mvpp2.c 194 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054
  1. /*
  2. * Driver for Marvell PPv2 network controller for Armada 375 SoC.
  3. *
  4. * Copyright (C) 2014 Marvell
  5. *
  6. * Marcin Wojtas <mw@semihalf.com>
  7. *
  8. * This file is licensed under the terms of the GNU General Public
  9. * License version 2. This program is licensed "as is" without any
  10. * warranty of any kind, whether express or implied.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/skbuff.h>
  17. #include <linux/inetdevice.h>
  18. #include <linux/mbus.h>
  19. #include <linux/module.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/of.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_mdio.h>
  25. #include <linux/of_net.h>
  26. #include <linux/of_address.h>
  27. #include <linux/of_device.h>
  28. #include <linux/phy.h>
  29. #include <linux/clk.h>
  30. #include <linux/hrtimer.h>
  31. #include <linux/ktime.h>
  32. #include <uapi/linux/ppp_defs.h>
  33. #include <net/ip.h>
  34. #include <net/ipv6.h>
  35. /* RX Fifo Registers */
  36. #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
  37. #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
  38. #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
  39. #define MVPP2_RX_FIFO_INIT_REG 0x64
  40. /* RX DMA Top Registers */
  41. #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
  42. #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
  43. #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
  44. #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
  45. #define MVPP2_POOL_BUF_SIZE_OFFSET 5
  46. #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
  47. #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
  48. #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
  49. #define MVPP2_RXQ_POOL_SHORT_OFFS 20
  50. #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
  51. #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
  52. #define MVPP2_RXQ_POOL_LONG_OFFS 24
  53. #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
  54. #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
  55. #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
  56. #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
  57. #define MVPP2_RXQ_DISABLE_MASK BIT(31)
  58. /* Parser Registers */
  59. #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
  60. #define MVPP2_PRS_PORT_LU_MAX 0xf
  61. #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
  62. #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
  63. #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
  64. #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
  65. #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
  66. #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
  67. #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
  68. #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
  69. #define MVPP2_PRS_TCAM_IDX_REG 0x1100
  70. #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
  71. #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
  72. #define MVPP2_PRS_SRAM_IDX_REG 0x1200
  73. #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
  74. #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
  75. #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
  76. /* Classifier Registers */
  77. #define MVPP2_CLS_MODE_REG 0x1800
  78. #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
  79. #define MVPP2_CLS_PORT_WAY_REG 0x1810
  80. #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
  81. #define MVPP2_CLS_LKP_INDEX_REG 0x1814
  82. #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
  83. #define MVPP2_CLS_LKP_TBL_REG 0x1818
  84. #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
  85. #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
  86. #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
  87. #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
  88. #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
  89. #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
  90. #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
  91. #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
  92. #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
  93. #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
  94. #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
  95. #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
  96. /* Descriptor Manager Top Registers */
  97. #define MVPP2_RXQ_NUM_REG 0x2040
  98. #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
  99. #define MVPP22_DESC_ADDR_OFFS 8
  100. #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
  101. #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
  102. #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
  103. #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
  104. #define MVPP2_RXQ_NUM_NEW_OFFSET 16
  105. #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
  106. #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
  107. #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
  108. #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
  109. #define MVPP2_RXQ_THRESH_REG 0x204c
  110. #define MVPP2_OCCUPIED_THRESH_OFFSET 0
  111. #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
  112. #define MVPP2_RXQ_INDEX_REG 0x2050
  113. #define MVPP2_TXQ_NUM_REG 0x2080
  114. #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
  115. #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
  116. #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
  117. #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
  118. #define MVPP2_TXQ_INDEX_REG 0x2098
  119. #define MVPP2_TXQ_PREF_BUF_REG 0x209c
  120. #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
  121. #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
  122. #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
  123. #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
  124. #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
  125. #define MVPP2_TXQ_PENDING_REG 0x20a0
  126. #define MVPP2_TXQ_PENDING_MASK 0x3fff
  127. #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
  128. #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
  129. #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
  130. #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
  131. #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
  132. #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
  133. #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
  134. #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
  135. #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
  136. #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
  137. #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
  138. #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
  139. #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
  140. #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
  141. #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
  142. #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
  143. #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
  144. /* MBUS bridge registers */
  145. #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
  146. #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
  147. #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
  148. #define MVPP2_BASE_ADDR_ENABLE 0x4060
  149. /* AXI Bridge Registers */
  150. #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
  151. #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
  152. #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
  153. #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
  154. #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
  155. #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
  156. #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
  157. #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
  158. #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
  159. #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
  160. #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
  161. #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
  162. /* Values for AXI Bridge registers */
  163. #define MVPP22_AXI_ATTR_CACHE_OFFS 0
  164. #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
  165. #define MVPP22_AXI_CODE_CACHE_OFFS 0
  166. #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
  167. #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
  168. #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
  169. #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
  170. #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
  171. #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
  172. /* Interrupt Cause and Mask registers */
  173. #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
  174. #define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0
  175. #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
  176. #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
  177. #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
  178. #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
  179. #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
  180. #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
  181. #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
  182. #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
  183. #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
  184. #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
  185. #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
  186. #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
  187. #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
  188. #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
  189. #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
  190. #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
  191. #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
  192. #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
  193. #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
  194. #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
  195. #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
  196. #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
  197. #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
  198. #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
  199. #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
  200. #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
  201. #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
  202. #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
  203. #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
  204. /* Buffer Manager registers */
  205. #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
  206. #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
  207. #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
  208. #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
  209. #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
  210. #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
  211. #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
  212. #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
  213. #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
  214. #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
  215. #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
  216. #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
  217. #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
  218. #define MVPP2_BM_START_MASK BIT(0)
  219. #define MVPP2_BM_STOP_MASK BIT(1)
  220. #define MVPP2_BM_STATE_MASK BIT(4)
  221. #define MVPP2_BM_LOW_THRESH_OFFS 8
  222. #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
  223. #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
  224. MVPP2_BM_LOW_THRESH_OFFS)
  225. #define MVPP2_BM_HIGH_THRESH_OFFS 16
  226. #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
  227. #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
  228. MVPP2_BM_HIGH_THRESH_OFFS)
  229. #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
  230. #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
  231. #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
  232. #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
  233. #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
  234. #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
  235. #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
  236. #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
  237. #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
  238. #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
  239. #define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444
  240. #define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff
  241. #define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00
  242. #define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8
  243. #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
  244. #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
  245. #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
  246. #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
  247. #define MVPP2_BM_VIRT_RLS_REG 0x64c0
  248. #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
  249. #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
  250. #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
  251. #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
  252. /* TX Scheduler registers */
  253. #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
  254. #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
  255. #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
  256. #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
  257. #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
  258. #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
  259. #define MVPP2_TXP_SCHED_MTU_REG 0x801c
  260. #define MVPP2_TXP_MTU_MAX 0x7FFFF
  261. #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
  262. #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
  263. #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
  264. #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
  265. #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
  266. #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
  267. #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
  268. #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
  269. #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
  270. #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
  271. #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
  272. #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  273. #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
  274. #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
  275. /* TX general registers */
  276. #define MVPP2_TX_SNOOP_REG 0x8800
  277. #define MVPP2_TX_PORT_FLUSH_REG 0x8810
  278. #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
  279. /* LMS registers */
  280. #define MVPP2_SRC_ADDR_MIDDLE 0x24
  281. #define MVPP2_SRC_ADDR_HIGH 0x28
  282. #define MVPP2_PHY_AN_CFG0_REG 0x34
  283. #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
  284. #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
  285. #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
  286. /* Per-port registers */
  287. #define MVPP2_GMAC_CTRL_0_REG 0x0
  288. #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
  289. #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
  290. #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  291. #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
  292. #define MVPP2_GMAC_CTRL_1_REG 0x4
  293. #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
  294. #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
  295. #define MVPP2_GMAC_PCS_LB_EN_BIT 6
  296. #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
  297. #define MVPP2_GMAC_SA_LOW_OFFS 7
  298. #define MVPP2_GMAC_CTRL_2_REG 0x8
  299. #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
  300. #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
  301. #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
  302. #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
  303. #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
  304. #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
  305. #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
  306. #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
  307. #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
  308. #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
  309. #define MVPP2_GMAC_FC_ADV_EN BIT(9)
  310. #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  311. #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
  312. #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
  313. #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
  314. #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
  315. #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
  316. MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
  317. #define MVPP22_GMAC_CTRL_4_REG 0x90
  318. #define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0)
  319. #define MVPP22_CTRL4_DP_CLK_SEL BIT(5)
  320. #define MVPP22_CTRL4_SYNC_BYPASS BIT(6)
  321. #define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7)
  322. /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
  323. * relative to port->base.
  324. */
  325. #define MVPP22_XLG_CTRL3_REG 0x11c
  326. #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
  327. #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
  328. /* SMI registers. PPv2.2 only, relative to priv->iface_base. */
  329. #define MVPP22_SMI_MISC_CFG_REG 0x1204
  330. #define MVPP22_SMI_POLLING_EN BIT(10)
  331. #define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00)
  332. #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  333. /* Descriptor ring Macros */
  334. #define MVPP2_QUEUE_NEXT_DESC(q, index) \
  335. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  336. /* Various constants */
  337. /* Coalescing */
  338. #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
  339. #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
  340. #define MVPP2_RX_COAL_PKTS 32
  341. #define MVPP2_RX_COAL_USEC 100
  342. /* The two bytes Marvell header. Either contains a special value used
  343. * by Marvell switches when a specific hardware mode is enabled (not
  344. * supported by this driver) or is filled automatically by zeroes on
  345. * the RX side. Those two bytes being at the front of the Ethernet
  346. * header, they allow to have the IP header aligned on a 4 bytes
  347. * boundary automatically: the hardware skips those two bytes on its
  348. * own.
  349. */
  350. #define MVPP2_MH_SIZE 2
  351. #define MVPP2_ETH_TYPE_LEN 2
  352. #define MVPP2_PPPOE_HDR_SIZE 8
  353. #define MVPP2_VLAN_TAG_LEN 4
  354. /* Lbtd 802.3 type */
  355. #define MVPP2_IP_LBDT_TYPE 0xfffa
  356. #define MVPP2_TX_CSUM_MAX_SIZE 9800
  357. /* Timeout constants */
  358. #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
  359. #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
  360. #define MVPP2_TX_MTU_MAX 0x7ffff
  361. /* Maximum number of T-CONTs of PON port */
  362. #define MVPP2_MAX_TCONT 16
  363. /* Maximum number of supported ports */
  364. #define MVPP2_MAX_PORTS 4
  365. /* Maximum number of TXQs used by single port */
  366. #define MVPP2_MAX_TXQ 8
  367. /* Dfault number of RXQs in use */
  368. #define MVPP2_DEFAULT_RXQ 4
  369. /* Max number of Rx descriptors */
  370. #define MVPP2_MAX_RXD 128
  371. /* Max number of Tx descriptors */
  372. #define MVPP2_MAX_TXD 1024
  373. /* Amount of Tx descriptors that can be reserved at once by CPU */
  374. #define MVPP2_CPU_DESC_CHUNK 64
  375. /* Max number of Tx descriptors in each aggregated queue */
  376. #define MVPP2_AGGR_TXQ_SIZE 256
  377. /* Descriptor aligned size */
  378. #define MVPP2_DESC_ALIGNED_SIZE 32
  379. /* Descriptor alignment mask */
  380. #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
  381. /* RX FIFO constants */
  382. #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
  383. #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
  384. #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
  385. /* RX buffer constants */
  386. #define MVPP2_SKB_SHINFO_SIZE \
  387. SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
  388. #define MVPP2_RX_PKT_SIZE(mtu) \
  389. ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
  390. ETH_HLEN + ETH_FCS_LEN, cache_line_size())
  391. #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  392. #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
  393. #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
  394. ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
  395. #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
  396. /* IPv6 max L3 address size */
  397. #define MVPP2_MAX_L3_ADDR_SIZE 16
  398. /* Port flags */
  399. #define MVPP2_F_LOOPBACK BIT(0)
  400. /* Marvell tag types */
  401. enum mvpp2_tag_type {
  402. MVPP2_TAG_TYPE_NONE = 0,
  403. MVPP2_TAG_TYPE_MH = 1,
  404. MVPP2_TAG_TYPE_DSA = 2,
  405. MVPP2_TAG_TYPE_EDSA = 3,
  406. MVPP2_TAG_TYPE_VLAN = 4,
  407. MVPP2_TAG_TYPE_LAST = 5
  408. };
  409. /* Parser constants */
  410. #define MVPP2_PRS_TCAM_SRAM_SIZE 256
  411. #define MVPP2_PRS_TCAM_WORDS 6
  412. #define MVPP2_PRS_SRAM_WORDS 4
  413. #define MVPP2_PRS_FLOW_ID_SIZE 64
  414. #define MVPP2_PRS_FLOW_ID_MASK 0x3f
  415. #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
  416. #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
  417. #define MVPP2_PRS_IPV4_HEAD 0x40
  418. #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
  419. #define MVPP2_PRS_IPV4_MC 0xe0
  420. #define MVPP2_PRS_IPV4_MC_MASK 0xf0
  421. #define MVPP2_PRS_IPV4_BC_MASK 0xff
  422. #define MVPP2_PRS_IPV4_IHL 0x5
  423. #define MVPP2_PRS_IPV4_IHL_MASK 0xf
  424. #define MVPP2_PRS_IPV6_MC 0xff
  425. #define MVPP2_PRS_IPV6_MC_MASK 0xff
  426. #define MVPP2_PRS_IPV6_HOP_MASK 0xff
  427. #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
  428. #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
  429. #define MVPP2_PRS_DBL_VLANS_MAX 100
  430. /* Tcam structure:
  431. * - lookup ID - 4 bits
  432. * - port ID - 1 byte
  433. * - additional information - 1 byte
  434. * - header data - 8 bytes
  435. * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
  436. */
  437. #define MVPP2_PRS_AI_BITS 8
  438. #define MVPP2_PRS_PORT_MASK 0xff
  439. #define MVPP2_PRS_LU_MASK 0xf
  440. #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
  441. (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
  442. #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
  443. (((offs) * 2) - ((offs) % 2) + 2)
  444. #define MVPP2_PRS_TCAM_AI_BYTE 16
  445. #define MVPP2_PRS_TCAM_PORT_BYTE 17
  446. #define MVPP2_PRS_TCAM_LU_BYTE 20
  447. #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
  448. #define MVPP2_PRS_TCAM_INV_WORD 5
  449. /* Tcam entries ID */
  450. #define MVPP2_PE_DROP_ALL 0
  451. #define MVPP2_PE_FIRST_FREE_TID 1
  452. #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
  453. #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
  454. #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
  455. #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
  456. #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
  457. #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
  458. #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
  459. #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
  460. #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
  461. #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
  462. #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
  463. #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
  464. #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
  465. #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
  466. #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
  467. #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
  468. #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
  469. #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
  470. #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
  471. #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
  472. #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
  473. #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
  474. #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
  475. #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
  476. #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
  477. /* Sram structure
  478. * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
  479. */
  480. #define MVPP2_PRS_SRAM_RI_OFFS 0
  481. #define MVPP2_PRS_SRAM_RI_WORD 0
  482. #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
  483. #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
  484. #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
  485. #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
  486. #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
  487. #define MVPP2_PRS_SRAM_UDF_OFFS 73
  488. #define MVPP2_PRS_SRAM_UDF_BITS 8
  489. #define MVPP2_PRS_SRAM_UDF_MASK 0xff
  490. #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
  491. #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
  492. #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
  493. #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
  494. #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
  495. #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
  496. #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
  497. #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
  498. #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
  499. #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
  500. #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
  501. #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
  502. #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
  503. #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
  504. #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
  505. #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
  506. #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
  507. #define MVPP2_PRS_SRAM_AI_OFFS 90
  508. #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
  509. #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
  510. #define MVPP2_PRS_SRAM_AI_MASK 0xff
  511. #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
  512. #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
  513. #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
  514. #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
  515. /* Sram result info bits assignment */
  516. #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
  517. #define MVPP2_PRS_RI_DSA_MASK 0x2
  518. #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
  519. #define MVPP2_PRS_RI_VLAN_NONE 0x0
  520. #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
  521. #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
  522. #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
  523. #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
  524. #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
  525. #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
  526. #define MVPP2_PRS_RI_L2_UCAST 0x0
  527. #define MVPP2_PRS_RI_L2_MCAST BIT(9)
  528. #define MVPP2_PRS_RI_L2_BCAST BIT(10)
  529. #define MVPP2_PRS_RI_PPPOE_MASK 0x800
  530. #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
  531. #define MVPP2_PRS_RI_L3_UN 0x0
  532. #define MVPP2_PRS_RI_L3_IP4 BIT(12)
  533. #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
  534. #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
  535. #define MVPP2_PRS_RI_L3_IP6 BIT(14)
  536. #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
  537. #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
  538. #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
  539. #define MVPP2_PRS_RI_L3_UCAST 0x0
  540. #define MVPP2_PRS_RI_L3_MCAST BIT(15)
  541. #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
  542. #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
  543. #define MVPP2_PRS_RI_UDF3_MASK 0x300000
  544. #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
  545. #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
  546. #define MVPP2_PRS_RI_L4_TCP BIT(22)
  547. #define MVPP2_PRS_RI_L4_UDP BIT(23)
  548. #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
  549. #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
  550. #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
  551. #define MVPP2_PRS_RI_DROP_MASK 0x80000000
  552. /* Sram additional info bits assignment */
  553. #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
  554. #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
  555. #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
  556. #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
  557. #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
  558. #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
  559. #define MVPP2_PRS_SINGLE_VLAN_AI 0
  560. #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
  561. /* DSA/EDSA type */
  562. #define MVPP2_PRS_TAGGED true
  563. #define MVPP2_PRS_UNTAGGED false
  564. #define MVPP2_PRS_EDSA true
  565. #define MVPP2_PRS_DSA false
  566. /* MAC entries, shadow udf */
  567. enum mvpp2_prs_udf {
  568. MVPP2_PRS_UDF_MAC_DEF,
  569. MVPP2_PRS_UDF_MAC_RANGE,
  570. MVPP2_PRS_UDF_L2_DEF,
  571. MVPP2_PRS_UDF_L2_DEF_COPY,
  572. MVPP2_PRS_UDF_L2_USER,
  573. };
  574. /* Lookup ID */
  575. enum mvpp2_prs_lookup {
  576. MVPP2_PRS_LU_MH,
  577. MVPP2_PRS_LU_MAC,
  578. MVPP2_PRS_LU_DSA,
  579. MVPP2_PRS_LU_VLAN,
  580. MVPP2_PRS_LU_L2,
  581. MVPP2_PRS_LU_PPPOE,
  582. MVPP2_PRS_LU_IP4,
  583. MVPP2_PRS_LU_IP6,
  584. MVPP2_PRS_LU_FLOWS,
  585. MVPP2_PRS_LU_LAST,
  586. };
  587. /* L3 cast enum */
  588. enum mvpp2_prs_l3_cast {
  589. MVPP2_PRS_L3_UNI_CAST,
  590. MVPP2_PRS_L3_MULTI_CAST,
  591. MVPP2_PRS_L3_BROAD_CAST
  592. };
  593. /* Classifier constants */
  594. #define MVPP2_CLS_FLOWS_TBL_SIZE 512
  595. #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
  596. #define MVPP2_CLS_LKP_TBL_SIZE 64
  597. /* BM constants */
  598. #define MVPP2_BM_POOLS_NUM 8
  599. #define MVPP2_BM_LONG_BUF_NUM 1024
  600. #define MVPP2_BM_SHORT_BUF_NUM 2048
  601. #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
  602. #define MVPP2_BM_POOL_PTR_ALIGN 128
  603. #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
  604. #define MVPP2_BM_SWF_SHORT_POOL 3
  605. /* BM cookie (32 bits) definition */
  606. #define MVPP2_BM_COOKIE_POOL_OFFS 8
  607. #define MVPP2_BM_COOKIE_CPU_OFFS 24
  608. /* BM short pool packet size
  609. * These value assure that for SWF the total number
  610. * of bytes allocated for each buffer will be 512
  611. */
  612. #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
  613. #define MVPP21_ADDR_SPACE_SZ 0
  614. #define MVPP22_ADDR_SPACE_SZ SZ_64K
  615. #define MVPP2_MAX_CPUS 4
  616. enum mvpp2_bm_type {
  617. MVPP2_BM_FREE,
  618. MVPP2_BM_SWF_LONG,
  619. MVPP2_BM_SWF_SHORT
  620. };
  621. /* Definitions */
  622. /* Shared Packet Processor resources */
  623. struct mvpp2 {
  624. /* Shared registers' base addresses */
  625. void __iomem *lms_base;
  626. void __iomem *iface_base;
  627. /* On PPv2.2, each CPU can access the base register through a
  628. * separate address space, each 64 KB apart from each
  629. * other.
  630. */
  631. void __iomem *cpu_base[MVPP2_MAX_CPUS];
  632. /* Common clocks */
  633. struct clk *pp_clk;
  634. struct clk *gop_clk;
  635. struct clk *mg_clk;
  636. /* List of pointers to port structures */
  637. struct mvpp2_port **port_list;
  638. /* Aggregated TXQs */
  639. struct mvpp2_tx_queue *aggr_txqs;
  640. /* BM pools */
  641. struct mvpp2_bm_pool *bm_pools;
  642. /* PRS shadow table */
  643. struct mvpp2_prs_shadow *prs_shadow;
  644. /* PRS auxiliary table for double vlan entries control */
  645. bool *prs_double_vlans;
  646. /* Tclk value */
  647. u32 tclk;
  648. /* HW version */
  649. enum { MVPP21, MVPP22 } hw_version;
  650. /* Maximum number of RXQs per port */
  651. unsigned int max_port_rxqs;
  652. };
  653. struct mvpp2_pcpu_stats {
  654. struct u64_stats_sync syncp;
  655. u64 rx_packets;
  656. u64 rx_bytes;
  657. u64 tx_packets;
  658. u64 tx_bytes;
  659. };
  660. /* Per-CPU port control */
  661. struct mvpp2_port_pcpu {
  662. struct hrtimer tx_done_timer;
  663. bool timer_scheduled;
  664. /* Tasklet for egress finalization */
  665. struct tasklet_struct tx_done_tasklet;
  666. };
  667. struct mvpp2_port {
  668. u8 id;
  669. /* Index of the port from the "group of ports" complex point
  670. * of view
  671. */
  672. int gop_id;
  673. int irq;
  674. struct mvpp2 *priv;
  675. /* Per-port registers' base address */
  676. void __iomem *base;
  677. struct mvpp2_rx_queue **rxqs;
  678. struct mvpp2_tx_queue **txqs;
  679. struct net_device *dev;
  680. int pkt_size;
  681. u32 pending_cause_rx;
  682. struct napi_struct napi;
  683. /* Per-CPU port control */
  684. struct mvpp2_port_pcpu __percpu *pcpu;
  685. /* Flags */
  686. unsigned long flags;
  687. u16 tx_ring_size;
  688. u16 rx_ring_size;
  689. struct mvpp2_pcpu_stats __percpu *stats;
  690. phy_interface_t phy_interface;
  691. struct device_node *phy_node;
  692. unsigned int link;
  693. unsigned int duplex;
  694. unsigned int speed;
  695. struct mvpp2_bm_pool *pool_long;
  696. struct mvpp2_bm_pool *pool_short;
  697. /* Index of first port's physical RXQ */
  698. u8 first_rxq;
  699. };
  700. /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
  701. * layout of the transmit and reception DMA descriptors, and their
  702. * layout is therefore defined by the hardware design
  703. */
  704. #define MVPP2_TXD_L3_OFF_SHIFT 0
  705. #define MVPP2_TXD_IP_HLEN_SHIFT 8
  706. #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
  707. #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
  708. #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
  709. #define MVPP2_TXD_PADDING_DISABLE BIT(23)
  710. #define MVPP2_TXD_L4_UDP BIT(24)
  711. #define MVPP2_TXD_L3_IP6 BIT(26)
  712. #define MVPP2_TXD_L_DESC BIT(28)
  713. #define MVPP2_TXD_F_DESC BIT(29)
  714. #define MVPP2_RXD_ERR_SUMMARY BIT(15)
  715. #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
  716. #define MVPP2_RXD_ERR_CRC 0x0
  717. #define MVPP2_RXD_ERR_OVERRUN BIT(13)
  718. #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
  719. #define MVPP2_RXD_BM_POOL_ID_OFFS 16
  720. #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
  721. #define MVPP2_RXD_HWF_SYNC BIT(21)
  722. #define MVPP2_RXD_L4_CSUM_OK BIT(22)
  723. #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
  724. #define MVPP2_RXD_L4_TCP BIT(25)
  725. #define MVPP2_RXD_L4_UDP BIT(26)
  726. #define MVPP2_RXD_L3_IP4 BIT(28)
  727. #define MVPP2_RXD_L3_IP6 BIT(30)
  728. #define MVPP2_RXD_BUF_HDR BIT(31)
  729. /* HW TX descriptor for PPv2.1 */
  730. struct mvpp21_tx_desc {
  731. u32 command; /* Options used by HW for packet transmitting.*/
  732. u8 packet_offset; /* the offset from the buffer beginning */
  733. u8 phys_txq; /* destination queue ID */
  734. u16 data_size; /* data size of transmitted packet in bytes */
  735. u32 buf_dma_addr; /* physical addr of transmitted buffer */
  736. u32 buf_cookie; /* cookie for access to TX buffer in tx path */
  737. u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
  738. u32 reserved2; /* reserved (for future use) */
  739. };
  740. /* HW RX descriptor for PPv2.1 */
  741. struct mvpp21_rx_desc {
  742. u32 status; /* info about received packet */
  743. u16 reserved1; /* parser_info (for future use, PnC) */
  744. u16 data_size; /* size of received packet in bytes */
  745. u32 buf_dma_addr; /* physical address of the buffer */
  746. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  747. u16 reserved2; /* gem_port_id (for future use, PON) */
  748. u16 reserved3; /* csum_l4 (for future use, PnC) */
  749. u8 reserved4; /* bm_qset (for future use, BM) */
  750. u8 reserved5;
  751. u16 reserved6; /* classify_info (for future use, PnC) */
  752. u32 reserved7; /* flow_id (for future use, PnC) */
  753. u32 reserved8;
  754. };
  755. /* HW TX descriptor for PPv2.2 */
  756. struct mvpp22_tx_desc {
  757. u32 command;
  758. u8 packet_offset;
  759. u8 phys_txq;
  760. u16 data_size;
  761. u64 reserved1;
  762. u64 buf_dma_addr_ptp;
  763. u64 buf_cookie_misc;
  764. };
  765. /* HW RX descriptor for PPv2.2 */
  766. struct mvpp22_rx_desc {
  767. u32 status;
  768. u16 reserved1;
  769. u16 data_size;
  770. u32 reserved2;
  771. u32 reserved3;
  772. u64 buf_dma_addr_key_hash;
  773. u64 buf_cookie_misc;
  774. };
  775. /* Opaque type used by the driver to manipulate the HW TX and RX
  776. * descriptors
  777. */
  778. struct mvpp2_tx_desc {
  779. union {
  780. struct mvpp21_tx_desc pp21;
  781. struct mvpp22_tx_desc pp22;
  782. };
  783. };
  784. struct mvpp2_rx_desc {
  785. union {
  786. struct mvpp21_rx_desc pp21;
  787. struct mvpp22_rx_desc pp22;
  788. };
  789. };
  790. struct mvpp2_txq_pcpu_buf {
  791. /* Transmitted SKB */
  792. struct sk_buff *skb;
  793. /* Physical address of transmitted buffer */
  794. dma_addr_t dma;
  795. /* Size transmitted */
  796. size_t size;
  797. };
  798. /* Per-CPU Tx queue control */
  799. struct mvpp2_txq_pcpu {
  800. int cpu;
  801. /* Number of Tx DMA descriptors in the descriptor ring */
  802. int size;
  803. /* Number of currently used Tx DMA descriptor in the
  804. * descriptor ring
  805. */
  806. int count;
  807. /* Number of Tx DMA descriptors reserved for each CPU */
  808. int reserved_num;
  809. /* Infos about transmitted buffers */
  810. struct mvpp2_txq_pcpu_buf *buffs;
  811. /* Index of last TX DMA descriptor that was inserted */
  812. int txq_put_index;
  813. /* Index of the TX DMA descriptor to be cleaned up */
  814. int txq_get_index;
  815. };
  816. struct mvpp2_tx_queue {
  817. /* Physical number of this Tx queue */
  818. u8 id;
  819. /* Logical number of this Tx queue */
  820. u8 log_id;
  821. /* Number of Tx DMA descriptors in the descriptor ring */
  822. int size;
  823. /* Number of currently used Tx DMA descriptor in the descriptor ring */
  824. int count;
  825. /* Per-CPU control of physical Tx queues */
  826. struct mvpp2_txq_pcpu __percpu *pcpu;
  827. u32 done_pkts_coal;
  828. /* Virtual address of thex Tx DMA descriptors array */
  829. struct mvpp2_tx_desc *descs;
  830. /* DMA address of the Tx DMA descriptors array */
  831. dma_addr_t descs_dma;
  832. /* Index of the last Tx DMA descriptor */
  833. int last_desc;
  834. /* Index of the next Tx DMA descriptor to process */
  835. int next_desc_to_proc;
  836. };
  837. struct mvpp2_rx_queue {
  838. /* RX queue number, in the range 0-31 for physical RXQs */
  839. u8 id;
  840. /* Num of rx descriptors in the rx descriptor ring */
  841. int size;
  842. u32 pkts_coal;
  843. u32 time_coal;
  844. /* Virtual address of the RX DMA descriptors array */
  845. struct mvpp2_rx_desc *descs;
  846. /* DMA address of the RX DMA descriptors array */
  847. dma_addr_t descs_dma;
  848. /* Index of the last RX DMA descriptor */
  849. int last_desc;
  850. /* Index of the next RX DMA descriptor to process */
  851. int next_desc_to_proc;
  852. /* ID of port to which physical RXQ is mapped */
  853. int port;
  854. /* Port's logic RXQ number to which physical RXQ is mapped */
  855. int logic_rxq;
  856. };
  857. union mvpp2_prs_tcam_entry {
  858. u32 word[MVPP2_PRS_TCAM_WORDS];
  859. u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
  860. };
  861. union mvpp2_prs_sram_entry {
  862. u32 word[MVPP2_PRS_SRAM_WORDS];
  863. u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
  864. };
  865. struct mvpp2_prs_entry {
  866. u32 index;
  867. union mvpp2_prs_tcam_entry tcam;
  868. union mvpp2_prs_sram_entry sram;
  869. };
  870. struct mvpp2_prs_shadow {
  871. bool valid;
  872. bool finish;
  873. /* Lookup ID */
  874. int lu;
  875. /* User defined offset */
  876. int udf;
  877. /* Result info */
  878. u32 ri;
  879. u32 ri_mask;
  880. };
  881. struct mvpp2_cls_flow_entry {
  882. u32 index;
  883. u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
  884. };
  885. struct mvpp2_cls_lookup_entry {
  886. u32 lkpid;
  887. u32 way;
  888. u32 data;
  889. };
  890. struct mvpp2_bm_pool {
  891. /* Pool number in the range 0-7 */
  892. int id;
  893. enum mvpp2_bm_type type;
  894. /* Buffer Pointers Pool External (BPPE) size */
  895. int size;
  896. /* BPPE size in bytes */
  897. int size_bytes;
  898. /* Number of buffers for this pool */
  899. int buf_num;
  900. /* Pool buffer size */
  901. int buf_size;
  902. /* Packet size */
  903. int pkt_size;
  904. int frag_size;
  905. /* BPPE virtual base address */
  906. u32 *virt_addr;
  907. /* BPPE DMA base address */
  908. dma_addr_t dma_addr;
  909. /* Ports using BM pool */
  910. u32 port_map;
  911. };
  912. /* Static declaractions */
  913. /* Number of RXQs used by single port */
  914. static int rxq_number = MVPP2_DEFAULT_RXQ;
  915. /* Number of TXQs used by single port */
  916. static int txq_number = MVPP2_MAX_TXQ;
  917. #define MVPP2_DRIVER_NAME "mvpp2"
  918. #define MVPP2_DRIVER_VERSION "1.0"
  919. /* Utility/helper methods */
  920. static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
  921. {
  922. writel(data, priv->cpu_base[0] + offset);
  923. }
  924. static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
  925. {
  926. return readl(priv->cpu_base[0] + offset);
  927. }
  928. /* These accessors should be used to access:
  929. *
  930. * - per-CPU registers, where each CPU has its own copy of the
  931. * register.
  932. *
  933. * MVPP2_BM_VIRT_ALLOC_REG
  934. * MVPP2_BM_ADDR_HIGH_ALLOC
  935. * MVPP22_BM_ADDR_HIGH_RLS_REG
  936. * MVPP2_BM_VIRT_RLS_REG
  937. * MVPP2_ISR_RX_TX_CAUSE_REG
  938. * MVPP2_ISR_RX_TX_MASK_REG
  939. * MVPP2_TXQ_NUM_REG
  940. * MVPP2_AGGR_TXQ_UPDATE_REG
  941. * MVPP2_TXQ_RSVD_REQ_REG
  942. * MVPP2_TXQ_RSVD_RSLT_REG
  943. * MVPP2_TXQ_SENT_REG
  944. * MVPP2_RXQ_NUM_REG
  945. *
  946. * - global registers that must be accessed through a specific CPU
  947. * window, because they are related to an access to a per-CPU
  948. * register
  949. *
  950. * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
  951. * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
  952. * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
  953. * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
  954. * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
  955. * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
  956. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  957. * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
  958. * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
  959. * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
  960. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  961. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  962. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  963. */
  964. static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
  965. u32 offset, u32 data)
  966. {
  967. writel(data, priv->cpu_base[cpu] + offset);
  968. }
  969. static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
  970. u32 offset)
  971. {
  972. return readl(priv->cpu_base[cpu] + offset);
  973. }
  974. static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
  975. struct mvpp2_tx_desc *tx_desc)
  976. {
  977. if (port->priv->hw_version == MVPP21)
  978. return tx_desc->pp21.buf_dma_addr;
  979. else
  980. return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
  981. }
  982. static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
  983. struct mvpp2_tx_desc *tx_desc,
  984. dma_addr_t dma_addr)
  985. {
  986. if (port->priv->hw_version == MVPP21) {
  987. tx_desc->pp21.buf_dma_addr = dma_addr;
  988. } else {
  989. u64 val = (u64)dma_addr;
  990. tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
  991. tx_desc->pp22.buf_dma_addr_ptp |= val;
  992. }
  993. }
  994. static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
  995. struct mvpp2_tx_desc *tx_desc)
  996. {
  997. if (port->priv->hw_version == MVPP21)
  998. return tx_desc->pp21.data_size;
  999. else
  1000. return tx_desc->pp22.data_size;
  1001. }
  1002. static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
  1003. struct mvpp2_tx_desc *tx_desc,
  1004. size_t size)
  1005. {
  1006. if (port->priv->hw_version == MVPP21)
  1007. tx_desc->pp21.data_size = size;
  1008. else
  1009. tx_desc->pp22.data_size = size;
  1010. }
  1011. static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
  1012. struct mvpp2_tx_desc *tx_desc,
  1013. unsigned int txq)
  1014. {
  1015. if (port->priv->hw_version == MVPP21)
  1016. tx_desc->pp21.phys_txq = txq;
  1017. else
  1018. tx_desc->pp22.phys_txq = txq;
  1019. }
  1020. static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
  1021. struct mvpp2_tx_desc *tx_desc,
  1022. unsigned int command)
  1023. {
  1024. if (port->priv->hw_version == MVPP21)
  1025. tx_desc->pp21.command = command;
  1026. else
  1027. tx_desc->pp22.command = command;
  1028. }
  1029. static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
  1030. struct mvpp2_tx_desc *tx_desc,
  1031. unsigned int offset)
  1032. {
  1033. if (port->priv->hw_version == MVPP21)
  1034. tx_desc->pp21.packet_offset = offset;
  1035. else
  1036. tx_desc->pp22.packet_offset = offset;
  1037. }
  1038. static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
  1039. struct mvpp2_tx_desc *tx_desc)
  1040. {
  1041. if (port->priv->hw_version == MVPP21)
  1042. return tx_desc->pp21.packet_offset;
  1043. else
  1044. return tx_desc->pp22.packet_offset;
  1045. }
  1046. static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
  1047. struct mvpp2_rx_desc *rx_desc)
  1048. {
  1049. if (port->priv->hw_version == MVPP21)
  1050. return rx_desc->pp21.buf_dma_addr;
  1051. else
  1052. return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
  1053. }
  1054. static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
  1055. struct mvpp2_rx_desc *rx_desc)
  1056. {
  1057. if (port->priv->hw_version == MVPP21)
  1058. return rx_desc->pp21.buf_cookie;
  1059. else
  1060. return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
  1061. }
  1062. static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
  1063. struct mvpp2_rx_desc *rx_desc)
  1064. {
  1065. if (port->priv->hw_version == MVPP21)
  1066. return rx_desc->pp21.data_size;
  1067. else
  1068. return rx_desc->pp22.data_size;
  1069. }
  1070. static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
  1071. struct mvpp2_rx_desc *rx_desc)
  1072. {
  1073. if (port->priv->hw_version == MVPP21)
  1074. return rx_desc->pp21.status;
  1075. else
  1076. return rx_desc->pp22.status;
  1077. }
  1078. static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
  1079. {
  1080. txq_pcpu->txq_get_index++;
  1081. if (txq_pcpu->txq_get_index == txq_pcpu->size)
  1082. txq_pcpu->txq_get_index = 0;
  1083. }
  1084. static void mvpp2_txq_inc_put(struct mvpp2_port *port,
  1085. struct mvpp2_txq_pcpu *txq_pcpu,
  1086. struct sk_buff *skb,
  1087. struct mvpp2_tx_desc *tx_desc)
  1088. {
  1089. struct mvpp2_txq_pcpu_buf *tx_buf =
  1090. txq_pcpu->buffs + txq_pcpu->txq_put_index;
  1091. tx_buf->skb = skb;
  1092. tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
  1093. tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
  1094. mvpp2_txdesc_offset_get(port, tx_desc);
  1095. txq_pcpu->txq_put_index++;
  1096. if (txq_pcpu->txq_put_index == txq_pcpu->size)
  1097. txq_pcpu->txq_put_index = 0;
  1098. }
  1099. /* Get number of physical egress port */
  1100. static inline int mvpp2_egress_port(struct mvpp2_port *port)
  1101. {
  1102. return MVPP2_MAX_TCONT + port->id;
  1103. }
  1104. /* Get number of physical TXQ */
  1105. static inline int mvpp2_txq_phys(int port, int txq)
  1106. {
  1107. return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
  1108. }
  1109. /* Parser configuration routines */
  1110. /* Update parser tcam and sram hw entries */
  1111. static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
  1112. {
  1113. int i;
  1114. if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
  1115. return -EINVAL;
  1116. /* Clear entry invalidation bit */
  1117. pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
  1118. /* Write tcam index - indirect access */
  1119. mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
  1120. for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
  1121. mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
  1122. /* Write sram index - indirect access */
  1123. mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
  1124. for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
  1125. mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
  1126. return 0;
  1127. }
  1128. /* Read tcam entry from hw */
  1129. static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
  1130. {
  1131. int i;
  1132. if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
  1133. return -EINVAL;
  1134. /* Write tcam index - indirect access */
  1135. mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
  1136. pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
  1137. MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
  1138. if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
  1139. return MVPP2_PRS_TCAM_ENTRY_INVALID;
  1140. for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
  1141. pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
  1142. /* Write sram index - indirect access */
  1143. mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
  1144. for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
  1145. pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
  1146. return 0;
  1147. }
  1148. /* Invalidate tcam hw entry */
  1149. static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
  1150. {
  1151. /* Write index - indirect access */
  1152. mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
  1153. mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
  1154. MVPP2_PRS_TCAM_INV_MASK);
  1155. }
  1156. /* Enable shadow table entry and set its lookup ID */
  1157. static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
  1158. {
  1159. priv->prs_shadow[index].valid = true;
  1160. priv->prs_shadow[index].lu = lu;
  1161. }
  1162. /* Update ri fields in shadow table entry */
  1163. static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
  1164. unsigned int ri, unsigned int ri_mask)
  1165. {
  1166. priv->prs_shadow[index].ri_mask = ri_mask;
  1167. priv->prs_shadow[index].ri = ri;
  1168. }
  1169. /* Update lookup field in tcam sw entry */
  1170. static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
  1171. {
  1172. int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
  1173. pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
  1174. pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
  1175. }
  1176. /* Update mask for single port in tcam sw entry */
  1177. static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
  1178. unsigned int port, bool add)
  1179. {
  1180. int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
  1181. if (add)
  1182. pe->tcam.byte[enable_off] &= ~(1 << port);
  1183. else
  1184. pe->tcam.byte[enable_off] |= 1 << port;
  1185. }
  1186. /* Update port map in tcam sw entry */
  1187. static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
  1188. unsigned int ports)
  1189. {
  1190. unsigned char port_mask = MVPP2_PRS_PORT_MASK;
  1191. int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
  1192. pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
  1193. pe->tcam.byte[enable_off] &= ~port_mask;
  1194. pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
  1195. }
  1196. /* Obtain port map from tcam sw entry */
  1197. static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
  1198. {
  1199. int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
  1200. return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
  1201. }
  1202. /* Set byte of data and its enable bits in tcam sw entry */
  1203. static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
  1204. unsigned int offs, unsigned char byte,
  1205. unsigned char enable)
  1206. {
  1207. pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
  1208. pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
  1209. }
  1210. /* Get byte of data and its enable bits from tcam sw entry */
  1211. static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
  1212. unsigned int offs, unsigned char *byte,
  1213. unsigned char *enable)
  1214. {
  1215. *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
  1216. *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
  1217. }
  1218. /* Compare tcam data bytes with a pattern */
  1219. static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
  1220. u16 data)
  1221. {
  1222. int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
  1223. u16 tcam_data;
  1224. tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
  1225. if (tcam_data != data)
  1226. return false;
  1227. return true;
  1228. }
  1229. /* Update ai bits in tcam sw entry */
  1230. static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
  1231. unsigned int bits, unsigned int enable)
  1232. {
  1233. int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
  1234. for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
  1235. if (!(enable & BIT(i)))
  1236. continue;
  1237. if (bits & BIT(i))
  1238. pe->tcam.byte[ai_idx] |= 1 << i;
  1239. else
  1240. pe->tcam.byte[ai_idx] &= ~(1 << i);
  1241. }
  1242. pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
  1243. }
  1244. /* Get ai bits from tcam sw entry */
  1245. static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
  1246. {
  1247. return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
  1248. }
  1249. /* Set ethertype in tcam sw entry */
  1250. static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
  1251. unsigned short ethertype)
  1252. {
  1253. mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
  1254. mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
  1255. }
  1256. /* Set bits in sram sw entry */
  1257. static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
  1258. int val)
  1259. {
  1260. pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
  1261. }
  1262. /* Clear bits in sram sw entry */
  1263. static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
  1264. int val)
  1265. {
  1266. pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
  1267. }
  1268. /* Update ri bits in sram sw entry */
  1269. static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
  1270. unsigned int bits, unsigned int mask)
  1271. {
  1272. unsigned int i;
  1273. for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
  1274. int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
  1275. if (!(mask & BIT(i)))
  1276. continue;
  1277. if (bits & BIT(i))
  1278. mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
  1279. else
  1280. mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
  1281. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
  1282. }
  1283. }
  1284. /* Obtain ri bits from sram sw entry */
  1285. static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
  1286. {
  1287. return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
  1288. }
  1289. /* Update ai bits in sram sw entry */
  1290. static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
  1291. unsigned int bits, unsigned int mask)
  1292. {
  1293. unsigned int i;
  1294. int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
  1295. for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
  1296. if (!(mask & BIT(i)))
  1297. continue;
  1298. if (bits & BIT(i))
  1299. mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
  1300. else
  1301. mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
  1302. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
  1303. }
  1304. }
  1305. /* Read ai bits from sram sw entry */
  1306. static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
  1307. {
  1308. u8 bits;
  1309. int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
  1310. int ai_en_off = ai_off + 1;
  1311. int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
  1312. bits = (pe->sram.byte[ai_off] >> ai_shift) |
  1313. (pe->sram.byte[ai_en_off] << (8 - ai_shift));
  1314. return bits;
  1315. }
  1316. /* In sram sw entry set lookup ID field of the tcam key to be used in the next
  1317. * lookup interation
  1318. */
  1319. static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
  1320. unsigned int lu)
  1321. {
  1322. int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
  1323. mvpp2_prs_sram_bits_clear(pe, sram_next_off,
  1324. MVPP2_PRS_SRAM_NEXT_LU_MASK);
  1325. mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
  1326. }
  1327. /* In the sram sw entry set sign and value of the next lookup offset
  1328. * and the offset value generated to the classifier
  1329. */
  1330. static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
  1331. unsigned int op)
  1332. {
  1333. /* Set sign */
  1334. if (shift < 0) {
  1335. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
  1336. shift = 0 - shift;
  1337. } else {
  1338. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
  1339. }
  1340. /* Set value */
  1341. pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
  1342. (unsigned char)shift;
  1343. /* Reset and set operation */
  1344. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
  1345. MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
  1346. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
  1347. /* Set base offset as current */
  1348. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
  1349. }
  1350. /* In the sram sw entry set sign and value of the user defined offset
  1351. * generated to the classifier
  1352. */
  1353. static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
  1354. unsigned int type, int offset,
  1355. unsigned int op)
  1356. {
  1357. /* Set sign */
  1358. if (offset < 0) {
  1359. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
  1360. offset = 0 - offset;
  1361. } else {
  1362. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
  1363. }
  1364. /* Set value */
  1365. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
  1366. MVPP2_PRS_SRAM_UDF_MASK);
  1367. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
  1368. pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
  1369. MVPP2_PRS_SRAM_UDF_BITS)] &=
  1370. ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
  1371. pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
  1372. MVPP2_PRS_SRAM_UDF_BITS)] |=
  1373. (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
  1374. /* Set offset type */
  1375. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
  1376. MVPP2_PRS_SRAM_UDF_TYPE_MASK);
  1377. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
  1378. /* Set offset operation */
  1379. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
  1380. MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
  1381. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
  1382. pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
  1383. MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
  1384. ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
  1385. (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
  1386. pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
  1387. MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
  1388. (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
  1389. /* Set base offset as current */
  1390. mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
  1391. }
  1392. /* Find parser flow entry */
  1393. static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
  1394. {
  1395. struct mvpp2_prs_entry *pe;
  1396. int tid;
  1397. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  1398. if (!pe)
  1399. return NULL;
  1400. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
  1401. /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
  1402. for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
  1403. u8 bits;
  1404. if (!priv->prs_shadow[tid].valid ||
  1405. priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
  1406. continue;
  1407. pe->index = tid;
  1408. mvpp2_prs_hw_read(priv, pe);
  1409. bits = mvpp2_prs_sram_ai_get(pe);
  1410. /* Sram store classification lookup ID in AI bits [5:0] */
  1411. if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
  1412. return pe;
  1413. }
  1414. kfree(pe);
  1415. return NULL;
  1416. }
  1417. /* Return first free tcam index, seeking from start to end */
  1418. static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
  1419. unsigned char end)
  1420. {
  1421. int tid;
  1422. if (start > end)
  1423. swap(start, end);
  1424. if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
  1425. end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
  1426. for (tid = start; tid <= end; tid++) {
  1427. if (!priv->prs_shadow[tid].valid)
  1428. return tid;
  1429. }
  1430. return -EINVAL;
  1431. }
  1432. /* Enable/disable dropping all mac da's */
  1433. static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
  1434. {
  1435. struct mvpp2_prs_entry pe;
  1436. if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
  1437. /* Entry exist - update port only */
  1438. pe.index = MVPP2_PE_DROP_ALL;
  1439. mvpp2_prs_hw_read(priv, &pe);
  1440. } else {
  1441. /* Entry doesn't exist - create new */
  1442. memset(&pe, 0, sizeof(pe));
  1443. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
  1444. pe.index = MVPP2_PE_DROP_ALL;
  1445. /* Non-promiscuous mode for all ports - DROP unknown packets */
  1446. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
  1447. MVPP2_PRS_RI_DROP_MASK);
  1448. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  1449. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  1450. /* Update shadow table */
  1451. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
  1452. /* Mask all ports */
  1453. mvpp2_prs_tcam_port_map_set(&pe, 0);
  1454. }
  1455. /* Update port mask */
  1456. mvpp2_prs_tcam_port_set(&pe, port, add);
  1457. mvpp2_prs_hw_write(priv, &pe);
  1458. }
  1459. /* Set port to promiscuous mode */
  1460. static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
  1461. {
  1462. struct mvpp2_prs_entry pe;
  1463. /* Promiscuous mode - Accept unknown packets */
  1464. if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
  1465. /* Entry exist - update port only */
  1466. pe.index = MVPP2_PE_MAC_PROMISCUOUS;
  1467. mvpp2_prs_hw_read(priv, &pe);
  1468. } else {
  1469. /* Entry doesn't exist - create new */
  1470. memset(&pe, 0, sizeof(pe));
  1471. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
  1472. pe.index = MVPP2_PE_MAC_PROMISCUOUS;
  1473. /* Continue - set next lookup */
  1474. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
  1475. /* Set result info bits */
  1476. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
  1477. MVPP2_PRS_RI_L2_CAST_MASK);
  1478. /* Shift to ethertype */
  1479. mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
  1480. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1481. /* Mask all ports */
  1482. mvpp2_prs_tcam_port_map_set(&pe, 0);
  1483. /* Update shadow table */
  1484. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
  1485. }
  1486. /* Update port mask */
  1487. mvpp2_prs_tcam_port_set(&pe, port, add);
  1488. mvpp2_prs_hw_write(priv, &pe);
  1489. }
  1490. /* Accept multicast */
  1491. static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
  1492. bool add)
  1493. {
  1494. struct mvpp2_prs_entry pe;
  1495. unsigned char da_mc;
  1496. /* Ethernet multicast address first byte is
  1497. * 0x01 for IPv4 and 0x33 for IPv6
  1498. */
  1499. da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
  1500. if (priv->prs_shadow[index].valid) {
  1501. /* Entry exist - update port only */
  1502. pe.index = index;
  1503. mvpp2_prs_hw_read(priv, &pe);
  1504. } else {
  1505. /* Entry doesn't exist - create new */
  1506. memset(&pe, 0, sizeof(pe));
  1507. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
  1508. pe.index = index;
  1509. /* Continue - set next lookup */
  1510. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
  1511. /* Set result info bits */
  1512. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
  1513. MVPP2_PRS_RI_L2_CAST_MASK);
  1514. /* Update tcam entry data first byte */
  1515. mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
  1516. /* Shift to ethertype */
  1517. mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
  1518. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1519. /* Mask all ports */
  1520. mvpp2_prs_tcam_port_map_set(&pe, 0);
  1521. /* Update shadow table */
  1522. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
  1523. }
  1524. /* Update port mask */
  1525. mvpp2_prs_tcam_port_set(&pe, port, add);
  1526. mvpp2_prs_hw_write(priv, &pe);
  1527. }
  1528. /* Set entry for dsa packets */
  1529. static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
  1530. bool tagged, bool extend)
  1531. {
  1532. struct mvpp2_prs_entry pe;
  1533. int tid, shift;
  1534. if (extend) {
  1535. tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
  1536. shift = 8;
  1537. } else {
  1538. tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
  1539. shift = 4;
  1540. }
  1541. if (priv->prs_shadow[tid].valid) {
  1542. /* Entry exist - update port only */
  1543. pe.index = tid;
  1544. mvpp2_prs_hw_read(priv, &pe);
  1545. } else {
  1546. /* Entry doesn't exist - create new */
  1547. memset(&pe, 0, sizeof(pe));
  1548. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
  1549. pe.index = tid;
  1550. /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
  1551. mvpp2_prs_sram_shift_set(&pe, shift,
  1552. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1553. /* Update shadow table */
  1554. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
  1555. if (tagged) {
  1556. /* Set tagged bit in DSA tag */
  1557. mvpp2_prs_tcam_data_byte_set(&pe, 0,
  1558. MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
  1559. MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
  1560. /* Clear all ai bits for next iteration */
  1561. mvpp2_prs_sram_ai_update(&pe, 0,
  1562. MVPP2_PRS_SRAM_AI_MASK);
  1563. /* If packet is tagged continue check vlans */
  1564. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
  1565. } else {
  1566. /* Set result info bits to 'no vlans' */
  1567. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
  1568. MVPP2_PRS_RI_VLAN_MASK);
  1569. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
  1570. }
  1571. /* Mask all ports */
  1572. mvpp2_prs_tcam_port_map_set(&pe, 0);
  1573. }
  1574. /* Update port mask */
  1575. mvpp2_prs_tcam_port_set(&pe, port, add);
  1576. mvpp2_prs_hw_write(priv, &pe);
  1577. }
  1578. /* Set entry for dsa ethertype */
  1579. static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
  1580. bool add, bool tagged, bool extend)
  1581. {
  1582. struct mvpp2_prs_entry pe;
  1583. int tid, shift, port_mask;
  1584. if (extend) {
  1585. tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
  1586. MVPP2_PE_ETYPE_EDSA_UNTAGGED;
  1587. port_mask = 0;
  1588. shift = 8;
  1589. } else {
  1590. tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
  1591. MVPP2_PE_ETYPE_DSA_UNTAGGED;
  1592. port_mask = MVPP2_PRS_PORT_MASK;
  1593. shift = 4;
  1594. }
  1595. if (priv->prs_shadow[tid].valid) {
  1596. /* Entry exist - update port only */
  1597. pe.index = tid;
  1598. mvpp2_prs_hw_read(priv, &pe);
  1599. } else {
  1600. /* Entry doesn't exist - create new */
  1601. memset(&pe, 0, sizeof(pe));
  1602. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
  1603. pe.index = tid;
  1604. /* Set ethertype */
  1605. mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
  1606. mvpp2_prs_match_etype(&pe, 2, 0);
  1607. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
  1608. MVPP2_PRS_RI_DSA_MASK);
  1609. /* Shift ethertype + 2 byte reserved + tag*/
  1610. mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
  1611. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1612. /* Update shadow table */
  1613. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
  1614. if (tagged) {
  1615. /* Set tagged bit in DSA tag */
  1616. mvpp2_prs_tcam_data_byte_set(&pe,
  1617. MVPP2_ETH_TYPE_LEN + 2 + 3,
  1618. MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
  1619. MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
  1620. /* Clear all ai bits for next iteration */
  1621. mvpp2_prs_sram_ai_update(&pe, 0,
  1622. MVPP2_PRS_SRAM_AI_MASK);
  1623. /* If packet is tagged continue check vlans */
  1624. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
  1625. } else {
  1626. /* Set result info bits to 'no vlans' */
  1627. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
  1628. MVPP2_PRS_RI_VLAN_MASK);
  1629. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
  1630. }
  1631. /* Mask/unmask all ports, depending on dsa type */
  1632. mvpp2_prs_tcam_port_map_set(&pe, port_mask);
  1633. }
  1634. /* Update port mask */
  1635. mvpp2_prs_tcam_port_set(&pe, port, add);
  1636. mvpp2_prs_hw_write(priv, &pe);
  1637. }
  1638. /* Search for existing single/triple vlan entry */
  1639. static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
  1640. unsigned short tpid, int ai)
  1641. {
  1642. struct mvpp2_prs_entry *pe;
  1643. int tid;
  1644. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  1645. if (!pe)
  1646. return NULL;
  1647. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
  1648. /* Go through the all entries with MVPP2_PRS_LU_VLAN */
  1649. for (tid = MVPP2_PE_FIRST_FREE_TID;
  1650. tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
  1651. unsigned int ri_bits, ai_bits;
  1652. bool match;
  1653. if (!priv->prs_shadow[tid].valid ||
  1654. priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
  1655. continue;
  1656. pe->index = tid;
  1657. mvpp2_prs_hw_read(priv, pe);
  1658. match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
  1659. if (!match)
  1660. continue;
  1661. /* Get vlan type */
  1662. ri_bits = mvpp2_prs_sram_ri_get(pe);
  1663. ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
  1664. /* Get current ai value from tcam */
  1665. ai_bits = mvpp2_prs_tcam_ai_get(pe);
  1666. /* Clear double vlan bit */
  1667. ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
  1668. if (ai != ai_bits)
  1669. continue;
  1670. if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
  1671. ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
  1672. return pe;
  1673. }
  1674. kfree(pe);
  1675. return NULL;
  1676. }
  1677. /* Add/update single/triple vlan entry */
  1678. static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
  1679. unsigned int port_map)
  1680. {
  1681. struct mvpp2_prs_entry *pe;
  1682. int tid_aux, tid;
  1683. int ret = 0;
  1684. pe = mvpp2_prs_vlan_find(priv, tpid, ai);
  1685. if (!pe) {
  1686. /* Create new tcam entry */
  1687. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
  1688. MVPP2_PE_FIRST_FREE_TID);
  1689. if (tid < 0)
  1690. return tid;
  1691. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  1692. if (!pe)
  1693. return -ENOMEM;
  1694. /* Get last double vlan tid */
  1695. for (tid_aux = MVPP2_PE_LAST_FREE_TID;
  1696. tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
  1697. unsigned int ri_bits;
  1698. if (!priv->prs_shadow[tid_aux].valid ||
  1699. priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
  1700. continue;
  1701. pe->index = tid_aux;
  1702. mvpp2_prs_hw_read(priv, pe);
  1703. ri_bits = mvpp2_prs_sram_ri_get(pe);
  1704. if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
  1705. MVPP2_PRS_RI_VLAN_DOUBLE)
  1706. break;
  1707. }
  1708. if (tid <= tid_aux) {
  1709. ret = -EINVAL;
  1710. goto free_pe;
  1711. }
  1712. memset(pe, 0, sizeof(*pe));
  1713. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
  1714. pe->index = tid;
  1715. mvpp2_prs_match_etype(pe, 0, tpid);
  1716. mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
  1717. /* Shift 4 bytes - skip 1 vlan tag */
  1718. mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
  1719. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1720. /* Clear all ai bits for next iteration */
  1721. mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
  1722. if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
  1723. mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
  1724. MVPP2_PRS_RI_VLAN_MASK);
  1725. } else {
  1726. ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
  1727. mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
  1728. MVPP2_PRS_RI_VLAN_MASK);
  1729. }
  1730. mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
  1731. mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
  1732. }
  1733. /* Update ports' mask */
  1734. mvpp2_prs_tcam_port_map_set(pe, port_map);
  1735. mvpp2_prs_hw_write(priv, pe);
  1736. free_pe:
  1737. kfree(pe);
  1738. return ret;
  1739. }
  1740. /* Get first free double vlan ai number */
  1741. static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
  1742. {
  1743. int i;
  1744. for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
  1745. if (!priv->prs_double_vlans[i])
  1746. return i;
  1747. }
  1748. return -EINVAL;
  1749. }
  1750. /* Search for existing double vlan entry */
  1751. static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
  1752. unsigned short tpid1,
  1753. unsigned short tpid2)
  1754. {
  1755. struct mvpp2_prs_entry *pe;
  1756. int tid;
  1757. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  1758. if (!pe)
  1759. return NULL;
  1760. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
  1761. /* Go through the all entries with MVPP2_PRS_LU_VLAN */
  1762. for (tid = MVPP2_PE_FIRST_FREE_TID;
  1763. tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
  1764. unsigned int ri_mask;
  1765. bool match;
  1766. if (!priv->prs_shadow[tid].valid ||
  1767. priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
  1768. continue;
  1769. pe->index = tid;
  1770. mvpp2_prs_hw_read(priv, pe);
  1771. match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
  1772. && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
  1773. if (!match)
  1774. continue;
  1775. ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
  1776. if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
  1777. return pe;
  1778. }
  1779. kfree(pe);
  1780. return NULL;
  1781. }
  1782. /* Add or update double vlan entry */
  1783. static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
  1784. unsigned short tpid2,
  1785. unsigned int port_map)
  1786. {
  1787. struct mvpp2_prs_entry *pe;
  1788. int tid_aux, tid, ai, ret = 0;
  1789. pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
  1790. if (!pe) {
  1791. /* Create new tcam entry */
  1792. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1793. MVPP2_PE_LAST_FREE_TID);
  1794. if (tid < 0)
  1795. return tid;
  1796. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  1797. if (!pe)
  1798. return -ENOMEM;
  1799. /* Set ai value for new double vlan entry */
  1800. ai = mvpp2_prs_double_vlan_ai_free_get(priv);
  1801. if (ai < 0) {
  1802. ret = ai;
  1803. goto free_pe;
  1804. }
  1805. /* Get first single/triple vlan tid */
  1806. for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
  1807. tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
  1808. unsigned int ri_bits;
  1809. if (!priv->prs_shadow[tid_aux].valid ||
  1810. priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
  1811. continue;
  1812. pe->index = tid_aux;
  1813. mvpp2_prs_hw_read(priv, pe);
  1814. ri_bits = mvpp2_prs_sram_ri_get(pe);
  1815. ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
  1816. if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
  1817. ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
  1818. break;
  1819. }
  1820. if (tid >= tid_aux) {
  1821. ret = -ERANGE;
  1822. goto free_pe;
  1823. }
  1824. memset(pe, 0, sizeof(*pe));
  1825. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
  1826. pe->index = tid;
  1827. priv->prs_double_vlans[ai] = true;
  1828. mvpp2_prs_match_etype(pe, 0, tpid1);
  1829. mvpp2_prs_match_etype(pe, 4, tpid2);
  1830. mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
  1831. /* Shift 8 bytes - skip 2 vlan tags */
  1832. mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
  1833. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1834. mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
  1835. MVPP2_PRS_RI_VLAN_MASK);
  1836. mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
  1837. MVPP2_PRS_SRAM_AI_MASK);
  1838. mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
  1839. }
  1840. /* Update ports' mask */
  1841. mvpp2_prs_tcam_port_map_set(pe, port_map);
  1842. mvpp2_prs_hw_write(priv, pe);
  1843. free_pe:
  1844. kfree(pe);
  1845. return ret;
  1846. }
  1847. /* IPv4 header parsing for fragmentation and L4 offset */
  1848. static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
  1849. unsigned int ri, unsigned int ri_mask)
  1850. {
  1851. struct mvpp2_prs_entry pe;
  1852. int tid;
  1853. if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
  1854. (proto != IPPROTO_IGMP))
  1855. return -EINVAL;
  1856. /* Fragmented packet */
  1857. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1858. MVPP2_PE_LAST_FREE_TID);
  1859. if (tid < 0)
  1860. return tid;
  1861. memset(&pe, 0, sizeof(pe));
  1862. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
  1863. pe.index = tid;
  1864. /* Set next lu to IPv4 */
  1865. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
  1866. mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1867. /* Set L4 offset */
  1868. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
  1869. sizeof(struct iphdr) - 4,
  1870. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  1871. mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
  1872. MVPP2_PRS_IPV4_DIP_AI_BIT);
  1873. mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
  1874. ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
  1875. mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
  1876. mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
  1877. /* Unmask all ports */
  1878. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  1879. /* Update shadow table and hw entry */
  1880. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  1881. mvpp2_prs_hw_write(priv, &pe);
  1882. /* Not fragmented packet */
  1883. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1884. MVPP2_PE_LAST_FREE_TID);
  1885. if (tid < 0)
  1886. return tid;
  1887. pe.index = tid;
  1888. /* Clear ri before updating */
  1889. pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
  1890. pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
  1891. mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
  1892. mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
  1893. mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
  1894. /* Update shadow table and hw entry */
  1895. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  1896. mvpp2_prs_hw_write(priv, &pe);
  1897. return 0;
  1898. }
  1899. /* IPv4 L3 multicast or broadcast */
  1900. static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
  1901. {
  1902. struct mvpp2_prs_entry pe;
  1903. int mask, tid;
  1904. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1905. MVPP2_PE_LAST_FREE_TID);
  1906. if (tid < 0)
  1907. return tid;
  1908. memset(&pe, 0, sizeof(pe));
  1909. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
  1910. pe.index = tid;
  1911. switch (l3_cast) {
  1912. case MVPP2_PRS_L3_MULTI_CAST:
  1913. mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
  1914. MVPP2_PRS_IPV4_MC_MASK);
  1915. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
  1916. MVPP2_PRS_RI_L3_ADDR_MASK);
  1917. break;
  1918. case MVPP2_PRS_L3_BROAD_CAST:
  1919. mask = MVPP2_PRS_IPV4_BC_MASK;
  1920. mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
  1921. mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
  1922. mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
  1923. mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
  1924. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
  1925. MVPP2_PRS_RI_L3_ADDR_MASK);
  1926. break;
  1927. default:
  1928. return -EINVAL;
  1929. }
  1930. /* Finished: go to flowid generation */
  1931. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  1932. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  1933. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
  1934. MVPP2_PRS_IPV4_DIP_AI_BIT);
  1935. /* Unmask all ports */
  1936. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  1937. /* Update shadow table and hw entry */
  1938. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  1939. mvpp2_prs_hw_write(priv, &pe);
  1940. return 0;
  1941. }
  1942. /* Set entries for protocols over IPv6 */
  1943. static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
  1944. unsigned int ri, unsigned int ri_mask)
  1945. {
  1946. struct mvpp2_prs_entry pe;
  1947. int tid;
  1948. if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
  1949. (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
  1950. return -EINVAL;
  1951. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1952. MVPP2_PE_LAST_FREE_TID);
  1953. if (tid < 0)
  1954. return tid;
  1955. memset(&pe, 0, sizeof(pe));
  1956. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  1957. pe.index = tid;
  1958. /* Finished: go to flowid generation */
  1959. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  1960. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  1961. mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
  1962. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
  1963. sizeof(struct ipv6hdr) - 6,
  1964. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  1965. mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
  1966. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
  1967. MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  1968. /* Unmask all ports */
  1969. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  1970. /* Write HW */
  1971. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
  1972. mvpp2_prs_hw_write(priv, &pe);
  1973. return 0;
  1974. }
  1975. /* IPv6 L3 multicast entry */
  1976. static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
  1977. {
  1978. struct mvpp2_prs_entry pe;
  1979. int tid;
  1980. if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
  1981. return -EINVAL;
  1982. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  1983. MVPP2_PE_LAST_FREE_TID);
  1984. if (tid < 0)
  1985. return tid;
  1986. memset(&pe, 0, sizeof(pe));
  1987. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  1988. pe.index = tid;
  1989. /* Finished: go to flowid generation */
  1990. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
  1991. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
  1992. MVPP2_PRS_RI_L3_ADDR_MASK);
  1993. mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
  1994. MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  1995. /* Shift back to IPv6 NH */
  1996. mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  1997. mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
  1998. MVPP2_PRS_IPV6_MC_MASK);
  1999. mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  2000. /* Unmask all ports */
  2001. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2002. /* Update shadow table and hw entry */
  2003. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
  2004. mvpp2_prs_hw_write(priv, &pe);
  2005. return 0;
  2006. }
  2007. /* Parser per-port initialization */
  2008. static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
  2009. int lu_max, int offset)
  2010. {
  2011. u32 val;
  2012. /* Set lookup ID */
  2013. val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
  2014. val &= ~MVPP2_PRS_PORT_LU_MASK(port);
  2015. val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
  2016. mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
  2017. /* Set maximum number of loops for packet received from port */
  2018. val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
  2019. val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
  2020. val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
  2021. mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
  2022. /* Set initial offset for packet header extraction for the first
  2023. * searching loop
  2024. */
  2025. val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
  2026. val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
  2027. val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
  2028. mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
  2029. }
  2030. /* Default flow entries initialization for all ports */
  2031. static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
  2032. {
  2033. struct mvpp2_prs_entry pe;
  2034. int port;
  2035. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  2036. memset(&pe, 0, sizeof(pe));
  2037. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2038. pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
  2039. /* Mask all ports */
  2040. mvpp2_prs_tcam_port_map_set(&pe, 0);
  2041. /* Set flow ID*/
  2042. mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
  2043. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
  2044. /* Update shadow table and hw entry */
  2045. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
  2046. mvpp2_prs_hw_write(priv, &pe);
  2047. }
  2048. }
  2049. /* Set default entry for Marvell Header field */
  2050. static void mvpp2_prs_mh_init(struct mvpp2 *priv)
  2051. {
  2052. struct mvpp2_prs_entry pe;
  2053. memset(&pe, 0, sizeof(pe));
  2054. pe.index = MVPP2_PE_MH_DEFAULT;
  2055. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
  2056. mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
  2057. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2058. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
  2059. /* Unmask all ports */
  2060. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2061. /* Update shadow table and hw entry */
  2062. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
  2063. mvpp2_prs_hw_write(priv, &pe);
  2064. }
  2065. /* Set default entires (place holder) for promiscuous, non-promiscuous and
  2066. * multicast MAC addresses
  2067. */
  2068. static void mvpp2_prs_mac_init(struct mvpp2 *priv)
  2069. {
  2070. struct mvpp2_prs_entry pe;
  2071. memset(&pe, 0, sizeof(pe));
  2072. /* Non-promiscuous mode for all ports - DROP unknown packets */
  2073. pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
  2074. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
  2075. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
  2076. MVPP2_PRS_RI_DROP_MASK);
  2077. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2078. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2079. /* Unmask all ports */
  2080. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2081. /* Update shadow table and hw entry */
  2082. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
  2083. mvpp2_prs_hw_write(priv, &pe);
  2084. /* place holders only - no ports */
  2085. mvpp2_prs_mac_drop_all_set(priv, 0, false);
  2086. mvpp2_prs_mac_promisc_set(priv, 0, false);
  2087. mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
  2088. mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
  2089. }
  2090. /* Set default entries for various types of dsa packets */
  2091. static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
  2092. {
  2093. struct mvpp2_prs_entry pe;
  2094. /* None tagged EDSA entry - place holder */
  2095. mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
  2096. MVPP2_PRS_EDSA);
  2097. /* Tagged EDSA entry - place holder */
  2098. mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
  2099. /* None tagged DSA entry - place holder */
  2100. mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
  2101. MVPP2_PRS_DSA);
  2102. /* Tagged DSA entry - place holder */
  2103. mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
  2104. /* None tagged EDSA ethertype entry - place holder*/
  2105. mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
  2106. MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
  2107. /* Tagged EDSA ethertype entry - place holder*/
  2108. mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
  2109. MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
  2110. /* None tagged DSA ethertype entry */
  2111. mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
  2112. MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
  2113. /* Tagged DSA ethertype entry */
  2114. mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
  2115. MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
  2116. /* Set default entry, in case DSA or EDSA tag not found */
  2117. memset(&pe, 0, sizeof(pe));
  2118. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
  2119. pe.index = MVPP2_PE_DSA_DEFAULT;
  2120. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
  2121. /* Shift 0 bytes */
  2122. mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2123. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
  2124. /* Clear all sram ai bits for next iteration */
  2125. mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
  2126. /* Unmask all ports */
  2127. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2128. mvpp2_prs_hw_write(priv, &pe);
  2129. }
  2130. /* Match basic ethertypes */
  2131. static int mvpp2_prs_etype_init(struct mvpp2 *priv)
  2132. {
  2133. struct mvpp2_prs_entry pe;
  2134. int tid;
  2135. /* Ethertype: PPPoE */
  2136. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2137. MVPP2_PE_LAST_FREE_TID);
  2138. if (tid < 0)
  2139. return tid;
  2140. memset(&pe, 0, sizeof(pe));
  2141. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2142. pe.index = tid;
  2143. mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
  2144. mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
  2145. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2146. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
  2147. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
  2148. MVPP2_PRS_RI_PPPOE_MASK);
  2149. /* Update shadow table and hw entry */
  2150. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2151. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2152. priv->prs_shadow[pe.index].finish = false;
  2153. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
  2154. MVPP2_PRS_RI_PPPOE_MASK);
  2155. mvpp2_prs_hw_write(priv, &pe);
  2156. /* Ethertype: ARP */
  2157. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2158. MVPP2_PE_LAST_FREE_TID);
  2159. if (tid < 0)
  2160. return tid;
  2161. memset(&pe, 0, sizeof(pe));
  2162. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2163. pe.index = tid;
  2164. mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
  2165. /* Generate flow in the next iteration*/
  2166. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2167. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2168. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
  2169. MVPP2_PRS_RI_L3_PROTO_MASK);
  2170. /* Set L3 offset */
  2171. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2172. MVPP2_ETH_TYPE_LEN,
  2173. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2174. /* Update shadow table and hw entry */
  2175. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2176. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2177. priv->prs_shadow[pe.index].finish = true;
  2178. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
  2179. MVPP2_PRS_RI_L3_PROTO_MASK);
  2180. mvpp2_prs_hw_write(priv, &pe);
  2181. /* Ethertype: LBTD */
  2182. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2183. MVPP2_PE_LAST_FREE_TID);
  2184. if (tid < 0)
  2185. return tid;
  2186. memset(&pe, 0, sizeof(pe));
  2187. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2188. pe.index = tid;
  2189. mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
  2190. /* Generate flow in the next iteration*/
  2191. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2192. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2193. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
  2194. MVPP2_PRS_RI_UDF3_RX_SPECIAL,
  2195. MVPP2_PRS_RI_CPU_CODE_MASK |
  2196. MVPP2_PRS_RI_UDF3_MASK);
  2197. /* Set L3 offset */
  2198. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2199. MVPP2_ETH_TYPE_LEN,
  2200. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2201. /* Update shadow table and hw entry */
  2202. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2203. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2204. priv->prs_shadow[pe.index].finish = true;
  2205. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
  2206. MVPP2_PRS_RI_UDF3_RX_SPECIAL,
  2207. MVPP2_PRS_RI_CPU_CODE_MASK |
  2208. MVPP2_PRS_RI_UDF3_MASK);
  2209. mvpp2_prs_hw_write(priv, &pe);
  2210. /* Ethertype: IPv4 without options */
  2211. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2212. MVPP2_PE_LAST_FREE_TID);
  2213. if (tid < 0)
  2214. return tid;
  2215. memset(&pe, 0, sizeof(pe));
  2216. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2217. pe.index = tid;
  2218. mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
  2219. mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
  2220. MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
  2221. MVPP2_PRS_IPV4_HEAD_MASK |
  2222. MVPP2_PRS_IPV4_IHL_MASK);
  2223. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
  2224. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
  2225. MVPP2_PRS_RI_L3_PROTO_MASK);
  2226. /* Skip eth_type + 4 bytes of IP header */
  2227. mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
  2228. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2229. /* Set L3 offset */
  2230. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2231. MVPP2_ETH_TYPE_LEN,
  2232. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2233. /* Update shadow table and hw entry */
  2234. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2235. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2236. priv->prs_shadow[pe.index].finish = false;
  2237. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
  2238. MVPP2_PRS_RI_L3_PROTO_MASK);
  2239. mvpp2_prs_hw_write(priv, &pe);
  2240. /* Ethertype: IPv4 with options */
  2241. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2242. MVPP2_PE_LAST_FREE_TID);
  2243. if (tid < 0)
  2244. return tid;
  2245. pe.index = tid;
  2246. /* Clear tcam data before updating */
  2247. pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
  2248. pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
  2249. mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
  2250. MVPP2_PRS_IPV4_HEAD,
  2251. MVPP2_PRS_IPV4_HEAD_MASK);
  2252. /* Clear ri before updating */
  2253. pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
  2254. pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
  2255. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
  2256. MVPP2_PRS_RI_L3_PROTO_MASK);
  2257. /* Update shadow table and hw entry */
  2258. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2259. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2260. priv->prs_shadow[pe.index].finish = false;
  2261. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
  2262. MVPP2_PRS_RI_L3_PROTO_MASK);
  2263. mvpp2_prs_hw_write(priv, &pe);
  2264. /* Ethertype: IPv6 without options */
  2265. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2266. MVPP2_PE_LAST_FREE_TID);
  2267. if (tid < 0)
  2268. return tid;
  2269. memset(&pe, 0, sizeof(pe));
  2270. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2271. pe.index = tid;
  2272. mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
  2273. /* Skip DIP of IPV6 header */
  2274. mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
  2275. MVPP2_MAX_L3_ADDR_SIZE,
  2276. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2277. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2278. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
  2279. MVPP2_PRS_RI_L3_PROTO_MASK);
  2280. /* Set L3 offset */
  2281. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2282. MVPP2_ETH_TYPE_LEN,
  2283. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2284. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2285. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2286. priv->prs_shadow[pe.index].finish = false;
  2287. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
  2288. MVPP2_PRS_RI_L3_PROTO_MASK);
  2289. mvpp2_prs_hw_write(priv, &pe);
  2290. /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
  2291. memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
  2292. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
  2293. pe.index = MVPP2_PE_ETH_TYPE_UN;
  2294. /* Unmask all ports */
  2295. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2296. /* Generate flow in the next iteration*/
  2297. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2298. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2299. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
  2300. MVPP2_PRS_RI_L3_PROTO_MASK);
  2301. /* Set L3 offset even it's unknown L3 */
  2302. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2303. MVPP2_ETH_TYPE_LEN,
  2304. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2305. /* Update shadow table and hw entry */
  2306. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
  2307. priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
  2308. priv->prs_shadow[pe.index].finish = true;
  2309. mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
  2310. MVPP2_PRS_RI_L3_PROTO_MASK);
  2311. mvpp2_prs_hw_write(priv, &pe);
  2312. return 0;
  2313. }
  2314. /* Configure vlan entries and detect up to 2 successive VLAN tags.
  2315. * Possible options:
  2316. * 0x8100, 0x88A8
  2317. * 0x8100, 0x8100
  2318. * 0x8100
  2319. * 0x88A8
  2320. */
  2321. static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
  2322. {
  2323. struct mvpp2_prs_entry pe;
  2324. int err;
  2325. priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
  2326. MVPP2_PRS_DBL_VLANS_MAX,
  2327. GFP_KERNEL);
  2328. if (!priv->prs_double_vlans)
  2329. return -ENOMEM;
  2330. /* Double VLAN: 0x8100, 0x88A8 */
  2331. err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
  2332. MVPP2_PRS_PORT_MASK);
  2333. if (err)
  2334. return err;
  2335. /* Double VLAN: 0x8100, 0x8100 */
  2336. err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
  2337. MVPP2_PRS_PORT_MASK);
  2338. if (err)
  2339. return err;
  2340. /* Single VLAN: 0x88a8 */
  2341. err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
  2342. MVPP2_PRS_PORT_MASK);
  2343. if (err)
  2344. return err;
  2345. /* Single VLAN: 0x8100 */
  2346. err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
  2347. MVPP2_PRS_PORT_MASK);
  2348. if (err)
  2349. return err;
  2350. /* Set default double vlan entry */
  2351. memset(&pe, 0, sizeof(pe));
  2352. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
  2353. pe.index = MVPP2_PE_VLAN_DBL;
  2354. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
  2355. /* Clear ai for next iterations */
  2356. mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
  2357. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
  2358. MVPP2_PRS_RI_VLAN_MASK);
  2359. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
  2360. MVPP2_PRS_DBL_VLAN_AI_BIT);
  2361. /* Unmask all ports */
  2362. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2363. /* Update shadow table and hw entry */
  2364. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
  2365. mvpp2_prs_hw_write(priv, &pe);
  2366. /* Set default vlan none entry */
  2367. memset(&pe, 0, sizeof(pe));
  2368. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
  2369. pe.index = MVPP2_PE_VLAN_NONE;
  2370. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
  2371. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
  2372. MVPP2_PRS_RI_VLAN_MASK);
  2373. /* Unmask all ports */
  2374. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2375. /* Update shadow table and hw entry */
  2376. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
  2377. mvpp2_prs_hw_write(priv, &pe);
  2378. return 0;
  2379. }
  2380. /* Set entries for PPPoE ethertype */
  2381. static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
  2382. {
  2383. struct mvpp2_prs_entry pe;
  2384. int tid;
  2385. /* IPv4 over PPPoE with options */
  2386. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2387. MVPP2_PE_LAST_FREE_TID);
  2388. if (tid < 0)
  2389. return tid;
  2390. memset(&pe, 0, sizeof(pe));
  2391. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
  2392. pe.index = tid;
  2393. mvpp2_prs_match_etype(&pe, 0, PPP_IP);
  2394. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
  2395. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
  2396. MVPP2_PRS_RI_L3_PROTO_MASK);
  2397. /* Skip eth_type + 4 bytes of IP header */
  2398. mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
  2399. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2400. /* Set L3 offset */
  2401. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2402. MVPP2_ETH_TYPE_LEN,
  2403. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2404. /* Update shadow table and hw entry */
  2405. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
  2406. mvpp2_prs_hw_write(priv, &pe);
  2407. /* IPv4 over PPPoE without options */
  2408. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2409. MVPP2_PE_LAST_FREE_TID);
  2410. if (tid < 0)
  2411. return tid;
  2412. pe.index = tid;
  2413. mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
  2414. MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
  2415. MVPP2_PRS_IPV4_HEAD_MASK |
  2416. MVPP2_PRS_IPV4_IHL_MASK);
  2417. /* Clear ri before updating */
  2418. pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
  2419. pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
  2420. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
  2421. MVPP2_PRS_RI_L3_PROTO_MASK);
  2422. /* Update shadow table and hw entry */
  2423. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
  2424. mvpp2_prs_hw_write(priv, &pe);
  2425. /* IPv6 over PPPoE */
  2426. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2427. MVPP2_PE_LAST_FREE_TID);
  2428. if (tid < 0)
  2429. return tid;
  2430. memset(&pe, 0, sizeof(pe));
  2431. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
  2432. pe.index = tid;
  2433. mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
  2434. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2435. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
  2436. MVPP2_PRS_RI_L3_PROTO_MASK);
  2437. /* Skip eth_type + 4 bytes of IPv6 header */
  2438. mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
  2439. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2440. /* Set L3 offset */
  2441. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2442. MVPP2_ETH_TYPE_LEN,
  2443. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2444. /* Update shadow table and hw entry */
  2445. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
  2446. mvpp2_prs_hw_write(priv, &pe);
  2447. /* Non-IP over PPPoE */
  2448. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2449. MVPP2_PE_LAST_FREE_TID);
  2450. if (tid < 0)
  2451. return tid;
  2452. memset(&pe, 0, sizeof(pe));
  2453. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
  2454. pe.index = tid;
  2455. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
  2456. MVPP2_PRS_RI_L3_PROTO_MASK);
  2457. /* Finished: go to flowid generation */
  2458. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2459. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2460. /* Set L3 offset even if it's unknown L3 */
  2461. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
  2462. MVPP2_ETH_TYPE_LEN,
  2463. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2464. /* Update shadow table and hw entry */
  2465. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
  2466. mvpp2_prs_hw_write(priv, &pe);
  2467. return 0;
  2468. }
  2469. /* Initialize entries for IPv4 */
  2470. static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
  2471. {
  2472. struct mvpp2_prs_entry pe;
  2473. int err;
  2474. /* Set entries for TCP, UDP and IGMP over IPv4 */
  2475. err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
  2476. MVPP2_PRS_RI_L4_PROTO_MASK);
  2477. if (err)
  2478. return err;
  2479. err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
  2480. MVPP2_PRS_RI_L4_PROTO_MASK);
  2481. if (err)
  2482. return err;
  2483. err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
  2484. MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
  2485. MVPP2_PRS_RI_UDF3_RX_SPECIAL,
  2486. MVPP2_PRS_RI_CPU_CODE_MASK |
  2487. MVPP2_PRS_RI_UDF3_MASK);
  2488. if (err)
  2489. return err;
  2490. /* IPv4 Broadcast */
  2491. err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
  2492. if (err)
  2493. return err;
  2494. /* IPv4 Multicast */
  2495. err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
  2496. if (err)
  2497. return err;
  2498. /* Default IPv4 entry for unknown protocols */
  2499. memset(&pe, 0, sizeof(pe));
  2500. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
  2501. pe.index = MVPP2_PE_IP4_PROTO_UN;
  2502. /* Set next lu to IPv4 */
  2503. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
  2504. mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2505. /* Set L4 offset */
  2506. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
  2507. sizeof(struct iphdr) - 4,
  2508. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2509. mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
  2510. MVPP2_PRS_IPV4_DIP_AI_BIT);
  2511. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
  2512. MVPP2_PRS_RI_L4_PROTO_MASK);
  2513. mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
  2514. /* Unmask all ports */
  2515. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2516. /* Update shadow table and hw entry */
  2517. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  2518. mvpp2_prs_hw_write(priv, &pe);
  2519. /* Default IPv4 entry for unicast address */
  2520. memset(&pe, 0, sizeof(pe));
  2521. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
  2522. pe.index = MVPP2_PE_IP4_ADDR_UN;
  2523. /* Finished: go to flowid generation */
  2524. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2525. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2526. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
  2527. MVPP2_PRS_RI_L3_ADDR_MASK);
  2528. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
  2529. MVPP2_PRS_IPV4_DIP_AI_BIT);
  2530. /* Unmask all ports */
  2531. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2532. /* Update shadow table and hw entry */
  2533. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  2534. mvpp2_prs_hw_write(priv, &pe);
  2535. return 0;
  2536. }
  2537. /* Initialize entries for IPv6 */
  2538. static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
  2539. {
  2540. struct mvpp2_prs_entry pe;
  2541. int tid, err;
  2542. /* Set entries for TCP, UDP and ICMP over IPv6 */
  2543. err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
  2544. MVPP2_PRS_RI_L4_TCP,
  2545. MVPP2_PRS_RI_L4_PROTO_MASK);
  2546. if (err)
  2547. return err;
  2548. err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
  2549. MVPP2_PRS_RI_L4_UDP,
  2550. MVPP2_PRS_RI_L4_PROTO_MASK);
  2551. if (err)
  2552. return err;
  2553. err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
  2554. MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
  2555. MVPP2_PRS_RI_UDF3_RX_SPECIAL,
  2556. MVPP2_PRS_RI_CPU_CODE_MASK |
  2557. MVPP2_PRS_RI_UDF3_MASK);
  2558. if (err)
  2559. return err;
  2560. /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
  2561. /* Result Info: UDF7=1, DS lite */
  2562. err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
  2563. MVPP2_PRS_RI_UDF7_IP6_LITE,
  2564. MVPP2_PRS_RI_UDF7_MASK);
  2565. if (err)
  2566. return err;
  2567. /* IPv6 multicast */
  2568. err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
  2569. if (err)
  2570. return err;
  2571. /* Entry for checking hop limit */
  2572. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2573. MVPP2_PE_LAST_FREE_TID);
  2574. if (tid < 0)
  2575. return tid;
  2576. memset(&pe, 0, sizeof(pe));
  2577. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2578. pe.index = tid;
  2579. /* Finished: go to flowid generation */
  2580. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2581. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2582. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
  2583. MVPP2_PRS_RI_DROP_MASK,
  2584. MVPP2_PRS_RI_L3_PROTO_MASK |
  2585. MVPP2_PRS_RI_DROP_MASK);
  2586. mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
  2587. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
  2588. MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  2589. /* Update shadow table and hw entry */
  2590. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  2591. mvpp2_prs_hw_write(priv, &pe);
  2592. /* Default IPv6 entry for unknown protocols */
  2593. memset(&pe, 0, sizeof(pe));
  2594. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2595. pe.index = MVPP2_PE_IP6_PROTO_UN;
  2596. /* Finished: go to flowid generation */
  2597. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2598. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2599. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
  2600. MVPP2_PRS_RI_L4_PROTO_MASK);
  2601. /* Set L4 offset relatively to our current place */
  2602. mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
  2603. sizeof(struct ipv6hdr) - 4,
  2604. MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
  2605. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
  2606. MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  2607. /* Unmask all ports */
  2608. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2609. /* Update shadow table and hw entry */
  2610. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  2611. mvpp2_prs_hw_write(priv, &pe);
  2612. /* Default IPv6 entry for unknown ext protocols */
  2613. memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
  2614. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2615. pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
  2616. /* Finished: go to flowid generation */
  2617. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
  2618. mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
  2619. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
  2620. MVPP2_PRS_RI_L4_PROTO_MASK);
  2621. mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
  2622. MVPP2_PRS_IPV6_EXT_AI_BIT);
  2623. /* Unmask all ports */
  2624. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2625. /* Update shadow table and hw entry */
  2626. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
  2627. mvpp2_prs_hw_write(priv, &pe);
  2628. /* Default IPv6 entry for unicast address */
  2629. memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
  2630. mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2631. pe.index = MVPP2_PE_IP6_ADDR_UN;
  2632. /* Finished: go to IPv6 again */
  2633. mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
  2634. mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
  2635. MVPP2_PRS_RI_L3_ADDR_MASK);
  2636. mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
  2637. MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  2638. /* Shift back to IPV6 NH */
  2639. mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2640. mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
  2641. /* Unmask all ports */
  2642. mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
  2643. /* Update shadow table and hw entry */
  2644. mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
  2645. mvpp2_prs_hw_write(priv, &pe);
  2646. return 0;
  2647. }
  2648. /* Parser default initialization */
  2649. static int mvpp2_prs_default_init(struct platform_device *pdev,
  2650. struct mvpp2 *priv)
  2651. {
  2652. int err, index, i;
  2653. /* Enable tcam table */
  2654. mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
  2655. /* Clear all tcam and sram entries */
  2656. for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
  2657. mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
  2658. for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
  2659. mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
  2660. mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
  2661. for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
  2662. mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
  2663. }
  2664. /* Invalidate all tcam entries */
  2665. for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
  2666. mvpp2_prs_hw_inv(priv, index);
  2667. priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
  2668. sizeof(*priv->prs_shadow),
  2669. GFP_KERNEL);
  2670. if (!priv->prs_shadow)
  2671. return -ENOMEM;
  2672. /* Always start from lookup = 0 */
  2673. for (index = 0; index < MVPP2_MAX_PORTS; index++)
  2674. mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
  2675. MVPP2_PRS_PORT_LU_MAX, 0);
  2676. mvpp2_prs_def_flow_init(priv);
  2677. mvpp2_prs_mh_init(priv);
  2678. mvpp2_prs_mac_init(priv);
  2679. mvpp2_prs_dsa_init(priv);
  2680. err = mvpp2_prs_etype_init(priv);
  2681. if (err)
  2682. return err;
  2683. err = mvpp2_prs_vlan_init(pdev, priv);
  2684. if (err)
  2685. return err;
  2686. err = mvpp2_prs_pppoe_init(priv);
  2687. if (err)
  2688. return err;
  2689. err = mvpp2_prs_ip6_init(priv);
  2690. if (err)
  2691. return err;
  2692. err = mvpp2_prs_ip4_init(priv);
  2693. if (err)
  2694. return err;
  2695. return 0;
  2696. }
  2697. /* Compare MAC DA with tcam entry data */
  2698. static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
  2699. const u8 *da, unsigned char *mask)
  2700. {
  2701. unsigned char tcam_byte, tcam_mask;
  2702. int index;
  2703. for (index = 0; index < ETH_ALEN; index++) {
  2704. mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
  2705. if (tcam_mask != mask[index])
  2706. return false;
  2707. if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
  2708. return false;
  2709. }
  2710. return true;
  2711. }
  2712. /* Find tcam entry with matched pair <MAC DA, port> */
  2713. static struct mvpp2_prs_entry *
  2714. mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
  2715. unsigned char *mask, int udf_type)
  2716. {
  2717. struct mvpp2_prs_entry *pe;
  2718. int tid;
  2719. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  2720. if (!pe)
  2721. return NULL;
  2722. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
  2723. /* Go through the all entires with MVPP2_PRS_LU_MAC */
  2724. for (tid = MVPP2_PE_FIRST_FREE_TID;
  2725. tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
  2726. unsigned int entry_pmap;
  2727. if (!priv->prs_shadow[tid].valid ||
  2728. (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
  2729. (priv->prs_shadow[tid].udf != udf_type))
  2730. continue;
  2731. pe->index = tid;
  2732. mvpp2_prs_hw_read(priv, pe);
  2733. entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
  2734. if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
  2735. entry_pmap == pmap)
  2736. return pe;
  2737. }
  2738. kfree(pe);
  2739. return NULL;
  2740. }
  2741. /* Update parser's mac da entry */
  2742. static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
  2743. const u8 *da, bool add)
  2744. {
  2745. struct mvpp2_prs_entry *pe;
  2746. unsigned int pmap, len, ri;
  2747. unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  2748. int tid;
  2749. /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
  2750. pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
  2751. MVPP2_PRS_UDF_MAC_DEF);
  2752. /* No such entry */
  2753. if (!pe) {
  2754. if (!add)
  2755. return 0;
  2756. /* Create new TCAM entry */
  2757. /* Find first range mac entry*/
  2758. for (tid = MVPP2_PE_FIRST_FREE_TID;
  2759. tid <= MVPP2_PE_LAST_FREE_TID; tid++)
  2760. if (priv->prs_shadow[tid].valid &&
  2761. (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
  2762. (priv->prs_shadow[tid].udf ==
  2763. MVPP2_PRS_UDF_MAC_RANGE))
  2764. break;
  2765. /* Go through the all entries from first to last */
  2766. tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
  2767. tid - 1);
  2768. if (tid < 0)
  2769. return tid;
  2770. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  2771. if (!pe)
  2772. return -ENOMEM;
  2773. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
  2774. pe->index = tid;
  2775. /* Mask all ports */
  2776. mvpp2_prs_tcam_port_map_set(pe, 0);
  2777. }
  2778. /* Update port mask */
  2779. mvpp2_prs_tcam_port_set(pe, port, add);
  2780. /* Invalidate the entry if no ports are left enabled */
  2781. pmap = mvpp2_prs_tcam_port_map_get(pe);
  2782. if (pmap == 0) {
  2783. if (add) {
  2784. kfree(pe);
  2785. return -EINVAL;
  2786. }
  2787. mvpp2_prs_hw_inv(priv, pe->index);
  2788. priv->prs_shadow[pe->index].valid = false;
  2789. kfree(pe);
  2790. return 0;
  2791. }
  2792. /* Continue - set next lookup */
  2793. mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
  2794. /* Set match on DA */
  2795. len = ETH_ALEN;
  2796. while (len--)
  2797. mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
  2798. /* Set result info bits */
  2799. if (is_broadcast_ether_addr(da))
  2800. ri = MVPP2_PRS_RI_L2_BCAST;
  2801. else if (is_multicast_ether_addr(da))
  2802. ri = MVPP2_PRS_RI_L2_MCAST;
  2803. else
  2804. ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
  2805. mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
  2806. MVPP2_PRS_RI_MAC_ME_MASK);
  2807. mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
  2808. MVPP2_PRS_RI_MAC_ME_MASK);
  2809. /* Shift to ethertype */
  2810. mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
  2811. MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
  2812. /* Update shadow table and hw entry */
  2813. priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
  2814. mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
  2815. mvpp2_prs_hw_write(priv, pe);
  2816. kfree(pe);
  2817. return 0;
  2818. }
  2819. static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
  2820. {
  2821. struct mvpp2_port *port = netdev_priv(dev);
  2822. int err;
  2823. /* Remove old parser entry */
  2824. err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
  2825. false);
  2826. if (err)
  2827. return err;
  2828. /* Add new parser entry */
  2829. err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
  2830. if (err)
  2831. return err;
  2832. /* Set addr in the device */
  2833. ether_addr_copy(dev->dev_addr, da);
  2834. return 0;
  2835. }
  2836. /* Delete all port's multicast simple (not range) entries */
  2837. static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
  2838. {
  2839. struct mvpp2_prs_entry pe;
  2840. int index, tid;
  2841. for (tid = MVPP2_PE_FIRST_FREE_TID;
  2842. tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
  2843. unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
  2844. if (!priv->prs_shadow[tid].valid ||
  2845. (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
  2846. (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
  2847. continue;
  2848. /* Only simple mac entries */
  2849. pe.index = tid;
  2850. mvpp2_prs_hw_read(priv, &pe);
  2851. /* Read mac addr from entry */
  2852. for (index = 0; index < ETH_ALEN; index++)
  2853. mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
  2854. &da_mask[index]);
  2855. if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
  2856. /* Delete this entry */
  2857. mvpp2_prs_mac_da_accept(priv, port, da, false);
  2858. }
  2859. }
  2860. static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
  2861. {
  2862. switch (type) {
  2863. case MVPP2_TAG_TYPE_EDSA:
  2864. /* Add port to EDSA entries */
  2865. mvpp2_prs_dsa_tag_set(priv, port, true,
  2866. MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
  2867. mvpp2_prs_dsa_tag_set(priv, port, true,
  2868. MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
  2869. /* Remove port from DSA entries */
  2870. mvpp2_prs_dsa_tag_set(priv, port, false,
  2871. MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
  2872. mvpp2_prs_dsa_tag_set(priv, port, false,
  2873. MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
  2874. break;
  2875. case MVPP2_TAG_TYPE_DSA:
  2876. /* Add port to DSA entries */
  2877. mvpp2_prs_dsa_tag_set(priv, port, true,
  2878. MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
  2879. mvpp2_prs_dsa_tag_set(priv, port, true,
  2880. MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
  2881. /* Remove port from EDSA entries */
  2882. mvpp2_prs_dsa_tag_set(priv, port, false,
  2883. MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
  2884. mvpp2_prs_dsa_tag_set(priv, port, false,
  2885. MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
  2886. break;
  2887. case MVPP2_TAG_TYPE_MH:
  2888. case MVPP2_TAG_TYPE_NONE:
  2889. /* Remove port form EDSA and DSA entries */
  2890. mvpp2_prs_dsa_tag_set(priv, port, false,
  2891. MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
  2892. mvpp2_prs_dsa_tag_set(priv, port, false,
  2893. MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
  2894. mvpp2_prs_dsa_tag_set(priv, port, false,
  2895. MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
  2896. mvpp2_prs_dsa_tag_set(priv, port, false,
  2897. MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
  2898. break;
  2899. default:
  2900. if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
  2901. return -EINVAL;
  2902. }
  2903. return 0;
  2904. }
  2905. /* Set prs flow for the port */
  2906. static int mvpp2_prs_def_flow(struct mvpp2_port *port)
  2907. {
  2908. struct mvpp2_prs_entry *pe;
  2909. int tid;
  2910. pe = mvpp2_prs_flow_find(port->priv, port->id);
  2911. /* Such entry not exist */
  2912. if (!pe) {
  2913. /* Go through the all entires from last to first */
  2914. tid = mvpp2_prs_tcam_first_free(port->priv,
  2915. MVPP2_PE_LAST_FREE_TID,
  2916. MVPP2_PE_FIRST_FREE_TID);
  2917. if (tid < 0)
  2918. return tid;
  2919. pe = kzalloc(sizeof(*pe), GFP_KERNEL);
  2920. if (!pe)
  2921. return -ENOMEM;
  2922. mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
  2923. pe->index = tid;
  2924. /* Set flow ID*/
  2925. mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
  2926. mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
  2927. /* Update shadow table */
  2928. mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
  2929. }
  2930. mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
  2931. mvpp2_prs_hw_write(port->priv, pe);
  2932. kfree(pe);
  2933. return 0;
  2934. }
  2935. /* Classifier configuration routines */
  2936. /* Update classification flow table registers */
  2937. static void mvpp2_cls_flow_write(struct mvpp2 *priv,
  2938. struct mvpp2_cls_flow_entry *fe)
  2939. {
  2940. mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
  2941. mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
  2942. mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
  2943. mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
  2944. }
  2945. /* Update classification lookup table register */
  2946. static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
  2947. struct mvpp2_cls_lookup_entry *le)
  2948. {
  2949. u32 val;
  2950. val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
  2951. mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
  2952. mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
  2953. }
  2954. /* Classifier default initialization */
  2955. static void mvpp2_cls_init(struct mvpp2 *priv)
  2956. {
  2957. struct mvpp2_cls_lookup_entry le;
  2958. struct mvpp2_cls_flow_entry fe;
  2959. int index;
  2960. /* Enable classifier */
  2961. mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
  2962. /* Clear classifier flow table */
  2963. memset(&fe.data, 0, sizeof(fe.data));
  2964. for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
  2965. fe.index = index;
  2966. mvpp2_cls_flow_write(priv, &fe);
  2967. }
  2968. /* Clear classifier lookup table */
  2969. le.data = 0;
  2970. for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
  2971. le.lkpid = index;
  2972. le.way = 0;
  2973. mvpp2_cls_lookup_write(priv, &le);
  2974. le.way = 1;
  2975. mvpp2_cls_lookup_write(priv, &le);
  2976. }
  2977. }
  2978. static void mvpp2_cls_port_config(struct mvpp2_port *port)
  2979. {
  2980. struct mvpp2_cls_lookup_entry le;
  2981. u32 val;
  2982. /* Set way for the port */
  2983. val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
  2984. val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
  2985. mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
  2986. /* Pick the entry to be accessed in lookup ID decoding table
  2987. * according to the way and lkpid.
  2988. */
  2989. le.lkpid = port->id;
  2990. le.way = 0;
  2991. le.data = 0;
  2992. /* Set initial CPU queue for receiving packets */
  2993. le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
  2994. le.data |= port->first_rxq;
  2995. /* Disable classification engines */
  2996. le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
  2997. /* Update lookup ID table entry */
  2998. mvpp2_cls_lookup_write(port->priv, &le);
  2999. }
  3000. /* Set CPU queue number for oversize packets */
  3001. static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
  3002. {
  3003. u32 val;
  3004. mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
  3005. port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
  3006. mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
  3007. (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
  3008. val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
  3009. val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
  3010. mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
  3011. }
  3012. static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
  3013. {
  3014. if (likely(pool->frag_size <= PAGE_SIZE))
  3015. return netdev_alloc_frag(pool->frag_size);
  3016. else
  3017. return kmalloc(pool->frag_size, GFP_ATOMIC);
  3018. }
  3019. static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
  3020. {
  3021. if (likely(pool->frag_size <= PAGE_SIZE))
  3022. skb_free_frag(data);
  3023. else
  3024. kfree(data);
  3025. }
  3026. /* Buffer Manager configuration routines */
  3027. /* Create pool */
  3028. static int mvpp2_bm_pool_create(struct platform_device *pdev,
  3029. struct mvpp2 *priv,
  3030. struct mvpp2_bm_pool *bm_pool, int size)
  3031. {
  3032. u32 val;
  3033. /* Number of buffer pointers must be a multiple of 16, as per
  3034. * hardware constraints
  3035. */
  3036. if (!IS_ALIGNED(size, 16))
  3037. return -EINVAL;
  3038. /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
  3039. * bytes per buffer pointer
  3040. */
  3041. if (priv->hw_version == MVPP21)
  3042. bm_pool->size_bytes = 2 * sizeof(u32) * size;
  3043. else
  3044. bm_pool->size_bytes = 2 * sizeof(u64) * size;
  3045. bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
  3046. &bm_pool->dma_addr,
  3047. GFP_KERNEL);
  3048. if (!bm_pool->virt_addr)
  3049. return -ENOMEM;
  3050. if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
  3051. MVPP2_BM_POOL_PTR_ALIGN)) {
  3052. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  3053. bm_pool->virt_addr, bm_pool->dma_addr);
  3054. dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
  3055. bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
  3056. return -ENOMEM;
  3057. }
  3058. mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
  3059. lower_32_bits(bm_pool->dma_addr));
  3060. mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
  3061. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  3062. val |= MVPP2_BM_START_MASK;
  3063. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  3064. bm_pool->type = MVPP2_BM_FREE;
  3065. bm_pool->size = size;
  3066. bm_pool->pkt_size = 0;
  3067. bm_pool->buf_num = 0;
  3068. return 0;
  3069. }
  3070. /* Set pool buffer size */
  3071. static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
  3072. struct mvpp2_bm_pool *bm_pool,
  3073. int buf_size)
  3074. {
  3075. u32 val;
  3076. bm_pool->buf_size = buf_size;
  3077. val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
  3078. mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
  3079. }
  3080. static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
  3081. struct mvpp2_bm_pool *bm_pool,
  3082. dma_addr_t *dma_addr,
  3083. phys_addr_t *phys_addr)
  3084. {
  3085. int cpu = smp_processor_id();
  3086. *dma_addr = mvpp2_percpu_read(priv, cpu,
  3087. MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
  3088. *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
  3089. if (priv->hw_version == MVPP22) {
  3090. u32 val;
  3091. u32 dma_addr_highbits, phys_addr_highbits;
  3092. val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
  3093. dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
  3094. phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
  3095. MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
  3096. if (sizeof(dma_addr_t) == 8)
  3097. *dma_addr |= (u64)dma_addr_highbits << 32;
  3098. if (sizeof(phys_addr_t) == 8)
  3099. *phys_addr |= (u64)phys_addr_highbits << 32;
  3100. }
  3101. }
  3102. /* Free all buffers from the pool */
  3103. static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
  3104. struct mvpp2_bm_pool *bm_pool)
  3105. {
  3106. int i;
  3107. for (i = 0; i < bm_pool->buf_num; i++) {
  3108. dma_addr_t buf_dma_addr;
  3109. phys_addr_t buf_phys_addr;
  3110. void *data;
  3111. mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
  3112. &buf_dma_addr, &buf_phys_addr);
  3113. dma_unmap_single(dev, buf_dma_addr,
  3114. bm_pool->buf_size, DMA_FROM_DEVICE);
  3115. data = (void *)phys_to_virt(buf_phys_addr);
  3116. if (!data)
  3117. break;
  3118. mvpp2_frag_free(bm_pool, data);
  3119. }
  3120. /* Update BM driver with number of buffers removed from pool */
  3121. bm_pool->buf_num -= i;
  3122. }
  3123. /* Cleanup pool */
  3124. static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
  3125. struct mvpp2 *priv,
  3126. struct mvpp2_bm_pool *bm_pool)
  3127. {
  3128. u32 val;
  3129. mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
  3130. if (bm_pool->buf_num) {
  3131. WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
  3132. return 0;
  3133. }
  3134. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  3135. val |= MVPP2_BM_STOP_MASK;
  3136. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  3137. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  3138. bm_pool->virt_addr,
  3139. bm_pool->dma_addr);
  3140. return 0;
  3141. }
  3142. static int mvpp2_bm_pools_init(struct platform_device *pdev,
  3143. struct mvpp2 *priv)
  3144. {
  3145. int i, err, size;
  3146. struct mvpp2_bm_pool *bm_pool;
  3147. /* Create all pools with maximum size */
  3148. size = MVPP2_BM_POOL_SIZE_MAX;
  3149. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  3150. bm_pool = &priv->bm_pools[i];
  3151. bm_pool->id = i;
  3152. err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
  3153. if (err)
  3154. goto err_unroll_pools;
  3155. mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
  3156. }
  3157. return 0;
  3158. err_unroll_pools:
  3159. dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
  3160. for (i = i - 1; i >= 0; i--)
  3161. mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
  3162. return err;
  3163. }
  3164. static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
  3165. {
  3166. int i, err;
  3167. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  3168. /* Mask BM all interrupts */
  3169. mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
  3170. /* Clear BM cause register */
  3171. mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
  3172. }
  3173. /* Allocate and initialize BM pools */
  3174. priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
  3175. sizeof(*priv->bm_pools), GFP_KERNEL);
  3176. if (!priv->bm_pools)
  3177. return -ENOMEM;
  3178. err = mvpp2_bm_pools_init(pdev, priv);
  3179. if (err < 0)
  3180. return err;
  3181. return 0;
  3182. }
  3183. /* Attach long pool to rxq */
  3184. static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
  3185. int lrxq, int long_pool)
  3186. {
  3187. u32 val, mask;
  3188. int prxq;
  3189. /* Get queue physical ID */
  3190. prxq = port->rxqs[lrxq]->id;
  3191. if (port->priv->hw_version == MVPP21)
  3192. mask = MVPP21_RXQ_POOL_LONG_MASK;
  3193. else
  3194. mask = MVPP22_RXQ_POOL_LONG_MASK;
  3195. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  3196. val &= ~mask;
  3197. val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
  3198. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  3199. }
  3200. /* Attach short pool to rxq */
  3201. static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
  3202. int lrxq, int short_pool)
  3203. {
  3204. u32 val, mask;
  3205. int prxq;
  3206. /* Get queue physical ID */
  3207. prxq = port->rxqs[lrxq]->id;
  3208. if (port->priv->hw_version == MVPP21)
  3209. mask = MVPP21_RXQ_POOL_SHORT_MASK;
  3210. else
  3211. mask = MVPP22_RXQ_POOL_SHORT_MASK;
  3212. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  3213. val &= ~mask;
  3214. val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
  3215. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  3216. }
  3217. static void *mvpp2_buf_alloc(struct mvpp2_port *port,
  3218. struct mvpp2_bm_pool *bm_pool,
  3219. dma_addr_t *buf_dma_addr,
  3220. phys_addr_t *buf_phys_addr,
  3221. gfp_t gfp_mask)
  3222. {
  3223. dma_addr_t dma_addr;
  3224. void *data;
  3225. data = mvpp2_frag_alloc(bm_pool);
  3226. if (!data)
  3227. return NULL;
  3228. dma_addr = dma_map_single(port->dev->dev.parent, data,
  3229. MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
  3230. DMA_FROM_DEVICE);
  3231. if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
  3232. mvpp2_frag_free(bm_pool, data);
  3233. return NULL;
  3234. }
  3235. *buf_dma_addr = dma_addr;
  3236. *buf_phys_addr = virt_to_phys(data);
  3237. return data;
  3238. }
  3239. /* Set pool number in a BM cookie */
  3240. static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
  3241. {
  3242. u32 bm;
  3243. bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
  3244. bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
  3245. return bm;
  3246. }
  3247. /* Get pool number from a BM cookie */
  3248. static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
  3249. {
  3250. return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
  3251. }
  3252. /* Release buffer to BM */
  3253. static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
  3254. dma_addr_t buf_dma_addr,
  3255. phys_addr_t buf_phys_addr)
  3256. {
  3257. int cpu = smp_processor_id();
  3258. if (port->priv->hw_version == MVPP22) {
  3259. u32 val = 0;
  3260. if (sizeof(dma_addr_t) == 8)
  3261. val |= upper_32_bits(buf_dma_addr) &
  3262. MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
  3263. if (sizeof(phys_addr_t) == 8)
  3264. val |= (upper_32_bits(buf_phys_addr)
  3265. << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
  3266. MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
  3267. mvpp2_percpu_write(port->priv, cpu,
  3268. MVPP22_BM_ADDR_HIGH_RLS_REG, val);
  3269. }
  3270. /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
  3271. * returned in the "cookie" field of the RX
  3272. * descriptor. Instead of storing the virtual address, we
  3273. * store the physical address
  3274. */
  3275. mvpp2_percpu_write(port->priv, cpu,
  3276. MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
  3277. mvpp2_percpu_write(port->priv, cpu,
  3278. MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
  3279. }
  3280. /* Refill BM pool */
  3281. static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
  3282. dma_addr_t dma_addr,
  3283. phys_addr_t phys_addr)
  3284. {
  3285. int pool = mvpp2_bm_cookie_pool_get(bm);
  3286. mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
  3287. }
  3288. /* Allocate buffers for the pool */
  3289. static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
  3290. struct mvpp2_bm_pool *bm_pool, int buf_num)
  3291. {
  3292. int i, buf_size, total_size;
  3293. dma_addr_t dma_addr;
  3294. phys_addr_t phys_addr;
  3295. void *buf;
  3296. buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
  3297. total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
  3298. if (buf_num < 0 ||
  3299. (buf_num + bm_pool->buf_num > bm_pool->size)) {
  3300. netdev_err(port->dev,
  3301. "cannot allocate %d buffers for pool %d\n",
  3302. buf_num, bm_pool->id);
  3303. return 0;
  3304. }
  3305. for (i = 0; i < buf_num; i++) {
  3306. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
  3307. &phys_addr, GFP_KERNEL);
  3308. if (!buf)
  3309. break;
  3310. mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
  3311. phys_addr);
  3312. }
  3313. /* Update BM driver with number of buffers added to pool */
  3314. bm_pool->buf_num += i;
  3315. netdev_dbg(port->dev,
  3316. "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
  3317. bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
  3318. bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
  3319. netdev_dbg(port->dev,
  3320. "%s pool %d: %d of %d buffers added\n",
  3321. bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
  3322. bm_pool->id, i, buf_num);
  3323. return i;
  3324. }
  3325. /* Notify the driver that BM pool is being used as specific type and return the
  3326. * pool pointer on success
  3327. */
  3328. static struct mvpp2_bm_pool *
  3329. mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
  3330. int pkt_size)
  3331. {
  3332. struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
  3333. int num;
  3334. if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
  3335. netdev_err(port->dev, "mixing pool types is forbidden\n");
  3336. return NULL;
  3337. }
  3338. if (new_pool->type == MVPP2_BM_FREE)
  3339. new_pool->type = type;
  3340. /* Allocate buffers in case BM pool is used as long pool, but packet
  3341. * size doesn't match MTU or BM pool hasn't being used yet
  3342. */
  3343. if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
  3344. (new_pool->pkt_size == 0)) {
  3345. int pkts_num;
  3346. /* Set default buffer number or free all the buffers in case
  3347. * the pool is not empty
  3348. */
  3349. pkts_num = new_pool->buf_num;
  3350. if (pkts_num == 0)
  3351. pkts_num = type == MVPP2_BM_SWF_LONG ?
  3352. MVPP2_BM_LONG_BUF_NUM :
  3353. MVPP2_BM_SHORT_BUF_NUM;
  3354. else
  3355. mvpp2_bm_bufs_free(port->dev->dev.parent,
  3356. port->priv, new_pool);
  3357. new_pool->pkt_size = pkt_size;
  3358. new_pool->frag_size =
  3359. SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
  3360. MVPP2_SKB_SHINFO_SIZE;
  3361. /* Allocate buffers for this pool */
  3362. num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
  3363. if (num != pkts_num) {
  3364. WARN(1, "pool %d: %d of %d allocated\n",
  3365. new_pool->id, num, pkts_num);
  3366. return NULL;
  3367. }
  3368. }
  3369. mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
  3370. MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
  3371. return new_pool;
  3372. }
  3373. /* Initialize pools for swf */
  3374. static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
  3375. {
  3376. int rxq;
  3377. if (!port->pool_long) {
  3378. port->pool_long =
  3379. mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
  3380. MVPP2_BM_SWF_LONG,
  3381. port->pkt_size);
  3382. if (!port->pool_long)
  3383. return -ENOMEM;
  3384. port->pool_long->port_map |= (1 << port->id);
  3385. for (rxq = 0; rxq < rxq_number; rxq++)
  3386. mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
  3387. }
  3388. if (!port->pool_short) {
  3389. port->pool_short =
  3390. mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
  3391. MVPP2_BM_SWF_SHORT,
  3392. MVPP2_BM_SHORT_PKT_SIZE);
  3393. if (!port->pool_short)
  3394. return -ENOMEM;
  3395. port->pool_short->port_map |= (1 << port->id);
  3396. for (rxq = 0; rxq < rxq_number; rxq++)
  3397. mvpp2_rxq_short_pool_set(port, rxq,
  3398. port->pool_short->id);
  3399. }
  3400. return 0;
  3401. }
  3402. static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
  3403. {
  3404. struct mvpp2_port *port = netdev_priv(dev);
  3405. struct mvpp2_bm_pool *port_pool = port->pool_long;
  3406. int num, pkts_num = port_pool->buf_num;
  3407. int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  3408. /* Update BM pool with new buffer size */
  3409. mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
  3410. if (port_pool->buf_num) {
  3411. WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
  3412. return -EIO;
  3413. }
  3414. port_pool->pkt_size = pkt_size;
  3415. port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
  3416. MVPP2_SKB_SHINFO_SIZE;
  3417. num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
  3418. if (num != pkts_num) {
  3419. WARN(1, "pool %d: %d of %d allocated\n",
  3420. port_pool->id, num, pkts_num);
  3421. return -EIO;
  3422. }
  3423. mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
  3424. MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
  3425. dev->mtu = mtu;
  3426. netdev_update_features(dev);
  3427. return 0;
  3428. }
  3429. static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
  3430. {
  3431. int cpu, cpu_mask = 0;
  3432. for_each_present_cpu(cpu)
  3433. cpu_mask |= 1 << cpu;
  3434. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  3435. MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
  3436. }
  3437. static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
  3438. {
  3439. int cpu, cpu_mask = 0;
  3440. for_each_present_cpu(cpu)
  3441. cpu_mask |= 1 << cpu;
  3442. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  3443. MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
  3444. }
  3445. /* Mask the current CPU's Rx/Tx interrupts */
  3446. static void mvpp2_interrupts_mask(void *arg)
  3447. {
  3448. struct mvpp2_port *port = arg;
  3449. mvpp2_percpu_write(port->priv, smp_processor_id(),
  3450. MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
  3451. }
  3452. /* Unmask the current CPU's Rx/Tx interrupts */
  3453. static void mvpp2_interrupts_unmask(void *arg)
  3454. {
  3455. struct mvpp2_port *port = arg;
  3456. mvpp2_percpu_write(port->priv, smp_processor_id(),
  3457. MVPP2_ISR_RX_TX_MASK_REG(port->id),
  3458. (MVPP2_CAUSE_MISC_SUM_MASK |
  3459. MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
  3460. }
  3461. /* Port configuration routines */
  3462. static void mvpp22_port_mii_set(struct mvpp2_port *port)
  3463. {
  3464. u32 val;
  3465. return;
  3466. /* Only GOP port 0 has an XLG MAC */
  3467. if (port->gop_id == 0) {
  3468. val = readl(port->base + MVPP22_XLG_CTRL3_REG);
  3469. val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
  3470. val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
  3471. writel(val, port->base + MVPP22_XLG_CTRL3_REG);
  3472. }
  3473. val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
  3474. if (port->phy_interface == PHY_INTERFACE_MODE_RGMII)
  3475. val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL;
  3476. else
  3477. val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
  3478. val &= ~MVPP22_CTRL4_DP_CLK_SEL;
  3479. val |= MVPP22_CTRL4_SYNC_BYPASS;
  3480. val |= MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
  3481. writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
  3482. }
  3483. static void mvpp2_port_mii_set(struct mvpp2_port *port)
  3484. {
  3485. u32 val;
  3486. if (port->priv->hw_version == MVPP22)
  3487. mvpp22_port_mii_set(port);
  3488. val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
  3489. switch (port->phy_interface) {
  3490. case PHY_INTERFACE_MODE_SGMII:
  3491. val |= MVPP2_GMAC_INBAND_AN_MASK;
  3492. break;
  3493. case PHY_INTERFACE_MODE_RGMII:
  3494. val |= MVPP2_GMAC_PORT_RGMII_MASK;
  3495. default:
  3496. val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
  3497. }
  3498. writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
  3499. }
  3500. static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
  3501. {
  3502. u32 val;
  3503. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3504. val |= MVPP2_GMAC_FC_ADV_EN;
  3505. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3506. }
  3507. static void mvpp2_port_enable(struct mvpp2_port *port)
  3508. {
  3509. u32 val;
  3510. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  3511. val |= MVPP2_GMAC_PORT_EN_MASK;
  3512. val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
  3513. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  3514. }
  3515. static void mvpp2_port_disable(struct mvpp2_port *port)
  3516. {
  3517. u32 val;
  3518. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  3519. val &= ~(MVPP2_GMAC_PORT_EN_MASK);
  3520. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  3521. }
  3522. /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
  3523. static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
  3524. {
  3525. u32 val;
  3526. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
  3527. ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
  3528. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  3529. }
  3530. /* Configure loopback port */
  3531. static void mvpp2_port_loopback_set(struct mvpp2_port *port)
  3532. {
  3533. u32 val;
  3534. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  3535. if (port->speed == 1000)
  3536. val |= MVPP2_GMAC_GMII_LB_EN_MASK;
  3537. else
  3538. val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
  3539. if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
  3540. val |= MVPP2_GMAC_PCS_LB_EN_MASK;
  3541. else
  3542. val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
  3543. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  3544. }
  3545. static void mvpp2_port_reset(struct mvpp2_port *port)
  3546. {
  3547. u32 val;
  3548. val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  3549. ~MVPP2_GMAC_PORT_RESET_MASK;
  3550. writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
  3551. while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  3552. MVPP2_GMAC_PORT_RESET_MASK)
  3553. continue;
  3554. }
  3555. /* Change maximum receive size of the port */
  3556. static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
  3557. {
  3558. u32 val;
  3559. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  3560. val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
  3561. val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
  3562. MVPP2_GMAC_MAX_RX_SIZE_OFFS);
  3563. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  3564. }
  3565. /* Set defaults to the MVPP2 port */
  3566. static void mvpp2_defaults_set(struct mvpp2_port *port)
  3567. {
  3568. int tx_port_num, val, queue, ptxq, lrxq;
  3569. if (port->priv->hw_version == MVPP21) {
  3570. /* Configure port to loopback if needed */
  3571. if (port->flags & MVPP2_F_LOOPBACK)
  3572. mvpp2_port_loopback_set(port);
  3573. /* Update TX FIFO MIN Threshold */
  3574. val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  3575. val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
  3576. /* Min. TX threshold must be less than minimal packet length */
  3577. val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
  3578. writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  3579. }
  3580. /* Disable Legacy WRR, Disable EJP, Release from reset */
  3581. tx_port_num = mvpp2_egress_port(port);
  3582. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
  3583. tx_port_num);
  3584. mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
  3585. /* Close bandwidth for all queues */
  3586. for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
  3587. ptxq = mvpp2_txq_phys(port->id, queue);
  3588. mvpp2_write(port->priv,
  3589. MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
  3590. }
  3591. /* Set refill period to 1 usec, refill tokens
  3592. * and bucket size to maximum
  3593. */
  3594. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
  3595. port->priv->tclk / USEC_PER_SEC);
  3596. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
  3597. val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
  3598. val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
  3599. val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
  3600. mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
  3601. val = MVPP2_TXP_TOKEN_SIZE_MAX;
  3602. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  3603. /* Set MaximumLowLatencyPacketSize value to 256 */
  3604. mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
  3605. MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
  3606. MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
  3607. /* Enable Rx cache snoop */
  3608. for (lrxq = 0; lrxq < rxq_number; lrxq++) {
  3609. queue = port->rxqs[lrxq]->id;
  3610. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  3611. val |= MVPP2_SNOOP_PKT_SIZE_MASK |
  3612. MVPP2_SNOOP_BUF_HDR_MASK;
  3613. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  3614. }
  3615. /* At default, mask all interrupts to all present cpus */
  3616. mvpp2_interrupts_disable(port);
  3617. }
  3618. /* Enable/disable receiving packets */
  3619. static void mvpp2_ingress_enable(struct mvpp2_port *port)
  3620. {
  3621. u32 val;
  3622. int lrxq, queue;
  3623. for (lrxq = 0; lrxq < rxq_number; lrxq++) {
  3624. queue = port->rxqs[lrxq]->id;
  3625. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  3626. val &= ~MVPP2_RXQ_DISABLE_MASK;
  3627. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  3628. }
  3629. }
  3630. static void mvpp2_ingress_disable(struct mvpp2_port *port)
  3631. {
  3632. u32 val;
  3633. int lrxq, queue;
  3634. for (lrxq = 0; lrxq < rxq_number; lrxq++) {
  3635. queue = port->rxqs[lrxq]->id;
  3636. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  3637. val |= MVPP2_RXQ_DISABLE_MASK;
  3638. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  3639. }
  3640. }
  3641. /* Enable transmit via physical egress queue
  3642. * - HW starts take descriptors from DRAM
  3643. */
  3644. static void mvpp2_egress_enable(struct mvpp2_port *port)
  3645. {
  3646. u32 qmap;
  3647. int queue;
  3648. int tx_port_num = mvpp2_egress_port(port);
  3649. /* Enable all initialized TXs. */
  3650. qmap = 0;
  3651. for (queue = 0; queue < txq_number; queue++) {
  3652. struct mvpp2_tx_queue *txq = port->txqs[queue];
  3653. if (txq->descs)
  3654. qmap |= (1 << queue);
  3655. }
  3656. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  3657. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
  3658. }
  3659. /* Disable transmit via physical egress queue
  3660. * - HW doesn't take descriptors from DRAM
  3661. */
  3662. static void mvpp2_egress_disable(struct mvpp2_port *port)
  3663. {
  3664. u32 reg_data;
  3665. int delay;
  3666. int tx_port_num = mvpp2_egress_port(port);
  3667. /* Issue stop command for active channels only */
  3668. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  3669. reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
  3670. MVPP2_TXP_SCHED_ENQ_MASK;
  3671. if (reg_data != 0)
  3672. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
  3673. (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
  3674. /* Wait for all Tx activity to terminate. */
  3675. delay = 0;
  3676. do {
  3677. if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
  3678. netdev_warn(port->dev,
  3679. "Tx stop timed out, status=0x%08x\n",
  3680. reg_data);
  3681. break;
  3682. }
  3683. mdelay(1);
  3684. delay++;
  3685. /* Check port TX Command register that all
  3686. * Tx queues are stopped
  3687. */
  3688. reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
  3689. } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
  3690. }
  3691. /* Rx descriptors helper methods */
  3692. /* Get number of Rx descriptors occupied by received packets */
  3693. static inline int
  3694. mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
  3695. {
  3696. u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
  3697. return val & MVPP2_RXQ_OCCUPIED_MASK;
  3698. }
  3699. /* Update Rx queue status with the number of occupied and available
  3700. * Rx descriptor slots.
  3701. */
  3702. static inline void
  3703. mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
  3704. int used_count, int free_count)
  3705. {
  3706. /* Decrement the number of used descriptors and increment count
  3707. * increment the number of free descriptors.
  3708. */
  3709. u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
  3710. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
  3711. }
  3712. /* Get pointer to next RX descriptor to be processed by SW */
  3713. static inline struct mvpp2_rx_desc *
  3714. mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
  3715. {
  3716. int rx_desc = rxq->next_desc_to_proc;
  3717. rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
  3718. prefetch(rxq->descs + rxq->next_desc_to_proc);
  3719. return rxq->descs + rx_desc;
  3720. }
  3721. /* Set rx queue offset */
  3722. static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
  3723. int prxq, int offset)
  3724. {
  3725. u32 val;
  3726. /* Convert offset from bytes to units of 32 bytes */
  3727. offset = offset >> 5;
  3728. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  3729. val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
  3730. /* Offset is in */
  3731. val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
  3732. MVPP2_RXQ_PACKET_OFFSET_MASK);
  3733. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  3734. }
  3735. /* Obtain BM cookie information from descriptor */
  3736. static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
  3737. struct mvpp2_rx_desc *rx_desc)
  3738. {
  3739. int cpu = smp_processor_id();
  3740. int pool;
  3741. pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
  3742. MVPP2_RXD_BM_POOL_ID_MASK) >>
  3743. MVPP2_RXD_BM_POOL_ID_OFFS;
  3744. return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
  3745. ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
  3746. }
  3747. /* Tx descriptors helper methods */
  3748. /* Get pointer to next Tx descriptor to be processed (send) by HW */
  3749. static struct mvpp2_tx_desc *
  3750. mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
  3751. {
  3752. int tx_desc = txq->next_desc_to_proc;
  3753. txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
  3754. return txq->descs + tx_desc;
  3755. }
  3756. /* Update HW with number of aggregated Tx descriptors to be sent */
  3757. static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
  3758. {
  3759. /* aggregated access - relevant TXQ number is written in TX desc */
  3760. mvpp2_percpu_write(port->priv, smp_processor_id(),
  3761. MVPP2_AGGR_TXQ_UPDATE_REG, pending);
  3762. }
  3763. /* Check if there are enough free descriptors in aggregated txq.
  3764. * If not, update the number of occupied descriptors and repeat the check.
  3765. */
  3766. static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
  3767. struct mvpp2_tx_queue *aggr_txq, int num)
  3768. {
  3769. if ((aggr_txq->count + num) > aggr_txq->size) {
  3770. /* Update number of occupied aggregated Tx descriptors */
  3771. int cpu = smp_processor_id();
  3772. u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
  3773. aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
  3774. }
  3775. if ((aggr_txq->count + num) > aggr_txq->size)
  3776. return -ENOMEM;
  3777. return 0;
  3778. }
  3779. /* Reserved Tx descriptors allocation request */
  3780. static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
  3781. struct mvpp2_tx_queue *txq, int num)
  3782. {
  3783. u32 val;
  3784. int cpu = smp_processor_id();
  3785. val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
  3786. mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
  3787. val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
  3788. return val & MVPP2_TXQ_RSVD_RSLT_MASK;
  3789. }
  3790. /* Check if there are enough reserved descriptors for transmission.
  3791. * If not, request chunk of reserved descriptors and check again.
  3792. */
  3793. static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
  3794. struct mvpp2_tx_queue *txq,
  3795. struct mvpp2_txq_pcpu *txq_pcpu,
  3796. int num)
  3797. {
  3798. int req, cpu, desc_count;
  3799. if (txq_pcpu->reserved_num >= num)
  3800. return 0;
  3801. /* Not enough descriptors reserved! Update the reserved descriptor
  3802. * count and check again.
  3803. */
  3804. desc_count = 0;
  3805. /* Compute total of used descriptors */
  3806. for_each_present_cpu(cpu) {
  3807. struct mvpp2_txq_pcpu *txq_pcpu_aux;
  3808. txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
  3809. desc_count += txq_pcpu_aux->count;
  3810. desc_count += txq_pcpu_aux->reserved_num;
  3811. }
  3812. req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
  3813. desc_count += req;
  3814. if (desc_count >
  3815. (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
  3816. return -ENOMEM;
  3817. txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
  3818. /* OK, the descriptor cound has been updated: check again. */
  3819. if (txq_pcpu->reserved_num < num)
  3820. return -ENOMEM;
  3821. return 0;
  3822. }
  3823. /* Release the last allocated Tx descriptor. Useful to handle DMA
  3824. * mapping failures in the Tx path.
  3825. */
  3826. static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
  3827. {
  3828. if (txq->next_desc_to_proc == 0)
  3829. txq->next_desc_to_proc = txq->last_desc - 1;
  3830. else
  3831. txq->next_desc_to_proc--;
  3832. }
  3833. /* Set Tx descriptors fields relevant for CSUM calculation */
  3834. static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
  3835. int ip_hdr_len, int l4_proto)
  3836. {
  3837. u32 command;
  3838. /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  3839. * G_L4_chk, L4_type required only for checksum calculation
  3840. */
  3841. command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
  3842. command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
  3843. command |= MVPP2_TXD_IP_CSUM_DISABLE;
  3844. if (l3_proto == swab16(ETH_P_IP)) {
  3845. command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
  3846. command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
  3847. } else {
  3848. command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
  3849. }
  3850. if (l4_proto == IPPROTO_TCP) {
  3851. command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
  3852. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  3853. } else if (l4_proto == IPPROTO_UDP) {
  3854. command |= MVPP2_TXD_L4_UDP; /* enable UDP */
  3855. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  3856. } else {
  3857. command |= MVPP2_TXD_L4_CSUM_NOT;
  3858. }
  3859. return command;
  3860. }
  3861. /* Get number of sent descriptors and decrement counter.
  3862. * The number of sent descriptors is returned.
  3863. * Per-CPU access
  3864. */
  3865. static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
  3866. struct mvpp2_tx_queue *txq)
  3867. {
  3868. u32 val;
  3869. /* Reading status reg resets transmitted descriptor counter */
  3870. val = mvpp2_percpu_read(port->priv, smp_processor_id(),
  3871. MVPP2_TXQ_SENT_REG(txq->id));
  3872. return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
  3873. MVPP2_TRANSMITTED_COUNT_OFFSET;
  3874. }
  3875. static void mvpp2_txq_sent_counter_clear(void *arg)
  3876. {
  3877. struct mvpp2_port *port = arg;
  3878. int queue;
  3879. for (queue = 0; queue < txq_number; queue++) {
  3880. int id = port->txqs[queue]->id;
  3881. mvpp2_percpu_read(port->priv, smp_processor_id(),
  3882. MVPP2_TXQ_SENT_REG(id));
  3883. }
  3884. }
  3885. /* Set max sizes for Tx queues */
  3886. static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
  3887. {
  3888. u32 val, size, mtu;
  3889. int txq, tx_port_num;
  3890. mtu = port->pkt_size * 8;
  3891. if (mtu > MVPP2_TXP_MTU_MAX)
  3892. mtu = MVPP2_TXP_MTU_MAX;
  3893. /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
  3894. mtu = 3 * mtu;
  3895. /* Indirect access to registers */
  3896. tx_port_num = mvpp2_egress_port(port);
  3897. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  3898. /* Set MTU */
  3899. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
  3900. val &= ~MVPP2_TXP_MTU_MAX;
  3901. val |= mtu;
  3902. mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
  3903. /* TXP token size and all TXQs token size must be larger that MTU */
  3904. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
  3905. size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
  3906. if (size < mtu) {
  3907. size = mtu;
  3908. val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
  3909. val |= size;
  3910. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  3911. }
  3912. for (txq = 0; txq < txq_number; txq++) {
  3913. val = mvpp2_read(port->priv,
  3914. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
  3915. size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
  3916. if (size < mtu) {
  3917. size = mtu;
  3918. val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
  3919. val |= size;
  3920. mvpp2_write(port->priv,
  3921. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
  3922. val);
  3923. }
  3924. }
  3925. }
  3926. /* Set the number of packets that will be received before Rx interrupt
  3927. * will be generated by HW.
  3928. */
  3929. static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
  3930. struct mvpp2_rx_queue *rxq)
  3931. {
  3932. int cpu = smp_processor_id();
  3933. if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
  3934. rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
  3935. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  3936. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
  3937. rxq->pkts_coal);
  3938. }
  3939. static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
  3940. {
  3941. u64 tmp = (u64)clk_hz * usec;
  3942. do_div(tmp, USEC_PER_SEC);
  3943. return tmp > U32_MAX ? U32_MAX : tmp;
  3944. }
  3945. static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
  3946. {
  3947. u64 tmp = (u64)cycles * USEC_PER_SEC;
  3948. do_div(tmp, clk_hz);
  3949. return tmp > U32_MAX ? U32_MAX : tmp;
  3950. }
  3951. /* Set the time delay in usec before Rx interrupt */
  3952. static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
  3953. struct mvpp2_rx_queue *rxq)
  3954. {
  3955. unsigned long freq = port->priv->tclk;
  3956. u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  3957. if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
  3958. rxq->time_coal =
  3959. mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
  3960. /* re-evaluate to get actual register value */
  3961. val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  3962. }
  3963. mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
  3964. }
  3965. /* Free Tx queue skbuffs */
  3966. static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
  3967. struct mvpp2_tx_queue *txq,
  3968. struct mvpp2_txq_pcpu *txq_pcpu, int num)
  3969. {
  3970. int i;
  3971. for (i = 0; i < num; i++) {
  3972. struct mvpp2_txq_pcpu_buf *tx_buf =
  3973. txq_pcpu->buffs + txq_pcpu->txq_get_index;
  3974. dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
  3975. tx_buf->size, DMA_TO_DEVICE);
  3976. if (tx_buf->skb)
  3977. dev_kfree_skb_any(tx_buf->skb);
  3978. mvpp2_txq_inc_get(txq_pcpu);
  3979. }
  3980. }
  3981. static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
  3982. u32 cause)
  3983. {
  3984. int queue = fls(cause) - 1;
  3985. return port->rxqs[queue];
  3986. }
  3987. static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
  3988. u32 cause)
  3989. {
  3990. int queue = fls(cause) - 1;
  3991. return port->txqs[queue];
  3992. }
  3993. /* Handle end of transmission */
  3994. static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  3995. struct mvpp2_txq_pcpu *txq_pcpu)
  3996. {
  3997. struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
  3998. int tx_done;
  3999. if (txq_pcpu->cpu != smp_processor_id())
  4000. netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
  4001. tx_done = mvpp2_txq_sent_desc_proc(port, txq);
  4002. if (!tx_done)
  4003. return;
  4004. mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
  4005. txq_pcpu->count -= tx_done;
  4006. if (netif_tx_queue_stopped(nq))
  4007. if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
  4008. netif_tx_wake_queue(nq);
  4009. }
  4010. static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
  4011. {
  4012. struct mvpp2_tx_queue *txq;
  4013. struct mvpp2_txq_pcpu *txq_pcpu;
  4014. unsigned int tx_todo = 0;
  4015. while (cause) {
  4016. txq = mvpp2_get_tx_queue(port, cause);
  4017. if (!txq)
  4018. break;
  4019. txq_pcpu = this_cpu_ptr(txq->pcpu);
  4020. if (txq_pcpu->count) {
  4021. mvpp2_txq_done(port, txq, txq_pcpu);
  4022. tx_todo += txq_pcpu->count;
  4023. }
  4024. cause &= ~(1 << txq->log_id);
  4025. }
  4026. return tx_todo;
  4027. }
  4028. /* Rx/Tx queue initialization/cleanup methods */
  4029. /* Allocate and initialize descriptors for aggr TXQ */
  4030. static int mvpp2_aggr_txq_init(struct platform_device *pdev,
  4031. struct mvpp2_tx_queue *aggr_txq,
  4032. int desc_num, int cpu,
  4033. struct mvpp2 *priv)
  4034. {
  4035. u32 txq_dma;
  4036. /* Allocate memory for TX descriptors */
  4037. aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
  4038. desc_num * MVPP2_DESC_ALIGNED_SIZE,
  4039. &aggr_txq->descs_dma, GFP_KERNEL);
  4040. if (!aggr_txq->descs)
  4041. return -ENOMEM;
  4042. aggr_txq->last_desc = aggr_txq->size - 1;
  4043. /* Aggr TXQ no reset WA */
  4044. aggr_txq->next_desc_to_proc = mvpp2_read(priv,
  4045. MVPP2_AGGR_TXQ_INDEX_REG(cpu));
  4046. /* Set Tx descriptors queue starting address indirect
  4047. * access
  4048. */
  4049. if (priv->hw_version == MVPP21)
  4050. txq_dma = aggr_txq->descs_dma;
  4051. else
  4052. txq_dma = aggr_txq->descs_dma >>
  4053. MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
  4054. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
  4055. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
  4056. return 0;
  4057. }
  4058. /* Create a specified Rx queue */
  4059. static int mvpp2_rxq_init(struct mvpp2_port *port,
  4060. struct mvpp2_rx_queue *rxq)
  4061. {
  4062. u32 rxq_dma;
  4063. int cpu;
  4064. rxq->size = port->rx_ring_size;
  4065. /* Allocate memory for RX descriptors */
  4066. rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
  4067. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  4068. &rxq->descs_dma, GFP_KERNEL);
  4069. if (!rxq->descs)
  4070. return -ENOMEM;
  4071. rxq->last_desc = rxq->size - 1;
  4072. /* Zero occupied and non-occupied counters - direct access */
  4073. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  4074. /* Set Rx descriptors queue starting address - indirect access */
  4075. cpu = smp_processor_id();
  4076. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  4077. if (port->priv->hw_version == MVPP21)
  4078. rxq_dma = rxq->descs_dma;
  4079. else
  4080. rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
  4081. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
  4082. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
  4083. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
  4084. /* Set Offset */
  4085. mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
  4086. /* Set coalescing pkts and time */
  4087. mvpp2_rx_pkts_coal_set(port, rxq);
  4088. mvpp2_rx_time_coal_set(port, rxq);
  4089. /* Add number of descriptors ready for receiving packets */
  4090. mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
  4091. return 0;
  4092. }
  4093. /* Push packets received by the RXQ to BM pool */
  4094. static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
  4095. struct mvpp2_rx_queue *rxq)
  4096. {
  4097. int rx_received, i;
  4098. rx_received = mvpp2_rxq_received(port, rxq->id);
  4099. if (!rx_received)
  4100. return;
  4101. for (i = 0; i < rx_received; i++) {
  4102. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  4103. u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
  4104. mvpp2_pool_refill(port, bm,
  4105. mvpp2_rxdesc_dma_addr_get(port, rx_desc),
  4106. mvpp2_rxdesc_cookie_get(port, rx_desc));
  4107. }
  4108. mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
  4109. }
  4110. /* Cleanup Rx queue */
  4111. static void mvpp2_rxq_deinit(struct mvpp2_port *port,
  4112. struct mvpp2_rx_queue *rxq)
  4113. {
  4114. int cpu;
  4115. mvpp2_rxq_drop_pkts(port, rxq);
  4116. if (rxq->descs)
  4117. dma_free_coherent(port->dev->dev.parent,
  4118. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  4119. rxq->descs,
  4120. rxq->descs_dma);
  4121. rxq->descs = NULL;
  4122. rxq->last_desc = 0;
  4123. rxq->next_desc_to_proc = 0;
  4124. rxq->descs_dma = 0;
  4125. /* Clear Rx descriptors queue starting address and size;
  4126. * free descriptor number
  4127. */
  4128. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  4129. cpu = smp_processor_id();
  4130. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  4131. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
  4132. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
  4133. }
  4134. /* Create and initialize a Tx queue */
  4135. static int mvpp2_txq_init(struct mvpp2_port *port,
  4136. struct mvpp2_tx_queue *txq)
  4137. {
  4138. u32 val;
  4139. int cpu, desc, desc_per_txq, tx_port_num;
  4140. struct mvpp2_txq_pcpu *txq_pcpu;
  4141. txq->size = port->tx_ring_size;
  4142. /* Allocate memory for Tx descriptors */
  4143. txq->descs = dma_alloc_coherent(port->dev->dev.parent,
  4144. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  4145. &txq->descs_dma, GFP_KERNEL);
  4146. if (!txq->descs)
  4147. return -ENOMEM;
  4148. txq->last_desc = txq->size - 1;
  4149. /* Set Tx descriptors queue starting address - indirect access */
  4150. cpu = smp_processor_id();
  4151. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  4152. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
  4153. txq->descs_dma);
  4154. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
  4155. txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
  4156. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
  4157. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
  4158. txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
  4159. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
  4160. val &= ~MVPP2_TXQ_PENDING_MASK;
  4161. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
  4162. /* Calculate base address in prefetch buffer. We reserve 16 descriptors
  4163. * for each existing TXQ.
  4164. * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
  4165. * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
  4166. */
  4167. desc_per_txq = 16;
  4168. desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
  4169. (txq->log_id * desc_per_txq);
  4170. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
  4171. MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
  4172. MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
  4173. /* WRR / EJP configuration - indirect access */
  4174. tx_port_num = mvpp2_egress_port(port);
  4175. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  4176. val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
  4177. val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
  4178. val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
  4179. val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
  4180. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
  4181. val = MVPP2_TXQ_TOKEN_SIZE_MAX;
  4182. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
  4183. val);
  4184. for_each_present_cpu(cpu) {
  4185. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  4186. txq_pcpu->size = txq->size;
  4187. txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
  4188. sizeof(*txq_pcpu->buffs),
  4189. GFP_KERNEL);
  4190. if (!txq_pcpu->buffs)
  4191. goto cleanup;
  4192. txq_pcpu->count = 0;
  4193. txq_pcpu->reserved_num = 0;
  4194. txq_pcpu->txq_put_index = 0;
  4195. txq_pcpu->txq_get_index = 0;
  4196. }
  4197. return 0;
  4198. cleanup:
  4199. for_each_present_cpu(cpu) {
  4200. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  4201. kfree(txq_pcpu->buffs);
  4202. }
  4203. dma_free_coherent(port->dev->dev.parent,
  4204. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  4205. txq->descs, txq->descs_dma);
  4206. return -ENOMEM;
  4207. }
  4208. /* Free allocated TXQ resources */
  4209. static void mvpp2_txq_deinit(struct mvpp2_port *port,
  4210. struct mvpp2_tx_queue *txq)
  4211. {
  4212. struct mvpp2_txq_pcpu *txq_pcpu;
  4213. int cpu;
  4214. for_each_present_cpu(cpu) {
  4215. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  4216. kfree(txq_pcpu->buffs);
  4217. }
  4218. if (txq->descs)
  4219. dma_free_coherent(port->dev->dev.parent,
  4220. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  4221. txq->descs, txq->descs_dma);
  4222. txq->descs = NULL;
  4223. txq->last_desc = 0;
  4224. txq->next_desc_to_proc = 0;
  4225. txq->descs_dma = 0;
  4226. /* Set minimum bandwidth for disabled TXQs */
  4227. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
  4228. /* Set Tx descriptors queue starting address and size */
  4229. cpu = smp_processor_id();
  4230. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  4231. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
  4232. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
  4233. }
  4234. /* Cleanup Tx ports */
  4235. static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
  4236. {
  4237. struct mvpp2_txq_pcpu *txq_pcpu;
  4238. int delay, pending, cpu;
  4239. u32 val;
  4240. cpu = smp_processor_id();
  4241. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  4242. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
  4243. val |= MVPP2_TXQ_DRAIN_EN_MASK;
  4244. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  4245. /* The napi queue has been stopped so wait for all packets
  4246. * to be transmitted.
  4247. */
  4248. delay = 0;
  4249. do {
  4250. if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
  4251. netdev_warn(port->dev,
  4252. "port %d: cleaning queue %d timed out\n",
  4253. port->id, txq->log_id);
  4254. break;
  4255. }
  4256. mdelay(1);
  4257. delay++;
  4258. pending = mvpp2_percpu_read(port->priv, cpu,
  4259. MVPP2_TXQ_PENDING_REG);
  4260. pending &= MVPP2_TXQ_PENDING_MASK;
  4261. } while (pending);
  4262. val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
  4263. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  4264. for_each_present_cpu(cpu) {
  4265. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  4266. /* Release all packets */
  4267. mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
  4268. /* Reset queue */
  4269. txq_pcpu->count = 0;
  4270. txq_pcpu->txq_put_index = 0;
  4271. txq_pcpu->txq_get_index = 0;
  4272. }
  4273. }
  4274. /* Cleanup all Tx queues */
  4275. static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
  4276. {
  4277. struct mvpp2_tx_queue *txq;
  4278. int queue;
  4279. u32 val;
  4280. val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
  4281. /* Reset Tx ports and delete Tx queues */
  4282. val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
  4283. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  4284. for (queue = 0; queue < txq_number; queue++) {
  4285. txq = port->txqs[queue];
  4286. mvpp2_txq_clean(port, txq);
  4287. mvpp2_txq_deinit(port, txq);
  4288. }
  4289. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  4290. val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
  4291. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  4292. }
  4293. /* Cleanup all Rx queues */
  4294. static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
  4295. {
  4296. int queue;
  4297. for (queue = 0; queue < rxq_number; queue++)
  4298. mvpp2_rxq_deinit(port, port->rxqs[queue]);
  4299. }
  4300. /* Init all Rx queues for port */
  4301. static int mvpp2_setup_rxqs(struct mvpp2_port *port)
  4302. {
  4303. int queue, err;
  4304. for (queue = 0; queue < rxq_number; queue++) {
  4305. err = mvpp2_rxq_init(port, port->rxqs[queue]);
  4306. if (err)
  4307. goto err_cleanup;
  4308. }
  4309. return 0;
  4310. err_cleanup:
  4311. mvpp2_cleanup_rxqs(port);
  4312. return err;
  4313. }
  4314. /* Init all tx queues for port */
  4315. static int mvpp2_setup_txqs(struct mvpp2_port *port)
  4316. {
  4317. struct mvpp2_tx_queue *txq;
  4318. int queue, err;
  4319. for (queue = 0; queue < txq_number; queue++) {
  4320. txq = port->txqs[queue];
  4321. err = mvpp2_txq_init(port, txq);
  4322. if (err)
  4323. goto err_cleanup;
  4324. }
  4325. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  4326. return 0;
  4327. err_cleanup:
  4328. mvpp2_cleanup_txqs(port);
  4329. return err;
  4330. }
  4331. /* The callback for per-port interrupt */
  4332. static irqreturn_t mvpp2_isr(int irq, void *dev_id)
  4333. {
  4334. struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
  4335. mvpp2_interrupts_disable(port);
  4336. napi_schedule(&port->napi);
  4337. return IRQ_HANDLED;
  4338. }
  4339. /* Adjust link */
  4340. static void mvpp2_link_event(struct net_device *dev)
  4341. {
  4342. struct mvpp2_port *port = netdev_priv(dev);
  4343. struct phy_device *phydev = dev->phydev;
  4344. int status_change = 0;
  4345. u32 val;
  4346. if (phydev->link) {
  4347. if ((port->speed != phydev->speed) ||
  4348. (port->duplex != phydev->duplex)) {
  4349. u32 val;
  4350. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  4351. val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
  4352. MVPP2_GMAC_CONFIG_GMII_SPEED |
  4353. MVPP2_GMAC_CONFIG_FULL_DUPLEX |
  4354. MVPP2_GMAC_AN_SPEED_EN |
  4355. MVPP2_GMAC_AN_DUPLEX_EN);
  4356. if (phydev->duplex)
  4357. val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
  4358. if (phydev->speed == SPEED_1000)
  4359. val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
  4360. else if (phydev->speed == SPEED_100)
  4361. val |= MVPP2_GMAC_CONFIG_MII_SPEED;
  4362. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  4363. port->duplex = phydev->duplex;
  4364. port->speed = phydev->speed;
  4365. }
  4366. }
  4367. if (phydev->link != port->link) {
  4368. if (!phydev->link) {
  4369. port->duplex = -1;
  4370. port->speed = 0;
  4371. }
  4372. port->link = phydev->link;
  4373. status_change = 1;
  4374. }
  4375. if (status_change) {
  4376. if (phydev->link) {
  4377. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  4378. val |= (MVPP2_GMAC_FORCE_LINK_PASS |
  4379. MVPP2_GMAC_FORCE_LINK_DOWN);
  4380. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  4381. mvpp2_egress_enable(port);
  4382. mvpp2_ingress_enable(port);
  4383. } else {
  4384. mvpp2_ingress_disable(port);
  4385. mvpp2_egress_disable(port);
  4386. }
  4387. phy_print_status(phydev);
  4388. }
  4389. }
  4390. static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
  4391. {
  4392. ktime_t interval;
  4393. if (!port_pcpu->timer_scheduled) {
  4394. port_pcpu->timer_scheduled = true;
  4395. interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
  4396. hrtimer_start(&port_pcpu->tx_done_timer, interval,
  4397. HRTIMER_MODE_REL_PINNED);
  4398. }
  4399. }
  4400. static void mvpp2_tx_proc_cb(unsigned long data)
  4401. {
  4402. struct net_device *dev = (struct net_device *)data;
  4403. struct mvpp2_port *port = netdev_priv(dev);
  4404. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  4405. unsigned int tx_todo, cause;
  4406. if (!netif_running(dev))
  4407. return;
  4408. port_pcpu->timer_scheduled = false;
  4409. /* Process all the Tx queues */
  4410. cause = (1 << txq_number) - 1;
  4411. tx_todo = mvpp2_tx_done(port, cause);
  4412. /* Set the timer in case not all the packets were processed */
  4413. if (tx_todo)
  4414. mvpp2_timer_set(port_pcpu);
  4415. }
  4416. static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
  4417. {
  4418. struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
  4419. struct mvpp2_port_pcpu,
  4420. tx_done_timer);
  4421. tasklet_schedule(&port_pcpu->tx_done_tasklet);
  4422. return HRTIMER_NORESTART;
  4423. }
  4424. /* Main RX/TX processing routines */
  4425. /* Display more error info */
  4426. static void mvpp2_rx_error(struct mvpp2_port *port,
  4427. struct mvpp2_rx_desc *rx_desc)
  4428. {
  4429. u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
  4430. size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
  4431. switch (status & MVPP2_RXD_ERR_CODE_MASK) {
  4432. case MVPP2_RXD_ERR_CRC:
  4433. netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
  4434. status, sz);
  4435. break;
  4436. case MVPP2_RXD_ERR_OVERRUN:
  4437. netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
  4438. status, sz);
  4439. break;
  4440. case MVPP2_RXD_ERR_RESOURCE:
  4441. netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
  4442. status, sz);
  4443. break;
  4444. }
  4445. }
  4446. /* Handle RX checksum offload */
  4447. static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
  4448. struct sk_buff *skb)
  4449. {
  4450. if (((status & MVPP2_RXD_L3_IP4) &&
  4451. !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
  4452. (status & MVPP2_RXD_L3_IP6))
  4453. if (((status & MVPP2_RXD_L4_UDP) ||
  4454. (status & MVPP2_RXD_L4_TCP)) &&
  4455. (status & MVPP2_RXD_L4_CSUM_OK)) {
  4456. skb->csum = 0;
  4457. skb->ip_summed = CHECKSUM_UNNECESSARY;
  4458. return;
  4459. }
  4460. skb->ip_summed = CHECKSUM_NONE;
  4461. }
  4462. /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
  4463. static int mvpp2_rx_refill(struct mvpp2_port *port,
  4464. struct mvpp2_bm_pool *bm_pool, u32 bm)
  4465. {
  4466. dma_addr_t dma_addr;
  4467. phys_addr_t phys_addr;
  4468. void *buf;
  4469. /* No recycle or too many buffers are in use, so allocate a new skb */
  4470. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
  4471. GFP_ATOMIC);
  4472. if (!buf)
  4473. return -ENOMEM;
  4474. mvpp2_pool_refill(port, bm, dma_addr, phys_addr);
  4475. return 0;
  4476. }
  4477. /* Handle tx checksum */
  4478. static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
  4479. {
  4480. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4481. int ip_hdr_len = 0;
  4482. u8 l4_proto;
  4483. if (skb->protocol == htons(ETH_P_IP)) {
  4484. struct iphdr *ip4h = ip_hdr(skb);
  4485. /* Calculate IPv4 checksum and L4 checksum */
  4486. ip_hdr_len = ip4h->ihl;
  4487. l4_proto = ip4h->protocol;
  4488. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  4489. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  4490. /* Read l4_protocol from one of IPv6 extra headers */
  4491. if (skb_network_header_len(skb) > 0)
  4492. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  4493. l4_proto = ip6h->nexthdr;
  4494. } else {
  4495. return MVPP2_TXD_L4_CSUM_NOT;
  4496. }
  4497. return mvpp2_txq_desc_csum(skb_network_offset(skb),
  4498. skb->protocol, ip_hdr_len, l4_proto);
  4499. }
  4500. return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
  4501. }
  4502. /* Main rx processing */
  4503. static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
  4504. struct mvpp2_rx_queue *rxq)
  4505. {
  4506. struct net_device *dev = port->dev;
  4507. int rx_received;
  4508. int rx_done = 0;
  4509. u32 rcvd_pkts = 0;
  4510. u32 rcvd_bytes = 0;
  4511. /* Get number of received packets and clamp the to-do */
  4512. rx_received = mvpp2_rxq_received(port, rxq->id);
  4513. if (rx_todo > rx_received)
  4514. rx_todo = rx_received;
  4515. while (rx_done < rx_todo) {
  4516. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  4517. struct mvpp2_bm_pool *bm_pool;
  4518. struct sk_buff *skb;
  4519. unsigned int frag_size;
  4520. dma_addr_t dma_addr;
  4521. phys_addr_t phys_addr;
  4522. u32 bm, rx_status;
  4523. int pool, rx_bytes, err;
  4524. void *data;
  4525. rx_done++;
  4526. rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
  4527. rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
  4528. rx_bytes -= MVPP2_MH_SIZE;
  4529. dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
  4530. phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
  4531. data = (void *)phys_to_virt(phys_addr);
  4532. bm = mvpp2_bm_cookie_build(port, rx_desc);
  4533. pool = mvpp2_bm_cookie_pool_get(bm);
  4534. bm_pool = &port->priv->bm_pools[pool];
  4535. /* In case of an error, release the requested buffer pointer
  4536. * to the Buffer Manager. This request process is controlled
  4537. * by the hardware, and the information about the buffer is
  4538. * comprised by the RX descriptor.
  4539. */
  4540. if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
  4541. err_drop_frame:
  4542. dev->stats.rx_errors++;
  4543. mvpp2_rx_error(port, rx_desc);
  4544. /* Return the buffer to the pool */
  4545. mvpp2_pool_refill(port, bm, dma_addr, phys_addr);
  4546. continue;
  4547. }
  4548. if (bm_pool->frag_size > PAGE_SIZE)
  4549. frag_size = 0;
  4550. else
  4551. frag_size = bm_pool->frag_size;
  4552. skb = build_skb(data, frag_size);
  4553. if (!skb) {
  4554. netdev_warn(port->dev, "skb build failed\n");
  4555. goto err_drop_frame;
  4556. }
  4557. err = mvpp2_rx_refill(port, bm_pool, bm);
  4558. if (err) {
  4559. netdev_err(port->dev, "failed to refill BM pools\n");
  4560. goto err_drop_frame;
  4561. }
  4562. dma_unmap_single(dev->dev.parent, dma_addr,
  4563. bm_pool->buf_size, DMA_FROM_DEVICE);
  4564. rcvd_pkts++;
  4565. rcvd_bytes += rx_bytes;
  4566. skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
  4567. skb_put(skb, rx_bytes);
  4568. skb->protocol = eth_type_trans(skb, dev);
  4569. mvpp2_rx_csum(port, rx_status, skb);
  4570. napi_gro_receive(&port->napi, skb);
  4571. }
  4572. if (rcvd_pkts) {
  4573. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  4574. u64_stats_update_begin(&stats->syncp);
  4575. stats->rx_packets += rcvd_pkts;
  4576. stats->rx_bytes += rcvd_bytes;
  4577. u64_stats_update_end(&stats->syncp);
  4578. }
  4579. /* Update Rx queue management counters */
  4580. wmb();
  4581. mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
  4582. return rx_todo;
  4583. }
  4584. static inline void
  4585. tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  4586. struct mvpp2_tx_desc *desc)
  4587. {
  4588. dma_addr_t buf_dma_addr =
  4589. mvpp2_txdesc_dma_addr_get(port, desc);
  4590. size_t buf_sz =
  4591. mvpp2_txdesc_size_get(port, desc);
  4592. dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
  4593. buf_sz, DMA_TO_DEVICE);
  4594. mvpp2_txq_desc_put(txq);
  4595. }
  4596. /* Handle tx fragmentation processing */
  4597. static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
  4598. struct mvpp2_tx_queue *aggr_txq,
  4599. struct mvpp2_tx_queue *txq)
  4600. {
  4601. struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
  4602. struct mvpp2_tx_desc *tx_desc;
  4603. int i;
  4604. dma_addr_t buf_dma_addr;
  4605. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4606. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4607. void *addr = page_address(frag->page.p) + frag->page_offset;
  4608. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  4609. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  4610. mvpp2_txdesc_size_set(port, tx_desc, frag->size);
  4611. buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
  4612. frag->size,
  4613. DMA_TO_DEVICE);
  4614. if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
  4615. mvpp2_txq_desc_put(txq);
  4616. goto cleanup;
  4617. }
  4618. mvpp2_txdesc_offset_set(port, tx_desc,
  4619. buf_dma_addr & MVPP2_TX_DESC_ALIGN);
  4620. mvpp2_txdesc_dma_addr_set(port, tx_desc,
  4621. buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
  4622. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  4623. /* Last descriptor */
  4624. mvpp2_txdesc_cmd_set(port, tx_desc,
  4625. MVPP2_TXD_L_DESC);
  4626. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  4627. } else {
  4628. /* Descriptor in the middle: Not First, Not Last */
  4629. mvpp2_txdesc_cmd_set(port, tx_desc, 0);
  4630. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  4631. }
  4632. }
  4633. return 0;
  4634. cleanup:
  4635. /* Release all descriptors that were used to map fragments of
  4636. * this packet, as well as the corresponding DMA mappings
  4637. */
  4638. for (i = i - 1; i >= 0; i--) {
  4639. tx_desc = txq->descs + i;
  4640. tx_desc_unmap_put(port, txq, tx_desc);
  4641. }
  4642. return -ENOMEM;
  4643. }
  4644. /* Main tx processing */
  4645. static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
  4646. {
  4647. struct mvpp2_port *port = netdev_priv(dev);
  4648. struct mvpp2_tx_queue *txq, *aggr_txq;
  4649. struct mvpp2_txq_pcpu *txq_pcpu;
  4650. struct mvpp2_tx_desc *tx_desc;
  4651. dma_addr_t buf_dma_addr;
  4652. int frags = 0;
  4653. u16 txq_id;
  4654. u32 tx_cmd;
  4655. txq_id = skb_get_queue_mapping(skb);
  4656. txq = port->txqs[txq_id];
  4657. txq_pcpu = this_cpu_ptr(txq->pcpu);
  4658. aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
  4659. frags = skb_shinfo(skb)->nr_frags + 1;
  4660. /* Check number of available descriptors */
  4661. if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
  4662. mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
  4663. txq_pcpu, frags)) {
  4664. frags = 0;
  4665. goto out;
  4666. }
  4667. /* Get a descriptor for the first part of the packet */
  4668. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  4669. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  4670. mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
  4671. buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
  4672. skb_headlen(skb), DMA_TO_DEVICE);
  4673. if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
  4674. mvpp2_txq_desc_put(txq);
  4675. frags = 0;
  4676. goto out;
  4677. }
  4678. mvpp2_txdesc_offset_set(port, tx_desc,
  4679. buf_dma_addr & MVPP2_TX_DESC_ALIGN);
  4680. mvpp2_txdesc_dma_addr_set(port, tx_desc,
  4681. buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
  4682. tx_cmd = mvpp2_skb_tx_csum(port, skb);
  4683. if (frags == 1) {
  4684. /* First and Last descriptor */
  4685. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
  4686. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  4687. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  4688. } else {
  4689. /* First but not Last */
  4690. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
  4691. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  4692. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  4693. /* Continue with other skb fragments */
  4694. if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
  4695. tx_desc_unmap_put(port, txq, tx_desc);
  4696. frags = 0;
  4697. goto out;
  4698. }
  4699. }
  4700. txq_pcpu->reserved_num -= frags;
  4701. txq_pcpu->count += frags;
  4702. aggr_txq->count += frags;
  4703. /* Enable transmit */
  4704. wmb();
  4705. mvpp2_aggr_txq_pend_desc_add(port, frags);
  4706. if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
  4707. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  4708. netif_tx_stop_queue(nq);
  4709. }
  4710. out:
  4711. if (frags > 0) {
  4712. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  4713. u64_stats_update_begin(&stats->syncp);
  4714. stats->tx_packets++;
  4715. stats->tx_bytes += skb->len;
  4716. u64_stats_update_end(&stats->syncp);
  4717. } else {
  4718. dev->stats.tx_dropped++;
  4719. dev_kfree_skb_any(skb);
  4720. }
  4721. /* Finalize TX processing */
  4722. if (txq_pcpu->count >= txq->done_pkts_coal)
  4723. mvpp2_txq_done(port, txq, txq_pcpu);
  4724. /* Set the timer in case not all frags were processed */
  4725. if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
  4726. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  4727. mvpp2_timer_set(port_pcpu);
  4728. }
  4729. return NETDEV_TX_OK;
  4730. }
  4731. static inline void mvpp2_cause_error(struct net_device *dev, int cause)
  4732. {
  4733. if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
  4734. netdev_err(dev, "FCS error\n");
  4735. if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
  4736. netdev_err(dev, "rx fifo overrun error\n");
  4737. if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
  4738. netdev_err(dev, "tx fifo underrun error\n");
  4739. }
  4740. static int mvpp2_poll(struct napi_struct *napi, int budget)
  4741. {
  4742. u32 cause_rx_tx, cause_rx, cause_misc;
  4743. int rx_done = 0;
  4744. struct mvpp2_port *port = netdev_priv(napi->dev);
  4745. int cpu = smp_processor_id();
  4746. /* Rx/Tx cause register
  4747. *
  4748. * Bits 0-15: each bit indicates received packets on the Rx queue
  4749. * (bit 0 is for Rx queue 0).
  4750. *
  4751. * Bits 16-23: each bit indicates transmitted packets on the Tx queue
  4752. * (bit 16 is for Tx queue 0).
  4753. *
  4754. * Each CPU has its own Rx/Tx cause register
  4755. */
  4756. cause_rx_tx = mvpp2_percpu_read(port->priv, cpu,
  4757. MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
  4758. cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
  4759. cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
  4760. if (cause_misc) {
  4761. mvpp2_cause_error(port->dev, cause_misc);
  4762. /* Clear the cause register */
  4763. mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
  4764. mvpp2_percpu_write(port->priv, cpu,
  4765. MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
  4766. cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
  4767. }
  4768. cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  4769. /* Process RX packets */
  4770. cause_rx |= port->pending_cause_rx;
  4771. while (cause_rx && budget > 0) {
  4772. int count;
  4773. struct mvpp2_rx_queue *rxq;
  4774. rxq = mvpp2_get_rx_queue(port, cause_rx);
  4775. if (!rxq)
  4776. break;
  4777. count = mvpp2_rx(port, budget, rxq);
  4778. rx_done += count;
  4779. budget -= count;
  4780. if (budget > 0) {
  4781. /* Clear the bit associated to this Rx queue
  4782. * so that next iteration will continue from
  4783. * the next Rx queue.
  4784. */
  4785. cause_rx &= ~(1 << rxq->logic_rxq);
  4786. }
  4787. }
  4788. if (budget > 0) {
  4789. cause_rx = 0;
  4790. napi_complete_done(napi, rx_done);
  4791. mvpp2_interrupts_enable(port);
  4792. }
  4793. port->pending_cause_rx = cause_rx;
  4794. return rx_done;
  4795. }
  4796. /* Set hw internals when starting port */
  4797. static void mvpp2_start_dev(struct mvpp2_port *port)
  4798. {
  4799. struct net_device *ndev = port->dev;
  4800. mvpp2_gmac_max_rx_size_set(port);
  4801. mvpp2_txp_max_tx_size_set(port);
  4802. napi_enable(&port->napi);
  4803. /* Enable interrupts on all CPUs */
  4804. mvpp2_interrupts_enable(port);
  4805. mvpp2_port_enable(port);
  4806. phy_start(ndev->phydev);
  4807. netif_tx_start_all_queues(port->dev);
  4808. }
  4809. /* Set hw internals when stopping port */
  4810. static void mvpp2_stop_dev(struct mvpp2_port *port)
  4811. {
  4812. struct net_device *ndev = port->dev;
  4813. /* Stop new packets from arriving to RXQs */
  4814. mvpp2_ingress_disable(port);
  4815. mdelay(10);
  4816. /* Disable interrupts on all CPUs */
  4817. mvpp2_interrupts_disable(port);
  4818. napi_disable(&port->napi);
  4819. netif_carrier_off(port->dev);
  4820. netif_tx_stop_all_queues(port->dev);
  4821. mvpp2_egress_disable(port);
  4822. mvpp2_port_disable(port);
  4823. phy_stop(ndev->phydev);
  4824. }
  4825. static int mvpp2_check_ringparam_valid(struct net_device *dev,
  4826. struct ethtool_ringparam *ring)
  4827. {
  4828. u16 new_rx_pending = ring->rx_pending;
  4829. u16 new_tx_pending = ring->tx_pending;
  4830. if (ring->rx_pending == 0 || ring->tx_pending == 0)
  4831. return -EINVAL;
  4832. if (ring->rx_pending > MVPP2_MAX_RXD)
  4833. new_rx_pending = MVPP2_MAX_RXD;
  4834. else if (!IS_ALIGNED(ring->rx_pending, 16))
  4835. new_rx_pending = ALIGN(ring->rx_pending, 16);
  4836. if (ring->tx_pending > MVPP2_MAX_TXD)
  4837. new_tx_pending = MVPP2_MAX_TXD;
  4838. else if (!IS_ALIGNED(ring->tx_pending, 32))
  4839. new_tx_pending = ALIGN(ring->tx_pending, 32);
  4840. if (ring->rx_pending != new_rx_pending) {
  4841. netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
  4842. ring->rx_pending, new_rx_pending);
  4843. ring->rx_pending = new_rx_pending;
  4844. }
  4845. if (ring->tx_pending != new_tx_pending) {
  4846. netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
  4847. ring->tx_pending, new_tx_pending);
  4848. ring->tx_pending = new_tx_pending;
  4849. }
  4850. return 0;
  4851. }
  4852. static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
  4853. {
  4854. u32 mac_addr_l, mac_addr_m, mac_addr_h;
  4855. mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  4856. mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
  4857. mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
  4858. addr[0] = (mac_addr_h >> 24) & 0xFF;
  4859. addr[1] = (mac_addr_h >> 16) & 0xFF;
  4860. addr[2] = (mac_addr_h >> 8) & 0xFF;
  4861. addr[3] = mac_addr_h & 0xFF;
  4862. addr[4] = mac_addr_m & 0xFF;
  4863. addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
  4864. }
  4865. static int mvpp2_phy_connect(struct mvpp2_port *port)
  4866. {
  4867. struct phy_device *phy_dev;
  4868. phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
  4869. port->phy_interface);
  4870. if (!phy_dev) {
  4871. netdev_err(port->dev, "cannot connect to phy\n");
  4872. return -ENODEV;
  4873. }
  4874. phy_dev->supported &= PHY_GBIT_FEATURES;
  4875. phy_dev->advertising = phy_dev->supported;
  4876. port->link = 0;
  4877. port->duplex = 0;
  4878. port->speed = 0;
  4879. return 0;
  4880. }
  4881. static void mvpp2_phy_disconnect(struct mvpp2_port *port)
  4882. {
  4883. struct net_device *ndev = port->dev;
  4884. phy_disconnect(ndev->phydev);
  4885. }
  4886. static int mvpp2_open(struct net_device *dev)
  4887. {
  4888. struct mvpp2_port *port = netdev_priv(dev);
  4889. unsigned char mac_bcast[ETH_ALEN] = {
  4890. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  4891. int err;
  4892. err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
  4893. if (err) {
  4894. netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
  4895. return err;
  4896. }
  4897. err = mvpp2_prs_mac_da_accept(port->priv, port->id,
  4898. dev->dev_addr, true);
  4899. if (err) {
  4900. netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
  4901. return err;
  4902. }
  4903. err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
  4904. if (err) {
  4905. netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
  4906. return err;
  4907. }
  4908. err = mvpp2_prs_def_flow(port);
  4909. if (err) {
  4910. netdev_err(dev, "mvpp2_prs_def_flow failed\n");
  4911. return err;
  4912. }
  4913. /* Allocate the Rx/Tx queues */
  4914. err = mvpp2_setup_rxqs(port);
  4915. if (err) {
  4916. netdev_err(port->dev, "cannot allocate Rx queues\n");
  4917. return err;
  4918. }
  4919. err = mvpp2_setup_txqs(port);
  4920. if (err) {
  4921. netdev_err(port->dev, "cannot allocate Tx queues\n");
  4922. goto err_cleanup_rxqs;
  4923. }
  4924. err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
  4925. if (err) {
  4926. netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
  4927. goto err_cleanup_txqs;
  4928. }
  4929. /* In default link is down */
  4930. netif_carrier_off(port->dev);
  4931. err = mvpp2_phy_connect(port);
  4932. if (err < 0)
  4933. goto err_free_irq;
  4934. /* Unmask interrupts on all CPUs */
  4935. on_each_cpu(mvpp2_interrupts_unmask, port, 1);
  4936. mvpp2_start_dev(port);
  4937. return 0;
  4938. err_free_irq:
  4939. free_irq(port->irq, port);
  4940. err_cleanup_txqs:
  4941. mvpp2_cleanup_txqs(port);
  4942. err_cleanup_rxqs:
  4943. mvpp2_cleanup_rxqs(port);
  4944. return err;
  4945. }
  4946. static int mvpp2_stop(struct net_device *dev)
  4947. {
  4948. struct mvpp2_port *port = netdev_priv(dev);
  4949. struct mvpp2_port_pcpu *port_pcpu;
  4950. int cpu;
  4951. mvpp2_stop_dev(port);
  4952. mvpp2_phy_disconnect(port);
  4953. /* Mask interrupts on all CPUs */
  4954. on_each_cpu(mvpp2_interrupts_mask, port, 1);
  4955. free_irq(port->irq, port);
  4956. for_each_present_cpu(cpu) {
  4957. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  4958. hrtimer_cancel(&port_pcpu->tx_done_timer);
  4959. port_pcpu->timer_scheduled = false;
  4960. tasklet_kill(&port_pcpu->tx_done_tasklet);
  4961. }
  4962. mvpp2_cleanup_rxqs(port);
  4963. mvpp2_cleanup_txqs(port);
  4964. return 0;
  4965. }
  4966. static void mvpp2_set_rx_mode(struct net_device *dev)
  4967. {
  4968. struct mvpp2_port *port = netdev_priv(dev);
  4969. struct mvpp2 *priv = port->priv;
  4970. struct netdev_hw_addr *ha;
  4971. int id = port->id;
  4972. bool allmulti = dev->flags & IFF_ALLMULTI;
  4973. mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
  4974. mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
  4975. mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
  4976. /* Remove all port->id's mcast enries */
  4977. mvpp2_prs_mcast_del_all(priv, id);
  4978. if (allmulti && !netdev_mc_empty(dev)) {
  4979. netdev_for_each_mc_addr(ha, dev)
  4980. mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
  4981. }
  4982. }
  4983. static int mvpp2_set_mac_address(struct net_device *dev, void *p)
  4984. {
  4985. struct mvpp2_port *port = netdev_priv(dev);
  4986. const struct sockaddr *addr = p;
  4987. int err;
  4988. if (!is_valid_ether_addr(addr->sa_data)) {
  4989. err = -EADDRNOTAVAIL;
  4990. goto log_error;
  4991. }
  4992. if (!netif_running(dev)) {
  4993. err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
  4994. if (!err)
  4995. return 0;
  4996. /* Reconfigure parser to accept the original MAC address */
  4997. err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
  4998. if (err)
  4999. goto log_error;
  5000. }
  5001. mvpp2_stop_dev(port);
  5002. err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
  5003. if (!err)
  5004. goto out_start;
  5005. /* Reconfigure parser accept the original MAC address */
  5006. err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
  5007. if (err)
  5008. goto log_error;
  5009. out_start:
  5010. mvpp2_start_dev(port);
  5011. mvpp2_egress_enable(port);
  5012. mvpp2_ingress_enable(port);
  5013. return 0;
  5014. log_error:
  5015. netdev_err(dev, "failed to change MAC address\n");
  5016. return err;
  5017. }
  5018. static int mvpp2_change_mtu(struct net_device *dev, int mtu)
  5019. {
  5020. struct mvpp2_port *port = netdev_priv(dev);
  5021. int err;
  5022. if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
  5023. netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
  5024. ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
  5025. mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
  5026. }
  5027. if (!netif_running(dev)) {
  5028. err = mvpp2_bm_update_mtu(dev, mtu);
  5029. if (!err) {
  5030. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  5031. return 0;
  5032. }
  5033. /* Reconfigure BM to the original MTU */
  5034. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  5035. if (err)
  5036. goto log_error;
  5037. }
  5038. mvpp2_stop_dev(port);
  5039. err = mvpp2_bm_update_mtu(dev, mtu);
  5040. if (!err) {
  5041. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  5042. goto out_start;
  5043. }
  5044. /* Reconfigure BM to the original MTU */
  5045. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  5046. if (err)
  5047. goto log_error;
  5048. out_start:
  5049. mvpp2_start_dev(port);
  5050. mvpp2_egress_enable(port);
  5051. mvpp2_ingress_enable(port);
  5052. return 0;
  5053. log_error:
  5054. netdev_err(dev, "failed to change MTU\n");
  5055. return err;
  5056. }
  5057. static void
  5058. mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  5059. {
  5060. struct mvpp2_port *port = netdev_priv(dev);
  5061. unsigned int start;
  5062. int cpu;
  5063. for_each_possible_cpu(cpu) {
  5064. struct mvpp2_pcpu_stats *cpu_stats;
  5065. u64 rx_packets;
  5066. u64 rx_bytes;
  5067. u64 tx_packets;
  5068. u64 tx_bytes;
  5069. cpu_stats = per_cpu_ptr(port->stats, cpu);
  5070. do {
  5071. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  5072. rx_packets = cpu_stats->rx_packets;
  5073. rx_bytes = cpu_stats->rx_bytes;
  5074. tx_packets = cpu_stats->tx_packets;
  5075. tx_bytes = cpu_stats->tx_bytes;
  5076. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  5077. stats->rx_packets += rx_packets;
  5078. stats->rx_bytes += rx_bytes;
  5079. stats->tx_packets += tx_packets;
  5080. stats->tx_bytes += tx_bytes;
  5081. }
  5082. stats->rx_errors = dev->stats.rx_errors;
  5083. stats->rx_dropped = dev->stats.rx_dropped;
  5084. stats->tx_dropped = dev->stats.tx_dropped;
  5085. }
  5086. static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5087. {
  5088. int ret;
  5089. if (!dev->phydev)
  5090. return -ENOTSUPP;
  5091. ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
  5092. if (!ret)
  5093. mvpp2_link_event(dev);
  5094. return ret;
  5095. }
  5096. /* Ethtool methods */
  5097. /* Set interrupt coalescing for ethtools */
  5098. static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
  5099. struct ethtool_coalesce *c)
  5100. {
  5101. struct mvpp2_port *port = netdev_priv(dev);
  5102. int queue;
  5103. for (queue = 0; queue < rxq_number; queue++) {
  5104. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  5105. rxq->time_coal = c->rx_coalesce_usecs;
  5106. rxq->pkts_coal = c->rx_max_coalesced_frames;
  5107. mvpp2_rx_pkts_coal_set(port, rxq);
  5108. mvpp2_rx_time_coal_set(port, rxq);
  5109. }
  5110. for (queue = 0; queue < txq_number; queue++) {
  5111. struct mvpp2_tx_queue *txq = port->txqs[queue];
  5112. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  5113. }
  5114. return 0;
  5115. }
  5116. /* get coalescing for ethtools */
  5117. static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
  5118. struct ethtool_coalesce *c)
  5119. {
  5120. struct mvpp2_port *port = netdev_priv(dev);
  5121. c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
  5122. c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
  5123. c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
  5124. return 0;
  5125. }
  5126. static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
  5127. struct ethtool_drvinfo *drvinfo)
  5128. {
  5129. strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
  5130. sizeof(drvinfo->driver));
  5131. strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
  5132. sizeof(drvinfo->version));
  5133. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  5134. sizeof(drvinfo->bus_info));
  5135. }
  5136. static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
  5137. struct ethtool_ringparam *ring)
  5138. {
  5139. struct mvpp2_port *port = netdev_priv(dev);
  5140. ring->rx_max_pending = MVPP2_MAX_RXD;
  5141. ring->tx_max_pending = MVPP2_MAX_TXD;
  5142. ring->rx_pending = port->rx_ring_size;
  5143. ring->tx_pending = port->tx_ring_size;
  5144. }
  5145. static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
  5146. struct ethtool_ringparam *ring)
  5147. {
  5148. struct mvpp2_port *port = netdev_priv(dev);
  5149. u16 prev_rx_ring_size = port->rx_ring_size;
  5150. u16 prev_tx_ring_size = port->tx_ring_size;
  5151. int err;
  5152. err = mvpp2_check_ringparam_valid(dev, ring);
  5153. if (err)
  5154. return err;
  5155. if (!netif_running(dev)) {
  5156. port->rx_ring_size = ring->rx_pending;
  5157. port->tx_ring_size = ring->tx_pending;
  5158. return 0;
  5159. }
  5160. /* The interface is running, so we have to force a
  5161. * reallocation of the queues
  5162. */
  5163. mvpp2_stop_dev(port);
  5164. mvpp2_cleanup_rxqs(port);
  5165. mvpp2_cleanup_txqs(port);
  5166. port->rx_ring_size = ring->rx_pending;
  5167. port->tx_ring_size = ring->tx_pending;
  5168. err = mvpp2_setup_rxqs(port);
  5169. if (err) {
  5170. /* Reallocate Rx queues with the original ring size */
  5171. port->rx_ring_size = prev_rx_ring_size;
  5172. ring->rx_pending = prev_rx_ring_size;
  5173. err = mvpp2_setup_rxqs(port);
  5174. if (err)
  5175. goto err_out;
  5176. }
  5177. err = mvpp2_setup_txqs(port);
  5178. if (err) {
  5179. /* Reallocate Tx queues with the original ring size */
  5180. port->tx_ring_size = prev_tx_ring_size;
  5181. ring->tx_pending = prev_tx_ring_size;
  5182. err = mvpp2_setup_txqs(port);
  5183. if (err)
  5184. goto err_clean_rxqs;
  5185. }
  5186. mvpp2_start_dev(port);
  5187. mvpp2_egress_enable(port);
  5188. mvpp2_ingress_enable(port);
  5189. return 0;
  5190. err_clean_rxqs:
  5191. mvpp2_cleanup_rxqs(port);
  5192. err_out:
  5193. netdev_err(dev, "failed to change ring parameters");
  5194. return err;
  5195. }
  5196. /* Device ops */
  5197. static const struct net_device_ops mvpp2_netdev_ops = {
  5198. .ndo_open = mvpp2_open,
  5199. .ndo_stop = mvpp2_stop,
  5200. .ndo_start_xmit = mvpp2_tx,
  5201. .ndo_set_rx_mode = mvpp2_set_rx_mode,
  5202. .ndo_set_mac_address = mvpp2_set_mac_address,
  5203. .ndo_change_mtu = mvpp2_change_mtu,
  5204. .ndo_get_stats64 = mvpp2_get_stats64,
  5205. .ndo_do_ioctl = mvpp2_ioctl,
  5206. };
  5207. static const struct ethtool_ops mvpp2_eth_tool_ops = {
  5208. .nway_reset = phy_ethtool_nway_reset,
  5209. .get_link = ethtool_op_get_link,
  5210. .set_coalesce = mvpp2_ethtool_set_coalesce,
  5211. .get_coalesce = mvpp2_ethtool_get_coalesce,
  5212. .get_drvinfo = mvpp2_ethtool_get_drvinfo,
  5213. .get_ringparam = mvpp2_ethtool_get_ringparam,
  5214. .set_ringparam = mvpp2_ethtool_set_ringparam,
  5215. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  5216. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  5217. };
  5218. /* Initialize port HW */
  5219. static int mvpp2_port_init(struct mvpp2_port *port)
  5220. {
  5221. struct device *dev = port->dev->dev.parent;
  5222. struct mvpp2 *priv = port->priv;
  5223. struct mvpp2_txq_pcpu *txq_pcpu;
  5224. int queue, cpu, err;
  5225. if (port->first_rxq + rxq_number >
  5226. MVPP2_MAX_PORTS * priv->max_port_rxqs)
  5227. return -EINVAL;
  5228. /* Disable port */
  5229. mvpp2_egress_disable(port);
  5230. mvpp2_port_disable(port);
  5231. port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
  5232. GFP_KERNEL);
  5233. if (!port->txqs)
  5234. return -ENOMEM;
  5235. /* Associate physical Tx queues to this port and initialize.
  5236. * The mapping is predefined.
  5237. */
  5238. for (queue = 0; queue < txq_number; queue++) {
  5239. int queue_phy_id = mvpp2_txq_phys(port->id, queue);
  5240. struct mvpp2_tx_queue *txq;
  5241. txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
  5242. if (!txq) {
  5243. err = -ENOMEM;
  5244. goto err_free_percpu;
  5245. }
  5246. txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
  5247. if (!txq->pcpu) {
  5248. err = -ENOMEM;
  5249. goto err_free_percpu;
  5250. }
  5251. txq->id = queue_phy_id;
  5252. txq->log_id = queue;
  5253. txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
  5254. for_each_present_cpu(cpu) {
  5255. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  5256. txq_pcpu->cpu = cpu;
  5257. }
  5258. port->txqs[queue] = txq;
  5259. }
  5260. port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
  5261. GFP_KERNEL);
  5262. if (!port->rxqs) {
  5263. err = -ENOMEM;
  5264. goto err_free_percpu;
  5265. }
  5266. /* Allocate and initialize Rx queue for this port */
  5267. for (queue = 0; queue < rxq_number; queue++) {
  5268. struct mvpp2_rx_queue *rxq;
  5269. /* Map physical Rx queue to port's logical Rx queue */
  5270. rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
  5271. if (!rxq) {
  5272. err = -ENOMEM;
  5273. goto err_free_percpu;
  5274. }
  5275. /* Map this Rx queue to a physical queue */
  5276. rxq->id = port->first_rxq + queue;
  5277. rxq->port = port->id;
  5278. rxq->logic_rxq = queue;
  5279. port->rxqs[queue] = rxq;
  5280. }
  5281. /* Configure Rx queue group interrupt for this port */
  5282. if (priv->hw_version == MVPP21) {
  5283. mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
  5284. rxq_number);
  5285. } else {
  5286. u32 val;
  5287. val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
  5288. mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
  5289. val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
  5290. mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
  5291. }
  5292. /* Create Rx descriptor rings */
  5293. for (queue = 0; queue < rxq_number; queue++) {
  5294. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  5295. rxq->size = port->rx_ring_size;
  5296. rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
  5297. rxq->time_coal = MVPP2_RX_COAL_USEC;
  5298. }
  5299. mvpp2_ingress_disable(port);
  5300. /* Port default configuration */
  5301. mvpp2_defaults_set(port);
  5302. /* Port's classifier configuration */
  5303. mvpp2_cls_oversize_rxq_set(port);
  5304. mvpp2_cls_port_config(port);
  5305. /* Provide an initial Rx packet size */
  5306. port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
  5307. /* Initialize pools for swf */
  5308. err = mvpp2_swf_bm_pool_init(port);
  5309. if (err)
  5310. goto err_free_percpu;
  5311. return 0;
  5312. err_free_percpu:
  5313. for (queue = 0; queue < txq_number; queue++) {
  5314. if (!port->txqs[queue])
  5315. continue;
  5316. free_percpu(port->txqs[queue]->pcpu);
  5317. }
  5318. return err;
  5319. }
  5320. /* Ports initialization */
  5321. static int mvpp2_port_probe(struct platform_device *pdev,
  5322. struct device_node *port_node,
  5323. struct mvpp2 *priv)
  5324. {
  5325. struct device_node *phy_node;
  5326. struct mvpp2_port *port;
  5327. struct mvpp2_port_pcpu *port_pcpu;
  5328. struct net_device *dev;
  5329. struct resource *res;
  5330. const char *dt_mac_addr;
  5331. const char *mac_from;
  5332. char hw_mac_addr[ETH_ALEN];
  5333. u32 id;
  5334. int features;
  5335. int phy_mode;
  5336. int err, i, cpu;
  5337. dev = alloc_etherdev_mqs(sizeof(*port), txq_number, rxq_number);
  5338. if (!dev)
  5339. return -ENOMEM;
  5340. phy_node = of_parse_phandle(port_node, "phy", 0);
  5341. if (!phy_node) {
  5342. dev_err(&pdev->dev, "missing phy\n");
  5343. err = -ENODEV;
  5344. goto err_free_netdev;
  5345. }
  5346. phy_mode = of_get_phy_mode(port_node);
  5347. if (phy_mode < 0) {
  5348. dev_err(&pdev->dev, "incorrect phy mode\n");
  5349. err = phy_mode;
  5350. goto err_free_netdev;
  5351. }
  5352. if (of_property_read_u32(port_node, "port-id", &id)) {
  5353. err = -EINVAL;
  5354. dev_err(&pdev->dev, "missing port-id value\n");
  5355. goto err_free_netdev;
  5356. }
  5357. dev->tx_queue_len = MVPP2_MAX_TXD;
  5358. dev->watchdog_timeo = 5 * HZ;
  5359. dev->netdev_ops = &mvpp2_netdev_ops;
  5360. dev->ethtool_ops = &mvpp2_eth_tool_ops;
  5361. port = netdev_priv(dev);
  5362. port->irq = irq_of_parse_and_map(port_node, 0);
  5363. if (port->irq <= 0) {
  5364. err = -EINVAL;
  5365. goto err_free_netdev;
  5366. }
  5367. if (of_property_read_bool(port_node, "marvell,loopback"))
  5368. port->flags |= MVPP2_F_LOOPBACK;
  5369. port->priv = priv;
  5370. port->id = id;
  5371. if (priv->hw_version == MVPP21)
  5372. port->first_rxq = port->id * rxq_number;
  5373. else
  5374. port->first_rxq = port->id * priv->max_port_rxqs;
  5375. port->phy_node = phy_node;
  5376. port->phy_interface = phy_mode;
  5377. if (priv->hw_version == MVPP21) {
  5378. res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
  5379. port->base = devm_ioremap_resource(&pdev->dev, res);
  5380. if (IS_ERR(port->base)) {
  5381. err = PTR_ERR(port->base);
  5382. goto err_free_irq;
  5383. }
  5384. } else {
  5385. if (of_property_read_u32(port_node, "gop-port-id",
  5386. &port->gop_id)) {
  5387. err = -EINVAL;
  5388. dev_err(&pdev->dev, "missing gop-port-id value\n");
  5389. goto err_free_irq;
  5390. }
  5391. port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
  5392. }
  5393. /* Alloc per-cpu stats */
  5394. port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
  5395. if (!port->stats) {
  5396. err = -ENOMEM;
  5397. goto err_free_irq;
  5398. }
  5399. dt_mac_addr = of_get_mac_address(port_node);
  5400. if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
  5401. mac_from = "device tree";
  5402. ether_addr_copy(dev->dev_addr, dt_mac_addr);
  5403. } else {
  5404. if (priv->hw_version == MVPP21)
  5405. mvpp21_get_mac_address(port, hw_mac_addr);
  5406. if (is_valid_ether_addr(hw_mac_addr)) {
  5407. mac_from = "hardware";
  5408. ether_addr_copy(dev->dev_addr, hw_mac_addr);
  5409. } else {
  5410. mac_from = "random";
  5411. eth_hw_addr_random(dev);
  5412. }
  5413. }
  5414. port->tx_ring_size = MVPP2_MAX_TXD;
  5415. port->rx_ring_size = MVPP2_MAX_RXD;
  5416. port->dev = dev;
  5417. SET_NETDEV_DEV(dev, &pdev->dev);
  5418. err = mvpp2_port_init(port);
  5419. if (err < 0) {
  5420. dev_err(&pdev->dev, "failed to init port %d\n", id);
  5421. goto err_free_stats;
  5422. }
  5423. mvpp2_port_mii_set(port);
  5424. mvpp2_port_periodic_xon_disable(port);
  5425. if (priv->hw_version == MVPP21)
  5426. mvpp2_port_fc_adv_enable(port);
  5427. mvpp2_port_reset(port);
  5428. port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
  5429. if (!port->pcpu) {
  5430. err = -ENOMEM;
  5431. goto err_free_txq_pcpu;
  5432. }
  5433. for_each_present_cpu(cpu) {
  5434. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  5435. hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
  5436. HRTIMER_MODE_REL_PINNED);
  5437. port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
  5438. port_pcpu->timer_scheduled = false;
  5439. tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
  5440. (unsigned long)dev);
  5441. }
  5442. netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
  5443. features = NETIF_F_SG | NETIF_F_IP_CSUM;
  5444. dev->features = features | NETIF_F_RXCSUM;
  5445. dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
  5446. dev->vlan_features |= features;
  5447. /* MTU range: 68 - 9676 */
  5448. dev->min_mtu = ETH_MIN_MTU;
  5449. /* 9676 == 9700 - 20 and rounding to 8 */
  5450. dev->max_mtu = 9676;
  5451. err = register_netdev(dev);
  5452. if (err < 0) {
  5453. dev_err(&pdev->dev, "failed to register netdev\n");
  5454. goto err_free_port_pcpu;
  5455. }
  5456. netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
  5457. priv->port_list[id] = port;
  5458. return 0;
  5459. err_free_port_pcpu:
  5460. free_percpu(port->pcpu);
  5461. err_free_txq_pcpu:
  5462. for (i = 0; i < txq_number; i++)
  5463. free_percpu(port->txqs[i]->pcpu);
  5464. err_free_stats:
  5465. free_percpu(port->stats);
  5466. err_free_irq:
  5467. irq_dispose_mapping(port->irq);
  5468. err_free_netdev:
  5469. of_node_put(phy_node);
  5470. free_netdev(dev);
  5471. return err;
  5472. }
  5473. /* Ports removal routine */
  5474. static void mvpp2_port_remove(struct mvpp2_port *port)
  5475. {
  5476. int i;
  5477. unregister_netdev(port->dev);
  5478. of_node_put(port->phy_node);
  5479. free_percpu(port->pcpu);
  5480. free_percpu(port->stats);
  5481. for (i = 0; i < txq_number; i++)
  5482. free_percpu(port->txqs[i]->pcpu);
  5483. irq_dispose_mapping(port->irq);
  5484. free_netdev(port->dev);
  5485. }
  5486. /* Initialize decoding windows */
  5487. static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
  5488. struct mvpp2 *priv)
  5489. {
  5490. u32 win_enable;
  5491. int i;
  5492. for (i = 0; i < 6; i++) {
  5493. mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
  5494. mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
  5495. if (i < 4)
  5496. mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
  5497. }
  5498. win_enable = 0;
  5499. for (i = 0; i < dram->num_cs; i++) {
  5500. const struct mbus_dram_window *cs = dram->cs + i;
  5501. mvpp2_write(priv, MVPP2_WIN_BASE(i),
  5502. (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
  5503. dram->mbus_dram_target_id);
  5504. mvpp2_write(priv, MVPP2_WIN_SIZE(i),
  5505. (cs->size - 1) & 0xffff0000);
  5506. win_enable |= (1 << i);
  5507. }
  5508. mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
  5509. }
  5510. /* Initialize Rx FIFO's */
  5511. static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
  5512. {
  5513. int port;
  5514. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  5515. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
  5516. MVPP2_RX_FIFO_PORT_DATA_SIZE);
  5517. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
  5518. MVPP2_RX_FIFO_PORT_ATTR_SIZE);
  5519. }
  5520. mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
  5521. MVPP2_RX_FIFO_PORT_MIN_PKT);
  5522. mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
  5523. }
  5524. static void mvpp2_axi_init(struct mvpp2 *priv)
  5525. {
  5526. u32 val, rdval, wrval;
  5527. mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
  5528. /* AXI Bridge Configuration */
  5529. rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
  5530. << MVPP22_AXI_ATTR_CACHE_OFFS;
  5531. rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  5532. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  5533. wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
  5534. << MVPP22_AXI_ATTR_CACHE_OFFS;
  5535. wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  5536. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  5537. /* BM */
  5538. mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
  5539. mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
  5540. /* Descriptors */
  5541. mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
  5542. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
  5543. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
  5544. mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
  5545. /* Buffer Data */
  5546. mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
  5547. mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
  5548. val = MVPP22_AXI_CODE_CACHE_NON_CACHE
  5549. << MVPP22_AXI_CODE_CACHE_OFFS;
  5550. val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
  5551. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  5552. mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
  5553. mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
  5554. val = MVPP22_AXI_CODE_CACHE_RD_CACHE
  5555. << MVPP22_AXI_CODE_CACHE_OFFS;
  5556. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  5557. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  5558. mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
  5559. val = MVPP22_AXI_CODE_CACHE_WR_CACHE
  5560. << MVPP22_AXI_CODE_CACHE_OFFS;
  5561. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  5562. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  5563. mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
  5564. }
  5565. /* Initialize network controller common part HW */
  5566. static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
  5567. {
  5568. const struct mbus_dram_target_info *dram_target_info;
  5569. int err, i;
  5570. u32 val;
  5571. /* Checks for hardware constraints */
  5572. if (rxq_number % 4 || (rxq_number > priv->max_port_rxqs) ||
  5573. (txq_number > MVPP2_MAX_TXQ)) {
  5574. dev_err(&pdev->dev, "invalid queue size parameter\n");
  5575. return -EINVAL;
  5576. }
  5577. /* MBUS windows configuration */
  5578. dram_target_info = mv_mbus_dram_info();
  5579. if (dram_target_info)
  5580. mvpp2_conf_mbus_windows(dram_target_info, priv);
  5581. if (priv->hw_version == MVPP22)
  5582. mvpp2_axi_init(priv);
  5583. /* Disable HW PHY polling */
  5584. if (priv->hw_version == MVPP21) {
  5585. val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  5586. val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
  5587. writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  5588. } else {
  5589. val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  5590. val &= ~MVPP22_SMI_POLLING_EN;
  5591. writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  5592. }
  5593. /* Allocate and initialize aggregated TXQs */
  5594. priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
  5595. sizeof(*priv->aggr_txqs),
  5596. GFP_KERNEL);
  5597. if (!priv->aggr_txqs)
  5598. return -ENOMEM;
  5599. for_each_present_cpu(i) {
  5600. priv->aggr_txqs[i].id = i;
  5601. priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
  5602. err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
  5603. MVPP2_AGGR_TXQ_SIZE, i, priv);
  5604. if (err < 0)
  5605. return err;
  5606. }
  5607. /* Rx Fifo Init */
  5608. mvpp2_rx_fifo_init(priv);
  5609. /* Reset Rx queue group interrupt configuration */
  5610. for (i = 0; i < MVPP2_MAX_PORTS; i++) {
  5611. if (priv->hw_version == MVPP21) {
  5612. mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
  5613. rxq_number);
  5614. continue;
  5615. } else {
  5616. u32 val;
  5617. val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
  5618. mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
  5619. val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
  5620. mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
  5621. }
  5622. }
  5623. if (priv->hw_version == MVPP21)
  5624. writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
  5625. priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
  5626. /* Allow cache snoop when transmiting packets */
  5627. mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
  5628. /* Buffer Manager initialization */
  5629. err = mvpp2_bm_init(pdev, priv);
  5630. if (err < 0)
  5631. return err;
  5632. /* Parser default initialization */
  5633. err = mvpp2_prs_default_init(pdev, priv);
  5634. if (err < 0)
  5635. return err;
  5636. /* Classifier default initialization */
  5637. mvpp2_cls_init(priv);
  5638. return 0;
  5639. }
  5640. static int mvpp2_probe(struct platform_device *pdev)
  5641. {
  5642. struct device_node *dn = pdev->dev.of_node;
  5643. struct device_node *port_node;
  5644. struct mvpp2 *priv;
  5645. struct resource *res;
  5646. void __iomem *base;
  5647. int port_count, cpu;
  5648. int err;
  5649. priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
  5650. if (!priv)
  5651. return -ENOMEM;
  5652. priv->hw_version =
  5653. (unsigned long)of_device_get_match_data(&pdev->dev);
  5654. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  5655. base = devm_ioremap_resource(&pdev->dev, res);
  5656. if (IS_ERR(base))
  5657. return PTR_ERR(base);
  5658. if (priv->hw_version == MVPP21) {
  5659. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  5660. priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
  5661. if (IS_ERR(priv->lms_base))
  5662. return PTR_ERR(priv->lms_base);
  5663. } else {
  5664. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  5665. priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
  5666. if (IS_ERR(priv->iface_base))
  5667. return PTR_ERR(priv->iface_base);
  5668. }
  5669. for_each_present_cpu(cpu) {
  5670. u32 addr_space_sz;
  5671. addr_space_sz = (priv->hw_version == MVPP21 ?
  5672. MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
  5673. priv->cpu_base[cpu] = base + cpu * addr_space_sz;
  5674. }
  5675. if (priv->hw_version == MVPP21)
  5676. priv->max_port_rxqs = 8;
  5677. else
  5678. priv->max_port_rxqs = 32;
  5679. priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
  5680. if (IS_ERR(priv->pp_clk))
  5681. return PTR_ERR(priv->pp_clk);
  5682. err = clk_prepare_enable(priv->pp_clk);
  5683. if (err < 0)
  5684. return err;
  5685. priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
  5686. if (IS_ERR(priv->gop_clk)) {
  5687. err = PTR_ERR(priv->gop_clk);
  5688. goto err_pp_clk;
  5689. }
  5690. err = clk_prepare_enable(priv->gop_clk);
  5691. if (err < 0)
  5692. goto err_pp_clk;
  5693. if (priv->hw_version == MVPP22) {
  5694. priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
  5695. if (IS_ERR(priv->mg_clk)) {
  5696. err = PTR_ERR(priv->mg_clk);
  5697. goto err_gop_clk;
  5698. }
  5699. err = clk_prepare_enable(priv->mg_clk);
  5700. if (err < 0)
  5701. goto err_gop_clk;
  5702. }
  5703. /* Get system's tclk rate */
  5704. priv->tclk = clk_get_rate(priv->pp_clk);
  5705. if (priv->hw_version == MVPP22) {
  5706. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
  5707. if (err)
  5708. goto err_mg_clk;
  5709. /* Sadly, the BM pools all share the same register to
  5710. * store the high 32 bits of their address. So they
  5711. * must all have the same high 32 bits, which forces
  5712. * us to restrict coherent memory to DMA_BIT_MASK(32).
  5713. */
  5714. err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  5715. if (err)
  5716. goto err_mg_clk;
  5717. }
  5718. /* Initialize network controller */
  5719. err = mvpp2_init(pdev, priv);
  5720. if (err < 0) {
  5721. dev_err(&pdev->dev, "failed to initialize controller\n");
  5722. goto err_mg_clk;
  5723. }
  5724. port_count = of_get_available_child_count(dn);
  5725. if (port_count == 0) {
  5726. dev_err(&pdev->dev, "no ports enabled\n");
  5727. err = -ENODEV;
  5728. goto err_mg_clk;
  5729. }
  5730. priv->port_list = devm_kcalloc(&pdev->dev, port_count,
  5731. sizeof(*priv->port_list),
  5732. GFP_KERNEL);
  5733. if (!priv->port_list) {
  5734. err = -ENOMEM;
  5735. goto err_mg_clk;
  5736. }
  5737. /* Initialize ports */
  5738. for_each_available_child_of_node(dn, port_node) {
  5739. err = mvpp2_port_probe(pdev, port_node, priv);
  5740. if (err < 0)
  5741. goto err_mg_clk;
  5742. }
  5743. platform_set_drvdata(pdev, priv);
  5744. return 0;
  5745. err_mg_clk:
  5746. if (priv->hw_version == MVPP22)
  5747. clk_disable_unprepare(priv->mg_clk);
  5748. err_gop_clk:
  5749. clk_disable_unprepare(priv->gop_clk);
  5750. err_pp_clk:
  5751. clk_disable_unprepare(priv->pp_clk);
  5752. return err;
  5753. }
  5754. static int mvpp2_remove(struct platform_device *pdev)
  5755. {
  5756. struct mvpp2 *priv = platform_get_drvdata(pdev);
  5757. struct device_node *dn = pdev->dev.of_node;
  5758. struct device_node *port_node;
  5759. int i = 0;
  5760. for_each_available_child_of_node(dn, port_node) {
  5761. if (priv->port_list[i])
  5762. mvpp2_port_remove(priv->port_list[i]);
  5763. i++;
  5764. }
  5765. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  5766. struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
  5767. mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
  5768. }
  5769. for_each_present_cpu(i) {
  5770. struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
  5771. dma_free_coherent(&pdev->dev,
  5772. MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
  5773. aggr_txq->descs,
  5774. aggr_txq->descs_dma);
  5775. }
  5776. clk_disable_unprepare(priv->mg_clk);
  5777. clk_disable_unprepare(priv->pp_clk);
  5778. clk_disable_unprepare(priv->gop_clk);
  5779. return 0;
  5780. }
  5781. static const struct of_device_id mvpp2_match[] = {
  5782. {
  5783. .compatible = "marvell,armada-375-pp2",
  5784. .data = (void *)MVPP21,
  5785. },
  5786. {
  5787. .compatible = "marvell,armada-7k-pp22",
  5788. .data = (void *)MVPP22,
  5789. },
  5790. { }
  5791. };
  5792. MODULE_DEVICE_TABLE(of, mvpp2_match);
  5793. static struct platform_driver mvpp2_driver = {
  5794. .probe = mvpp2_probe,
  5795. .remove = mvpp2_remove,
  5796. .driver = {
  5797. .name = MVPP2_DRIVER_NAME,
  5798. .of_match_table = mvpp2_match,
  5799. },
  5800. };
  5801. module_platform_driver(mvpp2_driver);
  5802. MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
  5803. MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
  5804. MODULE_LICENSE("GPL v2");