igb_ptp.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265
  1. /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
  2. *
  3. * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/pci.h>
  21. #include <linux/ptp_classify.h>
  22. #include "igb.h"
  23. #define INCVALUE_MASK 0x7fffffff
  24. #define ISGN 0x80000000
  25. /* The 82580 timesync updates the system timer every 8ns by 8ns,
  26. * and this update value cannot be reprogrammed.
  27. *
  28. * Neither the 82576 nor the 82580 offer registers wide enough to hold
  29. * nanoseconds time values for very long. For the 82580, SYSTIM always
  30. * counts nanoseconds, but the upper 24 bits are not available. The
  31. * frequency is adjusted by changing the 32 bit fractional nanoseconds
  32. * register, TIMINCA.
  33. *
  34. * For the 82576, the SYSTIM register time unit is affect by the
  35. * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  36. * field are needed to provide the nominal 16 nanosecond period,
  37. * leaving 19 bits for fractional nanoseconds.
  38. *
  39. * We scale the NIC clock cycle by a large factor so that relatively
  40. * small clock corrections can be added or subtracted at each clock
  41. * tick. The drawbacks of a large factor are a) that the clock
  42. * register overflows more quickly (not such a big deal) and b) that
  43. * the increment per tick has to fit into 24 bits. As a result we
  44. * need to use a shift of 19 so we can fit a value of 16 into the
  45. * TIMINCA register.
  46. *
  47. *
  48. * SYSTIMH SYSTIML
  49. * +--------------+ +---+---+------+
  50. * 82576 | 32 | | 8 | 5 | 19 |
  51. * +--------------+ +---+---+------+
  52. * \________ 45 bits _______/ fract
  53. *
  54. * +----------+---+ +--------------+
  55. * 82580 | 24 | 8 | | 32 |
  56. * +----------+---+ +--------------+
  57. * reserved \______ 40 bits _____/
  58. *
  59. *
  60. * The 45 bit 82576 SYSTIM overflows every
  61. * 2^45 * 10^-9 / 3600 = 9.77 hours.
  62. *
  63. * The 40 bit 82580 SYSTIM overflows every
  64. * 2^40 * 10^-9 / 60 = 18.3 minutes.
  65. */
  66. #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
  67. #define IGB_PTP_TX_TIMEOUT (HZ * 15)
  68. #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
  69. #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  70. #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
  71. #define IGB_NBITS_82580 40
  72. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  73. /* SYSTIM read access for the 82576 */
  74. static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75. {
  76. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77. struct e1000_hw *hw = &igb->hw;
  78. u64 val;
  79. u32 lo, hi;
  80. lo = rd32(E1000_SYSTIML);
  81. hi = rd32(E1000_SYSTIMH);
  82. val = ((u64) hi) << 32;
  83. val |= lo;
  84. return val;
  85. }
  86. /* SYSTIM read access for the 82580 */
  87. static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  88. {
  89. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  90. struct e1000_hw *hw = &igb->hw;
  91. u32 lo, hi;
  92. u64 val;
  93. /* The timestamp latches on lowest register read. For the 82580
  94. * the lowest register is SYSTIMR instead of SYSTIML. However we only
  95. * need to provide nanosecond resolution, so we just ignore it.
  96. */
  97. rd32(E1000_SYSTIMR);
  98. lo = rd32(E1000_SYSTIML);
  99. hi = rd32(E1000_SYSTIMH);
  100. val = ((u64) hi) << 32;
  101. val |= lo;
  102. return val;
  103. }
  104. /* SYSTIM read access for I210/I211 */
  105. static void igb_ptp_read_i210(struct igb_adapter *adapter,
  106. struct timespec64 *ts)
  107. {
  108. struct e1000_hw *hw = &adapter->hw;
  109. u32 sec, nsec;
  110. /* The timestamp latches on lowest register read. For I210/I211, the
  111. * lowest register is SYSTIMR. Since we only need to provide nanosecond
  112. * resolution, we can ignore it.
  113. */
  114. rd32(E1000_SYSTIMR);
  115. nsec = rd32(E1000_SYSTIML);
  116. sec = rd32(E1000_SYSTIMH);
  117. ts->tv_sec = sec;
  118. ts->tv_nsec = nsec;
  119. }
  120. static void igb_ptp_write_i210(struct igb_adapter *adapter,
  121. const struct timespec64 *ts)
  122. {
  123. struct e1000_hw *hw = &adapter->hw;
  124. /* Writing the SYSTIMR register is not necessary as it only provides
  125. * sub-nanosecond resolution.
  126. */
  127. wr32(E1000_SYSTIML, ts->tv_nsec);
  128. wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
  129. }
  130. /**
  131. * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
  132. * @adapter: board private structure
  133. * @hwtstamps: timestamp structure to update
  134. * @systim: unsigned 64bit system time value.
  135. *
  136. * We need to convert the system time value stored in the RX/TXSTMP registers
  137. * into a hwtstamp which can be used by the upper level timestamping functions.
  138. *
  139. * The 'tmreg_lock' spinlock is used to protect the consistency of the
  140. * system time value. This is needed because reading the 64 bit time
  141. * value involves reading two (or three) 32 bit registers. The first
  142. * read latches the value. Ditto for writing.
  143. *
  144. * In addition, here have extended the system time with an overflow
  145. * counter in software.
  146. **/
  147. static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
  148. struct skb_shared_hwtstamps *hwtstamps,
  149. u64 systim)
  150. {
  151. unsigned long flags;
  152. u64 ns;
  153. switch (adapter->hw.mac.type) {
  154. case e1000_82576:
  155. case e1000_82580:
  156. case e1000_i354:
  157. case e1000_i350:
  158. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  159. ns = timecounter_cyc2time(&adapter->tc, systim);
  160. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  161. memset(hwtstamps, 0, sizeof(*hwtstamps));
  162. hwtstamps->hwtstamp = ns_to_ktime(ns);
  163. break;
  164. case e1000_i210:
  165. case e1000_i211:
  166. memset(hwtstamps, 0, sizeof(*hwtstamps));
  167. /* Upper 32 bits contain s, lower 32 bits contain ns. */
  168. hwtstamps->hwtstamp = ktime_set(systim >> 32,
  169. systim & 0xFFFFFFFF);
  170. break;
  171. default:
  172. break;
  173. }
  174. }
  175. /* PTP clock operations */
  176. static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
  177. {
  178. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  179. ptp_caps);
  180. struct e1000_hw *hw = &igb->hw;
  181. int neg_adj = 0;
  182. u64 rate;
  183. u32 incvalue;
  184. if (ppb < 0) {
  185. neg_adj = 1;
  186. ppb = -ppb;
  187. }
  188. rate = ppb;
  189. rate <<= 14;
  190. rate = div_u64(rate, 1953125);
  191. incvalue = 16 << IGB_82576_TSYNC_SHIFT;
  192. if (neg_adj)
  193. incvalue -= rate;
  194. else
  195. incvalue += rate;
  196. wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
  197. return 0;
  198. }
  199. static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
  200. {
  201. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  202. ptp_caps);
  203. struct e1000_hw *hw = &igb->hw;
  204. int neg_adj = 0;
  205. u64 rate;
  206. u32 inca;
  207. if (scaled_ppm < 0) {
  208. neg_adj = 1;
  209. scaled_ppm = -scaled_ppm;
  210. }
  211. rate = scaled_ppm;
  212. rate <<= 13;
  213. rate = div_u64(rate, 15625);
  214. inca = rate & INCVALUE_MASK;
  215. if (neg_adj)
  216. inca |= ISGN;
  217. wr32(E1000_TIMINCA, inca);
  218. return 0;
  219. }
  220. static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
  221. {
  222. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  223. ptp_caps);
  224. unsigned long flags;
  225. spin_lock_irqsave(&igb->tmreg_lock, flags);
  226. timecounter_adjtime(&igb->tc, delta);
  227. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  228. return 0;
  229. }
  230. static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
  231. {
  232. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  233. ptp_caps);
  234. unsigned long flags;
  235. struct timespec64 now, then = ns_to_timespec64(delta);
  236. spin_lock_irqsave(&igb->tmreg_lock, flags);
  237. igb_ptp_read_i210(igb, &now);
  238. now = timespec64_add(now, then);
  239. igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
  240. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  241. return 0;
  242. }
  243. static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
  244. struct timespec64 *ts)
  245. {
  246. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  247. ptp_caps);
  248. unsigned long flags;
  249. u64 ns;
  250. spin_lock_irqsave(&igb->tmreg_lock, flags);
  251. ns = timecounter_read(&igb->tc);
  252. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  253. *ts = ns_to_timespec64(ns);
  254. return 0;
  255. }
  256. static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
  257. struct timespec64 *ts)
  258. {
  259. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  260. ptp_caps);
  261. unsigned long flags;
  262. spin_lock_irqsave(&igb->tmreg_lock, flags);
  263. igb_ptp_read_i210(igb, ts);
  264. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  265. return 0;
  266. }
  267. static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
  268. const struct timespec64 *ts)
  269. {
  270. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  271. ptp_caps);
  272. unsigned long flags;
  273. u64 ns;
  274. ns = timespec64_to_ns(ts);
  275. spin_lock_irqsave(&igb->tmreg_lock, flags);
  276. timecounter_init(&igb->tc, &igb->cc, ns);
  277. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  278. return 0;
  279. }
  280. static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
  281. const struct timespec64 *ts)
  282. {
  283. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  284. ptp_caps);
  285. unsigned long flags;
  286. spin_lock_irqsave(&igb->tmreg_lock, flags);
  287. igb_ptp_write_i210(igb, ts);
  288. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  289. return 0;
  290. }
  291. static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
  292. {
  293. u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
  294. static const u32 mask[IGB_N_SDP] = {
  295. E1000_CTRL_SDP0_DIR,
  296. E1000_CTRL_SDP1_DIR,
  297. E1000_CTRL_EXT_SDP2_DIR,
  298. E1000_CTRL_EXT_SDP3_DIR,
  299. };
  300. if (input)
  301. *ptr &= ~mask[pin];
  302. else
  303. *ptr |= mask[pin];
  304. }
  305. static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
  306. {
  307. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  308. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  309. };
  310. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  311. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  312. };
  313. static const u32 ts_sdp_en[IGB_N_SDP] = {
  314. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  315. };
  316. struct e1000_hw *hw = &igb->hw;
  317. u32 ctrl, ctrl_ext, tssdp = 0;
  318. ctrl = rd32(E1000_CTRL);
  319. ctrl_ext = rd32(E1000_CTRL_EXT);
  320. tssdp = rd32(E1000_TSSDP);
  321. igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
  322. /* Make sure this pin is not enabled as an output. */
  323. tssdp &= ~ts_sdp_en[pin];
  324. if (chan == 1) {
  325. tssdp &= ~AUX1_SEL_SDP3;
  326. tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
  327. } else {
  328. tssdp &= ~AUX0_SEL_SDP3;
  329. tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
  330. }
  331. wr32(E1000_TSSDP, tssdp);
  332. wr32(E1000_CTRL, ctrl);
  333. wr32(E1000_CTRL_EXT, ctrl_ext);
  334. }
  335. static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
  336. {
  337. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  338. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  339. };
  340. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  341. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  342. };
  343. static const u32 ts_sdp_en[IGB_N_SDP] = {
  344. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  345. };
  346. static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
  347. TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
  348. TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
  349. };
  350. static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
  351. TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
  352. TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
  353. };
  354. static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
  355. TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
  356. TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
  357. };
  358. static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
  359. TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
  360. TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
  361. };
  362. static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
  363. TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
  364. TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
  365. };
  366. struct e1000_hw *hw = &igb->hw;
  367. u32 ctrl, ctrl_ext, tssdp = 0;
  368. ctrl = rd32(E1000_CTRL);
  369. ctrl_ext = rd32(E1000_CTRL_EXT);
  370. tssdp = rd32(E1000_TSSDP);
  371. igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
  372. /* Make sure this pin is not enabled as an input. */
  373. if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
  374. tssdp &= ~AUX0_TS_SDP_EN;
  375. if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
  376. tssdp &= ~AUX1_TS_SDP_EN;
  377. tssdp &= ~ts_sdp_sel_clr[pin];
  378. if (freq) {
  379. if (chan == 1)
  380. tssdp |= ts_sdp_sel_fc1[pin];
  381. else
  382. tssdp |= ts_sdp_sel_fc0[pin];
  383. } else {
  384. if (chan == 1)
  385. tssdp |= ts_sdp_sel_tt1[pin];
  386. else
  387. tssdp |= ts_sdp_sel_tt0[pin];
  388. }
  389. tssdp |= ts_sdp_en[pin];
  390. wr32(E1000_TSSDP, tssdp);
  391. wr32(E1000_CTRL, ctrl);
  392. wr32(E1000_CTRL_EXT, ctrl_ext);
  393. }
  394. static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
  395. struct ptp_clock_request *rq, int on)
  396. {
  397. struct igb_adapter *igb =
  398. container_of(ptp, struct igb_adapter, ptp_caps);
  399. struct e1000_hw *hw = &igb->hw;
  400. u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
  401. unsigned long flags;
  402. struct timespec64 ts;
  403. int use_freq = 0, pin = -1;
  404. s64 ns;
  405. switch (rq->type) {
  406. case PTP_CLK_REQ_EXTTS:
  407. if (on) {
  408. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
  409. rq->extts.index);
  410. if (pin < 0)
  411. return -EBUSY;
  412. }
  413. if (rq->extts.index == 1) {
  414. tsauxc_mask = TSAUXC_EN_TS1;
  415. tsim_mask = TSINTR_AUTT1;
  416. } else {
  417. tsauxc_mask = TSAUXC_EN_TS0;
  418. tsim_mask = TSINTR_AUTT0;
  419. }
  420. spin_lock_irqsave(&igb->tmreg_lock, flags);
  421. tsauxc = rd32(E1000_TSAUXC);
  422. tsim = rd32(E1000_TSIM);
  423. if (on) {
  424. igb_pin_extts(igb, rq->extts.index, pin);
  425. tsauxc |= tsauxc_mask;
  426. tsim |= tsim_mask;
  427. } else {
  428. tsauxc &= ~tsauxc_mask;
  429. tsim &= ~tsim_mask;
  430. }
  431. wr32(E1000_TSAUXC, tsauxc);
  432. wr32(E1000_TSIM, tsim);
  433. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  434. return 0;
  435. case PTP_CLK_REQ_PEROUT:
  436. if (on) {
  437. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
  438. rq->perout.index);
  439. if (pin < 0)
  440. return -EBUSY;
  441. }
  442. ts.tv_sec = rq->perout.period.sec;
  443. ts.tv_nsec = rq->perout.period.nsec;
  444. ns = timespec64_to_ns(&ts);
  445. ns = ns >> 1;
  446. if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
  447. (ns == 250000000LL) || (ns == 500000000LL))) {
  448. if (ns < 8LL)
  449. return -EINVAL;
  450. use_freq = 1;
  451. }
  452. ts = ns_to_timespec64(ns);
  453. if (rq->perout.index == 1) {
  454. if (use_freq) {
  455. tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
  456. tsim_mask = 0;
  457. } else {
  458. tsauxc_mask = TSAUXC_EN_TT1;
  459. tsim_mask = TSINTR_TT1;
  460. }
  461. trgttiml = E1000_TRGTTIML1;
  462. trgttimh = E1000_TRGTTIMH1;
  463. freqout = E1000_FREQOUT1;
  464. } else {
  465. if (use_freq) {
  466. tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
  467. tsim_mask = 0;
  468. } else {
  469. tsauxc_mask = TSAUXC_EN_TT0;
  470. tsim_mask = TSINTR_TT0;
  471. }
  472. trgttiml = E1000_TRGTTIML0;
  473. trgttimh = E1000_TRGTTIMH0;
  474. freqout = E1000_FREQOUT0;
  475. }
  476. spin_lock_irqsave(&igb->tmreg_lock, flags);
  477. tsauxc = rd32(E1000_TSAUXC);
  478. tsim = rd32(E1000_TSIM);
  479. if (rq->perout.index == 1) {
  480. tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
  481. tsim &= ~TSINTR_TT1;
  482. } else {
  483. tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
  484. tsim &= ~TSINTR_TT0;
  485. }
  486. if (on) {
  487. int i = rq->perout.index;
  488. igb_pin_perout(igb, i, pin, use_freq);
  489. igb->perout[i].start.tv_sec = rq->perout.start.sec;
  490. igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
  491. igb->perout[i].period.tv_sec = ts.tv_sec;
  492. igb->perout[i].period.tv_nsec = ts.tv_nsec;
  493. wr32(trgttimh, rq->perout.start.sec);
  494. wr32(trgttiml, rq->perout.start.nsec);
  495. if (use_freq)
  496. wr32(freqout, ns);
  497. tsauxc |= tsauxc_mask;
  498. tsim |= tsim_mask;
  499. }
  500. wr32(E1000_TSAUXC, tsauxc);
  501. wr32(E1000_TSIM, tsim);
  502. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  503. return 0;
  504. case PTP_CLK_REQ_PPS:
  505. spin_lock_irqsave(&igb->tmreg_lock, flags);
  506. tsim = rd32(E1000_TSIM);
  507. if (on)
  508. tsim |= TSINTR_SYS_WRAP;
  509. else
  510. tsim &= ~TSINTR_SYS_WRAP;
  511. igb->pps_sys_wrap_on = !!on;
  512. wr32(E1000_TSIM, tsim);
  513. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  514. return 0;
  515. }
  516. return -EOPNOTSUPP;
  517. }
  518. static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
  519. struct ptp_clock_request *rq, int on)
  520. {
  521. return -EOPNOTSUPP;
  522. }
  523. static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
  524. enum ptp_pin_function func, unsigned int chan)
  525. {
  526. switch (func) {
  527. case PTP_PF_NONE:
  528. case PTP_PF_EXTTS:
  529. case PTP_PF_PEROUT:
  530. break;
  531. case PTP_PF_PHYSYNC:
  532. return -1;
  533. }
  534. return 0;
  535. }
  536. /**
  537. * igb_ptp_tx_work
  538. * @work: pointer to work struct
  539. *
  540. * This work function polls the TSYNCTXCTL valid bit to determine when a
  541. * timestamp has been taken for the current stored skb.
  542. **/
  543. static void igb_ptp_tx_work(struct work_struct *work)
  544. {
  545. struct igb_adapter *adapter = container_of(work, struct igb_adapter,
  546. ptp_tx_work);
  547. struct e1000_hw *hw = &adapter->hw;
  548. u32 tsynctxctl;
  549. if (!adapter->ptp_tx_skb)
  550. return;
  551. if (time_is_before_jiffies(adapter->ptp_tx_start +
  552. IGB_PTP_TX_TIMEOUT)) {
  553. dev_kfree_skb_any(adapter->ptp_tx_skb);
  554. adapter->ptp_tx_skb = NULL;
  555. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  556. adapter->tx_hwtstamp_timeouts++;
  557. dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
  558. return;
  559. }
  560. tsynctxctl = rd32(E1000_TSYNCTXCTL);
  561. if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
  562. igb_ptp_tx_hwtstamp(adapter);
  563. else
  564. /* reschedule to check later */
  565. schedule_work(&adapter->ptp_tx_work);
  566. }
  567. static void igb_ptp_overflow_check(struct work_struct *work)
  568. {
  569. struct igb_adapter *igb =
  570. container_of(work, struct igb_adapter, ptp_overflow_work.work);
  571. struct timespec64 ts;
  572. igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
  573. pr_debug("igb overflow check at %lld.%09lu\n",
  574. (long long) ts.tv_sec, ts.tv_nsec);
  575. schedule_delayed_work(&igb->ptp_overflow_work,
  576. IGB_SYSTIM_OVERFLOW_PERIOD);
  577. }
  578. /**
  579. * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
  580. * @adapter: private network adapter structure
  581. *
  582. * This watchdog task is scheduled to detect error case where hardware has
  583. * dropped an Rx packet that was timestamped when the ring is full. The
  584. * particular error is rare but leaves the device in a state unable to timestamp
  585. * any future packets.
  586. **/
  587. void igb_ptp_rx_hang(struct igb_adapter *adapter)
  588. {
  589. struct e1000_hw *hw = &adapter->hw;
  590. u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
  591. unsigned long rx_event;
  592. /* Other hardware uses per-packet timestamps */
  593. if (hw->mac.type != e1000_82576)
  594. return;
  595. /* If we don't have a valid timestamp in the registers, just update the
  596. * timeout counter and exit
  597. */
  598. if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
  599. adapter->last_rx_ptp_check = jiffies;
  600. return;
  601. }
  602. /* Determine the most recent watchdog or rx_timestamp event */
  603. rx_event = adapter->last_rx_ptp_check;
  604. if (time_after(adapter->last_rx_timestamp, rx_event))
  605. rx_event = adapter->last_rx_timestamp;
  606. /* Only need to read the high RXSTMP register to clear the lock */
  607. if (time_is_before_jiffies(rx_event + 5 * HZ)) {
  608. rd32(E1000_RXSTMPH);
  609. adapter->last_rx_ptp_check = jiffies;
  610. adapter->rx_hwtstamp_cleared++;
  611. dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
  612. }
  613. }
  614. /**
  615. * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
  616. * @adapter: Board private structure.
  617. *
  618. * If we were asked to do hardware stamping and such a time stamp is
  619. * available, then it must have been for this skb here because we only
  620. * allow only one such packet into the queue.
  621. **/
  622. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
  623. {
  624. struct e1000_hw *hw = &adapter->hw;
  625. struct skb_shared_hwtstamps shhwtstamps;
  626. u64 regval;
  627. int adjust = 0;
  628. regval = rd32(E1000_TXSTMPL);
  629. regval |= (u64)rd32(E1000_TXSTMPH) << 32;
  630. igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
  631. /* adjust timestamp for the TX latency based on link speed */
  632. if (adapter->hw.mac.type == e1000_i210) {
  633. switch (adapter->link_speed) {
  634. case SPEED_10:
  635. adjust = IGB_I210_TX_LATENCY_10;
  636. break;
  637. case SPEED_100:
  638. adjust = IGB_I210_TX_LATENCY_100;
  639. break;
  640. case SPEED_1000:
  641. adjust = IGB_I210_TX_LATENCY_1000;
  642. break;
  643. }
  644. }
  645. shhwtstamps.hwtstamp =
  646. ktime_add_ns(shhwtstamps.hwtstamp, adjust);
  647. skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
  648. dev_kfree_skb_any(adapter->ptp_tx_skb);
  649. adapter->ptp_tx_skb = NULL;
  650. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  651. }
  652. /**
  653. * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
  654. * @q_vector: Pointer to interrupt specific structure
  655. * @va: Pointer to address containing Rx buffer
  656. * @skb: Buffer containing timestamp and packet
  657. *
  658. * This function is meant to retrieve a timestamp from the first buffer of an
  659. * incoming frame. The value is stored in little endian format starting on
  660. * byte 8.
  661. **/
  662. void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
  663. struct sk_buff *skb)
  664. {
  665. __le64 *regval = (__le64 *)va;
  666. struct igb_adapter *adapter = q_vector->adapter;
  667. int adjust = 0;
  668. /* The timestamp is recorded in little endian format.
  669. * DWORD: 0 1 2 3
  670. * Field: Reserved Reserved SYSTIML SYSTIMH
  671. */
  672. igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
  673. le64_to_cpu(regval[1]));
  674. /* adjust timestamp for the RX latency based on link speed */
  675. if (adapter->hw.mac.type == e1000_i210) {
  676. switch (adapter->link_speed) {
  677. case SPEED_10:
  678. adjust = IGB_I210_RX_LATENCY_10;
  679. break;
  680. case SPEED_100:
  681. adjust = IGB_I210_RX_LATENCY_100;
  682. break;
  683. case SPEED_1000:
  684. adjust = IGB_I210_RX_LATENCY_1000;
  685. break;
  686. }
  687. }
  688. skb_hwtstamps(skb)->hwtstamp =
  689. ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
  690. }
  691. /**
  692. * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
  693. * @q_vector: Pointer to interrupt specific structure
  694. * @skb: Buffer containing timestamp and packet
  695. *
  696. * This function is meant to retrieve a timestamp from the internal registers
  697. * of the adapter and store it in the skb.
  698. **/
  699. void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
  700. struct sk_buff *skb)
  701. {
  702. struct igb_adapter *adapter = q_vector->adapter;
  703. struct e1000_hw *hw = &adapter->hw;
  704. u64 regval;
  705. int adjust = 0;
  706. /* If this bit is set, then the RX registers contain the time stamp. No
  707. * other packet will be time stamped until we read these registers, so
  708. * read the registers to make them available again. Because only one
  709. * packet can be time stamped at a time, we know that the register
  710. * values must belong to this one here and therefore we don't need to
  711. * compare any of the additional attributes stored for it.
  712. *
  713. * If nothing went wrong, then it should have a shared tx_flags that we
  714. * can turn into a skb_shared_hwtstamps.
  715. */
  716. if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
  717. return;
  718. regval = rd32(E1000_RXSTMPL);
  719. regval |= (u64)rd32(E1000_RXSTMPH) << 32;
  720. igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
  721. /* adjust timestamp for the RX latency based on link speed */
  722. if (adapter->hw.mac.type == e1000_i210) {
  723. switch (adapter->link_speed) {
  724. case SPEED_10:
  725. adjust = IGB_I210_RX_LATENCY_10;
  726. break;
  727. case SPEED_100:
  728. adjust = IGB_I210_RX_LATENCY_100;
  729. break;
  730. case SPEED_1000:
  731. adjust = IGB_I210_RX_LATENCY_1000;
  732. break;
  733. }
  734. }
  735. skb_hwtstamps(skb)->hwtstamp =
  736. ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
  737. /* Update the last_rx_timestamp timer in order to enable watchdog check
  738. * for error case of latched timestamp on a dropped packet.
  739. */
  740. adapter->last_rx_timestamp = jiffies;
  741. }
  742. /**
  743. * igb_ptp_get_ts_config - get hardware time stamping config
  744. * @netdev:
  745. * @ifreq:
  746. *
  747. * Get the hwtstamp_config settings to return to the user. Rather than attempt
  748. * to deconstruct the settings from the registers, just return a shadow copy
  749. * of the last known settings.
  750. **/
  751. int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
  752. {
  753. struct igb_adapter *adapter = netdev_priv(netdev);
  754. struct hwtstamp_config *config = &adapter->tstamp_config;
  755. return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
  756. -EFAULT : 0;
  757. }
  758. /**
  759. * igb_ptp_set_timestamp_mode - setup hardware for timestamping
  760. * @adapter: networking device structure
  761. * @config: hwtstamp configuration
  762. *
  763. * Outgoing time stamping can be enabled and disabled. Play nice and
  764. * disable it when requested, although it shouldn't case any overhead
  765. * when no packet needs it. At most one packet in the queue may be
  766. * marked for time stamping, otherwise it would be impossible to tell
  767. * for sure to which packet the hardware time stamp belongs.
  768. *
  769. * Incoming time stamping has to be configured via the hardware
  770. * filters. Not all combinations are supported, in particular event
  771. * type has to be specified. Matching the kind of event packet is
  772. * not supported, with the exception of "all V2 events regardless of
  773. * level 2 or 4".
  774. */
  775. static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
  776. struct hwtstamp_config *config)
  777. {
  778. struct e1000_hw *hw = &adapter->hw;
  779. u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
  780. u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  781. u32 tsync_rx_cfg = 0;
  782. bool is_l4 = false;
  783. bool is_l2 = false;
  784. u32 regval;
  785. /* reserved for future extensions */
  786. if (config->flags)
  787. return -EINVAL;
  788. switch (config->tx_type) {
  789. case HWTSTAMP_TX_OFF:
  790. tsync_tx_ctl = 0;
  791. case HWTSTAMP_TX_ON:
  792. break;
  793. default:
  794. return -ERANGE;
  795. }
  796. switch (config->rx_filter) {
  797. case HWTSTAMP_FILTER_NONE:
  798. tsync_rx_ctl = 0;
  799. break;
  800. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  801. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  802. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
  803. is_l4 = true;
  804. break;
  805. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  806. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  807. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
  808. is_l4 = true;
  809. break;
  810. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  811. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  812. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  813. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  814. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  815. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  816. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  817. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  818. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  819. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
  820. config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
  821. is_l2 = true;
  822. is_l4 = true;
  823. break;
  824. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  825. case HWTSTAMP_FILTER_ALL:
  826. /* 82576 cannot timestamp all packets, which it needs to do to
  827. * support both V1 Sync and Delay_Req messages
  828. */
  829. if (hw->mac.type != e1000_82576) {
  830. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  831. config->rx_filter = HWTSTAMP_FILTER_ALL;
  832. break;
  833. }
  834. /* fall through */
  835. default:
  836. config->rx_filter = HWTSTAMP_FILTER_NONE;
  837. return -ERANGE;
  838. }
  839. if (hw->mac.type == e1000_82575) {
  840. if (tsync_rx_ctl | tsync_tx_ctl)
  841. return -EINVAL;
  842. return 0;
  843. }
  844. /* Per-packet timestamping only works if all packets are
  845. * timestamped, so enable timestamping in all packets as
  846. * long as one Rx filter was configured.
  847. */
  848. if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
  849. tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  850. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  851. config->rx_filter = HWTSTAMP_FILTER_ALL;
  852. is_l2 = true;
  853. is_l4 = true;
  854. if ((hw->mac.type == e1000_i210) ||
  855. (hw->mac.type == e1000_i211)) {
  856. regval = rd32(E1000_RXPBS);
  857. regval |= E1000_RXPBS_CFG_TS_EN;
  858. wr32(E1000_RXPBS, regval);
  859. }
  860. }
  861. /* enable/disable TX */
  862. regval = rd32(E1000_TSYNCTXCTL);
  863. regval &= ~E1000_TSYNCTXCTL_ENABLED;
  864. regval |= tsync_tx_ctl;
  865. wr32(E1000_TSYNCTXCTL, regval);
  866. /* enable/disable RX */
  867. regval = rd32(E1000_TSYNCRXCTL);
  868. regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
  869. regval |= tsync_rx_ctl;
  870. wr32(E1000_TSYNCRXCTL, regval);
  871. /* define which PTP packets are time stamped */
  872. wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
  873. /* define ethertype filter for timestamped packets */
  874. if (is_l2)
  875. wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
  876. (E1000_ETQF_FILTER_ENABLE | /* enable filter */
  877. E1000_ETQF_1588 | /* enable timestamping */
  878. ETH_P_1588)); /* 1588 eth protocol type */
  879. else
  880. wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
  881. /* L4 Queue Filter[3]: filter by destination port and protocol */
  882. if (is_l4) {
  883. u32 ftqf = (IPPROTO_UDP /* UDP */
  884. | E1000_FTQF_VF_BP /* VF not compared */
  885. | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
  886. | E1000_FTQF_MASK); /* mask all inputs */
  887. ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
  888. wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
  889. wr32(E1000_IMIREXT(3),
  890. (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
  891. if (hw->mac.type == e1000_82576) {
  892. /* enable source port check */
  893. wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
  894. ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
  895. }
  896. wr32(E1000_FTQF(3), ftqf);
  897. } else {
  898. wr32(E1000_FTQF(3), E1000_FTQF_MASK);
  899. }
  900. wrfl();
  901. /* clear TX/RX time stamp registers, just to be sure */
  902. regval = rd32(E1000_TXSTMPL);
  903. regval = rd32(E1000_TXSTMPH);
  904. regval = rd32(E1000_RXSTMPL);
  905. regval = rd32(E1000_RXSTMPH);
  906. return 0;
  907. }
  908. /**
  909. * igb_ptp_set_ts_config - set hardware time stamping config
  910. * @netdev:
  911. * @ifreq:
  912. *
  913. **/
  914. int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
  915. {
  916. struct igb_adapter *adapter = netdev_priv(netdev);
  917. struct hwtstamp_config config;
  918. int err;
  919. if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
  920. return -EFAULT;
  921. err = igb_ptp_set_timestamp_mode(adapter, &config);
  922. if (err)
  923. return err;
  924. /* save these settings for future reference */
  925. memcpy(&adapter->tstamp_config, &config,
  926. sizeof(adapter->tstamp_config));
  927. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
  928. -EFAULT : 0;
  929. }
  930. /**
  931. * igb_ptp_init - Initialize PTP functionality
  932. * @adapter: Board private structure
  933. *
  934. * This function is called at device probe to initialize the PTP
  935. * functionality.
  936. */
  937. void igb_ptp_init(struct igb_adapter *adapter)
  938. {
  939. struct e1000_hw *hw = &adapter->hw;
  940. struct net_device *netdev = adapter->netdev;
  941. int i;
  942. switch (hw->mac.type) {
  943. case e1000_82576:
  944. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  945. adapter->ptp_caps.owner = THIS_MODULE;
  946. adapter->ptp_caps.max_adj = 999999881;
  947. adapter->ptp_caps.n_ext_ts = 0;
  948. adapter->ptp_caps.pps = 0;
  949. adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
  950. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  951. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  952. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  953. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  954. adapter->cc.read = igb_ptp_read_82576;
  955. adapter->cc.mask = CYCLECOUNTER_MASK(64);
  956. adapter->cc.mult = 1;
  957. adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
  958. adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
  959. break;
  960. case e1000_82580:
  961. case e1000_i354:
  962. case e1000_i350:
  963. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  964. adapter->ptp_caps.owner = THIS_MODULE;
  965. adapter->ptp_caps.max_adj = 62499999;
  966. adapter->ptp_caps.n_ext_ts = 0;
  967. adapter->ptp_caps.pps = 0;
  968. adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
  969. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  970. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  971. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  972. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  973. adapter->cc.read = igb_ptp_read_82580;
  974. adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
  975. adapter->cc.mult = 1;
  976. adapter->cc.shift = 0;
  977. adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
  978. break;
  979. case e1000_i210:
  980. case e1000_i211:
  981. for (i = 0; i < IGB_N_SDP; i++) {
  982. struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
  983. snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
  984. ppd->index = i;
  985. ppd->func = PTP_PF_NONE;
  986. }
  987. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  988. adapter->ptp_caps.owner = THIS_MODULE;
  989. adapter->ptp_caps.max_adj = 62499999;
  990. adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
  991. adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
  992. adapter->ptp_caps.n_pins = IGB_N_SDP;
  993. adapter->ptp_caps.pps = 1;
  994. adapter->ptp_caps.pin_config = adapter->sdp_config;
  995. adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
  996. adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
  997. adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
  998. adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
  999. adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
  1000. adapter->ptp_caps.verify = igb_ptp_verify_pin;
  1001. break;
  1002. default:
  1003. adapter->ptp_clock = NULL;
  1004. return;
  1005. }
  1006. spin_lock_init(&adapter->tmreg_lock);
  1007. INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
  1008. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1009. INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
  1010. igb_ptp_overflow_check);
  1011. adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
  1012. adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
  1013. igb_ptp_reset(adapter);
  1014. adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
  1015. &adapter->pdev->dev);
  1016. if (IS_ERR(adapter->ptp_clock)) {
  1017. adapter->ptp_clock = NULL;
  1018. dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
  1019. } else if (adapter->ptp_clock) {
  1020. dev_info(&adapter->pdev->dev, "added PHC on %s\n",
  1021. adapter->netdev->name);
  1022. adapter->ptp_flags |= IGB_PTP_ENABLED;
  1023. }
  1024. }
  1025. /**
  1026. * igb_ptp_suspend - Disable PTP work items and prepare for suspend
  1027. * @adapter: Board private structure
  1028. *
  1029. * This function stops the overflow check work and PTP Tx timestamp work, and
  1030. * will prepare the device for OS suspend.
  1031. */
  1032. void igb_ptp_suspend(struct igb_adapter *adapter)
  1033. {
  1034. if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
  1035. return;
  1036. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1037. cancel_delayed_work_sync(&adapter->ptp_overflow_work);
  1038. cancel_work_sync(&adapter->ptp_tx_work);
  1039. if (adapter->ptp_tx_skb) {
  1040. dev_kfree_skb_any(adapter->ptp_tx_skb);
  1041. adapter->ptp_tx_skb = NULL;
  1042. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  1043. }
  1044. }
  1045. /**
  1046. * igb_ptp_stop - Disable PTP device and stop the overflow check.
  1047. * @adapter: Board private structure.
  1048. *
  1049. * This function stops the PTP support and cancels the delayed work.
  1050. **/
  1051. void igb_ptp_stop(struct igb_adapter *adapter)
  1052. {
  1053. igb_ptp_suspend(adapter);
  1054. if (adapter->ptp_clock) {
  1055. ptp_clock_unregister(adapter->ptp_clock);
  1056. dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
  1057. adapter->netdev->name);
  1058. adapter->ptp_flags &= ~IGB_PTP_ENABLED;
  1059. }
  1060. }
  1061. /**
  1062. * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
  1063. * @adapter: Board private structure.
  1064. *
  1065. * This function handles the reset work required to re-enable the PTP device.
  1066. **/
  1067. void igb_ptp_reset(struct igb_adapter *adapter)
  1068. {
  1069. struct e1000_hw *hw = &adapter->hw;
  1070. unsigned long flags;
  1071. /* reset the tstamp_config */
  1072. igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
  1073. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  1074. switch (adapter->hw.mac.type) {
  1075. case e1000_82576:
  1076. /* Dial the nominal frequency. */
  1077. wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
  1078. break;
  1079. case e1000_82580:
  1080. case e1000_i354:
  1081. case e1000_i350:
  1082. case e1000_i210:
  1083. case e1000_i211:
  1084. wr32(E1000_TSAUXC, 0x0);
  1085. wr32(E1000_TSSDP, 0x0);
  1086. wr32(E1000_TSIM,
  1087. TSYNC_INTERRUPTS |
  1088. (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
  1089. wr32(E1000_IMS, E1000_IMS_TS);
  1090. break;
  1091. default:
  1092. /* No work to do. */
  1093. goto out;
  1094. }
  1095. /* Re-initialize the timer. */
  1096. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
  1097. struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
  1098. igb_ptp_write_i210(adapter, &ts);
  1099. } else {
  1100. timecounter_init(&adapter->tc, &adapter->cc,
  1101. ktime_to_ns(ktime_get_real()));
  1102. }
  1103. out:
  1104. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  1105. wrfl();
  1106. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1107. schedule_delayed_work(&adapter->ptp_overflow_work,
  1108. IGB_SYSTIM_OVERFLOW_PERIOD);
  1109. }