bcmsdh.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. /*
  2. * Copyright (c) 2010 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ****************** SDIO CARD Interface Functions **************************/
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/pci.h>
  20. #include <linux/pci_ids.h>
  21. #include <linux/sched.h>
  22. #include <linux/completion.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/mmc/sdio.h>
  26. #include <linux/mmc/core.h>
  27. #include <linux/mmc/sdio_func.h>
  28. #include <linux/mmc/card.h>
  29. #include <linux/mmc/host.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/suspend.h>
  32. #include <linux/errno.h>
  33. #include <linux/module.h>
  34. #include <linux/acpi.h>
  35. #include <net/cfg80211.h>
  36. #include <defs.h>
  37. #include <brcm_hw_ids.h>
  38. #include <brcmu_utils.h>
  39. #include <brcmu_wifi.h>
  40. #include <chipcommon.h>
  41. #include <soc.h>
  42. #include "chip.h"
  43. #include "bus.h"
  44. #include "debug.h"
  45. #include "sdio.h"
  46. #include "core.h"
  47. #include "common.h"
  48. #define SDIOH_API_ACCESS_RETRY_LIMIT 2
  49. #define DMA_ALIGN_MASK 0x03
  50. #define SDIO_FUNC1_BLOCKSIZE 64
  51. #define SDIO_FUNC2_BLOCKSIZE 512
  52. /* Maximum milliseconds to wait for F2 to come up */
  53. #define SDIO_WAIT_F2RDY 3000
  54. #define BRCMF_DEFAULT_RXGLOM_SIZE 32 /* max rx frames in glom chain */
  55. struct brcmf_sdiod_freezer {
  56. atomic_t freezing;
  57. atomic_t thread_count;
  58. u32 frozen_count;
  59. wait_queue_head_t thread_freeze;
  60. struct completion resumed;
  61. };
  62. static irqreturn_t brcmf_sdiod_oob_irqhandler(int irq, void *dev_id)
  63. {
  64. struct brcmf_bus *bus_if = dev_get_drvdata(dev_id);
  65. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  66. brcmf_dbg(INTR, "OOB intr triggered\n");
  67. /* out-of-band interrupt is level-triggered which won't
  68. * be cleared until dpc
  69. */
  70. if (sdiodev->irq_en) {
  71. disable_irq_nosync(irq);
  72. sdiodev->irq_en = false;
  73. }
  74. brcmf_sdio_isr(sdiodev->bus);
  75. return IRQ_HANDLED;
  76. }
  77. static void brcmf_sdiod_ib_irqhandler(struct sdio_func *func)
  78. {
  79. struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev);
  80. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  81. brcmf_dbg(INTR, "IB intr triggered\n");
  82. brcmf_sdio_isr(sdiodev->bus);
  83. }
  84. /* dummy handler for SDIO function 2 interrupt */
  85. static void brcmf_sdiod_dummy_irqhandler(struct sdio_func *func)
  86. {
  87. }
  88. int brcmf_sdiod_intr_register(struct brcmf_sdio_dev *sdiodev)
  89. {
  90. struct brcmfmac_sdio_pd *pdata;
  91. int ret = 0;
  92. u8 data;
  93. u32 addr, gpiocontrol;
  94. unsigned long flags;
  95. pdata = &sdiodev->settings->bus.sdio;
  96. if (pdata->oob_irq_supported) {
  97. brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n",
  98. pdata->oob_irq_nr);
  99. ret = request_irq(pdata->oob_irq_nr, brcmf_sdiod_oob_irqhandler,
  100. pdata->oob_irq_flags, "brcmf_oob_intr",
  101. &sdiodev->func[1]->dev);
  102. if (ret != 0) {
  103. brcmf_err("request_irq failed %d\n", ret);
  104. return ret;
  105. }
  106. sdiodev->oob_irq_requested = true;
  107. spin_lock_init(&sdiodev->irq_en_lock);
  108. spin_lock_irqsave(&sdiodev->irq_en_lock, flags);
  109. sdiodev->irq_en = true;
  110. spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags);
  111. ret = enable_irq_wake(pdata->oob_irq_nr);
  112. if (ret != 0) {
  113. brcmf_err("enable_irq_wake failed %d\n", ret);
  114. return ret;
  115. }
  116. sdiodev->irq_wake = true;
  117. sdio_claim_host(sdiodev->func[1]);
  118. if (sdiodev->bus_if->chip == BRCM_CC_43362_CHIP_ID) {
  119. /* assign GPIO to SDIO core */
  120. addr = CORE_CC_REG(SI_ENUM_BASE, gpiocontrol);
  121. gpiocontrol = brcmf_sdiod_regrl(sdiodev, addr, &ret);
  122. gpiocontrol |= 0x2;
  123. brcmf_sdiod_regwl(sdiodev, addr, gpiocontrol, &ret);
  124. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_SELECT, 0xf,
  125. &ret);
  126. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_OUT, 0, &ret);
  127. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_EN, 0x2, &ret);
  128. }
  129. /* must configure SDIO_CCCR_IENx to enable irq */
  130. data = brcmf_sdiod_regrb(sdiodev, SDIO_CCCR_IENx, &ret);
  131. data |= 1 << SDIO_FUNC_1 | 1 << SDIO_FUNC_2 | 1;
  132. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, data, &ret);
  133. /* redirect, configure and enable io for interrupt signal */
  134. data = SDIO_SEPINT_MASK | SDIO_SEPINT_OE;
  135. if (pdata->oob_irq_flags & IRQF_TRIGGER_HIGH)
  136. data |= SDIO_SEPINT_ACT_HI;
  137. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret);
  138. sdio_release_host(sdiodev->func[1]);
  139. } else {
  140. brcmf_dbg(SDIO, "Entering\n");
  141. sdio_claim_host(sdiodev->func[1]);
  142. sdio_claim_irq(sdiodev->func[1], brcmf_sdiod_ib_irqhandler);
  143. sdio_claim_irq(sdiodev->func[2], brcmf_sdiod_dummy_irqhandler);
  144. sdio_release_host(sdiodev->func[1]);
  145. sdiodev->sd_irq_requested = true;
  146. }
  147. return 0;
  148. }
  149. void brcmf_sdiod_intr_unregister(struct brcmf_sdio_dev *sdiodev)
  150. {
  151. brcmf_dbg(SDIO, "Entering oob=%d sd=%d\n",
  152. sdiodev->oob_irq_requested,
  153. sdiodev->sd_irq_requested);
  154. if (sdiodev->oob_irq_requested) {
  155. struct brcmfmac_sdio_pd *pdata;
  156. pdata = &sdiodev->settings->bus.sdio;
  157. sdio_claim_host(sdiodev->func[1]);
  158. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL);
  159. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, 0, NULL);
  160. sdio_release_host(sdiodev->func[1]);
  161. sdiodev->oob_irq_requested = false;
  162. if (sdiodev->irq_wake) {
  163. disable_irq_wake(pdata->oob_irq_nr);
  164. sdiodev->irq_wake = false;
  165. }
  166. free_irq(pdata->oob_irq_nr, &sdiodev->func[1]->dev);
  167. sdiodev->irq_en = false;
  168. sdiodev->oob_irq_requested = false;
  169. }
  170. if (sdiodev->sd_irq_requested) {
  171. sdio_claim_host(sdiodev->func[1]);
  172. sdio_release_irq(sdiodev->func[2]);
  173. sdio_release_irq(sdiodev->func[1]);
  174. sdio_release_host(sdiodev->func[1]);
  175. sdiodev->sd_irq_requested = false;
  176. }
  177. }
  178. void brcmf_sdiod_change_state(struct brcmf_sdio_dev *sdiodev,
  179. enum brcmf_sdiod_state state)
  180. {
  181. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM ||
  182. state == sdiodev->state)
  183. return;
  184. brcmf_dbg(TRACE, "%d -> %d\n", sdiodev->state, state);
  185. switch (sdiodev->state) {
  186. case BRCMF_SDIOD_DATA:
  187. /* any other state means bus interface is down */
  188. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_DOWN);
  189. break;
  190. case BRCMF_SDIOD_DOWN:
  191. /* transition from DOWN to DATA means bus interface is up */
  192. if (state == BRCMF_SDIOD_DATA)
  193. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_UP);
  194. break;
  195. default:
  196. break;
  197. }
  198. sdiodev->state = state;
  199. }
  200. static inline int brcmf_sdiod_f0_writeb(struct sdio_func *func,
  201. uint regaddr, u8 byte)
  202. {
  203. int err_ret;
  204. /*
  205. * Can only directly write to some F0 registers.
  206. * Handle CCCR_IENx and CCCR_ABORT command
  207. * as a special case.
  208. */
  209. if ((regaddr == SDIO_CCCR_ABORT) ||
  210. (regaddr == SDIO_CCCR_IENx))
  211. sdio_writeb(func, byte, regaddr, &err_ret);
  212. else
  213. sdio_f0_writeb(func, byte, regaddr, &err_ret);
  214. return err_ret;
  215. }
  216. static int brcmf_sdiod_request_data(struct brcmf_sdio_dev *sdiodev, u8 fn,
  217. u32 addr, u8 regsz, void *data, bool write)
  218. {
  219. struct sdio_func *func;
  220. int ret = -EINVAL;
  221. brcmf_dbg(SDIO, "rw=%d, func=%d, addr=0x%05x, nbytes=%d\n",
  222. write, fn, addr, regsz);
  223. /* only allow byte access on F0 */
  224. if (WARN_ON(regsz > 1 && !fn))
  225. return -EINVAL;
  226. func = sdiodev->func[fn];
  227. switch (regsz) {
  228. case sizeof(u8):
  229. if (write) {
  230. if (fn)
  231. sdio_writeb(func, *(u8 *)data, addr, &ret);
  232. else
  233. ret = brcmf_sdiod_f0_writeb(func, addr,
  234. *(u8 *)data);
  235. } else {
  236. if (fn)
  237. *(u8 *)data = sdio_readb(func, addr, &ret);
  238. else
  239. *(u8 *)data = sdio_f0_readb(func, addr, &ret);
  240. }
  241. break;
  242. case sizeof(u16):
  243. if (write)
  244. sdio_writew(func, *(u16 *)data, addr, &ret);
  245. else
  246. *(u16 *)data = sdio_readw(func, addr, &ret);
  247. break;
  248. case sizeof(u32):
  249. if (write)
  250. sdio_writel(func, *(u32 *)data, addr, &ret);
  251. else
  252. *(u32 *)data = sdio_readl(func, addr, &ret);
  253. break;
  254. default:
  255. brcmf_err("invalid size: %d\n", regsz);
  256. break;
  257. }
  258. if (ret)
  259. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  260. write ? "write" : "read", fn, addr, ret);
  261. return ret;
  262. }
  263. static int brcmf_sdiod_regrw_helper(struct brcmf_sdio_dev *sdiodev, u32 addr,
  264. u8 regsz, void *data, bool write)
  265. {
  266. u8 func;
  267. s32 retry = 0;
  268. int ret;
  269. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  270. return -ENOMEDIUM;
  271. /*
  272. * figure out how to read the register based on address range
  273. * 0x00 ~ 0x7FF: function 0 CCCR and FBR
  274. * 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
  275. * The rest: function 1 silicon backplane core registers
  276. */
  277. if ((addr & ~REG_F0_REG_MASK) == 0)
  278. func = SDIO_FUNC_0;
  279. else
  280. func = SDIO_FUNC_1;
  281. do {
  282. if (!write)
  283. memset(data, 0, regsz);
  284. /* for retry wait for 1 ms till bus get settled down */
  285. if (retry)
  286. usleep_range(1000, 2000);
  287. ret = brcmf_sdiod_request_data(sdiodev, func, addr, regsz,
  288. data, write);
  289. } while (ret != 0 && ret != -ENOMEDIUM &&
  290. retry++ < SDIOH_API_ACCESS_RETRY_LIMIT);
  291. if (ret == -ENOMEDIUM)
  292. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  293. else if (ret != 0) {
  294. /*
  295. * SleepCSR register access can fail when
  296. * waking up the device so reduce this noise
  297. * in the logs.
  298. */
  299. if (addr != SBSDIO_FUNC1_SLEEPCSR)
  300. brcmf_err("failed to %s data F%d@0x%05x, err: %d\n",
  301. write ? "write" : "read", func, addr, ret);
  302. else
  303. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  304. write ? "write" : "read", func, addr, ret);
  305. }
  306. return ret;
  307. }
  308. static int
  309. brcmf_sdiod_set_sbaddr_window(struct brcmf_sdio_dev *sdiodev, u32 address)
  310. {
  311. int err = 0, i;
  312. u8 addr[3];
  313. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  314. return -ENOMEDIUM;
  315. addr[0] = (address >> 8) & SBSDIO_SBADDRLOW_MASK;
  316. addr[1] = (address >> 16) & SBSDIO_SBADDRMID_MASK;
  317. addr[2] = (address >> 24) & SBSDIO_SBADDRHIGH_MASK;
  318. for (i = 0; i < 3; i++) {
  319. err = brcmf_sdiod_regrw_helper(sdiodev,
  320. SBSDIO_FUNC1_SBADDRLOW + i,
  321. sizeof(u8), &addr[i], true);
  322. if (err) {
  323. brcmf_err("failed at addr: 0x%0x\n",
  324. SBSDIO_FUNC1_SBADDRLOW + i);
  325. break;
  326. }
  327. }
  328. return err;
  329. }
  330. static int
  331. brcmf_sdiod_addrprep(struct brcmf_sdio_dev *sdiodev, uint width, u32 *addr)
  332. {
  333. uint bar0 = *addr & ~SBSDIO_SB_OFT_ADDR_MASK;
  334. int err = 0;
  335. if (bar0 != sdiodev->sbwad) {
  336. err = brcmf_sdiod_set_sbaddr_window(sdiodev, bar0);
  337. if (err)
  338. return err;
  339. sdiodev->sbwad = bar0;
  340. }
  341. *addr &= SBSDIO_SB_OFT_ADDR_MASK;
  342. if (width == 4)
  343. *addr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  344. return 0;
  345. }
  346. u8 brcmf_sdiod_regrb(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  347. {
  348. u8 data;
  349. int retval;
  350. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  351. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  352. false);
  353. brcmf_dbg(SDIO, "data:0x%02x\n", data);
  354. if (ret)
  355. *ret = retval;
  356. return data;
  357. }
  358. u32 brcmf_sdiod_regrl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  359. {
  360. u32 data = 0;
  361. int retval;
  362. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  363. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  364. if (retval)
  365. goto done;
  366. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  367. false);
  368. brcmf_dbg(SDIO, "data:0x%08x\n", data);
  369. done:
  370. if (ret)
  371. *ret = retval;
  372. return data;
  373. }
  374. void brcmf_sdiod_regwb(struct brcmf_sdio_dev *sdiodev, u32 addr,
  375. u8 data, int *ret)
  376. {
  377. int retval;
  378. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%02x\n", addr, data);
  379. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  380. true);
  381. if (ret)
  382. *ret = retval;
  383. }
  384. void brcmf_sdiod_regwl(struct brcmf_sdio_dev *sdiodev, u32 addr,
  385. u32 data, int *ret)
  386. {
  387. int retval;
  388. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%08x\n", addr, data);
  389. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  390. if (retval)
  391. goto done;
  392. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  393. true);
  394. done:
  395. if (ret)
  396. *ret = retval;
  397. }
  398. static int brcmf_sdiod_buffrw(struct brcmf_sdio_dev *sdiodev, uint fn,
  399. bool write, u32 addr, struct sk_buff *pkt)
  400. {
  401. unsigned int req_sz;
  402. int err;
  403. /* Single skb use the standard mmc interface */
  404. req_sz = pkt->len + 3;
  405. req_sz &= (uint)~3;
  406. if (write)
  407. err = sdio_memcpy_toio(sdiodev->func[fn], addr,
  408. ((u8 *)(pkt->data)), req_sz);
  409. else if (fn == 1)
  410. err = sdio_memcpy_fromio(sdiodev->func[fn], ((u8 *)(pkt->data)),
  411. addr, req_sz);
  412. else
  413. /* function 2 read is FIFO operation */
  414. err = sdio_readsb(sdiodev->func[fn], ((u8 *)(pkt->data)), addr,
  415. req_sz);
  416. if (err == -ENOMEDIUM)
  417. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  418. return err;
  419. }
  420. /**
  421. * brcmf_sdiod_sglist_rw - SDIO interface function for block data access
  422. * @sdiodev: brcmfmac sdio device
  423. * @fn: SDIO function number
  424. * @write: direction flag
  425. * @addr: dongle memory address as source/destination
  426. * @pkt: skb pointer
  427. *
  428. * This function takes the respbonsibility as the interface function to MMC
  429. * stack for block data access. It assumes that the skb passed down by the
  430. * caller has already been padded and aligned.
  431. */
  432. static int brcmf_sdiod_sglist_rw(struct brcmf_sdio_dev *sdiodev, uint fn,
  433. bool write, u32 addr,
  434. struct sk_buff_head *pktlist)
  435. {
  436. unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset;
  437. unsigned int max_req_sz, orig_offset, dst_offset;
  438. unsigned short max_seg_cnt, seg_sz;
  439. unsigned char *pkt_data, *orig_data, *dst_data;
  440. struct sk_buff *pkt_next = NULL, *local_pkt_next;
  441. struct sk_buff_head local_list, *target_list;
  442. struct mmc_request mmc_req;
  443. struct mmc_command mmc_cmd;
  444. struct mmc_data mmc_dat;
  445. struct scatterlist *sgl;
  446. int ret = 0;
  447. if (!pktlist->qlen)
  448. return -EINVAL;
  449. target_list = pktlist;
  450. /* for host with broken sg support, prepare a page aligned list */
  451. __skb_queue_head_init(&local_list);
  452. if (!write && sdiodev->settings->bus.sdio.broken_sg_support) {
  453. req_sz = 0;
  454. skb_queue_walk(pktlist, pkt_next)
  455. req_sz += pkt_next->len;
  456. req_sz = ALIGN(req_sz, sdiodev->func[fn]->cur_blksize);
  457. while (req_sz > PAGE_SIZE) {
  458. pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE);
  459. if (pkt_next == NULL) {
  460. ret = -ENOMEM;
  461. goto exit;
  462. }
  463. __skb_queue_tail(&local_list, pkt_next);
  464. req_sz -= PAGE_SIZE;
  465. }
  466. pkt_next = brcmu_pkt_buf_get_skb(req_sz);
  467. if (pkt_next == NULL) {
  468. ret = -ENOMEM;
  469. goto exit;
  470. }
  471. __skb_queue_tail(&local_list, pkt_next);
  472. target_list = &local_list;
  473. }
  474. func_blk_sz = sdiodev->func[fn]->cur_blksize;
  475. max_req_sz = sdiodev->max_request_size;
  476. max_seg_cnt = min_t(unsigned short, sdiodev->max_segment_count,
  477. target_list->qlen);
  478. seg_sz = target_list->qlen;
  479. pkt_offset = 0;
  480. pkt_next = target_list->next;
  481. memset(&mmc_req, 0, sizeof(struct mmc_request));
  482. memset(&mmc_cmd, 0, sizeof(struct mmc_command));
  483. memset(&mmc_dat, 0, sizeof(struct mmc_data));
  484. mmc_dat.sg = sdiodev->sgtable.sgl;
  485. mmc_dat.blksz = func_blk_sz;
  486. mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
  487. mmc_cmd.opcode = SD_IO_RW_EXTENDED;
  488. mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */
  489. mmc_cmd.arg |= (fn & 0x7) << 28; /* SDIO func num */
  490. mmc_cmd.arg |= 1<<27; /* block mode */
  491. /* for function 1 the addr will be incremented */
  492. mmc_cmd.arg |= (fn == 1) ? 1<<26 : 0;
  493. mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
  494. mmc_req.cmd = &mmc_cmd;
  495. mmc_req.data = &mmc_dat;
  496. while (seg_sz) {
  497. req_sz = 0;
  498. sg_cnt = 0;
  499. sgl = sdiodev->sgtable.sgl;
  500. /* prep sg table */
  501. while (pkt_next != (struct sk_buff *)target_list) {
  502. pkt_data = pkt_next->data + pkt_offset;
  503. sg_data_sz = pkt_next->len - pkt_offset;
  504. if (sg_data_sz > sdiodev->max_segment_size)
  505. sg_data_sz = sdiodev->max_segment_size;
  506. if (sg_data_sz > max_req_sz - req_sz)
  507. sg_data_sz = max_req_sz - req_sz;
  508. sg_set_buf(sgl, pkt_data, sg_data_sz);
  509. sg_cnt++;
  510. sgl = sg_next(sgl);
  511. req_sz += sg_data_sz;
  512. pkt_offset += sg_data_sz;
  513. if (pkt_offset == pkt_next->len) {
  514. pkt_offset = 0;
  515. pkt_next = pkt_next->next;
  516. }
  517. if (req_sz >= max_req_sz || sg_cnt >= max_seg_cnt)
  518. break;
  519. }
  520. seg_sz -= sg_cnt;
  521. if (req_sz % func_blk_sz != 0) {
  522. brcmf_err("sg request length %u is not %u aligned\n",
  523. req_sz, func_blk_sz);
  524. ret = -ENOTBLK;
  525. goto exit;
  526. }
  527. mmc_dat.sg_len = sg_cnt;
  528. mmc_dat.blocks = req_sz / func_blk_sz;
  529. mmc_cmd.arg |= (addr & 0x1FFFF) << 9; /* address */
  530. mmc_cmd.arg |= mmc_dat.blocks & 0x1FF; /* block count */
  531. /* incrementing addr for function 1 */
  532. if (fn == 1)
  533. addr += req_sz;
  534. mmc_set_data_timeout(&mmc_dat, sdiodev->func[fn]->card);
  535. mmc_wait_for_req(sdiodev->func[fn]->card->host, &mmc_req);
  536. ret = mmc_cmd.error ? mmc_cmd.error : mmc_dat.error;
  537. if (ret == -ENOMEDIUM) {
  538. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  539. break;
  540. } else if (ret != 0) {
  541. brcmf_err("CMD53 sg block %s failed %d\n",
  542. write ? "write" : "read", ret);
  543. ret = -EIO;
  544. break;
  545. }
  546. }
  547. if (!write && sdiodev->settings->bus.sdio.broken_sg_support) {
  548. local_pkt_next = local_list.next;
  549. orig_offset = 0;
  550. skb_queue_walk(pktlist, pkt_next) {
  551. dst_offset = 0;
  552. do {
  553. req_sz = local_pkt_next->len - orig_offset;
  554. req_sz = min_t(uint, pkt_next->len - dst_offset,
  555. req_sz);
  556. orig_data = local_pkt_next->data + orig_offset;
  557. dst_data = pkt_next->data + dst_offset;
  558. memcpy(dst_data, orig_data, req_sz);
  559. orig_offset += req_sz;
  560. dst_offset += req_sz;
  561. if (orig_offset == local_pkt_next->len) {
  562. orig_offset = 0;
  563. local_pkt_next = local_pkt_next->next;
  564. }
  565. if (dst_offset == pkt_next->len)
  566. break;
  567. } while (!skb_queue_empty(&local_list));
  568. }
  569. }
  570. exit:
  571. sg_init_table(sdiodev->sgtable.sgl, sdiodev->sgtable.orig_nents);
  572. while ((pkt_next = __skb_dequeue(&local_list)) != NULL)
  573. brcmu_pkt_buf_free_skb(pkt_next);
  574. return ret;
  575. }
  576. int brcmf_sdiod_recv_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  577. {
  578. struct sk_buff *mypkt;
  579. int err;
  580. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  581. if (!mypkt) {
  582. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  583. nbytes);
  584. return -EIO;
  585. }
  586. err = brcmf_sdiod_recv_pkt(sdiodev, mypkt);
  587. if (!err)
  588. memcpy(buf, mypkt->data, nbytes);
  589. brcmu_pkt_buf_free_skb(mypkt);
  590. return err;
  591. }
  592. int brcmf_sdiod_recv_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff *pkt)
  593. {
  594. u32 addr = sdiodev->sbwad;
  595. int err = 0;
  596. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pkt->len);
  597. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  598. if (err)
  599. goto done;
  600. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, pkt);
  601. done:
  602. return err;
  603. }
  604. int brcmf_sdiod_recv_chain(struct brcmf_sdio_dev *sdiodev,
  605. struct sk_buff_head *pktq, uint totlen)
  606. {
  607. struct sk_buff *glom_skb;
  608. struct sk_buff *skb;
  609. u32 addr = sdiodev->sbwad;
  610. int err = 0;
  611. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n",
  612. addr, pktq->qlen);
  613. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  614. if (err)
  615. goto done;
  616. if (pktq->qlen == 1)
  617. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  618. pktq->next);
  619. else if (!sdiodev->sg_support) {
  620. glom_skb = brcmu_pkt_buf_get_skb(totlen);
  621. if (!glom_skb)
  622. return -ENOMEM;
  623. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  624. glom_skb);
  625. if (err) {
  626. brcmu_pkt_buf_free_skb(glom_skb);
  627. goto done;
  628. }
  629. skb_queue_walk(pktq, skb) {
  630. memcpy(skb->data, glom_skb->data, skb->len);
  631. skb_pull(glom_skb, skb->len);
  632. }
  633. } else
  634. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, false, addr,
  635. pktq);
  636. done:
  637. return err;
  638. }
  639. int brcmf_sdiod_send_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  640. {
  641. struct sk_buff *mypkt;
  642. u32 addr = sdiodev->sbwad;
  643. int err;
  644. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  645. if (!mypkt) {
  646. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  647. nbytes);
  648. return -EIO;
  649. }
  650. memcpy(mypkt->data, buf, nbytes);
  651. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  652. if (!err)
  653. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true, addr,
  654. mypkt);
  655. brcmu_pkt_buf_free_skb(mypkt);
  656. return err;
  657. }
  658. int brcmf_sdiod_send_pkt(struct brcmf_sdio_dev *sdiodev,
  659. struct sk_buff_head *pktq)
  660. {
  661. struct sk_buff *skb;
  662. u32 addr = sdiodev->sbwad;
  663. int err;
  664. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen);
  665. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  666. if (err)
  667. return err;
  668. if (pktq->qlen == 1 || !sdiodev->sg_support)
  669. skb_queue_walk(pktq, skb) {
  670. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true,
  671. addr, skb);
  672. if (err)
  673. break;
  674. }
  675. else
  676. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, true, addr,
  677. pktq);
  678. return err;
  679. }
  680. int
  681. brcmf_sdiod_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address,
  682. u8 *data, uint size)
  683. {
  684. int bcmerror = 0;
  685. struct sk_buff *pkt;
  686. u32 sdaddr;
  687. uint dsize;
  688. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  689. pkt = dev_alloc_skb(dsize);
  690. if (!pkt) {
  691. brcmf_err("dev_alloc_skb failed: len %d\n", dsize);
  692. return -EIO;
  693. }
  694. pkt->priority = 0;
  695. /* Determine initial transfer parameters */
  696. sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
  697. if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
  698. dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
  699. else
  700. dsize = size;
  701. sdio_claim_host(sdiodev->func[1]);
  702. /* Do the transfer(s) */
  703. while (size) {
  704. /* Set the backplane window to include the start address */
  705. bcmerror = brcmf_sdiod_set_sbaddr_window(sdiodev, address);
  706. if (bcmerror)
  707. break;
  708. brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
  709. write ? "write" : "read", dsize,
  710. sdaddr, address & SBSDIO_SBWINDOW_MASK);
  711. sdaddr &= SBSDIO_SB_OFT_ADDR_MASK;
  712. sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  713. skb_put(pkt, dsize);
  714. if (write)
  715. memcpy(pkt->data, data, dsize);
  716. bcmerror = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_1, write,
  717. sdaddr, pkt);
  718. if (bcmerror) {
  719. brcmf_err("membytes transfer failed\n");
  720. break;
  721. }
  722. if (!write)
  723. memcpy(data, pkt->data, dsize);
  724. skb_trim(pkt, 0);
  725. /* Adjust for next transfer (if any) */
  726. size -= dsize;
  727. if (size) {
  728. data += dsize;
  729. address += dsize;
  730. sdaddr = 0;
  731. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  732. }
  733. }
  734. dev_kfree_skb(pkt);
  735. /* Return the window to backplane enumeration space for core access */
  736. if (brcmf_sdiod_set_sbaddr_window(sdiodev, sdiodev->sbwad))
  737. brcmf_err("FAILED to set window back to 0x%x\n",
  738. sdiodev->sbwad);
  739. sdio_release_host(sdiodev->func[1]);
  740. return bcmerror;
  741. }
  742. int brcmf_sdiod_abort(struct brcmf_sdio_dev *sdiodev, uint fn)
  743. {
  744. char t_func = (char)fn;
  745. brcmf_dbg(SDIO, "Enter\n");
  746. /* issue abort cmd52 command through F0 */
  747. brcmf_sdiod_request_data(sdiodev, SDIO_FUNC_0, SDIO_CCCR_ABORT,
  748. sizeof(t_func), &t_func, true);
  749. brcmf_dbg(SDIO, "Exit\n");
  750. return 0;
  751. }
  752. void brcmf_sdiod_sgtable_alloc(struct brcmf_sdio_dev *sdiodev)
  753. {
  754. struct sdio_func *func;
  755. struct mmc_host *host;
  756. uint max_blocks;
  757. uint nents;
  758. int err;
  759. func = sdiodev->func[2];
  760. host = func->card->host;
  761. sdiodev->sg_support = host->max_segs > 1;
  762. max_blocks = min_t(uint, host->max_blk_count, 511u);
  763. sdiodev->max_request_size = min_t(uint, host->max_req_size,
  764. max_blocks * func->cur_blksize);
  765. sdiodev->max_segment_count = min_t(uint, host->max_segs,
  766. SG_MAX_SINGLE_ALLOC);
  767. sdiodev->max_segment_size = host->max_seg_size;
  768. if (!sdiodev->sg_support)
  769. return;
  770. nents = max_t(uint, BRCMF_DEFAULT_RXGLOM_SIZE,
  771. sdiodev->settings->bus.sdio.txglomsz);
  772. nents += (nents >> 4) + 1;
  773. WARN_ON(nents > sdiodev->max_segment_count);
  774. brcmf_dbg(TRACE, "nents=%d\n", nents);
  775. err = sg_alloc_table(&sdiodev->sgtable, nents, GFP_KERNEL);
  776. if (err < 0) {
  777. brcmf_err("allocation failed: disable scatter-gather");
  778. sdiodev->sg_support = false;
  779. }
  780. sdiodev->txglomsz = sdiodev->settings->bus.sdio.txglomsz;
  781. }
  782. #ifdef CONFIG_PM_SLEEP
  783. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  784. {
  785. sdiodev->freezer = kzalloc(sizeof(*sdiodev->freezer), GFP_KERNEL);
  786. if (!sdiodev->freezer)
  787. return -ENOMEM;
  788. atomic_set(&sdiodev->freezer->thread_count, 0);
  789. atomic_set(&sdiodev->freezer->freezing, 0);
  790. init_waitqueue_head(&sdiodev->freezer->thread_freeze);
  791. init_completion(&sdiodev->freezer->resumed);
  792. return 0;
  793. }
  794. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  795. {
  796. if (sdiodev->freezer) {
  797. WARN_ON(atomic_read(&sdiodev->freezer->freezing));
  798. kfree(sdiodev->freezer);
  799. }
  800. }
  801. static int brcmf_sdiod_freezer_on(struct brcmf_sdio_dev *sdiodev)
  802. {
  803. atomic_t *expect = &sdiodev->freezer->thread_count;
  804. int res = 0;
  805. sdiodev->freezer->frozen_count = 0;
  806. reinit_completion(&sdiodev->freezer->resumed);
  807. atomic_set(&sdiodev->freezer->freezing, 1);
  808. brcmf_sdio_trigger_dpc(sdiodev->bus);
  809. wait_event(sdiodev->freezer->thread_freeze,
  810. atomic_read(expect) == sdiodev->freezer->frozen_count);
  811. sdio_claim_host(sdiodev->func[1]);
  812. res = brcmf_sdio_sleep(sdiodev->bus, true);
  813. sdio_release_host(sdiodev->func[1]);
  814. return res;
  815. }
  816. static void brcmf_sdiod_freezer_off(struct brcmf_sdio_dev *sdiodev)
  817. {
  818. sdio_claim_host(sdiodev->func[1]);
  819. brcmf_sdio_sleep(sdiodev->bus, false);
  820. sdio_release_host(sdiodev->func[1]);
  821. atomic_set(&sdiodev->freezer->freezing, 0);
  822. complete_all(&sdiodev->freezer->resumed);
  823. }
  824. bool brcmf_sdiod_freezing(struct brcmf_sdio_dev *sdiodev)
  825. {
  826. return atomic_read(&sdiodev->freezer->freezing);
  827. }
  828. void brcmf_sdiod_try_freeze(struct brcmf_sdio_dev *sdiodev)
  829. {
  830. if (!brcmf_sdiod_freezing(sdiodev))
  831. return;
  832. sdiodev->freezer->frozen_count++;
  833. wake_up(&sdiodev->freezer->thread_freeze);
  834. wait_for_completion(&sdiodev->freezer->resumed);
  835. }
  836. void brcmf_sdiod_freezer_count(struct brcmf_sdio_dev *sdiodev)
  837. {
  838. atomic_inc(&sdiodev->freezer->thread_count);
  839. }
  840. void brcmf_sdiod_freezer_uncount(struct brcmf_sdio_dev *sdiodev)
  841. {
  842. atomic_dec(&sdiodev->freezer->thread_count);
  843. }
  844. #else
  845. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  846. {
  847. return 0;
  848. }
  849. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  850. {
  851. }
  852. #endif /* CONFIG_PM_SLEEP */
  853. static int brcmf_sdiod_remove(struct brcmf_sdio_dev *sdiodev)
  854. {
  855. sdiodev->state = BRCMF_SDIOD_DOWN;
  856. if (sdiodev->bus) {
  857. brcmf_sdio_remove(sdiodev->bus);
  858. sdiodev->bus = NULL;
  859. }
  860. brcmf_sdiod_freezer_detach(sdiodev);
  861. /* Disable Function 2 */
  862. sdio_claim_host(sdiodev->func[2]);
  863. sdio_disable_func(sdiodev->func[2]);
  864. sdio_release_host(sdiodev->func[2]);
  865. /* Disable Function 1 */
  866. sdio_claim_host(sdiodev->func[1]);
  867. sdio_disable_func(sdiodev->func[1]);
  868. sdio_release_host(sdiodev->func[1]);
  869. sg_free_table(&sdiodev->sgtable);
  870. sdiodev->sbwad = 0;
  871. pm_runtime_allow(sdiodev->func[1]->card->host->parent);
  872. return 0;
  873. }
  874. static void brcmf_sdiod_host_fixup(struct mmc_host *host)
  875. {
  876. /* runtime-pm powers off the device */
  877. pm_runtime_forbid(host->parent);
  878. /* avoid removal detection upon resume */
  879. host->caps |= MMC_CAP_NONREMOVABLE;
  880. }
  881. static int brcmf_sdiod_probe(struct brcmf_sdio_dev *sdiodev)
  882. {
  883. int ret = 0;
  884. sdiodev->num_funcs = 2;
  885. sdio_claim_host(sdiodev->func[1]);
  886. ret = sdio_set_block_size(sdiodev->func[1], SDIO_FUNC1_BLOCKSIZE);
  887. if (ret) {
  888. brcmf_err("Failed to set F1 blocksize\n");
  889. sdio_release_host(sdiodev->func[1]);
  890. goto out;
  891. }
  892. ret = sdio_set_block_size(sdiodev->func[2], SDIO_FUNC2_BLOCKSIZE);
  893. if (ret) {
  894. brcmf_err("Failed to set F2 blocksize\n");
  895. sdio_release_host(sdiodev->func[1]);
  896. goto out;
  897. }
  898. /* increase F2 timeout */
  899. sdiodev->func[2]->enable_timeout = SDIO_WAIT_F2RDY;
  900. /* Enable Function 1 */
  901. ret = sdio_enable_func(sdiodev->func[1]);
  902. sdio_release_host(sdiodev->func[1]);
  903. if (ret) {
  904. brcmf_err("Failed to enable F1: err=%d\n", ret);
  905. goto out;
  906. }
  907. ret = brcmf_sdiod_freezer_attach(sdiodev);
  908. if (ret)
  909. goto out;
  910. /* try to attach to the target device */
  911. sdiodev->bus = brcmf_sdio_probe(sdiodev);
  912. if (!sdiodev->bus) {
  913. ret = -ENODEV;
  914. goto out;
  915. }
  916. brcmf_sdiod_host_fixup(sdiodev->func[2]->card->host);
  917. out:
  918. if (ret)
  919. brcmf_sdiod_remove(sdiodev);
  920. return ret;
  921. }
  922. #define BRCMF_SDIO_DEVICE(dev_id) \
  923. {SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, dev_id)}
  924. /* devices we support, null terminated */
  925. static const struct sdio_device_id brcmf_sdmmc_ids[] = {
  926. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43143),
  927. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43241),
  928. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4329),
  929. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4330),
  930. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4334),
  931. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43340),
  932. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43341),
  933. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43362),
  934. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4335_4339),
  935. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4339),
  936. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43430),
  937. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4345),
  938. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43455),
  939. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4354),
  940. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4356),
  941. { /* end: all zeroes */ }
  942. };
  943. MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids);
  944. static void brcmf_sdiod_acpi_set_power_manageable(struct device *dev,
  945. int val)
  946. {
  947. #if IS_ENABLED(CONFIG_ACPI)
  948. struct acpi_device *adev;
  949. adev = ACPI_COMPANION(dev);
  950. if (adev)
  951. adev->flags.power_manageable = 0;
  952. #endif
  953. }
  954. static int brcmf_ops_sdio_probe(struct sdio_func *func,
  955. const struct sdio_device_id *id)
  956. {
  957. int err;
  958. struct brcmf_sdio_dev *sdiodev;
  959. struct brcmf_bus *bus_if;
  960. struct device *dev;
  961. brcmf_dbg(SDIO, "Enter\n");
  962. brcmf_dbg(SDIO, "Class=%x\n", func->class);
  963. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  964. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  965. brcmf_dbg(SDIO, "Function#: %d\n", func->num);
  966. dev = &func->dev;
  967. /* prohibit ACPI power management for this device */
  968. brcmf_sdiod_acpi_set_power_manageable(dev, 0);
  969. /* Consume func num 1 but dont do anything with it. */
  970. if (func->num == 1)
  971. return 0;
  972. /* Ignore anything but func 2 */
  973. if (func->num != 2)
  974. return -ENODEV;
  975. bus_if = kzalloc(sizeof(struct brcmf_bus), GFP_KERNEL);
  976. if (!bus_if)
  977. return -ENOMEM;
  978. sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL);
  979. if (!sdiodev) {
  980. kfree(bus_if);
  981. return -ENOMEM;
  982. }
  983. /* store refs to functions used. mmc_card does
  984. * not hold the F0 function pointer.
  985. */
  986. sdiodev->func[0] = kmemdup(func, sizeof(*func), GFP_KERNEL);
  987. sdiodev->func[0]->num = 0;
  988. sdiodev->func[1] = func->card->sdio_func[0];
  989. sdiodev->func[2] = func;
  990. sdiodev->bus_if = bus_if;
  991. bus_if->bus_priv.sdio = sdiodev;
  992. bus_if->proto_type = BRCMF_PROTO_BCDC;
  993. dev_set_drvdata(&func->dev, bus_if);
  994. dev_set_drvdata(&sdiodev->func[1]->dev, bus_if);
  995. sdiodev->dev = &sdiodev->func[1]->dev;
  996. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_DOWN);
  997. brcmf_dbg(SDIO, "F2 found, calling brcmf_sdiod_probe...\n");
  998. err = brcmf_sdiod_probe(sdiodev);
  999. if (err) {
  1000. brcmf_err("F2 error, probe failed %d...\n", err);
  1001. goto fail;
  1002. }
  1003. brcmf_dbg(SDIO, "F2 init completed...\n");
  1004. return 0;
  1005. fail:
  1006. dev_set_drvdata(&func->dev, NULL);
  1007. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1008. kfree(sdiodev->func[0]);
  1009. kfree(sdiodev);
  1010. kfree(bus_if);
  1011. return err;
  1012. }
  1013. static void brcmf_ops_sdio_remove(struct sdio_func *func)
  1014. {
  1015. struct brcmf_bus *bus_if;
  1016. struct brcmf_sdio_dev *sdiodev;
  1017. brcmf_dbg(SDIO, "Enter\n");
  1018. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  1019. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  1020. brcmf_dbg(SDIO, "Function: %d\n", func->num);
  1021. bus_if = dev_get_drvdata(&func->dev);
  1022. if (bus_if) {
  1023. sdiodev = bus_if->bus_priv.sdio;
  1024. /* start by unregistering irqs */
  1025. brcmf_sdiod_intr_unregister(sdiodev);
  1026. if (func->num != 1)
  1027. return;
  1028. /* only proceed with rest of cleanup if func 1 */
  1029. brcmf_sdiod_remove(sdiodev);
  1030. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1031. dev_set_drvdata(&sdiodev->func[2]->dev, NULL);
  1032. kfree(bus_if);
  1033. kfree(sdiodev->func[0]);
  1034. kfree(sdiodev);
  1035. }
  1036. brcmf_dbg(SDIO, "Exit\n");
  1037. }
  1038. void brcmf_sdio_wowl_config(struct device *dev, bool enabled)
  1039. {
  1040. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1041. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1042. brcmf_dbg(SDIO, "Configuring WOWL, enabled=%d\n", enabled);
  1043. sdiodev->wowl_enabled = enabled;
  1044. }
  1045. #ifdef CONFIG_PM_SLEEP
  1046. static int brcmf_ops_sdio_suspend(struct device *dev)
  1047. {
  1048. struct sdio_func *func;
  1049. struct brcmf_bus *bus_if;
  1050. struct brcmf_sdio_dev *sdiodev;
  1051. mmc_pm_flag_t sdio_flags;
  1052. func = container_of(dev, struct sdio_func, dev);
  1053. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1054. if (func->num != SDIO_FUNC_1)
  1055. return 0;
  1056. bus_if = dev_get_drvdata(dev);
  1057. sdiodev = bus_if->bus_priv.sdio;
  1058. brcmf_sdiod_freezer_on(sdiodev);
  1059. brcmf_sdio_wd_timer(sdiodev->bus, 0);
  1060. sdio_flags = MMC_PM_KEEP_POWER;
  1061. if (sdiodev->wowl_enabled) {
  1062. if (sdiodev->settings->bus.sdio.oob_irq_supported)
  1063. enable_irq_wake(sdiodev->settings->bus.sdio.oob_irq_nr);
  1064. else
  1065. sdio_flags |= MMC_PM_WAKE_SDIO_IRQ;
  1066. }
  1067. if (sdio_set_host_pm_flags(sdiodev->func[1], sdio_flags))
  1068. brcmf_err("Failed to set pm_flags %x\n", sdio_flags);
  1069. return 0;
  1070. }
  1071. static int brcmf_ops_sdio_resume(struct device *dev)
  1072. {
  1073. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1074. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1075. struct sdio_func *func = container_of(dev, struct sdio_func, dev);
  1076. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1077. if (func->num != SDIO_FUNC_2)
  1078. return 0;
  1079. brcmf_sdiod_freezer_off(sdiodev);
  1080. return 0;
  1081. }
  1082. static const struct dev_pm_ops brcmf_sdio_pm_ops = {
  1083. .suspend = brcmf_ops_sdio_suspend,
  1084. .resume = brcmf_ops_sdio_resume,
  1085. };
  1086. #endif /* CONFIG_PM_SLEEP */
  1087. static struct sdio_driver brcmf_sdmmc_driver = {
  1088. .probe = brcmf_ops_sdio_probe,
  1089. .remove = brcmf_ops_sdio_remove,
  1090. .name = KBUILD_MODNAME,
  1091. .id_table = brcmf_sdmmc_ids,
  1092. .drv = {
  1093. .owner = THIS_MODULE,
  1094. #ifdef CONFIG_PM_SLEEP
  1095. .pm = &brcmf_sdio_pm_ops,
  1096. #endif /* CONFIG_PM_SLEEP */
  1097. },
  1098. };
  1099. void brcmf_sdio_register(void)
  1100. {
  1101. int ret;
  1102. ret = sdio_register_driver(&brcmf_sdmmc_driver);
  1103. if (ret)
  1104. brcmf_err("sdio_register_driver failed: %d\n", ret);
  1105. }
  1106. void brcmf_sdio_exit(void)
  1107. {
  1108. brcmf_dbg(SDIO, "Enter\n");
  1109. sdio_unregister_driver(&brcmf_sdmmc_driver);
  1110. }