igb_ethtool.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. /* ethtool support for igb */
  24. #include <linux/vmalloc.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/pci.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/sched.h>
  32. #include <linux/slab.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mdio.h>
  36. #include "igb.h"
  37. struct igb_stats {
  38. char stat_string[ETH_GSTRING_LEN];
  39. int sizeof_stat;
  40. int stat_offset;
  41. };
  42. #define IGB_STAT(_name, _stat) { \
  43. .stat_string = _name, \
  44. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  45. .stat_offset = offsetof(struct igb_adapter, _stat) \
  46. }
  47. static const struct igb_stats igb_gstrings_stats[] = {
  48. IGB_STAT("rx_packets", stats.gprc),
  49. IGB_STAT("tx_packets", stats.gptc),
  50. IGB_STAT("rx_bytes", stats.gorc),
  51. IGB_STAT("tx_bytes", stats.gotc),
  52. IGB_STAT("rx_broadcast", stats.bprc),
  53. IGB_STAT("tx_broadcast", stats.bptc),
  54. IGB_STAT("rx_multicast", stats.mprc),
  55. IGB_STAT("tx_multicast", stats.mptc),
  56. IGB_STAT("multicast", stats.mprc),
  57. IGB_STAT("collisions", stats.colc),
  58. IGB_STAT("rx_crc_errors", stats.crcerrs),
  59. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  60. IGB_STAT("rx_missed_errors", stats.mpc),
  61. IGB_STAT("tx_aborted_errors", stats.ecol),
  62. IGB_STAT("tx_carrier_errors", stats.tncrs),
  63. IGB_STAT("tx_window_errors", stats.latecol),
  64. IGB_STAT("tx_abort_late_coll", stats.latecol),
  65. IGB_STAT("tx_deferred_ok", stats.dc),
  66. IGB_STAT("tx_single_coll_ok", stats.scc),
  67. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  68. IGB_STAT("tx_timeout_count", tx_timeout_count),
  69. IGB_STAT("rx_long_length_errors", stats.roc),
  70. IGB_STAT("rx_short_length_errors", stats.ruc),
  71. IGB_STAT("rx_align_errors", stats.algnerrc),
  72. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  73. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  74. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  75. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  76. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  77. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  78. IGB_STAT("rx_long_byte_count", stats.gorc),
  79. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  80. IGB_STAT("tx_smbus", stats.mgptc),
  81. IGB_STAT("rx_smbus", stats.mgprc),
  82. IGB_STAT("dropped_smbus", stats.mgpdc),
  83. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  84. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  85. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  86. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  87. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  88. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  89. };
  90. #define IGB_NETDEV_STAT(_net_stat) { \
  91. .stat_string = __stringify(_net_stat), \
  92. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  93. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  94. }
  95. static const struct igb_stats igb_gstrings_net_stats[] = {
  96. IGB_NETDEV_STAT(rx_errors),
  97. IGB_NETDEV_STAT(tx_errors),
  98. IGB_NETDEV_STAT(tx_dropped),
  99. IGB_NETDEV_STAT(rx_length_errors),
  100. IGB_NETDEV_STAT(rx_over_errors),
  101. IGB_NETDEV_STAT(rx_frame_errors),
  102. IGB_NETDEV_STAT(rx_fifo_errors),
  103. IGB_NETDEV_STAT(tx_fifo_errors),
  104. IGB_NETDEV_STAT(tx_heartbeat_errors)
  105. };
  106. #define IGB_GLOBAL_STATS_LEN \
  107. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  108. #define IGB_NETDEV_STATS_LEN \
  109. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  110. #define IGB_RX_QUEUE_STATS_LEN \
  111. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  112. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  113. #define IGB_QUEUE_STATS_LEN \
  114. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  115. IGB_RX_QUEUE_STATS_LEN) + \
  116. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  117. IGB_TX_QUEUE_STATS_LEN))
  118. #define IGB_STATS_LEN \
  119. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  120. enum igb_diagnostics_results {
  121. TEST_REG = 0,
  122. TEST_EEP,
  123. TEST_IRQ,
  124. TEST_LOOP,
  125. TEST_LINK
  126. };
  127. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  128. [TEST_REG] = "Register test (offline)",
  129. [TEST_EEP] = "Eeprom test (offline)",
  130. [TEST_IRQ] = "Interrupt test (offline)",
  131. [TEST_LOOP] = "Loopback test (offline)",
  132. [TEST_LINK] = "Link test (on/offline)"
  133. };
  134. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  135. static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
  136. #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
  137. "legacy-rx",
  138. };
  139. #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
  140. static int igb_get_link_ksettings(struct net_device *netdev,
  141. struct ethtool_link_ksettings *cmd)
  142. {
  143. struct igb_adapter *adapter = netdev_priv(netdev);
  144. struct e1000_hw *hw = &adapter->hw;
  145. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  146. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  147. u32 status;
  148. u32 speed;
  149. u32 supported, advertising;
  150. status = rd32(E1000_STATUS);
  151. if (hw->phy.media_type == e1000_media_type_copper) {
  152. supported = (SUPPORTED_10baseT_Half |
  153. SUPPORTED_10baseT_Full |
  154. SUPPORTED_100baseT_Half |
  155. SUPPORTED_100baseT_Full |
  156. SUPPORTED_1000baseT_Full|
  157. SUPPORTED_Autoneg |
  158. SUPPORTED_TP |
  159. SUPPORTED_Pause);
  160. advertising = ADVERTISED_TP;
  161. if (hw->mac.autoneg == 1) {
  162. advertising |= ADVERTISED_Autoneg;
  163. /* the e1000 autoneg seems to match ethtool nicely */
  164. advertising |= hw->phy.autoneg_advertised;
  165. }
  166. cmd->base.port = PORT_TP;
  167. cmd->base.phy_address = hw->phy.addr;
  168. } else {
  169. supported = (SUPPORTED_FIBRE |
  170. SUPPORTED_1000baseKX_Full |
  171. SUPPORTED_Autoneg |
  172. SUPPORTED_Pause);
  173. advertising = (ADVERTISED_FIBRE |
  174. ADVERTISED_1000baseKX_Full);
  175. if (hw->mac.type == e1000_i354) {
  176. if ((hw->device_id ==
  177. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  178. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  179. supported |= SUPPORTED_2500baseX_Full;
  180. supported &= ~SUPPORTED_1000baseKX_Full;
  181. advertising |= ADVERTISED_2500baseX_Full;
  182. advertising &= ~ADVERTISED_1000baseKX_Full;
  183. }
  184. }
  185. if (eth_flags->e100_base_fx) {
  186. supported |= SUPPORTED_100baseT_Full;
  187. advertising |= ADVERTISED_100baseT_Full;
  188. }
  189. if (hw->mac.autoneg == 1)
  190. advertising |= ADVERTISED_Autoneg;
  191. cmd->base.port = PORT_FIBRE;
  192. }
  193. if (hw->mac.autoneg != 1)
  194. advertising &= ~(ADVERTISED_Pause |
  195. ADVERTISED_Asym_Pause);
  196. switch (hw->fc.requested_mode) {
  197. case e1000_fc_full:
  198. advertising |= ADVERTISED_Pause;
  199. break;
  200. case e1000_fc_rx_pause:
  201. advertising |= (ADVERTISED_Pause |
  202. ADVERTISED_Asym_Pause);
  203. break;
  204. case e1000_fc_tx_pause:
  205. advertising |= ADVERTISED_Asym_Pause;
  206. break;
  207. default:
  208. advertising &= ~(ADVERTISED_Pause |
  209. ADVERTISED_Asym_Pause);
  210. }
  211. if (status & E1000_STATUS_LU) {
  212. if ((status & E1000_STATUS_2P5_SKU) &&
  213. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  214. speed = SPEED_2500;
  215. } else if (status & E1000_STATUS_SPEED_1000) {
  216. speed = SPEED_1000;
  217. } else if (status & E1000_STATUS_SPEED_100) {
  218. speed = SPEED_100;
  219. } else {
  220. speed = SPEED_10;
  221. }
  222. if ((status & E1000_STATUS_FD) ||
  223. hw->phy.media_type != e1000_media_type_copper)
  224. cmd->base.duplex = DUPLEX_FULL;
  225. else
  226. cmd->base.duplex = DUPLEX_HALF;
  227. } else {
  228. speed = SPEED_UNKNOWN;
  229. cmd->base.duplex = DUPLEX_UNKNOWN;
  230. }
  231. cmd->base.speed = speed;
  232. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  233. hw->mac.autoneg)
  234. cmd->base.autoneg = AUTONEG_ENABLE;
  235. else
  236. cmd->base.autoneg = AUTONEG_DISABLE;
  237. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  238. if (hw->phy.media_type == e1000_media_type_copper)
  239. cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  240. ETH_TP_MDI;
  241. else
  242. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  243. if (hw->phy.mdix == AUTO_ALL_MODES)
  244. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  245. else
  246. cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
  247. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  248. supported);
  249. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  250. advertising);
  251. return 0;
  252. }
  253. static int igb_set_link_ksettings(struct net_device *netdev,
  254. const struct ethtool_link_ksettings *cmd)
  255. {
  256. struct igb_adapter *adapter = netdev_priv(netdev);
  257. struct e1000_hw *hw = &adapter->hw;
  258. u32 advertising;
  259. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  260. * cannot be changed
  261. */
  262. if (igb_check_reset_block(hw)) {
  263. dev_err(&adapter->pdev->dev,
  264. "Cannot change link characteristics when SoL/IDER is active.\n");
  265. return -EINVAL;
  266. }
  267. /* MDI setting is only allowed when autoneg enabled because
  268. * some hardware doesn't allow MDI setting when speed or
  269. * duplex is forced.
  270. */
  271. if (cmd->base.eth_tp_mdix_ctrl) {
  272. if (hw->phy.media_type != e1000_media_type_copper)
  273. return -EOPNOTSUPP;
  274. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  275. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  276. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  277. return -EINVAL;
  278. }
  279. }
  280. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  281. usleep_range(1000, 2000);
  282. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  283. cmd->link_modes.advertising);
  284. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  285. hw->mac.autoneg = 1;
  286. if (hw->phy.media_type == e1000_media_type_fiber) {
  287. hw->phy.autoneg_advertised = advertising |
  288. ADVERTISED_FIBRE |
  289. ADVERTISED_Autoneg;
  290. switch (adapter->link_speed) {
  291. case SPEED_2500:
  292. hw->phy.autoneg_advertised =
  293. ADVERTISED_2500baseX_Full;
  294. break;
  295. case SPEED_1000:
  296. hw->phy.autoneg_advertised =
  297. ADVERTISED_1000baseT_Full;
  298. break;
  299. case SPEED_100:
  300. hw->phy.autoneg_advertised =
  301. ADVERTISED_100baseT_Full;
  302. break;
  303. default:
  304. break;
  305. }
  306. } else {
  307. hw->phy.autoneg_advertised = advertising |
  308. ADVERTISED_TP |
  309. ADVERTISED_Autoneg;
  310. }
  311. advertising = hw->phy.autoneg_advertised;
  312. if (adapter->fc_autoneg)
  313. hw->fc.requested_mode = e1000_fc_default;
  314. } else {
  315. u32 speed = cmd->base.speed;
  316. /* calling this overrides forced MDI setting */
  317. if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  318. clear_bit(__IGB_RESETTING, &adapter->state);
  319. return -EINVAL;
  320. }
  321. }
  322. /* MDI-X => 2; MDI => 1; Auto => 3 */
  323. if (cmd->base.eth_tp_mdix_ctrl) {
  324. /* fix up the value for auto (3 => 0) as zero is mapped
  325. * internally to auto
  326. */
  327. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  328. hw->phy.mdix = AUTO_ALL_MODES;
  329. else
  330. hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
  331. }
  332. /* reset the link */
  333. if (netif_running(adapter->netdev)) {
  334. igb_down(adapter);
  335. igb_up(adapter);
  336. } else
  337. igb_reset(adapter);
  338. clear_bit(__IGB_RESETTING, &adapter->state);
  339. return 0;
  340. }
  341. static u32 igb_get_link(struct net_device *netdev)
  342. {
  343. struct igb_adapter *adapter = netdev_priv(netdev);
  344. struct e1000_mac_info *mac = &adapter->hw.mac;
  345. /* If the link is not reported up to netdev, interrupts are disabled,
  346. * and so the physical link state may have changed since we last
  347. * looked. Set get_link_status to make sure that the true link
  348. * state is interrogated, rather than pulling a cached and possibly
  349. * stale link state from the driver.
  350. */
  351. if (!netif_carrier_ok(netdev))
  352. mac->get_link_status = 1;
  353. return igb_has_link(adapter);
  354. }
  355. static void igb_get_pauseparam(struct net_device *netdev,
  356. struct ethtool_pauseparam *pause)
  357. {
  358. struct igb_adapter *adapter = netdev_priv(netdev);
  359. struct e1000_hw *hw = &adapter->hw;
  360. pause->autoneg =
  361. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  362. if (hw->fc.current_mode == e1000_fc_rx_pause)
  363. pause->rx_pause = 1;
  364. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  365. pause->tx_pause = 1;
  366. else if (hw->fc.current_mode == e1000_fc_full) {
  367. pause->rx_pause = 1;
  368. pause->tx_pause = 1;
  369. }
  370. }
  371. static int igb_set_pauseparam(struct net_device *netdev,
  372. struct ethtool_pauseparam *pause)
  373. {
  374. struct igb_adapter *adapter = netdev_priv(netdev);
  375. struct e1000_hw *hw = &adapter->hw;
  376. int retval = 0;
  377. /* 100basefx does not support setting link flow control */
  378. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  379. return -EINVAL;
  380. adapter->fc_autoneg = pause->autoneg;
  381. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  382. usleep_range(1000, 2000);
  383. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  384. hw->fc.requested_mode = e1000_fc_default;
  385. if (netif_running(adapter->netdev)) {
  386. igb_down(adapter);
  387. igb_up(adapter);
  388. } else {
  389. igb_reset(adapter);
  390. }
  391. } else {
  392. if (pause->rx_pause && pause->tx_pause)
  393. hw->fc.requested_mode = e1000_fc_full;
  394. else if (pause->rx_pause && !pause->tx_pause)
  395. hw->fc.requested_mode = e1000_fc_rx_pause;
  396. else if (!pause->rx_pause && pause->tx_pause)
  397. hw->fc.requested_mode = e1000_fc_tx_pause;
  398. else if (!pause->rx_pause && !pause->tx_pause)
  399. hw->fc.requested_mode = e1000_fc_none;
  400. hw->fc.current_mode = hw->fc.requested_mode;
  401. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  402. igb_force_mac_fc(hw) : igb_setup_link(hw));
  403. }
  404. clear_bit(__IGB_RESETTING, &adapter->state);
  405. return retval;
  406. }
  407. static u32 igb_get_msglevel(struct net_device *netdev)
  408. {
  409. struct igb_adapter *adapter = netdev_priv(netdev);
  410. return adapter->msg_enable;
  411. }
  412. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  413. {
  414. struct igb_adapter *adapter = netdev_priv(netdev);
  415. adapter->msg_enable = data;
  416. }
  417. static int igb_get_regs_len(struct net_device *netdev)
  418. {
  419. #define IGB_REGS_LEN 739
  420. return IGB_REGS_LEN * sizeof(u32);
  421. }
  422. static void igb_get_regs(struct net_device *netdev,
  423. struct ethtool_regs *regs, void *p)
  424. {
  425. struct igb_adapter *adapter = netdev_priv(netdev);
  426. struct e1000_hw *hw = &adapter->hw;
  427. u32 *regs_buff = p;
  428. u8 i;
  429. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  430. regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
  431. /* General Registers */
  432. regs_buff[0] = rd32(E1000_CTRL);
  433. regs_buff[1] = rd32(E1000_STATUS);
  434. regs_buff[2] = rd32(E1000_CTRL_EXT);
  435. regs_buff[3] = rd32(E1000_MDIC);
  436. regs_buff[4] = rd32(E1000_SCTL);
  437. regs_buff[5] = rd32(E1000_CONNSW);
  438. regs_buff[6] = rd32(E1000_VET);
  439. regs_buff[7] = rd32(E1000_LEDCTL);
  440. regs_buff[8] = rd32(E1000_PBA);
  441. regs_buff[9] = rd32(E1000_PBS);
  442. regs_buff[10] = rd32(E1000_FRTIMER);
  443. regs_buff[11] = rd32(E1000_TCPTIMER);
  444. /* NVM Register */
  445. regs_buff[12] = rd32(E1000_EECD);
  446. /* Interrupt */
  447. /* Reading EICS for EICR because they read the
  448. * same but EICS does not clear on read
  449. */
  450. regs_buff[13] = rd32(E1000_EICS);
  451. regs_buff[14] = rd32(E1000_EICS);
  452. regs_buff[15] = rd32(E1000_EIMS);
  453. regs_buff[16] = rd32(E1000_EIMC);
  454. regs_buff[17] = rd32(E1000_EIAC);
  455. regs_buff[18] = rd32(E1000_EIAM);
  456. /* Reading ICS for ICR because they read the
  457. * same but ICS does not clear on read
  458. */
  459. regs_buff[19] = rd32(E1000_ICS);
  460. regs_buff[20] = rd32(E1000_ICS);
  461. regs_buff[21] = rd32(E1000_IMS);
  462. regs_buff[22] = rd32(E1000_IMC);
  463. regs_buff[23] = rd32(E1000_IAC);
  464. regs_buff[24] = rd32(E1000_IAM);
  465. regs_buff[25] = rd32(E1000_IMIRVP);
  466. /* Flow Control */
  467. regs_buff[26] = rd32(E1000_FCAL);
  468. regs_buff[27] = rd32(E1000_FCAH);
  469. regs_buff[28] = rd32(E1000_FCTTV);
  470. regs_buff[29] = rd32(E1000_FCRTL);
  471. regs_buff[30] = rd32(E1000_FCRTH);
  472. regs_buff[31] = rd32(E1000_FCRTV);
  473. /* Receive */
  474. regs_buff[32] = rd32(E1000_RCTL);
  475. regs_buff[33] = rd32(E1000_RXCSUM);
  476. regs_buff[34] = rd32(E1000_RLPML);
  477. regs_buff[35] = rd32(E1000_RFCTL);
  478. regs_buff[36] = rd32(E1000_MRQC);
  479. regs_buff[37] = rd32(E1000_VT_CTL);
  480. /* Transmit */
  481. regs_buff[38] = rd32(E1000_TCTL);
  482. regs_buff[39] = rd32(E1000_TCTL_EXT);
  483. regs_buff[40] = rd32(E1000_TIPG);
  484. regs_buff[41] = rd32(E1000_DTXCTL);
  485. /* Wake Up */
  486. regs_buff[42] = rd32(E1000_WUC);
  487. regs_buff[43] = rd32(E1000_WUFC);
  488. regs_buff[44] = rd32(E1000_WUS);
  489. regs_buff[45] = rd32(E1000_IPAV);
  490. regs_buff[46] = rd32(E1000_WUPL);
  491. /* MAC */
  492. regs_buff[47] = rd32(E1000_PCS_CFG0);
  493. regs_buff[48] = rd32(E1000_PCS_LCTL);
  494. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  495. regs_buff[50] = rd32(E1000_PCS_ANADV);
  496. regs_buff[51] = rd32(E1000_PCS_LPAB);
  497. regs_buff[52] = rd32(E1000_PCS_NPTX);
  498. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  499. /* Statistics */
  500. regs_buff[54] = adapter->stats.crcerrs;
  501. regs_buff[55] = adapter->stats.algnerrc;
  502. regs_buff[56] = adapter->stats.symerrs;
  503. regs_buff[57] = adapter->stats.rxerrc;
  504. regs_buff[58] = adapter->stats.mpc;
  505. regs_buff[59] = adapter->stats.scc;
  506. regs_buff[60] = adapter->stats.ecol;
  507. regs_buff[61] = adapter->stats.mcc;
  508. regs_buff[62] = adapter->stats.latecol;
  509. regs_buff[63] = adapter->stats.colc;
  510. regs_buff[64] = adapter->stats.dc;
  511. regs_buff[65] = adapter->stats.tncrs;
  512. regs_buff[66] = adapter->stats.sec;
  513. regs_buff[67] = adapter->stats.htdpmc;
  514. regs_buff[68] = adapter->stats.rlec;
  515. regs_buff[69] = adapter->stats.xonrxc;
  516. regs_buff[70] = adapter->stats.xontxc;
  517. regs_buff[71] = adapter->stats.xoffrxc;
  518. regs_buff[72] = adapter->stats.xofftxc;
  519. regs_buff[73] = adapter->stats.fcruc;
  520. regs_buff[74] = adapter->stats.prc64;
  521. regs_buff[75] = adapter->stats.prc127;
  522. regs_buff[76] = adapter->stats.prc255;
  523. regs_buff[77] = adapter->stats.prc511;
  524. regs_buff[78] = adapter->stats.prc1023;
  525. regs_buff[79] = adapter->stats.prc1522;
  526. regs_buff[80] = adapter->stats.gprc;
  527. regs_buff[81] = adapter->stats.bprc;
  528. regs_buff[82] = adapter->stats.mprc;
  529. regs_buff[83] = adapter->stats.gptc;
  530. regs_buff[84] = adapter->stats.gorc;
  531. regs_buff[86] = adapter->stats.gotc;
  532. regs_buff[88] = adapter->stats.rnbc;
  533. regs_buff[89] = adapter->stats.ruc;
  534. regs_buff[90] = adapter->stats.rfc;
  535. regs_buff[91] = adapter->stats.roc;
  536. regs_buff[92] = adapter->stats.rjc;
  537. regs_buff[93] = adapter->stats.mgprc;
  538. regs_buff[94] = adapter->stats.mgpdc;
  539. regs_buff[95] = adapter->stats.mgptc;
  540. regs_buff[96] = adapter->stats.tor;
  541. regs_buff[98] = adapter->stats.tot;
  542. regs_buff[100] = adapter->stats.tpr;
  543. regs_buff[101] = adapter->stats.tpt;
  544. regs_buff[102] = adapter->stats.ptc64;
  545. regs_buff[103] = adapter->stats.ptc127;
  546. regs_buff[104] = adapter->stats.ptc255;
  547. regs_buff[105] = adapter->stats.ptc511;
  548. regs_buff[106] = adapter->stats.ptc1023;
  549. regs_buff[107] = adapter->stats.ptc1522;
  550. regs_buff[108] = adapter->stats.mptc;
  551. regs_buff[109] = adapter->stats.bptc;
  552. regs_buff[110] = adapter->stats.tsctc;
  553. regs_buff[111] = adapter->stats.iac;
  554. regs_buff[112] = adapter->stats.rpthc;
  555. regs_buff[113] = adapter->stats.hgptc;
  556. regs_buff[114] = adapter->stats.hgorc;
  557. regs_buff[116] = adapter->stats.hgotc;
  558. regs_buff[118] = adapter->stats.lenerrs;
  559. regs_buff[119] = adapter->stats.scvpc;
  560. regs_buff[120] = adapter->stats.hrmpc;
  561. for (i = 0; i < 4; i++)
  562. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  563. for (i = 0; i < 4; i++)
  564. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  565. for (i = 0; i < 4; i++)
  566. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  567. for (i = 0; i < 4; i++)
  568. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  569. for (i = 0; i < 4; i++)
  570. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  571. for (i = 0; i < 4; i++)
  572. regs_buff[141 + i] = rd32(E1000_RDH(i));
  573. for (i = 0; i < 4; i++)
  574. regs_buff[145 + i] = rd32(E1000_RDT(i));
  575. for (i = 0; i < 4; i++)
  576. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  577. for (i = 0; i < 10; i++)
  578. regs_buff[153 + i] = rd32(E1000_EITR(i));
  579. for (i = 0; i < 8; i++)
  580. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  581. for (i = 0; i < 8; i++)
  582. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  583. for (i = 0; i < 16; i++)
  584. regs_buff[179 + i] = rd32(E1000_RAL(i));
  585. for (i = 0; i < 16; i++)
  586. regs_buff[195 + i] = rd32(E1000_RAH(i));
  587. for (i = 0; i < 4; i++)
  588. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  589. for (i = 0; i < 4; i++)
  590. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  591. for (i = 0; i < 4; i++)
  592. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  593. for (i = 0; i < 4; i++)
  594. regs_buff[223 + i] = rd32(E1000_TDH(i));
  595. for (i = 0; i < 4; i++)
  596. regs_buff[227 + i] = rd32(E1000_TDT(i));
  597. for (i = 0; i < 4; i++)
  598. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  599. for (i = 0; i < 4; i++)
  600. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  601. for (i = 0; i < 4; i++)
  602. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  603. for (i = 0; i < 4; i++)
  604. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  605. for (i = 0; i < 4; i++)
  606. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  607. for (i = 0; i < 4; i++)
  608. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  609. for (i = 0; i < 32; i++)
  610. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  611. for (i = 0; i < 128; i++)
  612. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  613. for (i = 0; i < 128; i++)
  614. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  615. for (i = 0; i < 4; i++)
  616. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  617. regs_buff[547] = rd32(E1000_TDFH);
  618. regs_buff[548] = rd32(E1000_TDFT);
  619. regs_buff[549] = rd32(E1000_TDFHS);
  620. regs_buff[550] = rd32(E1000_TDFPC);
  621. if (hw->mac.type > e1000_82580) {
  622. regs_buff[551] = adapter->stats.o2bgptc;
  623. regs_buff[552] = adapter->stats.b2ospc;
  624. regs_buff[553] = adapter->stats.o2bspc;
  625. regs_buff[554] = adapter->stats.b2ogprc;
  626. }
  627. if (hw->mac.type != e1000_82576)
  628. return;
  629. for (i = 0; i < 12; i++)
  630. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  631. for (i = 0; i < 4; i++)
  632. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  633. for (i = 0; i < 12; i++)
  634. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  635. for (i = 0; i < 12; i++)
  636. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  637. for (i = 0; i < 12; i++)
  638. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  639. for (i = 0; i < 12; i++)
  640. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  641. for (i = 0; i < 12; i++)
  642. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  643. for (i = 0; i < 12; i++)
  644. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  645. for (i = 0; i < 12; i++)
  646. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  647. for (i = 0; i < 12; i++)
  648. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  649. for (i = 0; i < 12; i++)
  650. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  651. for (i = 0; i < 12; i++)
  652. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  653. for (i = 0; i < 12; i++)
  654. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  655. for (i = 0; i < 12; i++)
  656. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  657. for (i = 0; i < 12; i++)
  658. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  659. for (i = 0; i < 12; i++)
  660. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  661. }
  662. static int igb_get_eeprom_len(struct net_device *netdev)
  663. {
  664. struct igb_adapter *adapter = netdev_priv(netdev);
  665. return adapter->hw.nvm.word_size * 2;
  666. }
  667. static int igb_get_eeprom(struct net_device *netdev,
  668. struct ethtool_eeprom *eeprom, u8 *bytes)
  669. {
  670. struct igb_adapter *adapter = netdev_priv(netdev);
  671. struct e1000_hw *hw = &adapter->hw;
  672. u16 *eeprom_buff;
  673. int first_word, last_word;
  674. int ret_val = 0;
  675. u16 i;
  676. if (eeprom->len == 0)
  677. return -EINVAL;
  678. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  679. first_word = eeprom->offset >> 1;
  680. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  681. eeprom_buff = kmalloc(sizeof(u16) *
  682. (last_word - first_word + 1), GFP_KERNEL);
  683. if (!eeprom_buff)
  684. return -ENOMEM;
  685. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  686. ret_val = hw->nvm.ops.read(hw, first_word,
  687. last_word - first_word + 1,
  688. eeprom_buff);
  689. else {
  690. for (i = 0; i < last_word - first_word + 1; i++) {
  691. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  692. &eeprom_buff[i]);
  693. if (ret_val)
  694. break;
  695. }
  696. }
  697. /* Device's eeprom is always little-endian, word addressable */
  698. for (i = 0; i < last_word - first_word + 1; i++)
  699. le16_to_cpus(&eeprom_buff[i]);
  700. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  701. eeprom->len);
  702. kfree(eeprom_buff);
  703. return ret_val;
  704. }
  705. static int igb_set_eeprom(struct net_device *netdev,
  706. struct ethtool_eeprom *eeprom, u8 *bytes)
  707. {
  708. struct igb_adapter *adapter = netdev_priv(netdev);
  709. struct e1000_hw *hw = &adapter->hw;
  710. u16 *eeprom_buff;
  711. void *ptr;
  712. int max_len, first_word, last_word, ret_val = 0;
  713. u16 i;
  714. if (eeprom->len == 0)
  715. return -EOPNOTSUPP;
  716. if ((hw->mac.type >= e1000_i210) &&
  717. !igb_get_flash_presence_i210(hw)) {
  718. return -EOPNOTSUPP;
  719. }
  720. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  721. return -EFAULT;
  722. max_len = hw->nvm.word_size * 2;
  723. first_word = eeprom->offset >> 1;
  724. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  725. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  726. if (!eeprom_buff)
  727. return -ENOMEM;
  728. ptr = (void *)eeprom_buff;
  729. if (eeprom->offset & 1) {
  730. /* need read/modify/write of first changed EEPROM word
  731. * only the second byte of the word is being modified
  732. */
  733. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  734. &eeprom_buff[0]);
  735. ptr++;
  736. }
  737. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  738. /* need read/modify/write of last changed EEPROM word
  739. * only the first byte of the word is being modified
  740. */
  741. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  742. &eeprom_buff[last_word - first_word]);
  743. }
  744. /* Device's eeprom is always little-endian, word addressable */
  745. for (i = 0; i < last_word - first_word + 1; i++)
  746. le16_to_cpus(&eeprom_buff[i]);
  747. memcpy(ptr, bytes, eeprom->len);
  748. for (i = 0; i < last_word - first_word + 1; i++)
  749. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  750. ret_val = hw->nvm.ops.write(hw, first_word,
  751. last_word - first_word + 1, eeprom_buff);
  752. /* Update the checksum if nvm write succeeded */
  753. if (ret_val == 0)
  754. hw->nvm.ops.update(hw);
  755. igb_set_fw_version(adapter);
  756. kfree(eeprom_buff);
  757. return ret_val;
  758. }
  759. static void igb_get_drvinfo(struct net_device *netdev,
  760. struct ethtool_drvinfo *drvinfo)
  761. {
  762. struct igb_adapter *adapter = netdev_priv(netdev);
  763. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  764. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  765. /* EEPROM image version # is reported as firmware version # for
  766. * 82575 controllers
  767. */
  768. strlcpy(drvinfo->fw_version, adapter->fw_version,
  769. sizeof(drvinfo->fw_version));
  770. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  771. sizeof(drvinfo->bus_info));
  772. drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
  773. }
  774. static void igb_get_ringparam(struct net_device *netdev,
  775. struct ethtool_ringparam *ring)
  776. {
  777. struct igb_adapter *adapter = netdev_priv(netdev);
  778. ring->rx_max_pending = IGB_MAX_RXD;
  779. ring->tx_max_pending = IGB_MAX_TXD;
  780. ring->rx_pending = adapter->rx_ring_count;
  781. ring->tx_pending = adapter->tx_ring_count;
  782. }
  783. static int igb_set_ringparam(struct net_device *netdev,
  784. struct ethtool_ringparam *ring)
  785. {
  786. struct igb_adapter *adapter = netdev_priv(netdev);
  787. struct igb_ring *temp_ring;
  788. int i, err = 0;
  789. u16 new_rx_count, new_tx_count;
  790. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  791. return -EINVAL;
  792. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  793. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  794. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  795. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  796. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  797. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  798. if ((new_tx_count == adapter->tx_ring_count) &&
  799. (new_rx_count == adapter->rx_ring_count)) {
  800. /* nothing to do */
  801. return 0;
  802. }
  803. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  804. usleep_range(1000, 2000);
  805. if (!netif_running(adapter->netdev)) {
  806. for (i = 0; i < adapter->num_tx_queues; i++)
  807. adapter->tx_ring[i]->count = new_tx_count;
  808. for (i = 0; i < adapter->num_rx_queues; i++)
  809. adapter->rx_ring[i]->count = new_rx_count;
  810. adapter->tx_ring_count = new_tx_count;
  811. adapter->rx_ring_count = new_rx_count;
  812. goto clear_reset;
  813. }
  814. if (adapter->num_tx_queues > adapter->num_rx_queues)
  815. temp_ring = vmalloc(adapter->num_tx_queues *
  816. sizeof(struct igb_ring));
  817. else
  818. temp_ring = vmalloc(adapter->num_rx_queues *
  819. sizeof(struct igb_ring));
  820. if (!temp_ring) {
  821. err = -ENOMEM;
  822. goto clear_reset;
  823. }
  824. igb_down(adapter);
  825. /* We can't just free everything and then setup again,
  826. * because the ISRs in MSI-X mode get passed pointers
  827. * to the Tx and Rx ring structs.
  828. */
  829. if (new_tx_count != adapter->tx_ring_count) {
  830. for (i = 0; i < adapter->num_tx_queues; i++) {
  831. memcpy(&temp_ring[i], adapter->tx_ring[i],
  832. sizeof(struct igb_ring));
  833. temp_ring[i].count = new_tx_count;
  834. err = igb_setup_tx_resources(&temp_ring[i]);
  835. if (err) {
  836. while (i) {
  837. i--;
  838. igb_free_tx_resources(&temp_ring[i]);
  839. }
  840. goto err_setup;
  841. }
  842. }
  843. for (i = 0; i < adapter->num_tx_queues; i++) {
  844. igb_free_tx_resources(adapter->tx_ring[i]);
  845. memcpy(adapter->tx_ring[i], &temp_ring[i],
  846. sizeof(struct igb_ring));
  847. }
  848. adapter->tx_ring_count = new_tx_count;
  849. }
  850. if (new_rx_count != adapter->rx_ring_count) {
  851. for (i = 0; i < adapter->num_rx_queues; i++) {
  852. memcpy(&temp_ring[i], adapter->rx_ring[i],
  853. sizeof(struct igb_ring));
  854. temp_ring[i].count = new_rx_count;
  855. err = igb_setup_rx_resources(&temp_ring[i]);
  856. if (err) {
  857. while (i) {
  858. i--;
  859. igb_free_rx_resources(&temp_ring[i]);
  860. }
  861. goto err_setup;
  862. }
  863. }
  864. for (i = 0; i < adapter->num_rx_queues; i++) {
  865. igb_free_rx_resources(adapter->rx_ring[i]);
  866. memcpy(adapter->rx_ring[i], &temp_ring[i],
  867. sizeof(struct igb_ring));
  868. }
  869. adapter->rx_ring_count = new_rx_count;
  870. }
  871. err_setup:
  872. igb_up(adapter);
  873. vfree(temp_ring);
  874. clear_reset:
  875. clear_bit(__IGB_RESETTING, &adapter->state);
  876. return err;
  877. }
  878. /* ethtool register test data */
  879. struct igb_reg_test {
  880. u16 reg;
  881. u16 reg_offset;
  882. u16 array_len;
  883. u16 test_type;
  884. u32 mask;
  885. u32 write;
  886. };
  887. /* In the hardware, registers are laid out either singly, in arrays
  888. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  889. * most tests take place on arrays or single registers (handled
  890. * as a single-element array) and special-case the tables.
  891. * Table tests are always pattern tests.
  892. *
  893. * We also make provision for some required setup steps by specifying
  894. * registers to be written without any read-back testing.
  895. */
  896. #define PATTERN_TEST 1
  897. #define SET_READ_TEST 2
  898. #define WRITE_NO_TEST 3
  899. #define TABLE32_TEST 4
  900. #define TABLE64_TEST_LO 5
  901. #define TABLE64_TEST_HI 6
  902. /* i210 reg test */
  903. static struct igb_reg_test reg_test_i210[] = {
  904. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  905. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  906. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  907. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  908. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  909. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  910. /* RDH is read-only for i210, only test RDT. */
  911. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  912. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  913. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  914. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  915. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  916. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  917. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  918. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  919. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  920. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  921. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  922. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  923. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  924. 0xFFFFFFFF, 0xFFFFFFFF },
  925. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  926. 0x900FFFFF, 0xFFFFFFFF },
  927. { E1000_MTA, 0, 128, TABLE32_TEST,
  928. 0xFFFFFFFF, 0xFFFFFFFF },
  929. { 0, 0, 0, 0, 0 }
  930. };
  931. /* i350 reg test */
  932. static struct igb_reg_test reg_test_i350[] = {
  933. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  934. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  935. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  936. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  937. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  938. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  939. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  940. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  941. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  942. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  943. /* RDH is read-only for i350, only test RDT. */
  944. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  945. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  946. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  947. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  948. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  949. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  950. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  951. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  952. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  953. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  954. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  955. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  956. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  957. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  958. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  959. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  960. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  961. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  962. 0xFFFFFFFF, 0xFFFFFFFF },
  963. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  964. 0xC3FFFFFF, 0xFFFFFFFF },
  965. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  966. 0xFFFFFFFF, 0xFFFFFFFF },
  967. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  968. 0xC3FFFFFF, 0xFFFFFFFF },
  969. { E1000_MTA, 0, 128, TABLE32_TEST,
  970. 0xFFFFFFFF, 0xFFFFFFFF },
  971. { 0, 0, 0, 0 }
  972. };
  973. /* 82580 reg test */
  974. static struct igb_reg_test reg_test_82580[] = {
  975. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  976. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  977. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  978. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  979. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  980. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  981. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  982. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  983. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  984. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  985. /* RDH is read-only for 82580, only test RDT. */
  986. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  987. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  988. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  989. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  990. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  991. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  992. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  993. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  994. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  995. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  996. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  997. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  998. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  999. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1000. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1001. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1002. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1003. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  1004. 0xFFFFFFFF, 0xFFFFFFFF },
  1005. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  1006. 0x83FFFFFF, 0xFFFFFFFF },
  1007. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  1008. 0xFFFFFFFF, 0xFFFFFFFF },
  1009. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  1010. 0x83FFFFFF, 0xFFFFFFFF },
  1011. { E1000_MTA, 0, 128, TABLE32_TEST,
  1012. 0xFFFFFFFF, 0xFFFFFFFF },
  1013. { 0, 0, 0, 0 }
  1014. };
  1015. /* 82576 reg test */
  1016. static struct igb_reg_test reg_test_82576[] = {
  1017. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1018. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1019. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1020. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1021. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1022. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1023. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1024. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1025. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1026. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1027. /* Enable all RX queues before testing. */
  1028. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1029. E1000_RXDCTL_QUEUE_ENABLE },
  1030. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1031. E1000_RXDCTL_QUEUE_ENABLE },
  1032. /* RDH is read-only for 82576, only test RDT. */
  1033. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1034. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1035. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1036. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1037. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1038. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1039. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1040. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1041. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1042. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1043. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1044. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1045. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1046. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1047. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1048. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1049. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1050. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1051. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1052. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1053. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1054. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1055. { 0, 0, 0, 0 }
  1056. };
  1057. /* 82575 register test */
  1058. static struct igb_reg_test reg_test_82575[] = {
  1059. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1060. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1061. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1062. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1063. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1064. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1065. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1066. /* Enable all four RX queues before testing. */
  1067. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1068. E1000_RXDCTL_QUEUE_ENABLE },
  1069. /* RDH is read-only for 82575, only test RDT. */
  1070. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1071. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1072. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1073. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1074. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1075. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1076. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1077. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1078. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1079. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1080. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1081. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1082. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1083. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1084. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1085. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1086. { 0, 0, 0, 0 }
  1087. };
  1088. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1089. int reg, u32 mask, u32 write)
  1090. {
  1091. struct e1000_hw *hw = &adapter->hw;
  1092. u32 pat, val;
  1093. static const u32 _test[] = {
  1094. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1095. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1096. wr32(reg, (_test[pat] & write));
  1097. val = rd32(reg) & mask;
  1098. if (val != (_test[pat] & write & mask)) {
  1099. dev_err(&adapter->pdev->dev,
  1100. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1101. reg, val, (_test[pat] & write & mask));
  1102. *data = reg;
  1103. return true;
  1104. }
  1105. }
  1106. return false;
  1107. }
  1108. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1109. int reg, u32 mask, u32 write)
  1110. {
  1111. struct e1000_hw *hw = &adapter->hw;
  1112. u32 val;
  1113. wr32(reg, write & mask);
  1114. val = rd32(reg);
  1115. if ((write & mask) != (val & mask)) {
  1116. dev_err(&adapter->pdev->dev,
  1117. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1118. reg, (val & mask), (write & mask));
  1119. *data = reg;
  1120. return true;
  1121. }
  1122. return false;
  1123. }
  1124. #define REG_PATTERN_TEST(reg, mask, write) \
  1125. do { \
  1126. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1127. return 1; \
  1128. } while (0)
  1129. #define REG_SET_AND_CHECK(reg, mask, write) \
  1130. do { \
  1131. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1132. return 1; \
  1133. } while (0)
  1134. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1135. {
  1136. struct e1000_hw *hw = &adapter->hw;
  1137. struct igb_reg_test *test;
  1138. u32 value, before, after;
  1139. u32 i, toggle;
  1140. switch (adapter->hw.mac.type) {
  1141. case e1000_i350:
  1142. case e1000_i354:
  1143. test = reg_test_i350;
  1144. toggle = 0x7FEFF3FF;
  1145. break;
  1146. case e1000_i210:
  1147. case e1000_i211:
  1148. test = reg_test_i210;
  1149. toggle = 0x7FEFF3FF;
  1150. break;
  1151. case e1000_82580:
  1152. test = reg_test_82580;
  1153. toggle = 0x7FEFF3FF;
  1154. break;
  1155. case e1000_82576:
  1156. test = reg_test_82576;
  1157. toggle = 0x7FFFF3FF;
  1158. break;
  1159. default:
  1160. test = reg_test_82575;
  1161. toggle = 0x7FFFF3FF;
  1162. break;
  1163. }
  1164. /* Because the status register is such a special case,
  1165. * we handle it separately from the rest of the register
  1166. * tests. Some bits are read-only, some toggle, and some
  1167. * are writable on newer MACs.
  1168. */
  1169. before = rd32(E1000_STATUS);
  1170. value = (rd32(E1000_STATUS) & toggle);
  1171. wr32(E1000_STATUS, toggle);
  1172. after = rd32(E1000_STATUS) & toggle;
  1173. if (value != after) {
  1174. dev_err(&adapter->pdev->dev,
  1175. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1176. after, value);
  1177. *data = 1;
  1178. return 1;
  1179. }
  1180. /* restore previous status */
  1181. wr32(E1000_STATUS, before);
  1182. /* Perform the remainder of the register test, looping through
  1183. * the test table until we either fail or reach the null entry.
  1184. */
  1185. while (test->reg) {
  1186. for (i = 0; i < test->array_len; i++) {
  1187. switch (test->test_type) {
  1188. case PATTERN_TEST:
  1189. REG_PATTERN_TEST(test->reg +
  1190. (i * test->reg_offset),
  1191. test->mask,
  1192. test->write);
  1193. break;
  1194. case SET_READ_TEST:
  1195. REG_SET_AND_CHECK(test->reg +
  1196. (i * test->reg_offset),
  1197. test->mask,
  1198. test->write);
  1199. break;
  1200. case WRITE_NO_TEST:
  1201. writel(test->write,
  1202. (adapter->hw.hw_addr + test->reg)
  1203. + (i * test->reg_offset));
  1204. break;
  1205. case TABLE32_TEST:
  1206. REG_PATTERN_TEST(test->reg + (i * 4),
  1207. test->mask,
  1208. test->write);
  1209. break;
  1210. case TABLE64_TEST_LO:
  1211. REG_PATTERN_TEST(test->reg + (i * 8),
  1212. test->mask,
  1213. test->write);
  1214. break;
  1215. case TABLE64_TEST_HI:
  1216. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1217. test->mask,
  1218. test->write);
  1219. break;
  1220. }
  1221. }
  1222. test++;
  1223. }
  1224. *data = 0;
  1225. return 0;
  1226. }
  1227. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1228. {
  1229. struct e1000_hw *hw = &adapter->hw;
  1230. *data = 0;
  1231. /* Validate eeprom on all parts but flashless */
  1232. switch (hw->mac.type) {
  1233. case e1000_i210:
  1234. case e1000_i211:
  1235. if (igb_get_flash_presence_i210(hw)) {
  1236. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1237. *data = 2;
  1238. }
  1239. break;
  1240. default:
  1241. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1242. *data = 2;
  1243. break;
  1244. }
  1245. return *data;
  1246. }
  1247. static irqreturn_t igb_test_intr(int irq, void *data)
  1248. {
  1249. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1250. struct e1000_hw *hw = &adapter->hw;
  1251. adapter->test_icr |= rd32(E1000_ICR);
  1252. return IRQ_HANDLED;
  1253. }
  1254. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1255. {
  1256. struct e1000_hw *hw = &adapter->hw;
  1257. struct net_device *netdev = adapter->netdev;
  1258. u32 mask, ics_mask, i = 0, shared_int = true;
  1259. u32 irq = adapter->pdev->irq;
  1260. *data = 0;
  1261. /* Hook up test interrupt handler just for this test */
  1262. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1263. if (request_irq(adapter->msix_entries[0].vector,
  1264. igb_test_intr, 0, netdev->name, adapter)) {
  1265. *data = 1;
  1266. return -1;
  1267. }
  1268. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1269. shared_int = false;
  1270. if (request_irq(irq,
  1271. igb_test_intr, 0, netdev->name, adapter)) {
  1272. *data = 1;
  1273. return -1;
  1274. }
  1275. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1276. netdev->name, adapter)) {
  1277. shared_int = false;
  1278. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1279. netdev->name, adapter)) {
  1280. *data = 1;
  1281. return -1;
  1282. }
  1283. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1284. (shared_int ? "shared" : "unshared"));
  1285. /* Disable all the interrupts */
  1286. wr32(E1000_IMC, ~0);
  1287. wrfl();
  1288. usleep_range(10000, 11000);
  1289. /* Define all writable bits for ICS */
  1290. switch (hw->mac.type) {
  1291. case e1000_82575:
  1292. ics_mask = 0x37F47EDD;
  1293. break;
  1294. case e1000_82576:
  1295. ics_mask = 0x77D4FBFD;
  1296. break;
  1297. case e1000_82580:
  1298. ics_mask = 0x77DCFED5;
  1299. break;
  1300. case e1000_i350:
  1301. case e1000_i354:
  1302. case e1000_i210:
  1303. case e1000_i211:
  1304. ics_mask = 0x77DCFED5;
  1305. break;
  1306. default:
  1307. ics_mask = 0x7FFFFFFF;
  1308. break;
  1309. }
  1310. /* Test each interrupt */
  1311. for (; i < 31; i++) {
  1312. /* Interrupt to test */
  1313. mask = BIT(i);
  1314. if (!(mask & ics_mask))
  1315. continue;
  1316. if (!shared_int) {
  1317. /* Disable the interrupt to be reported in
  1318. * the cause register and then force the same
  1319. * interrupt and see if one gets posted. If
  1320. * an interrupt was posted to the bus, the
  1321. * test failed.
  1322. */
  1323. adapter->test_icr = 0;
  1324. /* Flush any pending interrupts */
  1325. wr32(E1000_ICR, ~0);
  1326. wr32(E1000_IMC, mask);
  1327. wr32(E1000_ICS, mask);
  1328. wrfl();
  1329. usleep_range(10000, 11000);
  1330. if (adapter->test_icr & mask) {
  1331. *data = 3;
  1332. break;
  1333. }
  1334. }
  1335. /* Enable the interrupt to be reported in
  1336. * the cause register and then force the same
  1337. * interrupt and see if one gets posted. If
  1338. * an interrupt was not posted to the bus, the
  1339. * test failed.
  1340. */
  1341. adapter->test_icr = 0;
  1342. /* Flush any pending interrupts */
  1343. wr32(E1000_ICR, ~0);
  1344. wr32(E1000_IMS, mask);
  1345. wr32(E1000_ICS, mask);
  1346. wrfl();
  1347. usleep_range(10000, 11000);
  1348. if (!(adapter->test_icr & mask)) {
  1349. *data = 4;
  1350. break;
  1351. }
  1352. if (!shared_int) {
  1353. /* Disable the other interrupts to be reported in
  1354. * the cause register and then force the other
  1355. * interrupts and see if any get posted. If
  1356. * an interrupt was posted to the bus, the
  1357. * test failed.
  1358. */
  1359. adapter->test_icr = 0;
  1360. /* Flush any pending interrupts */
  1361. wr32(E1000_ICR, ~0);
  1362. wr32(E1000_IMC, ~mask);
  1363. wr32(E1000_ICS, ~mask);
  1364. wrfl();
  1365. usleep_range(10000, 11000);
  1366. if (adapter->test_icr & mask) {
  1367. *data = 5;
  1368. break;
  1369. }
  1370. }
  1371. }
  1372. /* Disable all the interrupts */
  1373. wr32(E1000_IMC, ~0);
  1374. wrfl();
  1375. usleep_range(10000, 11000);
  1376. /* Unhook test interrupt handler */
  1377. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1378. free_irq(adapter->msix_entries[0].vector, adapter);
  1379. else
  1380. free_irq(irq, adapter);
  1381. return *data;
  1382. }
  1383. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1384. {
  1385. igb_free_tx_resources(&adapter->test_tx_ring);
  1386. igb_free_rx_resources(&adapter->test_rx_ring);
  1387. }
  1388. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1389. {
  1390. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1391. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1392. struct e1000_hw *hw = &adapter->hw;
  1393. int ret_val;
  1394. /* Setup Tx descriptor ring and Tx buffers */
  1395. tx_ring->count = IGB_DEFAULT_TXD;
  1396. tx_ring->dev = &adapter->pdev->dev;
  1397. tx_ring->netdev = adapter->netdev;
  1398. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1399. if (igb_setup_tx_resources(tx_ring)) {
  1400. ret_val = 1;
  1401. goto err_nomem;
  1402. }
  1403. igb_setup_tctl(adapter);
  1404. igb_configure_tx_ring(adapter, tx_ring);
  1405. /* Setup Rx descriptor ring and Rx buffers */
  1406. rx_ring->count = IGB_DEFAULT_RXD;
  1407. rx_ring->dev = &adapter->pdev->dev;
  1408. rx_ring->netdev = adapter->netdev;
  1409. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1410. if (igb_setup_rx_resources(rx_ring)) {
  1411. ret_val = 3;
  1412. goto err_nomem;
  1413. }
  1414. /* set the default queue to queue 0 of PF */
  1415. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1416. /* enable receive ring */
  1417. igb_setup_rctl(adapter);
  1418. igb_configure_rx_ring(adapter, rx_ring);
  1419. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1420. return 0;
  1421. err_nomem:
  1422. igb_free_desc_rings(adapter);
  1423. return ret_val;
  1424. }
  1425. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1426. {
  1427. struct e1000_hw *hw = &adapter->hw;
  1428. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1429. igb_write_phy_reg(hw, 29, 0x001F);
  1430. igb_write_phy_reg(hw, 30, 0x8FFC);
  1431. igb_write_phy_reg(hw, 29, 0x001A);
  1432. igb_write_phy_reg(hw, 30, 0x8FF0);
  1433. }
  1434. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1435. {
  1436. struct e1000_hw *hw = &adapter->hw;
  1437. u32 ctrl_reg = 0;
  1438. hw->mac.autoneg = false;
  1439. if (hw->phy.type == e1000_phy_m88) {
  1440. if (hw->phy.id != I210_I_PHY_ID) {
  1441. /* Auto-MDI/MDIX Off */
  1442. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1443. /* reset to update Auto-MDI/MDIX */
  1444. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1445. /* autoneg off */
  1446. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1447. } else {
  1448. /* force 1000, set loopback */
  1449. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1450. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1451. }
  1452. } else if (hw->phy.type == e1000_phy_82580) {
  1453. /* enable MII loopback */
  1454. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1455. }
  1456. /* add small delay to avoid loopback test failure */
  1457. msleep(50);
  1458. /* force 1000, set loopback */
  1459. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1460. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1461. ctrl_reg = rd32(E1000_CTRL);
  1462. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1463. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1464. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1465. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1466. E1000_CTRL_FD | /* Force Duplex to FULL */
  1467. E1000_CTRL_SLU); /* Set link up enable bit */
  1468. if (hw->phy.type == e1000_phy_m88)
  1469. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1470. wr32(E1000_CTRL, ctrl_reg);
  1471. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1472. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1473. */
  1474. if (hw->phy.type == e1000_phy_m88)
  1475. igb_phy_disable_receiver(adapter);
  1476. mdelay(500);
  1477. return 0;
  1478. }
  1479. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1480. {
  1481. return igb_integrated_phy_loopback(adapter);
  1482. }
  1483. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1484. {
  1485. struct e1000_hw *hw = &adapter->hw;
  1486. u32 reg;
  1487. reg = rd32(E1000_CTRL_EXT);
  1488. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1489. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1490. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1491. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1492. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1493. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1494. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1495. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1496. /* Enable DH89xxCC MPHY for near end loopback */
  1497. reg = rd32(E1000_MPHY_ADDR_CTL);
  1498. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1499. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1500. wr32(E1000_MPHY_ADDR_CTL, reg);
  1501. reg = rd32(E1000_MPHY_DATA);
  1502. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1503. wr32(E1000_MPHY_DATA, reg);
  1504. }
  1505. reg = rd32(E1000_RCTL);
  1506. reg |= E1000_RCTL_LBM_TCVR;
  1507. wr32(E1000_RCTL, reg);
  1508. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1509. reg = rd32(E1000_CTRL);
  1510. reg &= ~(E1000_CTRL_RFCE |
  1511. E1000_CTRL_TFCE |
  1512. E1000_CTRL_LRST);
  1513. reg |= E1000_CTRL_SLU |
  1514. E1000_CTRL_FD;
  1515. wr32(E1000_CTRL, reg);
  1516. /* Unset switch control to serdes energy detect */
  1517. reg = rd32(E1000_CONNSW);
  1518. reg &= ~E1000_CONNSW_ENRGSRC;
  1519. wr32(E1000_CONNSW, reg);
  1520. /* Unset sigdetect for SERDES loopback on
  1521. * 82580 and newer devices.
  1522. */
  1523. if (hw->mac.type >= e1000_82580) {
  1524. reg = rd32(E1000_PCS_CFG0);
  1525. reg |= E1000_PCS_CFG_IGN_SD;
  1526. wr32(E1000_PCS_CFG0, reg);
  1527. }
  1528. /* Set PCS register for forced speed */
  1529. reg = rd32(E1000_PCS_LCTL);
  1530. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1531. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1532. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1533. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1534. E1000_PCS_LCTL_FSD | /* Force Speed */
  1535. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1536. wr32(E1000_PCS_LCTL, reg);
  1537. return 0;
  1538. }
  1539. return igb_set_phy_loopback(adapter);
  1540. }
  1541. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1542. {
  1543. struct e1000_hw *hw = &adapter->hw;
  1544. u32 rctl;
  1545. u16 phy_reg;
  1546. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1547. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1548. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1549. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1550. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1551. u32 reg;
  1552. /* Disable near end loopback on DH89xxCC */
  1553. reg = rd32(E1000_MPHY_ADDR_CTL);
  1554. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1555. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1556. wr32(E1000_MPHY_ADDR_CTL, reg);
  1557. reg = rd32(E1000_MPHY_DATA);
  1558. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1559. wr32(E1000_MPHY_DATA, reg);
  1560. }
  1561. rctl = rd32(E1000_RCTL);
  1562. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1563. wr32(E1000_RCTL, rctl);
  1564. hw->mac.autoneg = true;
  1565. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1566. if (phy_reg & MII_CR_LOOPBACK) {
  1567. phy_reg &= ~MII_CR_LOOPBACK;
  1568. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1569. igb_phy_sw_reset(hw);
  1570. }
  1571. }
  1572. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1573. unsigned int frame_size)
  1574. {
  1575. memset(skb->data, 0xFF, frame_size);
  1576. frame_size /= 2;
  1577. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1578. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1579. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1580. }
  1581. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1582. unsigned int frame_size)
  1583. {
  1584. unsigned char *data;
  1585. bool match = true;
  1586. frame_size >>= 1;
  1587. data = kmap(rx_buffer->page);
  1588. if (data[3] != 0xFF ||
  1589. data[frame_size + 10] != 0xBE ||
  1590. data[frame_size + 12] != 0xAF)
  1591. match = false;
  1592. kunmap(rx_buffer->page);
  1593. return match;
  1594. }
  1595. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1596. struct igb_ring *tx_ring,
  1597. unsigned int size)
  1598. {
  1599. union e1000_adv_rx_desc *rx_desc;
  1600. struct igb_rx_buffer *rx_buffer_info;
  1601. struct igb_tx_buffer *tx_buffer_info;
  1602. u16 rx_ntc, tx_ntc, count = 0;
  1603. /* initialize next to clean and descriptor values */
  1604. rx_ntc = rx_ring->next_to_clean;
  1605. tx_ntc = tx_ring->next_to_clean;
  1606. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1607. while (rx_desc->wb.upper.length) {
  1608. /* check Rx buffer */
  1609. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1610. /* sync Rx buffer for CPU read */
  1611. dma_sync_single_for_cpu(rx_ring->dev,
  1612. rx_buffer_info->dma,
  1613. size,
  1614. DMA_FROM_DEVICE);
  1615. /* verify contents of skb */
  1616. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1617. count++;
  1618. /* sync Rx buffer for device write */
  1619. dma_sync_single_for_device(rx_ring->dev,
  1620. rx_buffer_info->dma,
  1621. size,
  1622. DMA_FROM_DEVICE);
  1623. /* unmap buffer on Tx side */
  1624. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1625. /* Free all the Tx ring sk_buffs */
  1626. dev_kfree_skb_any(tx_buffer_info->skb);
  1627. /* unmap skb header data */
  1628. dma_unmap_single(tx_ring->dev,
  1629. dma_unmap_addr(tx_buffer_info, dma),
  1630. dma_unmap_len(tx_buffer_info, len),
  1631. DMA_TO_DEVICE);
  1632. dma_unmap_len_set(tx_buffer_info, len, 0);
  1633. /* increment Rx/Tx next to clean counters */
  1634. rx_ntc++;
  1635. if (rx_ntc == rx_ring->count)
  1636. rx_ntc = 0;
  1637. tx_ntc++;
  1638. if (tx_ntc == tx_ring->count)
  1639. tx_ntc = 0;
  1640. /* fetch next descriptor */
  1641. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1642. }
  1643. netdev_tx_reset_queue(txring_txq(tx_ring));
  1644. /* re-map buffers to ring, store next to clean values */
  1645. igb_alloc_rx_buffers(rx_ring, count);
  1646. rx_ring->next_to_clean = rx_ntc;
  1647. tx_ring->next_to_clean = tx_ntc;
  1648. return count;
  1649. }
  1650. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1651. {
  1652. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1653. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1654. u16 i, j, lc, good_cnt;
  1655. int ret_val = 0;
  1656. unsigned int size = IGB_RX_HDR_LEN;
  1657. netdev_tx_t tx_ret_val;
  1658. struct sk_buff *skb;
  1659. /* allocate test skb */
  1660. skb = alloc_skb(size, GFP_KERNEL);
  1661. if (!skb)
  1662. return 11;
  1663. /* place data into test skb */
  1664. igb_create_lbtest_frame(skb, size);
  1665. skb_put(skb, size);
  1666. /* Calculate the loop count based on the largest descriptor ring
  1667. * The idea is to wrap the largest ring a number of times using 64
  1668. * send/receive pairs during each loop
  1669. */
  1670. if (rx_ring->count <= tx_ring->count)
  1671. lc = ((tx_ring->count / 64) * 2) + 1;
  1672. else
  1673. lc = ((rx_ring->count / 64) * 2) + 1;
  1674. for (j = 0; j <= lc; j++) { /* loop count loop */
  1675. /* reset count of good packets */
  1676. good_cnt = 0;
  1677. /* place 64 packets on the transmit queue*/
  1678. for (i = 0; i < 64; i++) {
  1679. skb_get(skb);
  1680. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1681. if (tx_ret_val == NETDEV_TX_OK)
  1682. good_cnt++;
  1683. }
  1684. if (good_cnt != 64) {
  1685. ret_val = 12;
  1686. break;
  1687. }
  1688. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1689. msleep(200);
  1690. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1691. if (good_cnt != 64) {
  1692. ret_val = 13;
  1693. break;
  1694. }
  1695. } /* end loop count loop */
  1696. /* free the original skb */
  1697. kfree_skb(skb);
  1698. return ret_val;
  1699. }
  1700. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1701. {
  1702. /* PHY loopback cannot be performed if SoL/IDER
  1703. * sessions are active
  1704. */
  1705. if (igb_check_reset_block(&adapter->hw)) {
  1706. dev_err(&adapter->pdev->dev,
  1707. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1708. *data = 0;
  1709. goto out;
  1710. }
  1711. if (adapter->hw.mac.type == e1000_i354) {
  1712. dev_info(&adapter->pdev->dev,
  1713. "Loopback test not supported on i354.\n");
  1714. *data = 0;
  1715. goto out;
  1716. }
  1717. *data = igb_setup_desc_rings(adapter);
  1718. if (*data)
  1719. goto out;
  1720. *data = igb_setup_loopback_test(adapter);
  1721. if (*data)
  1722. goto err_loopback;
  1723. *data = igb_run_loopback_test(adapter);
  1724. igb_loopback_cleanup(adapter);
  1725. err_loopback:
  1726. igb_free_desc_rings(adapter);
  1727. out:
  1728. return *data;
  1729. }
  1730. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1731. {
  1732. struct e1000_hw *hw = &adapter->hw;
  1733. *data = 0;
  1734. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1735. int i = 0;
  1736. hw->mac.serdes_has_link = false;
  1737. /* On some blade server designs, link establishment
  1738. * could take as long as 2-3 minutes
  1739. */
  1740. do {
  1741. hw->mac.ops.check_for_link(&adapter->hw);
  1742. if (hw->mac.serdes_has_link)
  1743. return *data;
  1744. msleep(20);
  1745. } while (i++ < 3750);
  1746. *data = 1;
  1747. } else {
  1748. hw->mac.ops.check_for_link(&adapter->hw);
  1749. if (hw->mac.autoneg)
  1750. msleep(5000);
  1751. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1752. *data = 1;
  1753. }
  1754. return *data;
  1755. }
  1756. static void igb_diag_test(struct net_device *netdev,
  1757. struct ethtool_test *eth_test, u64 *data)
  1758. {
  1759. struct igb_adapter *adapter = netdev_priv(netdev);
  1760. u16 autoneg_advertised;
  1761. u8 forced_speed_duplex, autoneg;
  1762. bool if_running = netif_running(netdev);
  1763. set_bit(__IGB_TESTING, &adapter->state);
  1764. /* can't do offline tests on media switching devices */
  1765. if (adapter->hw.dev_spec._82575.mas_capable)
  1766. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1767. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1768. /* Offline tests */
  1769. /* save speed, duplex, autoneg settings */
  1770. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1771. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1772. autoneg = adapter->hw.mac.autoneg;
  1773. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1774. /* power up link for link test */
  1775. igb_power_up_link(adapter);
  1776. /* Link test performed before hardware reset so autoneg doesn't
  1777. * interfere with test result
  1778. */
  1779. if (igb_link_test(adapter, &data[TEST_LINK]))
  1780. eth_test->flags |= ETH_TEST_FL_FAILED;
  1781. if (if_running)
  1782. /* indicate we're in test mode */
  1783. igb_close(netdev);
  1784. else
  1785. igb_reset(adapter);
  1786. if (igb_reg_test(adapter, &data[TEST_REG]))
  1787. eth_test->flags |= ETH_TEST_FL_FAILED;
  1788. igb_reset(adapter);
  1789. if (igb_eeprom_test(adapter, &data[TEST_EEP]))
  1790. eth_test->flags |= ETH_TEST_FL_FAILED;
  1791. igb_reset(adapter);
  1792. if (igb_intr_test(adapter, &data[TEST_IRQ]))
  1793. eth_test->flags |= ETH_TEST_FL_FAILED;
  1794. igb_reset(adapter);
  1795. /* power up link for loopback test */
  1796. igb_power_up_link(adapter);
  1797. if (igb_loopback_test(adapter, &data[TEST_LOOP]))
  1798. eth_test->flags |= ETH_TEST_FL_FAILED;
  1799. /* restore speed, duplex, autoneg settings */
  1800. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1801. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1802. adapter->hw.mac.autoneg = autoneg;
  1803. /* force this routine to wait until autoneg complete/timeout */
  1804. adapter->hw.phy.autoneg_wait_to_complete = true;
  1805. igb_reset(adapter);
  1806. adapter->hw.phy.autoneg_wait_to_complete = false;
  1807. clear_bit(__IGB_TESTING, &adapter->state);
  1808. if (if_running)
  1809. igb_open(netdev);
  1810. } else {
  1811. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1812. /* PHY is powered down when interface is down */
  1813. if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
  1814. eth_test->flags |= ETH_TEST_FL_FAILED;
  1815. else
  1816. data[TEST_LINK] = 0;
  1817. /* Online tests aren't run; pass by default */
  1818. data[TEST_REG] = 0;
  1819. data[TEST_EEP] = 0;
  1820. data[TEST_IRQ] = 0;
  1821. data[TEST_LOOP] = 0;
  1822. clear_bit(__IGB_TESTING, &adapter->state);
  1823. }
  1824. msleep_interruptible(4 * 1000);
  1825. }
  1826. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1827. {
  1828. struct igb_adapter *adapter = netdev_priv(netdev);
  1829. wol->wolopts = 0;
  1830. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1831. return;
  1832. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1833. WAKE_BCAST | WAKE_MAGIC |
  1834. WAKE_PHY;
  1835. /* apply any specific unsupported masks here */
  1836. switch (adapter->hw.device_id) {
  1837. default:
  1838. break;
  1839. }
  1840. if (adapter->wol & E1000_WUFC_EX)
  1841. wol->wolopts |= WAKE_UCAST;
  1842. if (adapter->wol & E1000_WUFC_MC)
  1843. wol->wolopts |= WAKE_MCAST;
  1844. if (adapter->wol & E1000_WUFC_BC)
  1845. wol->wolopts |= WAKE_BCAST;
  1846. if (adapter->wol & E1000_WUFC_MAG)
  1847. wol->wolopts |= WAKE_MAGIC;
  1848. if (adapter->wol & E1000_WUFC_LNKC)
  1849. wol->wolopts |= WAKE_PHY;
  1850. }
  1851. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1852. {
  1853. struct igb_adapter *adapter = netdev_priv(netdev);
  1854. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1855. return -EOPNOTSUPP;
  1856. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1857. return wol->wolopts ? -EOPNOTSUPP : 0;
  1858. /* these settings will always override what we currently have */
  1859. adapter->wol = 0;
  1860. if (wol->wolopts & WAKE_UCAST)
  1861. adapter->wol |= E1000_WUFC_EX;
  1862. if (wol->wolopts & WAKE_MCAST)
  1863. adapter->wol |= E1000_WUFC_MC;
  1864. if (wol->wolopts & WAKE_BCAST)
  1865. adapter->wol |= E1000_WUFC_BC;
  1866. if (wol->wolopts & WAKE_MAGIC)
  1867. adapter->wol |= E1000_WUFC_MAG;
  1868. if (wol->wolopts & WAKE_PHY)
  1869. adapter->wol |= E1000_WUFC_LNKC;
  1870. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1871. return 0;
  1872. }
  1873. /* bit defines for adapter->led_status */
  1874. #define IGB_LED_ON 0
  1875. static int igb_set_phys_id(struct net_device *netdev,
  1876. enum ethtool_phys_id_state state)
  1877. {
  1878. struct igb_adapter *adapter = netdev_priv(netdev);
  1879. struct e1000_hw *hw = &adapter->hw;
  1880. switch (state) {
  1881. case ETHTOOL_ID_ACTIVE:
  1882. igb_blink_led(hw);
  1883. return 2;
  1884. case ETHTOOL_ID_ON:
  1885. igb_blink_led(hw);
  1886. break;
  1887. case ETHTOOL_ID_OFF:
  1888. igb_led_off(hw);
  1889. break;
  1890. case ETHTOOL_ID_INACTIVE:
  1891. igb_led_off(hw);
  1892. clear_bit(IGB_LED_ON, &adapter->led_status);
  1893. igb_cleanup_led(hw);
  1894. break;
  1895. }
  1896. return 0;
  1897. }
  1898. static int igb_set_coalesce(struct net_device *netdev,
  1899. struct ethtool_coalesce *ec)
  1900. {
  1901. struct igb_adapter *adapter = netdev_priv(netdev);
  1902. int i;
  1903. if (ec->rx_max_coalesced_frames ||
  1904. ec->rx_coalesce_usecs_irq ||
  1905. ec->rx_max_coalesced_frames_irq ||
  1906. ec->tx_max_coalesced_frames ||
  1907. ec->tx_coalesce_usecs_irq ||
  1908. ec->stats_block_coalesce_usecs ||
  1909. ec->use_adaptive_rx_coalesce ||
  1910. ec->use_adaptive_tx_coalesce ||
  1911. ec->pkt_rate_low ||
  1912. ec->rx_coalesce_usecs_low ||
  1913. ec->rx_max_coalesced_frames_low ||
  1914. ec->tx_coalesce_usecs_low ||
  1915. ec->tx_max_coalesced_frames_low ||
  1916. ec->pkt_rate_high ||
  1917. ec->rx_coalesce_usecs_high ||
  1918. ec->rx_max_coalesced_frames_high ||
  1919. ec->tx_coalesce_usecs_high ||
  1920. ec->tx_max_coalesced_frames_high ||
  1921. ec->rate_sample_interval)
  1922. return -ENOTSUPP;
  1923. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1924. ((ec->rx_coalesce_usecs > 3) &&
  1925. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1926. (ec->rx_coalesce_usecs == 2))
  1927. return -EINVAL;
  1928. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1929. ((ec->tx_coalesce_usecs > 3) &&
  1930. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1931. (ec->tx_coalesce_usecs == 2))
  1932. return -EINVAL;
  1933. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1934. return -EINVAL;
  1935. /* If ITR is disabled, disable DMAC */
  1936. if (ec->rx_coalesce_usecs == 0) {
  1937. if (adapter->flags & IGB_FLAG_DMAC)
  1938. adapter->flags &= ~IGB_FLAG_DMAC;
  1939. }
  1940. /* convert to rate of irq's per second */
  1941. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1942. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1943. else
  1944. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1945. /* convert to rate of irq's per second */
  1946. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1947. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1948. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1949. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1950. else
  1951. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1952. for (i = 0; i < adapter->num_q_vectors; i++) {
  1953. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1954. q_vector->tx.work_limit = adapter->tx_work_limit;
  1955. if (q_vector->rx.ring)
  1956. q_vector->itr_val = adapter->rx_itr_setting;
  1957. else
  1958. q_vector->itr_val = adapter->tx_itr_setting;
  1959. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1960. q_vector->itr_val = IGB_START_ITR;
  1961. q_vector->set_itr = 1;
  1962. }
  1963. return 0;
  1964. }
  1965. static int igb_get_coalesce(struct net_device *netdev,
  1966. struct ethtool_coalesce *ec)
  1967. {
  1968. struct igb_adapter *adapter = netdev_priv(netdev);
  1969. if (adapter->rx_itr_setting <= 3)
  1970. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1971. else
  1972. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1973. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1974. if (adapter->tx_itr_setting <= 3)
  1975. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1976. else
  1977. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1978. }
  1979. return 0;
  1980. }
  1981. static int igb_nway_reset(struct net_device *netdev)
  1982. {
  1983. struct igb_adapter *adapter = netdev_priv(netdev);
  1984. if (netif_running(netdev))
  1985. igb_reinit_locked(adapter);
  1986. return 0;
  1987. }
  1988. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1989. {
  1990. switch (sset) {
  1991. case ETH_SS_STATS:
  1992. return IGB_STATS_LEN;
  1993. case ETH_SS_TEST:
  1994. return IGB_TEST_LEN;
  1995. case ETH_SS_PRIV_FLAGS:
  1996. return IGB_PRIV_FLAGS_STR_LEN;
  1997. default:
  1998. return -ENOTSUPP;
  1999. }
  2000. }
  2001. static void igb_get_ethtool_stats(struct net_device *netdev,
  2002. struct ethtool_stats *stats, u64 *data)
  2003. {
  2004. struct igb_adapter *adapter = netdev_priv(netdev);
  2005. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  2006. unsigned int start;
  2007. struct igb_ring *ring;
  2008. int i, j;
  2009. char *p;
  2010. spin_lock(&adapter->stats64_lock);
  2011. igb_update_stats(adapter, net_stats);
  2012. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2013. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  2014. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  2015. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2016. }
  2017. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  2018. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  2019. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  2020. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2021. }
  2022. for (j = 0; j < adapter->num_tx_queues; j++) {
  2023. u64 restart2;
  2024. ring = adapter->tx_ring[j];
  2025. do {
  2026. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  2027. data[i] = ring->tx_stats.packets;
  2028. data[i+1] = ring->tx_stats.bytes;
  2029. data[i+2] = ring->tx_stats.restart_queue;
  2030. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2031. do {
  2032. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2033. restart2 = ring->tx_stats.restart_queue2;
  2034. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2035. data[i+2] += restart2;
  2036. i += IGB_TX_QUEUE_STATS_LEN;
  2037. }
  2038. for (j = 0; j < adapter->num_rx_queues; j++) {
  2039. ring = adapter->rx_ring[j];
  2040. do {
  2041. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2042. data[i] = ring->rx_stats.packets;
  2043. data[i+1] = ring->rx_stats.bytes;
  2044. data[i+2] = ring->rx_stats.drops;
  2045. data[i+3] = ring->rx_stats.csum_err;
  2046. data[i+4] = ring->rx_stats.alloc_failed;
  2047. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2048. i += IGB_RX_QUEUE_STATS_LEN;
  2049. }
  2050. spin_unlock(&adapter->stats64_lock);
  2051. }
  2052. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2053. {
  2054. struct igb_adapter *adapter = netdev_priv(netdev);
  2055. u8 *p = data;
  2056. int i;
  2057. switch (stringset) {
  2058. case ETH_SS_TEST:
  2059. memcpy(data, *igb_gstrings_test,
  2060. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2061. break;
  2062. case ETH_SS_STATS:
  2063. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2064. memcpy(p, igb_gstrings_stats[i].stat_string,
  2065. ETH_GSTRING_LEN);
  2066. p += ETH_GSTRING_LEN;
  2067. }
  2068. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2069. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2070. ETH_GSTRING_LEN);
  2071. p += ETH_GSTRING_LEN;
  2072. }
  2073. for (i = 0; i < adapter->num_tx_queues; i++) {
  2074. sprintf(p, "tx_queue_%u_packets", i);
  2075. p += ETH_GSTRING_LEN;
  2076. sprintf(p, "tx_queue_%u_bytes", i);
  2077. p += ETH_GSTRING_LEN;
  2078. sprintf(p, "tx_queue_%u_restart", i);
  2079. p += ETH_GSTRING_LEN;
  2080. }
  2081. for (i = 0; i < adapter->num_rx_queues; i++) {
  2082. sprintf(p, "rx_queue_%u_packets", i);
  2083. p += ETH_GSTRING_LEN;
  2084. sprintf(p, "rx_queue_%u_bytes", i);
  2085. p += ETH_GSTRING_LEN;
  2086. sprintf(p, "rx_queue_%u_drops", i);
  2087. p += ETH_GSTRING_LEN;
  2088. sprintf(p, "rx_queue_%u_csum_err", i);
  2089. p += ETH_GSTRING_LEN;
  2090. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2091. p += ETH_GSTRING_LEN;
  2092. }
  2093. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2094. break;
  2095. case ETH_SS_PRIV_FLAGS:
  2096. memcpy(data, igb_priv_flags_strings,
  2097. IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
  2098. break;
  2099. }
  2100. }
  2101. static int igb_get_ts_info(struct net_device *dev,
  2102. struct ethtool_ts_info *info)
  2103. {
  2104. struct igb_adapter *adapter = netdev_priv(dev);
  2105. if (adapter->ptp_clock)
  2106. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2107. else
  2108. info->phc_index = -1;
  2109. switch (adapter->hw.mac.type) {
  2110. case e1000_82575:
  2111. info->so_timestamping =
  2112. SOF_TIMESTAMPING_TX_SOFTWARE |
  2113. SOF_TIMESTAMPING_RX_SOFTWARE |
  2114. SOF_TIMESTAMPING_SOFTWARE;
  2115. return 0;
  2116. case e1000_82576:
  2117. case e1000_82580:
  2118. case e1000_i350:
  2119. case e1000_i354:
  2120. case e1000_i210:
  2121. case e1000_i211:
  2122. info->so_timestamping =
  2123. SOF_TIMESTAMPING_TX_SOFTWARE |
  2124. SOF_TIMESTAMPING_RX_SOFTWARE |
  2125. SOF_TIMESTAMPING_SOFTWARE |
  2126. SOF_TIMESTAMPING_TX_HARDWARE |
  2127. SOF_TIMESTAMPING_RX_HARDWARE |
  2128. SOF_TIMESTAMPING_RAW_HARDWARE;
  2129. info->tx_types =
  2130. BIT(HWTSTAMP_TX_OFF) |
  2131. BIT(HWTSTAMP_TX_ON);
  2132. info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
  2133. /* 82576 does not support timestamping all packets. */
  2134. if (adapter->hw.mac.type >= e1000_82580)
  2135. info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
  2136. else
  2137. info->rx_filters |=
  2138. BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2139. BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2140. BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
  2141. return 0;
  2142. default:
  2143. return -EOPNOTSUPP;
  2144. }
  2145. }
  2146. #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
  2147. static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
  2148. struct ethtool_rxnfc *cmd)
  2149. {
  2150. struct ethtool_rx_flow_spec *fsp = &cmd->fs;
  2151. struct igb_nfc_filter *rule = NULL;
  2152. /* report total rule count */
  2153. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2154. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2155. if (fsp->location <= rule->sw_idx)
  2156. break;
  2157. }
  2158. if (!rule || fsp->location != rule->sw_idx)
  2159. return -EINVAL;
  2160. if (rule->filter.match_flags) {
  2161. fsp->flow_type = ETHER_FLOW;
  2162. fsp->ring_cookie = rule->action;
  2163. if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2164. fsp->h_u.ether_spec.h_proto = rule->filter.etype;
  2165. fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
  2166. }
  2167. if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
  2168. fsp->flow_type |= FLOW_EXT;
  2169. fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
  2170. fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
  2171. }
  2172. return 0;
  2173. }
  2174. return -EINVAL;
  2175. }
  2176. static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
  2177. struct ethtool_rxnfc *cmd,
  2178. u32 *rule_locs)
  2179. {
  2180. struct igb_nfc_filter *rule;
  2181. int cnt = 0;
  2182. /* report total rule count */
  2183. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2184. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2185. if (cnt == cmd->rule_cnt)
  2186. return -EMSGSIZE;
  2187. rule_locs[cnt] = rule->sw_idx;
  2188. cnt++;
  2189. }
  2190. cmd->rule_cnt = cnt;
  2191. return 0;
  2192. }
  2193. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2194. struct ethtool_rxnfc *cmd)
  2195. {
  2196. cmd->data = 0;
  2197. /* Report default options for RSS on igb */
  2198. switch (cmd->flow_type) {
  2199. case TCP_V4_FLOW:
  2200. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2201. /* Fall through */
  2202. case UDP_V4_FLOW:
  2203. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2204. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2205. /* Fall through */
  2206. case SCTP_V4_FLOW:
  2207. case AH_ESP_V4_FLOW:
  2208. case AH_V4_FLOW:
  2209. case ESP_V4_FLOW:
  2210. case IPV4_FLOW:
  2211. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2212. break;
  2213. case TCP_V6_FLOW:
  2214. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2215. /* Fall through */
  2216. case UDP_V6_FLOW:
  2217. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2218. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2219. /* Fall through */
  2220. case SCTP_V6_FLOW:
  2221. case AH_ESP_V6_FLOW:
  2222. case AH_V6_FLOW:
  2223. case ESP_V6_FLOW:
  2224. case IPV6_FLOW:
  2225. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2226. break;
  2227. default:
  2228. return -EINVAL;
  2229. }
  2230. return 0;
  2231. }
  2232. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2233. u32 *rule_locs)
  2234. {
  2235. struct igb_adapter *adapter = netdev_priv(dev);
  2236. int ret = -EOPNOTSUPP;
  2237. switch (cmd->cmd) {
  2238. case ETHTOOL_GRXRINGS:
  2239. cmd->data = adapter->num_rx_queues;
  2240. ret = 0;
  2241. break;
  2242. case ETHTOOL_GRXCLSRLCNT:
  2243. cmd->rule_cnt = adapter->nfc_filter_count;
  2244. ret = 0;
  2245. break;
  2246. case ETHTOOL_GRXCLSRULE:
  2247. ret = igb_get_ethtool_nfc_entry(adapter, cmd);
  2248. break;
  2249. case ETHTOOL_GRXCLSRLALL:
  2250. ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
  2251. break;
  2252. case ETHTOOL_GRXFH:
  2253. ret = igb_get_rss_hash_opts(adapter, cmd);
  2254. break;
  2255. default:
  2256. break;
  2257. }
  2258. return ret;
  2259. }
  2260. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2261. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2262. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2263. struct ethtool_rxnfc *nfc)
  2264. {
  2265. u32 flags = adapter->flags;
  2266. /* RSS does not support anything other than hashing
  2267. * to queues on src and dst IPs and ports
  2268. */
  2269. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2270. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2271. return -EINVAL;
  2272. switch (nfc->flow_type) {
  2273. case TCP_V4_FLOW:
  2274. case TCP_V6_FLOW:
  2275. if (!(nfc->data & RXH_IP_SRC) ||
  2276. !(nfc->data & RXH_IP_DST) ||
  2277. !(nfc->data & RXH_L4_B_0_1) ||
  2278. !(nfc->data & RXH_L4_B_2_3))
  2279. return -EINVAL;
  2280. break;
  2281. case UDP_V4_FLOW:
  2282. if (!(nfc->data & RXH_IP_SRC) ||
  2283. !(nfc->data & RXH_IP_DST))
  2284. return -EINVAL;
  2285. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2286. case 0:
  2287. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2288. break;
  2289. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2290. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2291. break;
  2292. default:
  2293. return -EINVAL;
  2294. }
  2295. break;
  2296. case UDP_V6_FLOW:
  2297. if (!(nfc->data & RXH_IP_SRC) ||
  2298. !(nfc->data & RXH_IP_DST))
  2299. return -EINVAL;
  2300. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2301. case 0:
  2302. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2303. break;
  2304. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2305. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2306. break;
  2307. default:
  2308. return -EINVAL;
  2309. }
  2310. break;
  2311. case AH_ESP_V4_FLOW:
  2312. case AH_V4_FLOW:
  2313. case ESP_V4_FLOW:
  2314. case SCTP_V4_FLOW:
  2315. case AH_ESP_V6_FLOW:
  2316. case AH_V6_FLOW:
  2317. case ESP_V6_FLOW:
  2318. case SCTP_V6_FLOW:
  2319. if (!(nfc->data & RXH_IP_SRC) ||
  2320. !(nfc->data & RXH_IP_DST) ||
  2321. (nfc->data & RXH_L4_B_0_1) ||
  2322. (nfc->data & RXH_L4_B_2_3))
  2323. return -EINVAL;
  2324. break;
  2325. default:
  2326. return -EINVAL;
  2327. }
  2328. /* if we changed something we need to update flags */
  2329. if (flags != adapter->flags) {
  2330. struct e1000_hw *hw = &adapter->hw;
  2331. u32 mrqc = rd32(E1000_MRQC);
  2332. if ((flags & UDP_RSS_FLAGS) &&
  2333. !(adapter->flags & UDP_RSS_FLAGS))
  2334. dev_err(&adapter->pdev->dev,
  2335. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2336. adapter->flags = flags;
  2337. /* Perform hash on these packet types */
  2338. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2339. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2340. E1000_MRQC_RSS_FIELD_IPV6 |
  2341. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2342. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2343. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2344. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2345. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2346. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2347. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2348. wr32(E1000_MRQC, mrqc);
  2349. }
  2350. return 0;
  2351. }
  2352. static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
  2353. struct igb_nfc_filter *input)
  2354. {
  2355. struct e1000_hw *hw = &adapter->hw;
  2356. u8 i;
  2357. u32 etqf;
  2358. u16 etype;
  2359. /* find an empty etype filter register */
  2360. for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
  2361. if (!adapter->etype_bitmap[i])
  2362. break;
  2363. }
  2364. if (i == MAX_ETYPE_FILTER) {
  2365. dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
  2366. return -EINVAL;
  2367. }
  2368. adapter->etype_bitmap[i] = true;
  2369. etqf = rd32(E1000_ETQF(i));
  2370. etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
  2371. etqf |= E1000_ETQF_FILTER_ENABLE;
  2372. etqf &= ~E1000_ETQF_ETYPE_MASK;
  2373. etqf |= (etype & E1000_ETQF_ETYPE_MASK);
  2374. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2375. etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
  2376. & E1000_ETQF_QUEUE_MASK);
  2377. etqf |= E1000_ETQF_QUEUE_ENABLE;
  2378. wr32(E1000_ETQF(i), etqf);
  2379. input->etype_reg_index = i;
  2380. return 0;
  2381. }
  2382. static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
  2383. struct igb_nfc_filter *input)
  2384. {
  2385. struct e1000_hw *hw = &adapter->hw;
  2386. u8 vlan_priority;
  2387. u16 queue_index;
  2388. u32 vlapqf;
  2389. vlapqf = rd32(E1000_VLAPQF);
  2390. vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
  2391. >> VLAN_PRIO_SHIFT;
  2392. queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
  2393. /* check whether this vlan prio is already set */
  2394. if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
  2395. (queue_index != input->action)) {
  2396. dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
  2397. return -EEXIST;
  2398. }
  2399. vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
  2400. vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
  2401. wr32(E1000_VLAPQF, vlapqf);
  2402. return 0;
  2403. }
  2404. int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2405. {
  2406. int err = -EINVAL;
  2407. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2408. err = igb_rxnfc_write_etype_filter(adapter, input);
  2409. if (err)
  2410. return err;
  2411. }
  2412. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2413. err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
  2414. return err;
  2415. }
  2416. static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
  2417. u16 reg_index)
  2418. {
  2419. struct e1000_hw *hw = &adapter->hw;
  2420. u32 etqf = rd32(E1000_ETQF(reg_index));
  2421. etqf &= ~E1000_ETQF_QUEUE_ENABLE;
  2422. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2423. etqf &= ~E1000_ETQF_FILTER_ENABLE;
  2424. wr32(E1000_ETQF(reg_index), etqf);
  2425. adapter->etype_bitmap[reg_index] = false;
  2426. }
  2427. static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
  2428. u16 vlan_tci)
  2429. {
  2430. struct e1000_hw *hw = &adapter->hw;
  2431. u8 vlan_priority;
  2432. u32 vlapqf;
  2433. vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  2434. vlapqf = rd32(E1000_VLAPQF);
  2435. vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
  2436. vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
  2437. E1000_VLAPQF_QUEUE_MASK);
  2438. wr32(E1000_VLAPQF, vlapqf);
  2439. }
  2440. int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2441. {
  2442. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
  2443. igb_clear_etype_filter_regs(adapter,
  2444. input->etype_reg_index);
  2445. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2446. igb_clear_vlan_prio_filter(adapter,
  2447. ntohs(input->filter.vlan_tci));
  2448. return 0;
  2449. }
  2450. static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
  2451. struct igb_nfc_filter *input,
  2452. u16 sw_idx)
  2453. {
  2454. struct igb_nfc_filter *rule, *parent;
  2455. int err = -EINVAL;
  2456. parent = NULL;
  2457. rule = NULL;
  2458. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2459. /* hash found, or no matching entry */
  2460. if (rule->sw_idx >= sw_idx)
  2461. break;
  2462. parent = rule;
  2463. }
  2464. /* if there is an old rule occupying our place remove it */
  2465. if (rule && (rule->sw_idx == sw_idx)) {
  2466. if (!input)
  2467. err = igb_erase_filter(adapter, rule);
  2468. hlist_del(&rule->nfc_node);
  2469. kfree(rule);
  2470. adapter->nfc_filter_count--;
  2471. }
  2472. /* If no input this was a delete, err should be 0 if a rule was
  2473. * successfully found and removed from the list else -EINVAL
  2474. */
  2475. if (!input)
  2476. return err;
  2477. /* initialize node */
  2478. INIT_HLIST_NODE(&input->nfc_node);
  2479. /* add filter to the list */
  2480. if (parent)
  2481. hlist_add_behind(&parent->nfc_node, &input->nfc_node);
  2482. else
  2483. hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
  2484. /* update counts */
  2485. adapter->nfc_filter_count++;
  2486. return 0;
  2487. }
  2488. static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
  2489. struct ethtool_rxnfc *cmd)
  2490. {
  2491. struct net_device *netdev = adapter->netdev;
  2492. struct ethtool_rx_flow_spec *fsp =
  2493. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2494. struct igb_nfc_filter *input, *rule;
  2495. int err = 0;
  2496. if (!(netdev->hw_features & NETIF_F_NTUPLE))
  2497. return -EOPNOTSUPP;
  2498. /* Don't allow programming if the action is a queue greater than
  2499. * the number of online Rx queues.
  2500. */
  2501. if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
  2502. (fsp->ring_cookie >= adapter->num_rx_queues)) {
  2503. dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
  2504. return -EINVAL;
  2505. }
  2506. /* Don't allow indexes to exist outside of available space */
  2507. if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
  2508. dev_err(&adapter->pdev->dev, "Location out of range\n");
  2509. return -EINVAL;
  2510. }
  2511. if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
  2512. return -EINVAL;
  2513. if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
  2514. fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
  2515. return -EINVAL;
  2516. input = kzalloc(sizeof(*input), GFP_KERNEL);
  2517. if (!input)
  2518. return -ENOMEM;
  2519. if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
  2520. input->filter.etype = fsp->h_u.ether_spec.h_proto;
  2521. input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
  2522. }
  2523. if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
  2524. if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
  2525. err = -EINVAL;
  2526. goto err_out;
  2527. }
  2528. input->filter.vlan_tci = fsp->h_ext.vlan_tci;
  2529. input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
  2530. }
  2531. input->action = fsp->ring_cookie;
  2532. input->sw_idx = fsp->location;
  2533. spin_lock(&adapter->nfc_lock);
  2534. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2535. if (!memcmp(&input->filter, &rule->filter,
  2536. sizeof(input->filter))) {
  2537. err = -EEXIST;
  2538. dev_err(&adapter->pdev->dev,
  2539. "ethtool: this filter is already set\n");
  2540. goto err_out_w_lock;
  2541. }
  2542. }
  2543. err = igb_add_filter(adapter, input);
  2544. if (err)
  2545. goto err_out_w_lock;
  2546. igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
  2547. spin_unlock(&adapter->nfc_lock);
  2548. return 0;
  2549. err_out_w_lock:
  2550. spin_unlock(&adapter->nfc_lock);
  2551. err_out:
  2552. kfree(input);
  2553. return err;
  2554. }
  2555. static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
  2556. struct ethtool_rxnfc *cmd)
  2557. {
  2558. struct ethtool_rx_flow_spec *fsp =
  2559. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2560. int err;
  2561. spin_lock(&adapter->nfc_lock);
  2562. err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
  2563. spin_unlock(&adapter->nfc_lock);
  2564. return err;
  2565. }
  2566. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2567. {
  2568. struct igb_adapter *adapter = netdev_priv(dev);
  2569. int ret = -EOPNOTSUPP;
  2570. switch (cmd->cmd) {
  2571. case ETHTOOL_SRXFH:
  2572. ret = igb_set_rss_hash_opt(adapter, cmd);
  2573. break;
  2574. case ETHTOOL_SRXCLSRLINS:
  2575. ret = igb_add_ethtool_nfc_entry(adapter, cmd);
  2576. break;
  2577. case ETHTOOL_SRXCLSRLDEL:
  2578. ret = igb_del_ethtool_nfc_entry(adapter, cmd);
  2579. default:
  2580. break;
  2581. }
  2582. return ret;
  2583. }
  2584. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2585. {
  2586. struct igb_adapter *adapter = netdev_priv(netdev);
  2587. struct e1000_hw *hw = &adapter->hw;
  2588. u32 ret_val;
  2589. u16 phy_data;
  2590. if ((hw->mac.type < e1000_i350) ||
  2591. (hw->phy.media_type != e1000_media_type_copper))
  2592. return -EOPNOTSUPP;
  2593. edata->supported = (SUPPORTED_1000baseT_Full |
  2594. SUPPORTED_100baseT_Full);
  2595. if (!hw->dev_spec._82575.eee_disable)
  2596. edata->advertised =
  2597. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2598. /* The IPCNFG and EEER registers are not supported on I354. */
  2599. if (hw->mac.type == e1000_i354) {
  2600. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2601. } else {
  2602. u32 eeer;
  2603. eeer = rd32(E1000_EEER);
  2604. /* EEE status on negotiated link */
  2605. if (eeer & E1000_EEER_EEE_NEG)
  2606. edata->eee_active = true;
  2607. if (eeer & E1000_EEER_TX_LPI_EN)
  2608. edata->tx_lpi_enabled = true;
  2609. }
  2610. /* EEE Link Partner Advertised */
  2611. switch (hw->mac.type) {
  2612. case e1000_i350:
  2613. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2614. &phy_data);
  2615. if (ret_val)
  2616. return -ENODATA;
  2617. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2618. break;
  2619. case e1000_i354:
  2620. case e1000_i210:
  2621. case e1000_i211:
  2622. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2623. E1000_EEE_LP_ADV_DEV_I210,
  2624. &phy_data);
  2625. if (ret_val)
  2626. return -ENODATA;
  2627. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2628. break;
  2629. default:
  2630. break;
  2631. }
  2632. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2633. if ((hw->mac.type == e1000_i354) &&
  2634. (edata->eee_enabled))
  2635. edata->tx_lpi_enabled = true;
  2636. /* Report correct negotiated EEE status for devices that
  2637. * wrongly report EEE at half-duplex
  2638. */
  2639. if (adapter->link_duplex == HALF_DUPLEX) {
  2640. edata->eee_enabled = false;
  2641. edata->eee_active = false;
  2642. edata->tx_lpi_enabled = false;
  2643. edata->advertised &= ~edata->advertised;
  2644. }
  2645. return 0;
  2646. }
  2647. static int igb_set_eee(struct net_device *netdev,
  2648. struct ethtool_eee *edata)
  2649. {
  2650. struct igb_adapter *adapter = netdev_priv(netdev);
  2651. struct e1000_hw *hw = &adapter->hw;
  2652. struct ethtool_eee eee_curr;
  2653. bool adv1g_eee = true, adv100m_eee = true;
  2654. s32 ret_val;
  2655. if ((hw->mac.type < e1000_i350) ||
  2656. (hw->phy.media_type != e1000_media_type_copper))
  2657. return -EOPNOTSUPP;
  2658. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2659. ret_val = igb_get_eee(netdev, &eee_curr);
  2660. if (ret_val)
  2661. return ret_val;
  2662. if (eee_curr.eee_enabled) {
  2663. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2664. dev_err(&adapter->pdev->dev,
  2665. "Setting EEE tx-lpi is not supported\n");
  2666. return -EINVAL;
  2667. }
  2668. /* Tx LPI timer is not implemented currently */
  2669. if (edata->tx_lpi_timer) {
  2670. dev_err(&adapter->pdev->dev,
  2671. "Setting EEE Tx LPI timer is not supported\n");
  2672. return -EINVAL;
  2673. }
  2674. if (!edata->advertised || (edata->advertised &
  2675. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2676. dev_err(&adapter->pdev->dev,
  2677. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2678. return -EINVAL;
  2679. }
  2680. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2681. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2682. } else if (!edata->eee_enabled) {
  2683. dev_err(&adapter->pdev->dev,
  2684. "Setting EEE options are not supported with EEE disabled\n");
  2685. return -EINVAL;
  2686. }
  2687. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2688. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2689. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2690. adapter->flags |= IGB_FLAG_EEE;
  2691. /* reset link */
  2692. if (netif_running(netdev))
  2693. igb_reinit_locked(adapter);
  2694. else
  2695. igb_reset(adapter);
  2696. }
  2697. if (hw->mac.type == e1000_i354)
  2698. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2699. else
  2700. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2701. if (ret_val) {
  2702. dev_err(&adapter->pdev->dev,
  2703. "Problem setting EEE advertisement options\n");
  2704. return -EINVAL;
  2705. }
  2706. return 0;
  2707. }
  2708. static int igb_get_module_info(struct net_device *netdev,
  2709. struct ethtool_modinfo *modinfo)
  2710. {
  2711. struct igb_adapter *adapter = netdev_priv(netdev);
  2712. struct e1000_hw *hw = &adapter->hw;
  2713. u32 status = 0;
  2714. u16 sff8472_rev, addr_mode;
  2715. bool page_swap = false;
  2716. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2717. (hw->phy.media_type == e1000_media_type_unknown))
  2718. return -EOPNOTSUPP;
  2719. /* Check whether we support SFF-8472 or not */
  2720. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2721. if (status)
  2722. return -EIO;
  2723. /* addressing mode is not supported */
  2724. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2725. if (status)
  2726. return -EIO;
  2727. /* addressing mode is not supported */
  2728. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2729. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2730. page_swap = true;
  2731. }
  2732. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2733. /* We have an SFP, but it does not support SFF-8472 */
  2734. modinfo->type = ETH_MODULE_SFF_8079;
  2735. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2736. } else {
  2737. /* We have an SFP which supports a revision of SFF-8472 */
  2738. modinfo->type = ETH_MODULE_SFF_8472;
  2739. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2740. }
  2741. return 0;
  2742. }
  2743. static int igb_get_module_eeprom(struct net_device *netdev,
  2744. struct ethtool_eeprom *ee, u8 *data)
  2745. {
  2746. struct igb_adapter *adapter = netdev_priv(netdev);
  2747. struct e1000_hw *hw = &adapter->hw;
  2748. u32 status = 0;
  2749. u16 *dataword;
  2750. u16 first_word, last_word;
  2751. int i = 0;
  2752. if (ee->len == 0)
  2753. return -EINVAL;
  2754. first_word = ee->offset >> 1;
  2755. last_word = (ee->offset + ee->len - 1) >> 1;
  2756. dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  2757. GFP_KERNEL);
  2758. if (!dataword)
  2759. return -ENOMEM;
  2760. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2761. for (i = 0; i < last_word - first_word + 1; i++) {
  2762. status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
  2763. &dataword[i]);
  2764. if (status) {
  2765. /* Error occurred while reading module */
  2766. kfree(dataword);
  2767. return -EIO;
  2768. }
  2769. be16_to_cpus(&dataword[i]);
  2770. }
  2771. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2772. kfree(dataword);
  2773. return 0;
  2774. }
  2775. static int igb_ethtool_begin(struct net_device *netdev)
  2776. {
  2777. struct igb_adapter *adapter = netdev_priv(netdev);
  2778. pm_runtime_get_sync(&adapter->pdev->dev);
  2779. return 0;
  2780. }
  2781. static void igb_ethtool_complete(struct net_device *netdev)
  2782. {
  2783. struct igb_adapter *adapter = netdev_priv(netdev);
  2784. pm_runtime_put(&adapter->pdev->dev);
  2785. }
  2786. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2787. {
  2788. return IGB_RETA_SIZE;
  2789. }
  2790. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2791. u8 *hfunc)
  2792. {
  2793. struct igb_adapter *adapter = netdev_priv(netdev);
  2794. int i;
  2795. if (hfunc)
  2796. *hfunc = ETH_RSS_HASH_TOP;
  2797. if (!indir)
  2798. return 0;
  2799. for (i = 0; i < IGB_RETA_SIZE; i++)
  2800. indir[i] = adapter->rss_indir_tbl[i];
  2801. return 0;
  2802. }
  2803. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2804. {
  2805. struct e1000_hw *hw = &adapter->hw;
  2806. u32 reg = E1000_RETA(0);
  2807. u32 shift = 0;
  2808. int i = 0;
  2809. switch (hw->mac.type) {
  2810. case e1000_82575:
  2811. shift = 6;
  2812. break;
  2813. case e1000_82576:
  2814. /* 82576 supports 2 RSS queues for SR-IOV */
  2815. if (adapter->vfs_allocated_count)
  2816. shift = 3;
  2817. break;
  2818. default:
  2819. break;
  2820. }
  2821. while (i < IGB_RETA_SIZE) {
  2822. u32 val = 0;
  2823. int j;
  2824. for (j = 3; j >= 0; j--) {
  2825. val <<= 8;
  2826. val |= adapter->rss_indir_tbl[i + j];
  2827. }
  2828. wr32(reg, val << shift);
  2829. reg += 4;
  2830. i += 4;
  2831. }
  2832. }
  2833. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2834. const u8 *key, const u8 hfunc)
  2835. {
  2836. struct igb_adapter *adapter = netdev_priv(netdev);
  2837. struct e1000_hw *hw = &adapter->hw;
  2838. int i;
  2839. u32 num_queues;
  2840. /* We do not allow change in unsupported parameters */
  2841. if (key ||
  2842. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2843. return -EOPNOTSUPP;
  2844. if (!indir)
  2845. return 0;
  2846. num_queues = adapter->rss_queues;
  2847. switch (hw->mac.type) {
  2848. case e1000_82576:
  2849. /* 82576 supports 2 RSS queues for SR-IOV */
  2850. if (adapter->vfs_allocated_count)
  2851. num_queues = 2;
  2852. break;
  2853. default:
  2854. break;
  2855. }
  2856. /* Verify user input. */
  2857. for (i = 0; i < IGB_RETA_SIZE; i++)
  2858. if (indir[i] >= num_queues)
  2859. return -EINVAL;
  2860. for (i = 0; i < IGB_RETA_SIZE; i++)
  2861. adapter->rss_indir_tbl[i] = indir[i];
  2862. igb_write_rss_indir_tbl(adapter);
  2863. return 0;
  2864. }
  2865. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2866. {
  2867. struct e1000_hw *hw = &adapter->hw;
  2868. unsigned int max_combined = 0;
  2869. switch (hw->mac.type) {
  2870. case e1000_i211:
  2871. max_combined = IGB_MAX_RX_QUEUES_I211;
  2872. break;
  2873. case e1000_82575:
  2874. case e1000_i210:
  2875. max_combined = IGB_MAX_RX_QUEUES_82575;
  2876. break;
  2877. case e1000_i350:
  2878. if (!!adapter->vfs_allocated_count) {
  2879. max_combined = 1;
  2880. break;
  2881. }
  2882. /* fall through */
  2883. case e1000_82576:
  2884. if (!!adapter->vfs_allocated_count) {
  2885. max_combined = 2;
  2886. break;
  2887. }
  2888. /* fall through */
  2889. case e1000_82580:
  2890. case e1000_i354:
  2891. default:
  2892. max_combined = IGB_MAX_RX_QUEUES;
  2893. break;
  2894. }
  2895. return max_combined;
  2896. }
  2897. static void igb_get_channels(struct net_device *netdev,
  2898. struct ethtool_channels *ch)
  2899. {
  2900. struct igb_adapter *adapter = netdev_priv(netdev);
  2901. /* Report maximum channels */
  2902. ch->max_combined = igb_max_channels(adapter);
  2903. /* Report info for other vector */
  2904. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2905. ch->max_other = NON_Q_VECTORS;
  2906. ch->other_count = NON_Q_VECTORS;
  2907. }
  2908. ch->combined_count = adapter->rss_queues;
  2909. }
  2910. static int igb_set_channels(struct net_device *netdev,
  2911. struct ethtool_channels *ch)
  2912. {
  2913. struct igb_adapter *adapter = netdev_priv(netdev);
  2914. unsigned int count = ch->combined_count;
  2915. unsigned int max_combined = 0;
  2916. /* Verify they are not requesting separate vectors */
  2917. if (!count || ch->rx_count || ch->tx_count)
  2918. return -EINVAL;
  2919. /* Verify other_count is valid and has not been changed */
  2920. if (ch->other_count != NON_Q_VECTORS)
  2921. return -EINVAL;
  2922. /* Verify the number of channels doesn't exceed hw limits */
  2923. max_combined = igb_max_channels(adapter);
  2924. if (count > max_combined)
  2925. return -EINVAL;
  2926. if (count != adapter->rss_queues) {
  2927. adapter->rss_queues = count;
  2928. igb_set_flag_queue_pairs(adapter, max_combined);
  2929. /* Hardware has to reinitialize queues and interrupts to
  2930. * match the new configuration.
  2931. */
  2932. return igb_reinit_queues(adapter);
  2933. }
  2934. return 0;
  2935. }
  2936. static u32 igb_get_priv_flags(struct net_device *netdev)
  2937. {
  2938. struct igb_adapter *adapter = netdev_priv(netdev);
  2939. u32 priv_flags = 0;
  2940. if (adapter->flags & IGB_FLAG_RX_LEGACY)
  2941. priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
  2942. return priv_flags;
  2943. }
  2944. static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
  2945. {
  2946. struct igb_adapter *adapter = netdev_priv(netdev);
  2947. unsigned int flags = adapter->flags;
  2948. flags &= ~IGB_FLAG_RX_LEGACY;
  2949. if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
  2950. flags |= IGB_FLAG_RX_LEGACY;
  2951. if (flags != adapter->flags) {
  2952. adapter->flags = flags;
  2953. /* reset interface to repopulate queues */
  2954. if (netif_running(netdev))
  2955. igb_reinit_locked(adapter);
  2956. }
  2957. return 0;
  2958. }
  2959. static const struct ethtool_ops igb_ethtool_ops = {
  2960. .get_drvinfo = igb_get_drvinfo,
  2961. .get_regs_len = igb_get_regs_len,
  2962. .get_regs = igb_get_regs,
  2963. .get_wol = igb_get_wol,
  2964. .set_wol = igb_set_wol,
  2965. .get_msglevel = igb_get_msglevel,
  2966. .set_msglevel = igb_set_msglevel,
  2967. .nway_reset = igb_nway_reset,
  2968. .get_link = igb_get_link,
  2969. .get_eeprom_len = igb_get_eeprom_len,
  2970. .get_eeprom = igb_get_eeprom,
  2971. .set_eeprom = igb_set_eeprom,
  2972. .get_ringparam = igb_get_ringparam,
  2973. .set_ringparam = igb_set_ringparam,
  2974. .get_pauseparam = igb_get_pauseparam,
  2975. .set_pauseparam = igb_set_pauseparam,
  2976. .self_test = igb_diag_test,
  2977. .get_strings = igb_get_strings,
  2978. .set_phys_id = igb_set_phys_id,
  2979. .get_sset_count = igb_get_sset_count,
  2980. .get_ethtool_stats = igb_get_ethtool_stats,
  2981. .get_coalesce = igb_get_coalesce,
  2982. .set_coalesce = igb_set_coalesce,
  2983. .get_ts_info = igb_get_ts_info,
  2984. .get_rxnfc = igb_get_rxnfc,
  2985. .set_rxnfc = igb_set_rxnfc,
  2986. .get_eee = igb_get_eee,
  2987. .set_eee = igb_set_eee,
  2988. .get_module_info = igb_get_module_info,
  2989. .get_module_eeprom = igb_get_module_eeprom,
  2990. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  2991. .get_rxfh = igb_get_rxfh,
  2992. .set_rxfh = igb_set_rxfh,
  2993. .get_channels = igb_get_channels,
  2994. .set_channels = igb_set_channels,
  2995. .get_priv_flags = igb_get_priv_flags,
  2996. .set_priv_flags = igb_set_priv_flags,
  2997. .begin = igb_ethtool_begin,
  2998. .complete = igb_ethtool_complete,
  2999. .get_link_ksettings = igb_get_link_ksettings,
  3000. .set_link_ksettings = igb_set_link_ksettings,
  3001. };
  3002. void igb_set_ethtool_ops(struct net_device *netdev)
  3003. {
  3004. netdev->ethtool_ops = &igb_ethtool_ops;
  3005. }