efuse.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * Tme full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "wifi.h"
  26. #include "efuse.h"
  27. #include "pci.h"
  28. #include <linux/export.h>
  29. static const u8 MAX_PGPKT_SIZE = 9;
  30. static const u8 PGPKT_DATA_SIZE = 8;
  31. static const int EFUSE_MAX_SIZE = 512;
  32. #define START_ADDRESS 0x1000
  33. #define REG_MCUFWDL 0x0080
  34. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  35. {0, 0, 0, 2},
  36. {0, 1, 0, 2},
  37. {0, 2, 0, 2},
  38. {1, 0, 0, 1},
  39. {1, 0, 1, 1},
  40. {1, 1, 0, 1},
  41. {1, 1, 1, 3},
  42. {1, 3, 0, 17},
  43. {3, 3, 1, 48},
  44. {10, 0, 0, 6},
  45. {10, 3, 0, 1},
  46. {10, 3, 1, 1},
  47. {11, 0, 0, 28}
  48. };
  49. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  50. u8 *value);
  51. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  52. u16 *value);
  53. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  54. u32 *value);
  55. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  56. u8 value);
  57. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  58. u16 value);
  59. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  60. u32 value);
  61. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  62. u8 data);
  63. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  64. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  65. u8 *data);
  66. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  67. u8 word_en, u8 *data);
  68. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  69. u8 *targetdata);
  70. static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
  71. u16 efuse_addr, u8 word_en, u8 *data);
  72. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  73. static u8 efuse_calculate_word_cnts(u8 word_en);
  74. void efuse_initialize(struct ieee80211_hw *hw)
  75. {
  76. struct rtl_priv *rtlpriv = rtl_priv(hw);
  77. u8 bytetemp;
  78. u8 temp;
  79. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  80. temp = bytetemp | 0x20;
  81. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  82. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  83. temp = bytetemp & 0xFE;
  84. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  85. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  86. temp = bytetemp | 0x80;
  87. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  88. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  89. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  90. }
  91. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  92. {
  93. struct rtl_priv *rtlpriv = rtl_priv(hw);
  94. u8 data;
  95. u8 bytetemp;
  96. u8 temp;
  97. u32 k = 0;
  98. const u32 efuse_len =
  99. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  100. if (address < efuse_len) {
  101. temp = address & 0xFF;
  102. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  103. temp);
  104. bytetemp = rtl_read_byte(rtlpriv,
  105. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  106. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  111. temp = bytetemp & 0x7F;
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. while (!(bytetemp & 0x80)) {
  117. bytetemp = rtl_read_byte(rtlpriv,
  118. rtlpriv->cfg->
  119. maps[EFUSE_CTRL] + 3);
  120. k++;
  121. if (k == 1000) {
  122. k = 0;
  123. break;
  124. }
  125. }
  126. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  127. return data;
  128. } else
  129. return 0xFF;
  130. }
  131. EXPORT_SYMBOL(efuse_read_1byte);
  132. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  133. {
  134. struct rtl_priv *rtlpriv = rtl_priv(hw);
  135. u8 bytetemp;
  136. u8 temp;
  137. u32 k = 0;
  138. const u32 efuse_len =
  139. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  140. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
  141. address, value);
  142. if (address < efuse_len) {
  143. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  144. temp = address & 0xFF;
  145. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  146. temp);
  147. bytetemp = rtl_read_byte(rtlpriv,
  148. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  149. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  150. rtl_write_byte(rtlpriv,
  151. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  152. bytetemp = rtl_read_byte(rtlpriv,
  153. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  154. temp = bytetemp | 0x80;
  155. rtl_write_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  157. bytetemp = rtl_read_byte(rtlpriv,
  158. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  159. while (bytetemp & 0x80) {
  160. bytetemp = rtl_read_byte(rtlpriv,
  161. rtlpriv->cfg->
  162. maps[EFUSE_CTRL] + 3);
  163. k++;
  164. if (k == 100) {
  165. k = 0;
  166. break;
  167. }
  168. }
  169. }
  170. }
  171. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  172. {
  173. struct rtl_priv *rtlpriv = rtl_priv(hw);
  174. u32 value32;
  175. u8 readbyte;
  176. u16 retry;
  177. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  178. (_offset & 0xff));
  179. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  180. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  181. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  182. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  183. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  184. (readbyte & 0x7f));
  185. retry = 0;
  186. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  187. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  188. value32 = rtl_read_dword(rtlpriv,
  189. rtlpriv->cfg->maps[EFUSE_CTRL]);
  190. retry++;
  191. }
  192. udelay(50);
  193. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  194. *pbuf = (u8) (value32 & 0xff);
  195. }
  196. EXPORT_SYMBOL_GPL(read_efuse_byte);
  197. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  198. {
  199. struct rtl_priv *rtlpriv = rtl_priv(hw);
  200. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  201. u8 *efuse_tbl;
  202. u8 rtemp8[1];
  203. u16 efuse_addr = 0;
  204. u8 offset, wren;
  205. u8 u1temp = 0;
  206. u16 i;
  207. u16 j;
  208. const u16 efuse_max_section =
  209. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  210. const u32 efuse_len =
  211. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  212. u16 **efuse_word;
  213. u16 efuse_utilized = 0;
  214. u8 efuse_usage;
  215. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  216. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  217. "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
  218. _offset, _size_byte);
  219. return;
  220. }
  221. /* allocate memory for efuse_tbl and efuse_word */
  222. efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
  223. sizeof(u8), GFP_ATOMIC);
  224. if (!efuse_tbl)
  225. return;
  226. efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
  227. if (!efuse_word)
  228. goto out;
  229. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  230. efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
  231. GFP_ATOMIC);
  232. if (!efuse_word[i])
  233. goto done;
  234. }
  235. for (i = 0; i < efuse_max_section; i++)
  236. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  237. efuse_word[j][i] = 0xFFFF;
  238. read_efuse_byte(hw, efuse_addr, rtemp8);
  239. if (*rtemp8 != 0xFF) {
  240. efuse_utilized++;
  241. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  242. "Addr=%d\n", efuse_addr);
  243. efuse_addr++;
  244. }
  245. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  246. /* Check PG header for section num. */
  247. if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
  248. u1temp = ((*rtemp8 & 0xE0) >> 5);
  249. read_efuse_byte(hw, efuse_addr, rtemp8);
  250. if ((*rtemp8 & 0x0F) == 0x0F) {
  251. efuse_addr++;
  252. read_efuse_byte(hw, efuse_addr, rtemp8);
  253. if (*rtemp8 != 0xFF &&
  254. (efuse_addr < efuse_len)) {
  255. efuse_addr++;
  256. }
  257. continue;
  258. } else {
  259. offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
  260. wren = (*rtemp8 & 0x0F);
  261. efuse_addr++;
  262. }
  263. } else {
  264. offset = ((*rtemp8 >> 4) & 0x0f);
  265. wren = (*rtemp8 & 0x0f);
  266. }
  267. if (offset < efuse_max_section) {
  268. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  269. "offset-%d Worden=%x\n", offset, wren);
  270. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  271. if (!(wren & 0x01)) {
  272. RTPRINT(rtlpriv, FEEPROM,
  273. EFUSE_READ_ALL,
  274. "Addr=%d\n", efuse_addr);
  275. read_efuse_byte(hw, efuse_addr, rtemp8);
  276. efuse_addr++;
  277. efuse_utilized++;
  278. efuse_word[i][offset] =
  279. (*rtemp8 & 0xff);
  280. if (efuse_addr >= efuse_len)
  281. break;
  282. RTPRINT(rtlpriv, FEEPROM,
  283. EFUSE_READ_ALL,
  284. "Addr=%d\n", efuse_addr);
  285. read_efuse_byte(hw, efuse_addr, rtemp8);
  286. efuse_addr++;
  287. efuse_utilized++;
  288. efuse_word[i][offset] |=
  289. (((u16)*rtemp8 << 8) & 0xff00);
  290. if (efuse_addr >= efuse_len)
  291. break;
  292. }
  293. wren >>= 1;
  294. }
  295. }
  296. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  297. "Addr=%d\n", efuse_addr);
  298. read_efuse_byte(hw, efuse_addr, rtemp8);
  299. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  300. efuse_utilized++;
  301. efuse_addr++;
  302. }
  303. }
  304. for (i = 0; i < efuse_max_section; i++) {
  305. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  306. efuse_tbl[(i * 8) + (j * 2)] =
  307. (efuse_word[j][i] & 0xff);
  308. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  309. ((efuse_word[j][i] >> 8) & 0xff);
  310. }
  311. }
  312. for (i = 0; i < _size_byte; i++)
  313. pbuf[i] = efuse_tbl[_offset + i];
  314. rtlefuse->efuse_usedbytes = efuse_utilized;
  315. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  316. rtlefuse->efuse_usedpercentage = efuse_usage;
  317. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  318. (u8 *)&efuse_utilized);
  319. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  320. &efuse_usage);
  321. done:
  322. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
  323. kfree(efuse_word[i]);
  324. kfree(efuse_word);
  325. out:
  326. kfree(efuse_tbl);
  327. }
  328. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  329. {
  330. struct rtl_priv *rtlpriv = rtl_priv(hw);
  331. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  332. u8 section_idx, i, Base;
  333. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  334. bool wordchanged, result = true;
  335. for (section_idx = 0; section_idx < 16; section_idx++) {
  336. Base = section_idx * 8;
  337. wordchanged = false;
  338. for (i = 0; i < 8; i = i + 2) {
  339. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  340. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  341. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  342. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  343. 1])) {
  344. words_need++;
  345. wordchanged = true;
  346. }
  347. }
  348. if (wordchanged)
  349. hdr_num++;
  350. }
  351. totalbytes = hdr_num + words_need * 2;
  352. efuse_used = rtlefuse->efuse_usedbytes;
  353. if ((totalbytes + efuse_used) >=
  354. (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
  355. result = false;
  356. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  357. "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  358. totalbytes, hdr_num, words_need, efuse_used);
  359. return result;
  360. }
  361. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  362. u16 offset, u32 *value)
  363. {
  364. if (type == 1)
  365. efuse_shadow_read_1byte(hw, offset, (u8 *)value);
  366. else if (type == 2)
  367. efuse_shadow_read_2byte(hw, offset, (u16 *)value);
  368. else if (type == 4)
  369. efuse_shadow_read_4byte(hw, offset, value);
  370. }
  371. EXPORT_SYMBOL(efuse_shadow_read);
  372. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  373. u32 value)
  374. {
  375. if (type == 1)
  376. efuse_shadow_write_1byte(hw, offset, (u8) value);
  377. else if (type == 2)
  378. efuse_shadow_write_2byte(hw, offset, (u16) value);
  379. else if (type == 4)
  380. efuse_shadow_write_4byte(hw, offset, value);
  381. }
  382. bool efuse_shadow_update(struct ieee80211_hw *hw)
  383. {
  384. struct rtl_priv *rtlpriv = rtl_priv(hw);
  385. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  386. u16 i, offset, base;
  387. u8 word_en = 0x0F;
  388. u8 first_pg = false;
  389. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
  390. if (!efuse_shadow_update_chk(hw)) {
  391. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  392. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  393. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  394. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  395. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  396. "efuse out of capacity!!\n");
  397. return false;
  398. }
  399. efuse_power_switch(hw, true, true);
  400. for (offset = 0; offset < 16; offset++) {
  401. word_en = 0x0F;
  402. base = offset * 8;
  403. for (i = 0; i < 8; i++) {
  404. if (first_pg) {
  405. word_en &= ~(BIT(i / 2));
  406. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  407. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  408. } else {
  409. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  410. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  411. word_en &= ~(BIT(i / 2));
  412. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  413. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  414. }
  415. }
  416. }
  417. if (word_en != 0x0F) {
  418. u8 tmpdata[8];
  419. memcpy(tmpdata,
  420. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  421. 8);
  422. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  423. "U-efuse\n", tmpdata, 8);
  424. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  425. tmpdata)) {
  426. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  427. "PG section(%#x) fail!!\n", offset);
  428. break;
  429. }
  430. }
  431. }
  432. efuse_power_switch(hw, true, false);
  433. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  434. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  435. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  436. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  437. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
  438. return true;
  439. }
  440. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  441. {
  442. struct rtl_priv *rtlpriv = rtl_priv(hw);
  443. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  444. if (rtlefuse->autoload_failflag)
  445. memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
  446. 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  447. else
  448. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  449. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  450. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  451. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  452. }
  453. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  454. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  455. {
  456. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  457. efuse_power_switch(hw, true, true);
  458. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  459. efuse_power_switch(hw, true, false);
  460. }
  461. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  462. {
  463. }
  464. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  465. u16 offset, u8 *value)
  466. {
  467. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  468. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  469. }
  470. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  471. u16 offset, u16 *value)
  472. {
  473. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  474. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  475. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  476. }
  477. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  478. u16 offset, u32 *value)
  479. {
  480. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  481. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  482. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  483. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  484. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  485. }
  486. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  487. u16 offset, u8 value)
  488. {
  489. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  490. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  491. }
  492. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  493. u16 offset, u16 value)
  494. {
  495. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  496. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  497. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  498. }
  499. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  500. u16 offset, u32 value)
  501. {
  502. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  503. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  504. (u8) (value & 0x000000FF);
  505. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  506. (u8) ((value >> 8) & 0x0000FF);
  507. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  508. (u8) ((value >> 16) & 0x00FF);
  509. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  510. (u8) ((value >> 24) & 0xFF);
  511. }
  512. int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  513. {
  514. struct rtl_priv *rtlpriv = rtl_priv(hw);
  515. u8 tmpidx = 0;
  516. int result;
  517. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  518. (u8) (addr & 0xff));
  519. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  520. ((u8) ((addr >> 8) & 0x03)) |
  521. (rtl_read_byte(rtlpriv,
  522. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  523. 0xFC));
  524. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  525. while (!(0x80 & rtl_read_byte(rtlpriv,
  526. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  527. && (tmpidx < 100)) {
  528. tmpidx++;
  529. }
  530. if (tmpidx < 100) {
  531. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  532. result = true;
  533. } else {
  534. *data = 0xff;
  535. result = false;
  536. }
  537. return result;
  538. }
  539. EXPORT_SYMBOL(efuse_one_byte_read);
  540. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  541. {
  542. struct rtl_priv *rtlpriv = rtl_priv(hw);
  543. u8 tmpidx = 0;
  544. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  545. "Addr = %x Data=%x\n", addr, data);
  546. rtl_write_byte(rtlpriv,
  547. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  548. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  549. (rtl_read_byte(rtlpriv,
  550. rtlpriv->cfg->maps[EFUSE_CTRL] +
  551. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  552. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  553. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  554. while ((0x80 & rtl_read_byte(rtlpriv,
  555. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  556. && (tmpidx < 100)) {
  557. tmpidx++;
  558. }
  559. if (tmpidx < 100)
  560. return true;
  561. return false;
  562. }
  563. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
  564. {
  565. struct rtl_priv *rtlpriv = rtl_priv(hw);
  566. efuse_power_switch(hw, false, true);
  567. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  568. efuse_power_switch(hw, false, false);
  569. }
  570. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  571. u8 efuse_data, u8 offset, u8 *tmpdata,
  572. u8 *readstate)
  573. {
  574. bool dataempty = true;
  575. u8 hoffset;
  576. u8 tmpidx;
  577. u8 hworden;
  578. u8 word_cnts;
  579. hoffset = (efuse_data >> 4) & 0x0F;
  580. hworden = efuse_data & 0x0F;
  581. word_cnts = efuse_calculate_word_cnts(hworden);
  582. if (hoffset == offset) {
  583. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  584. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  585. &efuse_data)) {
  586. tmpdata[tmpidx] = efuse_data;
  587. if (efuse_data != 0xff)
  588. dataempty = false;
  589. }
  590. }
  591. if (!dataempty) {
  592. *readstate = PG_STATE_DATA;
  593. } else {
  594. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  595. *readstate = PG_STATE_HEADER;
  596. }
  597. } else {
  598. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  599. *readstate = PG_STATE_HEADER;
  600. }
  601. }
  602. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  603. {
  604. u8 readstate = PG_STATE_HEADER;
  605. bool continual = true;
  606. u8 efuse_data, word_cnts = 0;
  607. u16 efuse_addr = 0;
  608. u8 tmpdata[8];
  609. if (data == NULL)
  610. return false;
  611. if (offset > 15)
  612. return false;
  613. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  614. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  615. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  616. if (readstate & PG_STATE_HEADER) {
  617. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  618. && (efuse_data != 0xFF))
  619. efuse_read_data_case1(hw, &efuse_addr,
  620. efuse_data, offset,
  621. tmpdata, &readstate);
  622. else
  623. continual = false;
  624. } else if (readstate & PG_STATE_DATA) {
  625. efuse_word_enable_data_read(0, tmpdata, data);
  626. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  627. readstate = PG_STATE_HEADER;
  628. }
  629. }
  630. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  631. (data[2] == 0xff) && (data[3] == 0xff) &&
  632. (data[4] == 0xff) && (data[5] == 0xff) &&
  633. (data[6] == 0xff) && (data[7] == 0xff))
  634. return false;
  635. else
  636. return true;
  637. }
  638. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  639. u8 efuse_data, u8 offset,
  640. int *continual, u8 *write_state,
  641. struct pgpkt_struct *target_pkt,
  642. int *repeat_times, int *result, u8 word_en)
  643. {
  644. struct rtl_priv *rtlpriv = rtl_priv(hw);
  645. struct pgpkt_struct tmp_pkt;
  646. int dataempty = true;
  647. u8 originaldata[8 * sizeof(u8)];
  648. u8 badworden = 0x0F;
  649. u8 match_word_en, tmp_word_en;
  650. u8 tmpindex;
  651. u8 tmp_header = efuse_data;
  652. u8 tmp_word_cnts;
  653. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  654. tmp_pkt.word_en = tmp_header & 0x0F;
  655. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  656. if (tmp_pkt.offset != target_pkt->offset) {
  657. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  658. *write_state = PG_STATE_HEADER;
  659. } else {
  660. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  661. if (efuse_one_byte_read(hw,
  662. (*efuse_addr + 1 + tmpindex),
  663. &efuse_data) &&
  664. (efuse_data != 0xFF))
  665. dataempty = false;
  666. }
  667. if (!dataempty) {
  668. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  669. *write_state = PG_STATE_HEADER;
  670. } else {
  671. match_word_en = 0x0F;
  672. if (!((target_pkt->word_en & BIT(0)) |
  673. (tmp_pkt.word_en & BIT(0))))
  674. match_word_en &= (~BIT(0));
  675. if (!((target_pkt->word_en & BIT(1)) |
  676. (tmp_pkt.word_en & BIT(1))))
  677. match_word_en &= (~BIT(1));
  678. if (!((target_pkt->word_en & BIT(2)) |
  679. (tmp_pkt.word_en & BIT(2))))
  680. match_word_en &= (~BIT(2));
  681. if (!((target_pkt->word_en & BIT(3)) |
  682. (tmp_pkt.word_en & BIT(3))))
  683. match_word_en &= (~BIT(3));
  684. if ((match_word_en & 0x0F) != 0x0F) {
  685. badworden =
  686. enable_efuse_data_write(hw,
  687. *efuse_addr + 1,
  688. tmp_pkt.word_en,
  689. target_pkt->data);
  690. if (0x0F != (badworden & 0x0F)) {
  691. u8 reorg_offset = offset;
  692. u8 reorg_worden = badworden;
  693. efuse_pg_packet_write(hw, reorg_offset,
  694. reorg_worden,
  695. originaldata);
  696. }
  697. tmp_word_en = 0x0F;
  698. if ((target_pkt->word_en & BIT(0)) ^
  699. (match_word_en & BIT(0)))
  700. tmp_word_en &= (~BIT(0));
  701. if ((target_pkt->word_en & BIT(1)) ^
  702. (match_word_en & BIT(1)))
  703. tmp_word_en &= (~BIT(1));
  704. if ((target_pkt->word_en & BIT(2)) ^
  705. (match_word_en & BIT(2)))
  706. tmp_word_en &= (~BIT(2));
  707. if ((target_pkt->word_en & BIT(3)) ^
  708. (match_word_en & BIT(3)))
  709. tmp_word_en &= (~BIT(3));
  710. if ((tmp_word_en & 0x0F) != 0x0F) {
  711. *efuse_addr = efuse_get_current_size(hw);
  712. target_pkt->offset = offset;
  713. target_pkt->word_en = tmp_word_en;
  714. } else {
  715. *continual = false;
  716. }
  717. *write_state = PG_STATE_HEADER;
  718. *repeat_times += 1;
  719. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  720. *continual = false;
  721. *result = false;
  722. }
  723. } else {
  724. *efuse_addr += (2 * tmp_word_cnts) + 1;
  725. target_pkt->offset = offset;
  726. target_pkt->word_en = word_en;
  727. *write_state = PG_STATE_HEADER;
  728. }
  729. }
  730. }
  731. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
  732. }
  733. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  734. int *continual, u8 *write_state,
  735. struct pgpkt_struct target_pkt,
  736. int *repeat_times, int *result)
  737. {
  738. struct rtl_priv *rtlpriv = rtl_priv(hw);
  739. struct pgpkt_struct tmp_pkt;
  740. u8 pg_header;
  741. u8 tmp_header;
  742. u8 originaldata[8 * sizeof(u8)];
  743. u8 tmp_word_cnts;
  744. u8 badworden = 0x0F;
  745. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  746. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  747. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  748. if (tmp_header == pg_header) {
  749. *write_state = PG_STATE_DATA;
  750. } else if (tmp_header == 0xFF) {
  751. *write_state = PG_STATE_HEADER;
  752. *repeat_times += 1;
  753. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  754. *continual = false;
  755. *result = false;
  756. }
  757. } else {
  758. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  759. tmp_pkt.word_en = tmp_header & 0x0F;
  760. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  761. memset(originaldata, 0xff, 8 * sizeof(u8));
  762. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  763. badworden = enable_efuse_data_write(hw,
  764. *efuse_addr + 1,
  765. tmp_pkt.word_en,
  766. originaldata);
  767. if (0x0F != (badworden & 0x0F)) {
  768. u8 reorg_offset = tmp_pkt.offset;
  769. u8 reorg_worden = badworden;
  770. efuse_pg_packet_write(hw, reorg_offset,
  771. reorg_worden,
  772. originaldata);
  773. *efuse_addr = efuse_get_current_size(hw);
  774. } else {
  775. *efuse_addr = *efuse_addr +
  776. (tmp_word_cnts * 2) + 1;
  777. }
  778. } else {
  779. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  780. }
  781. *write_state = PG_STATE_HEADER;
  782. *repeat_times += 1;
  783. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  784. *continual = false;
  785. *result = false;
  786. }
  787. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  788. "efuse PG_STATE_HEADER-2\n");
  789. }
  790. }
  791. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  792. u8 offset, u8 word_en, u8 *data)
  793. {
  794. struct rtl_priv *rtlpriv = rtl_priv(hw);
  795. struct pgpkt_struct target_pkt;
  796. u8 write_state = PG_STATE_HEADER;
  797. int continual = true, dataempty = true, result = true;
  798. u16 efuse_addr = 0;
  799. u8 efuse_data;
  800. u8 target_word_cnts = 0;
  801. u8 badworden = 0x0F;
  802. static int repeat_times;
  803. if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
  804. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  805. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  806. "efuse_pg_packet_write error\n");
  807. return false;
  808. }
  809. target_pkt.offset = offset;
  810. target_pkt.word_en = word_en;
  811. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  812. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  813. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  814. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
  815. while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
  816. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
  817. if (write_state == PG_STATE_HEADER) {
  818. dataempty = true;
  819. badworden = 0x0F;
  820. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  821. "efuse PG_STATE_HEADER\n");
  822. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  823. (efuse_data != 0xFF))
  824. efuse_write_data_case1(hw, &efuse_addr,
  825. efuse_data, offset,
  826. &continual,
  827. &write_state,
  828. &target_pkt,
  829. &repeat_times, &result,
  830. word_en);
  831. else
  832. efuse_write_data_case2(hw, &efuse_addr,
  833. &continual,
  834. &write_state,
  835. target_pkt,
  836. &repeat_times,
  837. &result);
  838. } else if (write_state == PG_STATE_DATA) {
  839. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  840. "efuse PG_STATE_DATA\n");
  841. badworden = 0x0f;
  842. badworden =
  843. enable_efuse_data_write(hw, efuse_addr + 1,
  844. target_pkt.word_en,
  845. target_pkt.data);
  846. if ((badworden & 0x0F) == 0x0F) {
  847. continual = false;
  848. } else {
  849. efuse_addr =
  850. efuse_addr + (2 * target_word_cnts) + 1;
  851. target_pkt.offset = offset;
  852. target_pkt.word_en = badworden;
  853. target_word_cnts =
  854. efuse_calculate_word_cnts(target_pkt.
  855. word_en);
  856. write_state = PG_STATE_HEADER;
  857. repeat_times++;
  858. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  859. continual = false;
  860. result = false;
  861. }
  862. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  863. "efuse PG_STATE_HEADER-3\n");
  864. }
  865. }
  866. }
  867. if (efuse_addr >= (EFUSE_MAX_SIZE -
  868. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  869. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  870. "efuse_addr(%#x) Out of size!!\n", efuse_addr);
  871. }
  872. return true;
  873. }
  874. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  875. u8 *targetdata)
  876. {
  877. if (!(word_en & BIT(0))) {
  878. targetdata[0] = sourdata[0];
  879. targetdata[1] = sourdata[1];
  880. }
  881. if (!(word_en & BIT(1))) {
  882. targetdata[2] = sourdata[2];
  883. targetdata[3] = sourdata[3];
  884. }
  885. if (!(word_en & BIT(2))) {
  886. targetdata[4] = sourdata[4];
  887. targetdata[5] = sourdata[5];
  888. }
  889. if (!(word_en & BIT(3))) {
  890. targetdata[6] = sourdata[6];
  891. targetdata[7] = sourdata[7];
  892. }
  893. }
  894. static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
  895. u16 efuse_addr, u8 word_en, u8 *data)
  896. {
  897. struct rtl_priv *rtlpriv = rtl_priv(hw);
  898. u16 tmpaddr;
  899. u16 start_addr = efuse_addr;
  900. u8 badworden = 0x0F;
  901. u8 tmpdata[8];
  902. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  903. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  904. "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
  905. if (!(word_en & BIT(0))) {
  906. tmpaddr = start_addr;
  907. efuse_one_byte_write(hw, start_addr++, data[0]);
  908. efuse_one_byte_write(hw, start_addr++, data[1]);
  909. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  910. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  911. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  912. badworden &= (~BIT(0));
  913. }
  914. if (!(word_en & BIT(1))) {
  915. tmpaddr = start_addr;
  916. efuse_one_byte_write(hw, start_addr++, data[2]);
  917. efuse_one_byte_write(hw, start_addr++, data[3]);
  918. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  919. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  920. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  921. badworden &= (~BIT(1));
  922. }
  923. if (!(word_en & BIT(2))) {
  924. tmpaddr = start_addr;
  925. efuse_one_byte_write(hw, start_addr++, data[4]);
  926. efuse_one_byte_write(hw, start_addr++, data[5]);
  927. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  928. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  929. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  930. badworden &= (~BIT(2));
  931. }
  932. if (!(word_en & BIT(3))) {
  933. tmpaddr = start_addr;
  934. efuse_one_byte_write(hw, start_addr++, data[6]);
  935. efuse_one_byte_write(hw, start_addr++, data[7]);
  936. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  937. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  938. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  939. badworden &= (~BIT(3));
  940. }
  941. return badworden;
  942. }
  943. void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  944. {
  945. struct rtl_priv *rtlpriv = rtl_priv(hw);
  946. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  947. u8 tempval;
  948. u16 tmpV16;
  949. if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
  950. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
  951. rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
  952. rtl_write_byte(rtlpriv,
  953. rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
  954. } else {
  955. tmpV16 =
  956. rtl_read_word(rtlpriv,
  957. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  958. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  959. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  960. rtl_write_word(rtlpriv,
  961. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  962. tmpV16);
  963. }
  964. }
  965. tmpV16 = rtl_read_word(rtlpriv,
  966. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  967. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  968. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  969. rtl_write_word(rtlpriv,
  970. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  971. }
  972. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  973. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  974. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  975. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  976. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  977. rtl_write_word(rtlpriv,
  978. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  979. }
  980. }
  981. if (pwrstate) {
  982. if (write) {
  983. tempval = rtl_read_byte(rtlpriv,
  984. rtlpriv->cfg->maps[EFUSE_TEST] +
  985. 3);
  986. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
  987. tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
  988. tempval |= (VOLTAGE_V25 << 3);
  989. } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  990. tempval &= 0x0F;
  991. tempval |= (VOLTAGE_V25 << 4);
  992. }
  993. rtl_write_byte(rtlpriv,
  994. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  995. (tempval | 0x80));
  996. }
  997. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  998. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  999. 0x03);
  1000. }
  1001. } else {
  1002. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
  1003. rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
  1004. rtl_write_byte(rtlpriv,
  1005. rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
  1006. if (write) {
  1007. tempval = rtl_read_byte(rtlpriv,
  1008. rtlpriv->cfg->maps[EFUSE_TEST] +
  1009. 3);
  1010. rtl_write_byte(rtlpriv,
  1011. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  1012. (tempval & 0x7F));
  1013. }
  1014. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  1015. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  1016. 0x02);
  1017. }
  1018. }
  1019. }
  1020. EXPORT_SYMBOL(efuse_power_switch);
  1021. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  1022. {
  1023. int continual = true;
  1024. u16 efuse_addr = 0;
  1025. u8 hoffset, hworden;
  1026. u8 efuse_data, word_cnts;
  1027. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  1028. (efuse_addr < EFUSE_MAX_SIZE)) {
  1029. if (efuse_data != 0xFF) {
  1030. hoffset = (efuse_data >> 4) & 0x0F;
  1031. hworden = efuse_data & 0x0F;
  1032. word_cnts = efuse_calculate_word_cnts(hworden);
  1033. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  1034. } else {
  1035. continual = false;
  1036. }
  1037. }
  1038. return efuse_addr;
  1039. }
  1040. static u8 efuse_calculate_word_cnts(u8 word_en)
  1041. {
  1042. u8 word_cnts = 0;
  1043. if (!(word_en & BIT(0)))
  1044. word_cnts++;
  1045. if (!(word_en & BIT(1)))
  1046. word_cnts++;
  1047. if (!(word_en & BIT(2)))
  1048. word_cnts++;
  1049. if (!(word_en & BIT(3)))
  1050. word_cnts++;
  1051. return word_cnts;
  1052. }
  1053. int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
  1054. int max_size, u8 *hwinfo, int *params)
  1055. {
  1056. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1057. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1058. struct device *dev = &rtlpcipriv->dev.pdev->dev;
  1059. u16 eeprom_id;
  1060. u16 i, usvalue;
  1061. switch (rtlefuse->epromtype) {
  1062. case EEPROM_BOOT_EFUSE:
  1063. rtl_efuse_shadow_map_update(hw);
  1064. break;
  1065. case EEPROM_93C46:
  1066. pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
  1067. return 1;
  1068. default:
  1069. dev_warn(dev, "no efuse data\n");
  1070. return 1;
  1071. }
  1072. memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
  1073. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1074. hwinfo, max_size);
  1075. eeprom_id = *((u16 *)&hwinfo[0]);
  1076. if (eeprom_id != params[0]) {
  1077. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1078. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1079. rtlefuse->autoload_failflag = true;
  1080. } else {
  1081. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1082. rtlefuse->autoload_failflag = false;
  1083. }
  1084. if (rtlefuse->autoload_failflag)
  1085. return 1;
  1086. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
  1087. rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
  1088. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
  1089. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
  1090. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1091. "EEPROMId = 0x%4x\n", eeprom_id);
  1092. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1093. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1094. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1095. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1096. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1097. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1098. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1099. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1100. for (i = 0; i < 6; i += 2) {
  1101. usvalue = *(u16 *)&hwinfo[params[5] + i];
  1102. *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
  1103. }
  1104. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1105. rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
  1106. rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
  1107. rtlefuse->txpwr_fromeprom = true;
  1108. rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
  1109. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1110. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1111. /* set channel plan to world wide 13 */
  1112. rtlefuse->channel_plan = params[9];
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
  1116. void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
  1117. {
  1118. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1119. u8 *pu4byteptr = (u8 *)buffer;
  1120. u32 i;
  1121. for (i = 0; i < size; i++)
  1122. rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
  1123. }
  1124. EXPORT_SYMBOL_GPL(rtl_fw_block_write);
  1125. void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
  1126. u32 size)
  1127. {
  1128. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1129. u8 value8;
  1130. u8 u8page = (u8)(page & 0x07);
  1131. value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
  1132. rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
  1133. rtl_fw_block_write(hw, buffer, size);
  1134. }
  1135. EXPORT_SYMBOL_GPL(rtl_fw_page_write);
  1136. void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
  1137. {
  1138. u32 fwlen = *pfwlen;
  1139. u8 remain = (u8)(fwlen % 4);
  1140. remain = (remain == 0) ? 0 : (4 - remain);
  1141. while (remain > 0) {
  1142. pfwbuf[fwlen] = 0;
  1143. fwlen++;
  1144. remain--;
  1145. }
  1146. *pfwlen = fwlen;
  1147. }
  1148. EXPORT_SYMBOL_GPL(rtl_fill_dummy);