {
  801. pr_err("Failed to init power on!\n");
  802. return err;
  803. }
  804. if (!wmm_enable) {
  805. boundary = TX_PAGE_BOUNDARY;
  806. } else { /* for WMM */
  807. boundary = (IS_NORMAL_CHIP(rtlhal->version))
  808. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  809. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  810. }
  811. if (false == rtl92c_init_llt_table(hw, boundary)) {
  812. pr_err("Failed to init LLT Table!\n");
  813. return -EINVAL;
  814. }
  815. _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
  816. queue_sel);
  817. _rtl92c_init_trx_buffer(hw, wmm_enable);
  818. _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
  819. queue_sel);
  820. /* Get Rx PHY status in order to report RSSI and others. */
  821. rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
  822. rtl92c_init_interrupt(hw);
  823. rtl92c_init_network_type(hw);
  824. _rtl92cu_init_wmac_setting(hw);
  825. rtl92c_init_adaptive_ctrl(hw);
  826. rtl92c_init_edca(hw);
  827. rtl92c_init_rate_fallback(hw);
  828. rtl92c_init_retry_function(hw);
  829. _rtl92cu_init_usb_aggregation(hw);
  830. rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
  831. rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
  832. _rtl92cu_init_beacon_parameters(hw);
  833. rtl92c_init_ampdu_aggregation(hw);
  834. rtl92c_init_beacon_max_error(hw);
  835. return err;
  836. }
  837. void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
  838. {
  839. struct rtl_priv *rtlpriv = rtl_priv(hw);
  840. u8 sec_reg_value = 0x0;
  841. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  842. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  843. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  844. rtlpriv->sec.pairwise_enc_algorithm,
  845. rtlpriv->sec.group_enc_algorithm);
  846. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  847. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  848. "not open sw encryption\n");
  849. return;
  850. }
  851. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  852. if (rtlpriv->sec.use_defaultkey) {
  853. sec_reg_value |= SCR_TxUseDK;
  854. sec_reg_value |= SCR_RxUseDK;
  855. }
  856. if (IS_NORMAL_CHIP(rtlhal->version))
  857. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  858. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  859. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
  860. sec_reg_value);
  861. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  862. }
  863. static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
  864. {
  865. struct rtl_priv *rtlpriv = rtl_priv(hw);
  866. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  867. /* To Fix MAC loopback mode fail. */
  868. rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
  869. rtl_write_byte(rtlpriv, 0x15, 0xe9);
  870. /* HW SEQ CTRL */
  871. /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
  872. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  873. /* fixed USB interface interference issue */
  874. rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
  875. rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
  876. rtl_write_byte(rtlpriv, 0xfe42, 0x80);
  877. rtlusb->reg_bcn_ctrl_val = 0x18;
  878. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  879. }
  880. static void _InitPABias(struct ieee80211_hw *hw)
  881. {
  882. struct rtl_priv *rtlpriv = rtl_priv(hw);
  883. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  884. u8 pa_setting;
  885. /* FIXED PA current issue */
  886. pa_setting = efuse_read_1byte(hw, 0x1FA);
  887. if (!(pa_setting & BIT(0))) {
  888. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
  889. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
  890. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
  891. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
  892. }
  893. if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
  894. IS_92C_SERIAL(rtlhal->version)) {
  895. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
  896. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
  897. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
  898. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
  899. }
  900. if (!(pa_setting & BIT(4))) {
  901. pa_setting = rtl_read_byte(rtlpriv, 0x16);
  902. pa_setting &= 0x0F;
  903. rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
  904. }
  905. }
  906. int rtl92cu_hw_init(struct ieee80211_hw *hw)
  907. {
  908. struct rtl_priv *rtlpriv = rtl_priv(hw);
  909. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  910. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  911. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  912. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  913. int err = 0;
  914. unsigned long flags;
  915. /* As this function can take a very long time (up to 350 ms)
  916. * and can be called with irqs disabled, reenable the irqs
  917. * to let the other devices continue being serviced.
  918. *
  919. * It is safe doing so since our own interrupts will only be enabled
  920. * in a subsequent step.
  921. */
  922. local_save_flags(flags);
  923. local_irq_enable();
  924. rtlhal->fw_ready = false;
  925. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
  926. err = _rtl92cu_init_mac(hw);
  927. if (err) {
  928. pr_err("init mac failed!\n");
  929. goto exit;
  930. }
  931. err = rtl92c_download_fw(hw);
  932. if (err) {
  933. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  934. "Failed to download FW. Init HW without FW now..\n");
  935. err = 1;
  936. goto exit;
  937. }
  938. rtlhal->fw_ready = true;
  939. rtlhal->last_hmeboxnum = 0; /* h2c */
  940. _rtl92cu_phy_param_tab_init(hw);
  941. rtl92cu_phy_mac_config(hw);
  942. rtl92cu_phy_bb_config(hw);
  943. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  944. rtl92c_phy_rf_config(hw);
  945. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  946. !IS_92C_SERIAL(rtlhal->version)) {
  947. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  948. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  949. }
  950. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  951. RF_CHNLBW, RFREG_OFFSET_MASK);
  952. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  953. RF_CHNLBW, RFREG_OFFSET_MASK);
  954. rtl92cu_bb_block_on(hw);
  955. rtl_cam_reset_all_entry(hw);
  956. rtl92cu_enable_hw_security_config(hw);
  957. ppsc->rfpwr_state = ERFON;
  958. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  959. if (ppsc->rfpwr_state == ERFON) {
  960. rtl92c_phy_set_rfpath_switch(hw, 1);
  961. if (rtlphy->iqk_initialized) {
  962. rtl92c_phy_iq_calibrate(hw, true);
  963. } else {
  964. rtl92c_phy_iq_calibrate(hw, false);
  965. rtlphy->iqk_initialized = true;
  966. }
  967. rtl92c_dm_check_txpower_tracking(hw);
  968. rtl92c_phy_lc_calibrate(hw);
  969. }
  970. _rtl92cu_hw_configure(hw);
  971. _InitPABias(hw);
  972. rtl92c_dm_init(hw);
  973. exit:
  974. local_irq_restore(flags);
  975. return err;
  976. }
  977. static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
  978. {
  979. struct rtl_priv *rtlpriv = rtl_priv(hw);
  980. /**************************************
  981. a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
  982. b. RF path 0 offset 0x00 = 0x00 disable RF
  983. c. APSD_CTRL 0x600[7:0] = 0x40
  984. d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
  985. e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
  986. ***************************************/
  987. u8 eRFPath = 0, value8 = 0;
  988. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  989. rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
  990. value8 |= APSDOFF;
  991. rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
  992. value8 = 0;
  993. value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
  994. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
  995. value8 &= (~FEN_BB_GLB_RSTn);
  996. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
  997. }
  998. static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
  999. {
  1000. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1001. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1002. if (rtlhal->fw_version <= 0x20) {
  1003. /*****************************
  1004. f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
  1005. g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
  1006. h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
  1007. i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
  1008. ******************************/
  1009. u16 valu16 = 0;
  1010. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1011. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1012. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
  1013. (~FEN_CPUEN))); /* reset MCU ,8051 */
  1014. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
  1015. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1016. (FEN_HWPDN|FEN_ELDR))); /* reset MAC */
  1017. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1018. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1019. FEN_CPUEN)); /* enable MCU ,8051 */
  1020. } else {
  1021. u8 retry_cnts = 0;
  1022. /* IF fw in RAM code, do reset */
  1023. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
  1024. /* reset MCU ready status */
  1025. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1026. /* 8051 reset by self */
  1027. rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
  1028. while ((retry_cnts++ < 100) &&
  1029. (FEN_CPUEN & rtl_read_word(rtlpriv,
  1030. REG_SYS_FUNC_EN))) {
  1031. udelay(50);
  1032. }
  1033. if (retry_cnts >= 100) {
  1034. pr_err("8051 reset failed!.........................\n");
  1035. /* if 8051 reset fail, reset MAC. */
  1036. rtl_write_byte(rtlpriv,
  1037. REG_SYS_FUNC_EN + 1,
  1038. 0x50);
  1039. udelay(100);
  1040. }
  1041. }
  1042. /* Reset MAC and Enable 8051 */
  1043. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
  1044. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1045. }
  1046. if (bWithoutHWSM) {
  1047. /*****************************
  1048. Without HW auto state machine
  1049. g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
  1050. h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
  1051. i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
  1052. j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
  1053. ******************************/
  1054. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1055. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1056. rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
  1057. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
  1058. }
  1059. }
  1060. static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
  1061. {
  1062. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1063. /*****************************
  1064. k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
  1065. l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
  1066. m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
  1067. ******************************/
  1068. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1069. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
  1070. }
  1071. static void _DisableGPIO(struct ieee80211_hw *hw)
  1072. {
  1073. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1074. /***************************************
  1075. j. GPIO_PIN_CTRL 0x44[31:0]=0x000
  1076. k. Value = GPIO_PIN_CTRL[7:0]
  1077. l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
  1078. m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
  1079. n. LEDCFG 0x4C[15:0] = 0x8080
  1080. ***************************************/
  1081. u8 value8;
  1082. u16 value16;
  1083. u32 value32;
  1084. /* 1. Disable GPIO[7:0] */
  1085. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
  1086. value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
  1087. value8 = (u8)(value32&0x000000FF);
  1088. value32 |= ((value8<<8) | 0x00FF0000);
  1089. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
  1090. /* 2. Disable GPIO[10:8] */
  1091. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
  1092. value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
  1093. value8 = (u8)(value16&0x000F);
  1094. value16 |= ((value8<<4) | 0x0780);
  1095. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
  1096. /* 3. Disable LED0 & 1 */
  1097. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1098. }
  1099. static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1100. {
  1101. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1102. u16 value16 = 0;
  1103. u8 value8 = 0;
  1104. if (bWithoutHWSM) {
  1105. /*****************************
  1106. n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
  1107. o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
  1108. r. When driver call disable, the ASIC will turn off remaining
  1109. clock automatically
  1110. ******************************/
  1111. rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
  1112. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  1113. value8 &= (~LDV12_EN);
  1114. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  1115. }
  1116. /*****************************
  1117. h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
  1118. i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
  1119. ******************************/
  1120. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1121. value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
  1122. rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
  1123. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1124. }
  1125. static void _CardDisableHWSM(struct ieee80211_hw *hw)
  1126. {
  1127. /* ==== RF Off Sequence ==== */
  1128. _DisableRFAFEAndResetBB(hw);
  1129. /* ==== Reset digital sequence ====== */
  1130. _ResetDigitalProcedure1(hw, false);
  1131. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1132. _DisableGPIO(hw);
  1133. /* ==== Disable analog sequence === */
  1134. _DisableAnalog(hw, false);
  1135. }
  1136. static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
  1137. {
  1138. /*==== RF Off Sequence ==== */
  1139. _DisableRFAFEAndResetBB(hw);
  1140. /* ==== Reset digital sequence ====== */
  1141. _ResetDigitalProcedure1(hw, true);
  1142. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1143. _DisableGPIO(hw);
  1144. /* ==== Reset digital sequence ====== */
  1145. _ResetDigitalProcedure2(hw);
  1146. /* ==== Disable analog sequence === */
  1147. _DisableAnalog(hw, true);
  1148. }
  1149. static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  1150. u8 set_bits, u8 clear_bits)
  1151. {
  1152. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1153. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1154. rtlusb->reg_bcn_ctrl_val |= set_bits;
  1155. rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
  1156. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  1157. }
  1158. static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
  1159. {
  1160. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1161. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1162. u8 tmp1byte = 0;
  1163. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1164. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1165. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1166. tmp1byte & (~BIT(6)));
  1167. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  1168. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1169. tmp1byte &= ~(BIT(0));
  1170. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1171. } else {
  1172. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1173. rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
  1174. }
  1175. }
  1176. static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
  1177. {
  1178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1179. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1180. u8 tmp1byte = 0;
  1181. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1182. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1183. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1184. tmp1byte | BIT(6));
  1185. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  1186. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1187. tmp1byte |= BIT(0);
  1188. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1189. } else {
  1190. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1191. rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
  1192. }
  1193. }
  1194. static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
  1195. {
  1196. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1197. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1198. if (IS_NORMAL_CHIP(rtlhal->version))
  1199. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
  1200. else
  1201. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1202. }
  1203. static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
  1204. {
  1205. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1206. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1207. if (IS_NORMAL_CHIP(rtlhal->version))
  1208. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
  1209. else
  1210. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1211. }
  1212. static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
  1213. enum nl80211_iftype type)
  1214. {
  1215. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1216. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1217. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1218. bt_msr &= 0xfc;
  1219. if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
  1220. NL80211_IFTYPE_STATION) {
  1221. _rtl92cu_stop_tx_beacon(hw);
  1222. _rtl92cu_enable_bcn_sub_func(hw);
  1223. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1224. _rtl92cu_resume_tx_beacon(hw);
  1225. _rtl92cu_disable_bcn_sub_func(hw);
  1226. } else {
  1227. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1228. "Set HW_VAR_MEDIA_STATUS:No such media status(%x)\n",
  1229. type);
  1230. }
  1231. switch (type) {
  1232. case NL80211_IFTYPE_UNSPECIFIED:
  1233. bt_msr |= MSR_NOLINK;
  1234. ledaction = LED_CTL_LINK;
  1235. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1236. "Set Network type to NO LINK!\n");
  1237. break;
  1238. case NL80211_IFTYPE_ADHOC:
  1239. bt_msr |= MSR_ADHOC;
  1240. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1241. "Set Network type to Ad Hoc!\n");
  1242. break;
  1243. case NL80211_IFTYPE_STATION:
  1244. bt_msr |= MSR_INFRA;
  1245. ledaction = LED_CTL_LINK;
  1246. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1247. "Set Network type to STA!\n");
  1248. break;
  1249. case NL80211_IFTYPE_AP:
  1250. bt_msr |= MSR_AP;
  1251. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1252. "Set Network type to AP!\n");
  1253. break;
  1254. default:
  1255. pr_err("Network type %d not supported!\n", type);
  1256. goto error_out;
  1257. }
  1258. rtl_write_byte(rtlpriv, MSR, bt_msr);
  1259. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1260. if ((bt_msr & MSR_MASK) == MSR_AP)
  1261. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1262. else
  1263. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1264. return 0;
  1265. error_out:
  1266. return 1;
  1267. }
  1268. void rtl92cu_card_disable(struct ieee80211_hw *hw)
  1269. {
  1270. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1271. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1272. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1273. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1274. enum nl80211_iftype opmode;
  1275. mac->link_state = MAC80211_NOLINK;
  1276. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1277. _rtl92cu_set_media_status(hw, opmode);
  1278. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1279. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1280. if (rtlusb->disableHWSM)
  1281. _CardDisableHWSM(hw);
  1282. else
  1283. _CardDisableWithoutHWSM(hw);
  1284. /* after power off we should do iqk again */
  1285. rtlpriv->phy.iqk_initialized = false;
  1286. }
  1287. void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1288. {
  1289. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1290. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1291. u32 reg_rcr;
  1292. if (rtlpriv->psc.rfpwr_state != ERFON)
  1293. return;
  1294. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  1295. if (check_bssid) {
  1296. u8 tmp;
  1297. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1298. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1299. tmp = BIT(4);
  1300. } else {
  1301. reg_rcr |= RCR_CBSSID;
  1302. tmp = BIT(4) | BIT(5);
  1303. }
  1304. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1305. (u8 *) (&reg_rcr));
  1306. _rtl92cu_set_bcn_ctrl_reg(hw, 0, tmp);
  1307. } else {
  1308. u8 tmp;
  1309. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1310. reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1311. tmp = BIT(4);
  1312. } else {
  1313. reg_rcr &= ~RCR_CBSSID;
  1314. tmp = BIT(4) | BIT(5);
  1315. }
  1316. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1317. rtlpriv->cfg->ops->set_hw_reg(hw,
  1318. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1319. _rtl92cu_set_bcn_ctrl_reg(hw, tmp, 0);
  1320. }
  1321. }
  1322. /*========================================================================== */
  1323. int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1324. {
  1325. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1326. if (_rtl92cu_set_media_status(hw, type))
  1327. return -EOPNOTSUPP;
  1328. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1329. if (type != NL80211_IFTYPE_AP)
  1330. rtl92cu_set_check_bssid(hw, true);
  1331. } else {
  1332. rtl92cu_set_check_bssid(hw, false);
  1333. }
  1334. return 0;
  1335. }
  1336. static void _beacon_function_enable(struct ieee80211_hw *hw)
  1337. {
  1338. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1339. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
  1340. rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
  1341. }
  1342. void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
  1343. {
  1344. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1345. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1346. u16 bcn_interval, atim_window;
  1347. u32 value32;
  1348. bcn_interval = mac->beacon_interval;
  1349. atim_window = 2; /*FIX MERGE */
  1350. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1351. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1352. _rtl92cu_init_beacon_parameters(hw);
  1353. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  1354. /*
  1355. * Force beacon frame transmission even after receiving beacon frame
  1356. * from other ad hoc STA
  1357. *
  1358. *
  1359. * Reset TSF Timer to zero, added by Roger. 2008.06.24
  1360. */
  1361. value32 = rtl_read_dword(rtlpriv, REG_TCR);
  1362. value32 &= ~TSFRST;
  1363. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1364. value32 |= TSFRST;
  1365. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1366. RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
  1367. "SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
  1368. value32);
  1369. /* TODO: Modify later (Find the right parameters)
  1370. * NOTE: Fix test chip's bug (about contention windows's randomness) */
  1371. if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
  1372. (mac->opmode == NL80211_IFTYPE_MESH_POINT) ||
  1373. (mac->opmode == NL80211_IFTYPE_AP)) {
  1374. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
  1375. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
  1376. }
  1377. _beacon_function_enable(hw);
  1378. }
  1379. void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
  1380. {
  1381. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1382. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1383. u16 bcn_interval = mac->beacon_interval;
  1384. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n",
  1385. bcn_interval);
  1386. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1387. }
  1388. void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
  1389. u32 add_msr, u32 rm_msr)
  1390. {
  1391. }
  1392. void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1393. {
  1394. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1395. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1396. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1397. switch (variable) {
  1398. case HW_VAR_RCR:
  1399. *((u32 *)(val)) = mac->rx_conf;
  1400. break;
  1401. case HW_VAR_RF_STATE:
  1402. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  1403. break;
  1404. case HW_VAR_FWLPS_RF_ON:{
  1405. enum rf_pwrstate rfState;
  1406. u32 val_rcr;
  1407. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  1408. (u8 *)(&rfState));
  1409. if (rfState == ERFOFF) {
  1410. *((bool *) (val)) = true;
  1411. } else {
  1412. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1413. val_rcr &= 0x00070000;
  1414. if (val_rcr)
  1415. *((bool *) (val)) = false;
  1416. else
  1417. *((bool *) (val)) = true;
  1418. }
  1419. break;
  1420. }
  1421. case HW_VAR_FW_PSMODE_STATUS:
  1422. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  1423. break;
  1424. case HW_VAR_CORRECT_TSF:{
  1425. u64 tsf;
  1426. u32 *ptsf_low = (u32 *)&tsf;
  1427. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  1428. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  1429. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  1430. *((u64 *)(val)) = tsf;
  1431. break;
  1432. }
  1433. case HW_VAR_MGT_FILTER:
  1434. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1435. break;
  1436. case HW_VAR_CTRL_FILTER:
  1437. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1438. break;
  1439. case HW_VAR_DATA_FILTER:
  1440. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1441. break;
  1442. case HAL_DEF_WOWLAN:
  1443. break;
  1444. default:
  1445. pr_err("switch case %#x not processed\n", variable);
  1446. break;
  1447. }
  1448. }
  1449. static bool usb_cmd_send_packet(struct ieee80211_hw *hw, struct sk_buff *skb)
  1450. {
  1451. /* Currently nothing happens here.
  1452. * Traffic stops after some seconds in WPA2 802.11n mode.
  1453. * Maybe because rtl8192cu chip should be set from here?
  1454. * If I understand correctly, the realtek vendor driver sends some urbs
  1455. * if its "here".
  1456. *
  1457. * This is maybe necessary:
  1458. * rtlpriv->cfg->ops->fill_tx_cmddesc(hw, buffer, 1, 1, skb);
  1459. */
  1460. return true;
  1461. }
  1462. void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1463. {
  1464. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1465. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1466. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1467. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1468. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1469. enum wireless_mode wirelessmode = mac->mode;
  1470. u8 idx = 0;
  1471. switch (variable) {
  1472. case HW_VAR_ETHER_ADDR:{
  1473. for (idx = 0; idx < ETH_ALEN; idx++) {
  1474. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  1475. val[idx]);
  1476. }
  1477. break;
  1478. }
  1479. case HW_VAR_BASIC_RATE:{
  1480. u16 rate_cfg = ((u16 *) val)[0];
  1481. u8 rate_index = 0;
  1482. rate_cfg &= 0x15f;
  1483. /* TODO */
  1484. /* if (mac->current_network.vender == HT_IOT_PEER_CISCO
  1485. * && ((rate_cfg & 0x150) == 0)) {
  1486. * rate_cfg |= 0x010;
  1487. * } */
  1488. rate_cfg |= 0x01;
  1489. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  1490. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  1491. (rate_cfg >> 8) & 0xff);
  1492. while (rate_cfg > 0x1) {
  1493. rate_cfg >>= 1;
  1494. rate_index++;
  1495. }
  1496. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  1497. rate_index);
  1498. break;
  1499. }
  1500. case HW_VAR_BSSID:{
  1501. for (idx = 0; idx < ETH_ALEN; idx++) {
  1502. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  1503. val[idx]);
  1504. }
  1505. break;
  1506. }
  1507. case HW_VAR_SIFS:{
  1508. rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
  1509. rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
  1510. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  1511. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  1512. rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
  1513. rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
  1514. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SIFS\n");
  1515. break;
  1516. }
  1517. case HW_VAR_SLOT_TIME:{
  1518. u8 e_aci;
  1519. u8 QOS_MODE = 1;
  1520. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  1521. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1522. "HW_VAR_SLOT_TIME %x\n", val[0]);
  1523. if (QOS_MODE) {
  1524. for (e_aci = 0; e_aci < AC_MAX; e_aci++)
  1525. rtlpriv->cfg->ops->set_hw_reg(hw,
  1526. HW_VAR_AC_PARAM,
  1527. &e_aci);
  1528. } else {
  1529. u8 sifstime = 0;
  1530. u8 u1bAIFS;
  1531. if (IS_WIRELESS_MODE_A(wirelessmode) ||
  1532. IS_WIRELESS_MODE_N_24G(wirelessmode) ||
  1533. IS_WIRELESS_MODE_N_5G(wirelessmode))
  1534. sifstime = 16;
  1535. else
  1536. sifstime = 10;
  1537. u1bAIFS = sifstime + (2 * val[0]);
  1538. rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
  1539. u1bAIFS);
  1540. rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
  1541. u1bAIFS);
  1542. rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
  1543. u1bAIFS);
  1544. rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
  1545. u1bAIFS);
  1546. }
  1547. break;
  1548. }
  1549. case HW_VAR_ACK_PREAMBLE:{
  1550. u8 reg_tmp;
  1551. u8 short_preamble = (bool)*val;
  1552. reg_tmp = 0;
  1553. if (short_preamble)
  1554. reg_tmp |= 0x80;
  1555. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  1556. break;
  1557. }
  1558. case HW_VAR_AMPDU_MIN_SPACE:{
  1559. u8 min_spacing_to_set;
  1560. u8 sec_min_space;
  1561. min_spacing_to_set = *val;
  1562. if (min_spacing_to_set <= 7) {
  1563. switch (rtlpriv->sec.pairwise_enc_algorithm) {
  1564. case NO_ENCRYPTION:
  1565. case AESCCMP_ENCRYPTION:
  1566. sec_min_space = 0;
  1567. break;
  1568. case WEP40_ENCRYPTION:
  1569. case WEP104_ENCRYPTION:
  1570. case TKIP_ENCRYPTION:
  1571. sec_min_space = 6;
  1572. break;
  1573. default:
  1574. sec_min_space = 7;
  1575. break;
  1576. }
  1577. if (min_spacing_to_set < sec_min_space)
  1578. min_spacing_to_set = sec_min_space;
  1579. mac->min_space_cfg = ((mac->min_space_cfg &
  1580. 0xf8) |
  1581. min_spacing_to_set);
  1582. *val = min_spacing_to_set;
  1583. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1584. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  1585. mac->min_space_cfg);
  1586. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1587. mac->min_space_cfg);
  1588. }
  1589. break;
  1590. }
  1591. case HW_VAR_SHORTGI_DENSITY:{
  1592. u8 density_to_set;
  1593. density_to_set = *val;
  1594. density_to_set &= 0x1f;
  1595. mac->min_space_cfg &= 0x07;
  1596. mac->min_space_cfg |= (density_to_set << 3);
  1597. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1598. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  1599. mac->min_space_cfg);
  1600. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1601. mac->min_space_cfg);
  1602. break;
  1603. }
  1604. case HW_VAR_AMPDU_FACTOR:{
  1605. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  1606. u8 factor_toset;
  1607. u8 *p_regtoset = NULL;
  1608. u8 index = 0;
  1609. p_regtoset = regtoset_normal;
  1610. factor_toset = *val;
  1611. if (factor_toset <= 3) {
  1612. factor_toset = (1 << (factor_toset + 2));
  1613. if (factor_toset > 0xf)
  1614. factor_toset = 0xf;
  1615. for (index = 0; index < 4; index++) {
  1616. if ((p_regtoset[index] & 0xf0) >
  1617. (factor_toset << 4))
  1618. p_regtoset[index] =
  1619. (p_regtoset[index] & 0x0f)
  1620. | (factor_toset << 4);
  1621. if ((p_regtoset[index] & 0x0f) >
  1622. factor_toset)
  1623. p_regtoset[index] =
  1624. (p_regtoset[index] & 0xf0)
  1625. | (factor_toset);
  1626. rtl_write_byte(rtlpriv,
  1627. (REG_AGGLEN_LMT + index),
  1628. p_regtoset[index]);
  1629. }
  1630. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1631. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  1632. factor_toset);
  1633. }
  1634. break;
  1635. }
  1636. case HW_VAR_AC_PARAM:{
  1637. u8 e_aci = *val;
  1638. u32 u4b_ac_param;
  1639. u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
  1640. u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
  1641. u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
  1642. u4b_ac_param = (u32) mac->ac[e_aci].aifs;
  1643. u4b_ac_param |= (u32) ((cw_min & 0xF) <<
  1644. AC_PARAM_ECW_MIN_OFFSET);
  1645. u4b_ac_param |= (u32) ((cw_max & 0xF) <<
  1646. AC_PARAM_ECW_MAX_OFFSET);
  1647. u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
  1648. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1649. "queue:%x, ac_param:%x\n",
  1650. e_aci, u4b_ac_param);
  1651. switch (e_aci) {
  1652. case AC1_BK:
  1653. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
  1654. u4b_ac_param);
  1655. break;
  1656. case AC0_BE:
  1657. rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
  1658. u4b_ac_param);
  1659. break;
  1660. case AC2_VI:
  1661. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
  1662. u4b_ac_param);
  1663. break;
  1664. case AC3_VO:
  1665. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
  1666. u4b_ac_param);
  1667. break;
  1668. default:
  1669. WARN_ONCE(true, "rtl8192cu: invalid aci: %d !\n",
  1670. e_aci);
  1671. break;
  1672. }
  1673. break;
  1674. }
  1675. case HW_VAR_RCR:{
  1676. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  1677. mac->rx_conf = ((u32 *) (val))[0];
  1678. RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
  1679. "### Set RCR(0x%08x) ###\n", mac->rx_conf);
  1680. break;
  1681. }
  1682. case HW_VAR_RETRY_LIMIT:{
  1683. u8 retry_limit = val[0];
  1684. rtl_write_word(rtlpriv, REG_RL,
  1685. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  1686. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  1687. RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG,
  1688. "Set HW_VAR_RETRY_LIMIT(0x%08x)\n",
  1689. retry_limit);
  1690. break;
  1691. }
  1692. case HW_VAR_DUAL_TSF_RST:
  1693. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  1694. break;
  1695. case HW_VAR_EFUSE_BYTES:
  1696. rtlefuse->efuse_usedbytes = *((u16 *) val);
  1697. break;
  1698. case HW_VAR_EFUSE_USAGE:
  1699. rtlefuse->efuse_usedpercentage = *val;
  1700. break;
  1701. case HW_VAR_IO_CMD:
  1702. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  1703. break;
  1704. case HW_VAR_WPA_CONFIG:
  1705. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  1706. break;
  1707. case HW_VAR_SET_RPWM:{
  1708. u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
  1709. if (rpwm_val & BIT(7))
  1710. rtl_write_byte(rtlpriv, REG_USB_HRPWM, *val);
  1711. else
  1712. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1713. *val | BIT(7));
  1714. break;
  1715. }
  1716. case HW_VAR_H2C_FW_PWRMODE:{
  1717. u8 psmode = *val;
  1718. if ((psmode != FW_PS_ACTIVE_MODE) &&
  1719. (!IS_92C_SERIAL(rtlhal->version)))
  1720. rtl92c_dm_rf_saving(hw, true);
  1721. rtl92c_set_fw_pwrmode_cmd(hw, (*val));
  1722. break;
  1723. }
  1724. case HW_VAR_FW_PSMODE_STATUS:
  1725. ppsc->fw_current_inpsmode = *((bool *) val);
  1726. break;
  1727. case HW_VAR_H2C_FW_JOINBSSRPT:{
  1728. u8 mstatus = *val;
  1729. u8 tmp_reg422;
  1730. bool recover = false;
  1731. if (mstatus == RT_MEDIA_CONNECT) {
  1732. rtlpriv->cfg->ops->set_hw_reg(hw,
  1733. HW_VAR_AID, NULL);
  1734. rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
  1735. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  1736. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1737. tmp_reg422 = rtl_read_byte(rtlpriv,
  1738. REG_FWHW_TXQ_CTRL + 2);
  1739. if (tmp_reg422 & BIT(6))
  1740. recover = true;
  1741. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1742. tmp_reg422 & (~BIT(6)));
  1743. rtl92c_set_fw_rsvdpagepkt(hw,
  1744. &usb_cmd_send_packet);
  1745. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1746. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1747. if (recover)
  1748. rtl_write_byte(rtlpriv,
  1749. REG_FWHW_TXQ_CTRL + 2,
  1750. tmp_reg422 | BIT(6));
  1751. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  1752. }
  1753. rtl92c_set_fw_joinbss_report_cmd(hw, (*val));
  1754. break;
  1755. }
  1756. case HW_VAR_AID:{
  1757. u16 u2btmp;
  1758. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  1759. u2btmp &= 0xC000;
  1760. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  1761. (u2btmp | mac->assoc_id));
  1762. break;
  1763. }
  1764. case HW_VAR_CORRECT_TSF:{
  1765. u8 btype_ibss = val[0];
  1766. if (btype_ibss)
  1767. _rtl92cu_stop_tx_beacon(hw);
  1768. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  1769. rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
  1770. 0xffffffff));
  1771. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  1772. (u32)((mac->tsf >> 32) & 0xffffffff));
  1773. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1774. if (btype_ibss)
  1775. _rtl92cu_resume_tx_beacon(hw);
  1776. break;
  1777. }
  1778. case HW_VAR_MGT_FILTER:
  1779. rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
  1780. mac->rx_mgt_filter = *(u16 *)val;
  1781. break;
  1782. case HW_VAR_CTRL_FILTER:
  1783. rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
  1784. mac->rx_ctrl_filter = *(u16 *)val;
  1785. break;
  1786. case HW_VAR_DATA_FILTER:
  1787. rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
  1788. mac->rx_data_filter = *(u16 *)val;
  1789. break;
  1790. case HW_VAR_KEEP_ALIVE:{
  1791. u8 array[2];
  1792. array[0] = 0xff;
  1793. array[1] = *((u8 *)val);
  1794. rtl92c_fill_h2c_cmd(hw, H2C_92C_KEEP_ALIVE_CTRL, 2,
  1795. array);
  1796. break;
  1797. }
  1798. default:
  1799. pr_err("switch case %#x not processed\n", variable);
  1800. break;
  1801. }
  1802. }
  1803. static void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw,
  1804. struct ieee80211_sta *sta)
  1805. {
  1806. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1807. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1808. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1809. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1810. u32 ratr_value;
  1811. u8 ratr_index = 0;
  1812. u8 nmode = mac->ht_enable;
  1813. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1814. u16 shortgi_rate;
  1815. u32 tmp_ratr_value;
  1816. u8 curtxbw_40mhz = mac->bw_40;
  1817. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1818. 1 : 0;
  1819. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1820. 1 : 0;
  1821. enum wireless_mode wirelessmode = mac->mode;
  1822. if (rtlhal->current_bandtype == BAND_ON_5G)
  1823. ratr_value = sta->supp_rates[1] << 4;
  1824. else
  1825. ratr_value = sta->supp_rates[0];
  1826. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1827. ratr_value = 0xfff;
  1828. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1829. sta->ht_cap.mcs.rx_mask[0] << 12);
  1830. switch (wirelessmode) {
  1831. case WIRELESS_MODE_B:
  1832. if (ratr_value & 0x0000000c)
  1833. ratr_value &= 0x0000000d;
  1834. else
  1835. ratr_value &= 0x0000000f;
  1836. break;
  1837. case WIRELESS_MODE_G:
  1838. ratr_value &= 0x00000FF5;
  1839. break;
  1840. case WIRELESS_MODE_N_24G:
  1841. case WIRELESS_MODE_N_5G:
  1842. nmode = 1;
  1843. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1844. ratr_value &= 0x0007F005;
  1845. } else {
  1846. u32 ratr_mask;
  1847. if (get_rf_type(rtlphy) == RF_1T2R ||
  1848. get_rf_type(rtlphy) == RF_1T1R)
  1849. ratr_mask = 0x000ff005;
  1850. else
  1851. ratr_mask = 0x0f0ff005;
  1852. ratr_value &= ratr_mask;
  1853. }
  1854. break;
  1855. default:
  1856. if (rtlphy->rf_type == RF_1T2R)
  1857. ratr_value &= 0x000ff0ff;
  1858. else
  1859. ratr_value &= 0x0f0ff0ff;
  1860. break;
  1861. }
  1862. ratr_value &= 0x0FFFFFFF;
  1863. if (nmode && ((curtxbw_40mhz &&
  1864. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1865. curshortgi_20mhz))) {
  1866. ratr_value |= 0x10000000;
  1867. tmp_ratr_value = (ratr_value >> 12);
  1868. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1869. if ((1 << shortgi_rate) & tmp_ratr_value)
  1870. break;
  1871. }
  1872. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1873. (shortgi_rate << 4) | (shortgi_rate);
  1874. }
  1875. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1876. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1877. rtl_read_dword(rtlpriv, REG_ARFR0));
  1878. }
  1879. static void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw,
  1880. struct ieee80211_sta *sta,
  1881. u8 rssi_level)
  1882. {
  1883. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1884. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1885. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1886. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1887. struct rtl_sta_info *sta_entry = NULL;
  1888. u32 ratr_bitmap;
  1889. u8 ratr_index;
  1890. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1891. u8 curshortgi_40mhz = curtxbw_40mhz &&
  1892. (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1893. 1 : 0;
  1894. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1895. 1 : 0;
  1896. enum wireless_mode wirelessmode = 0;
  1897. bool shortgi = false;
  1898. u8 rate_mask[5];
  1899. u8 macid = 0;
  1900. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1901. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1902. wirelessmode = sta_entry->wireless_mode;
  1903. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1904. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1905. curtxbw_40mhz = mac->bw_40;
  1906. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1907. mac->opmode == NL80211_IFTYPE_ADHOC)
  1908. macid = sta->aid + 1;
  1909. if (rtlhal->current_bandtype == BAND_ON_5G)
  1910. ratr_bitmap = sta->supp_rates[1] << 4;
  1911. else
  1912. ratr_bitmap = sta->supp_rates[0];
  1913. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1914. ratr_bitmap = 0xfff;
  1915. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1916. sta->ht_cap.mcs.rx_mask[0] << 12);
  1917. switch (wirelessmode) {
  1918. case WIRELESS_MODE_B:
  1919. ratr_index = RATR_INX_WIRELESS_B;
  1920. if (ratr_bitmap & 0x0000000c)
  1921. ratr_bitmap &= 0x0000000d;
  1922. else
  1923. ratr_bitmap &= 0x0000000f;
  1924. break;
  1925. case WIRELESS_MODE_G:
  1926. ratr_index = RATR_INX_WIRELESS_GB;
  1927. if (rssi_level == 1)
  1928. ratr_bitmap &= 0x00000f00;
  1929. else if (rssi_level == 2)
  1930. ratr_bitmap &= 0x00000ff0;
  1931. else
  1932. ratr_bitmap &= 0x00000ff5;
  1933. break;
  1934. case WIRELESS_MODE_A:
  1935. ratr_index = RATR_INX_WIRELESS_A;
  1936. ratr_bitmap &= 0x00000ff0;
  1937. break;
  1938. case WIRELESS_MODE_N_24G:
  1939. case WIRELESS_MODE_N_5G:
  1940. ratr_index = RATR_INX_WIRELESS_NGB;
  1941. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1942. if (rssi_level == 1)
  1943. ratr_bitmap &= 0x00070000;
  1944. else if (rssi_level == 2)
  1945. ratr_bitmap &= 0x0007f000;
  1946. else
  1947. ratr_bitmap &= 0x0007f005;
  1948. } else {
  1949. if (rtlphy->rf_type == RF_1T2R ||
  1950. rtlphy->rf_type == RF_1T1R) {
  1951. if (curtxbw_40mhz) {
  1952. if (rssi_level == 1)
  1953. ratr_bitmap &= 0x000f0000;
  1954. else if (rssi_level == 2)
  1955. ratr_bitmap &= 0x000ff000;
  1956. else
  1957. ratr_bitmap &= 0x000ff015;
  1958. } else {
  1959. if (rssi_level == 1)
  1960. ratr_bitmap &= 0x000f0000;
  1961. else if (rssi_level == 2)
  1962. ratr_bitmap &= 0x000ff000;
  1963. else
  1964. ratr_bitmap &= 0x000ff005;
  1965. }
  1966. } else {
  1967. if (curtxbw_40mhz) {
  1968. if (rssi_level == 1)
  1969. ratr_bitmap &= 0x0f0f0000;
  1970. else if (rssi_level == 2)
  1971. ratr_bitmap &= 0x0f0ff000;
  1972. else
  1973. ratr_bitmap &= 0x0f0ff015;
  1974. } else {
  1975. if (rssi_level == 1)
  1976. ratr_bitmap &= 0x0f0f0000;
  1977. else if (rssi_level == 2)
  1978. ratr_bitmap &= 0x0f0ff000;
  1979. else
  1980. ratr_bitmap &= 0x0f0ff005;
  1981. }
  1982. }
  1983. }
  1984. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1985. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1986. if (macid == 0)
  1987. shortgi = true;
  1988. else if (macid == 1)
  1989. shortgi = false;
  1990. }
  1991. break;
  1992. default:
  1993. ratr_index = RATR_INX_WIRELESS_NGB;
  1994. if (rtlphy->rf_type == RF_1T2R)
  1995. ratr_bitmap &= 0x000ff0ff;
  1996. else
  1997. ratr_bitmap &= 0x0f0ff0ff;
  1998. break;
  1999. }
  2000. sta_entry->ratr_index = ratr_index;
  2001. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  2002. "ratr_bitmap :%x\n", ratr_bitmap);
  2003. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  2004. (ratr_index << 28);
  2005. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  2006. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  2007. "Rate_index:%x, ratr_val:%x, %5phC\n",
  2008. ratr_index, ratr_bitmap, rate_mask);
  2009. memcpy(rtlpriv->rate_mask, rate_mask, 5);
  2010. /* rtl92c_fill_h2c_cmd() does USB I/O and will result in a
  2011. * "scheduled while atomic" if called directly */
  2012. schedule_work(&rtlpriv->works.fill_h2c_cmd);
  2013. if (macid != 0)
  2014. sta_entry->ratr_index = ratr_index;
  2015. }
  2016. void rtl92cu_update_hal_rate_tbl(struct ieee80211_hw *hw,
  2017. struct ieee80211_sta *sta,
  2018. u8 rssi_level)
  2019. {
  2020. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2021. if (rtlpriv->dm.useramask)
  2022. rtl92cu_update_hal_rate_mask(hw, sta, rssi_level);
  2023. else
  2024. rtl92cu_update_hal_rate_table(hw, sta);
  2025. }
  2026. void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
  2027. {
  2028. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2029. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2030. u16 sifs_timer;
  2031. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  2032. &mac->slot_time);
  2033. if (!mac->ht_enable)
  2034. sifs_timer = 0x0a0a;
  2035. else
  2036. sifs_timer = 0x0e0e;
  2037. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2038. }
  2039. bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
  2040. {
  2041. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2042. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2043. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2044. u8 u1tmp = 0;
  2045. bool actuallyset = false;
  2046. unsigned long flag = 0;
  2047. /* to do - usb autosuspend */
  2048. u8 usb_autosuspend = 0;
  2049. if (ppsc->swrf_processing)
  2050. return false;
  2051. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2052. if (ppsc->rfchange_inprogress) {
  2053. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2054. return false;
  2055. } else {
  2056. ppsc->rfchange_inprogress = true;
  2057. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2058. }
  2059. cur_rfstate = ppsc->rfpwr_state;
  2060. if (usb_autosuspend) {
  2061. /* to do................... */
  2062. } else {
  2063. if (ppsc->pwrdown_mode) {
  2064. u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
  2065. e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
  2066. ERFOFF : ERFON;
  2067. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2068. "pwrdown, 0x5c(BIT7)=%02x\n", u1tmp);
  2069. } else {
  2070. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
  2071. rtl_read_byte(rtlpriv,
  2072. REG_MAC_PINMUX_CFG) & ~(BIT(3)));
  2073. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  2074. e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
  2075. ERFON : ERFOFF;
  2076. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2077. "GPIO_IN=%02x\n", u1tmp);
  2078. }
  2079. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "N-SS RF =%x\n",
  2080. e_rfpowerstate_toset);
  2081. }
  2082. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2083. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2084. "GPIOChangeRF - HW Radio ON, RF ON\n");
  2085. ppsc->hwradiooff = false;
  2086. actuallyset = true;
  2087. } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
  2088. ERFOFF)) {
  2089. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2090. "GPIOChangeRF - HW Radio OFF\n");
  2091. ppsc->hwradiooff = true;
  2092. actuallyset = true;
  2093. } else {
  2094. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2095. "pHalData->bHwRadioOff and eRfPowerStateToSet do not match: pHalData->bHwRadioOff %x, eRfPowerStateToSet %x\n",
  2096. ppsc->hwradiooff, e_rfpowerstate_toset);
  2097. }
  2098. if (actuallyset) {
  2099. ppsc->hwradiooff = true;
  2100. if (e_rfpowerstate_toset == ERFON) {
  2101. if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
  2102. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
  2103. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2104. else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2105. && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
  2106. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2107. }
  2108. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2109. ppsc->rfchange_inprogress = false;
  2110. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2111. /* For power down module, we need to enable register block
  2112. * contrl reg at 0x1c. Then enable power down control bit
  2113. * of register 0x04 BIT4 and BIT15 as 1.
  2114. */
  2115. if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
  2116. /* Enable register area 0x0-0xc. */
  2117. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  2118. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
  2119. }
  2120. if (e_rfpowerstate_toset == ERFOFF) {
  2121. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2122. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2123. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2124. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2125. }
  2126. } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
  2127. /* Enter D3 or ASPM after GPIO had been done. */
  2128. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2129. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2130. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2131. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2132. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2133. ppsc->rfchange_inprogress = false;
  2134. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2135. } else {
  2136. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2137. ppsc->rfchange_inprogress = false;
  2138. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2139. }
  2140. *valid = 1;
  2141. return !ppsc->hwradiooff;
  2142. }