request_manager.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. /**********************************************************************
  2. * Author: Cavium, Inc.
  3. *
  4. * Contact: support@cavium.com
  5. * Please include "LiquidIO" in the subject.
  6. *
  7. * Copyright (c) 2003-2016 Cavium, Inc.
  8. *
  9. * This file is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License, Version 2, as
  11. * published by the Free Software Foundation.
  12. *
  13. * This file is distributed in the hope that it will be useful, but
  14. * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
  15. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
  16. * NONINFRINGEMENT. See the GNU General Public License for more
  17. * details.
  18. **********************************************************************/
  19. #include <linux/pci.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/vmalloc.h>
  22. #include "liquidio_common.h"
  23. #include "octeon_droq.h"
  24. #include "octeon_iq.h"
  25. #include "response_manager.h"
  26. #include "octeon_device.h"
  27. #include "octeon_main.h"
  28. #include "octeon_network.h"
  29. #include "cn66xx_device.h"
  30. #include "cn23xx_pf_device.h"
  31. #include "cn23xx_vf_device.h"
  32. struct iq_post_status {
  33. int status;
  34. int index;
  35. };
  36. static void check_db_timeout(struct work_struct *work);
  37. static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
  38. static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
  39. static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
  40. {
  41. struct octeon_instr_queue *iq =
  42. (struct octeon_instr_queue *)oct->instr_queue[iq_no];
  43. return iq->iqcmd_64B;
  44. }
  45. #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
  46. /* Define this to return the request status comaptible to old code */
  47. /*#define OCTEON_USE_OLD_REQ_STATUS*/
  48. /* Return 0 on success, 1 on failure */
  49. int octeon_init_instr_queue(struct octeon_device *oct,
  50. union oct_txpciq txpciq,
  51. u32 num_descs)
  52. {
  53. struct octeon_instr_queue *iq;
  54. struct octeon_iq_config *conf = NULL;
  55. u32 iq_no = (u32)txpciq.s.q_no;
  56. u32 q_size;
  57. struct cavium_wq *db_wq;
  58. int numa_node = dev_to_node(&oct->pci_dev->dev);
  59. if (OCTEON_CN6XXX(oct))
  60. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
  61. else if (OCTEON_CN23XX_PF(oct))
  62. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
  63. else if (OCTEON_CN23XX_VF(oct))
  64. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
  65. if (!conf) {
  66. dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
  67. oct->chip_id);
  68. return 1;
  69. }
  70. if (num_descs & (num_descs - 1)) {
  71. dev_err(&oct->pci_dev->dev,
  72. "Number of descriptors for instr queue %d not in power of 2.\n",
  73. iq_no);
  74. return 1;
  75. }
  76. q_size = (u32)conf->instr_type * num_descs;
  77. iq = oct->instr_queue[iq_no];
  78. iq->oct_dev = oct;
  79. iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
  80. if (!iq->base_addr) {
  81. dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
  82. iq_no);
  83. return 1;
  84. }
  85. iq->max_count = num_descs;
  86. /* Initialize a list to holds requests that have been posted to Octeon
  87. * but has yet to be fetched by octeon
  88. */
  89. iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
  90. numa_node);
  91. if (!iq->request_list)
  92. iq->request_list = vmalloc(sizeof(*iq->request_list) *
  93. num_descs);
  94. if (!iq->request_list) {
  95. lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
  96. dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
  97. iq_no);
  98. return 1;
  99. }
  100. memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
  101. dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
  102. iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
  103. iq->txpciq.u64 = txpciq.u64;
  104. iq->fill_threshold = (u32)conf->db_min;
  105. iq->fill_cnt = 0;
  106. iq->host_write_index = 0;
  107. iq->octeon_read_index = 0;
  108. iq->flush_index = 0;
  109. iq->last_db_time = 0;
  110. iq->do_auto_flush = 1;
  111. iq->db_timeout = (u32)conf->db_timeout;
  112. atomic_set(&iq->instr_pending, 0);
  113. /* Initialize the spinlock for this instruction queue */
  114. spin_lock_init(&iq->lock);
  115. spin_lock_init(&iq->post_lock);
  116. spin_lock_init(&iq->iq_flush_running_lock);
  117. oct->io_qmask.iq |= BIT_ULL(iq_no);
  118. /* Set the 32B/64B mode for each input queue */
  119. oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
  120. iq->iqcmd_64B = (conf->instr_type == 64);
  121. oct->fn_list.setup_iq_regs(oct, iq_no);
  122. oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
  123. WQ_MEM_RECLAIM,
  124. 0);
  125. if (!oct->check_db_wq[iq_no].wq) {
  126. vfree(iq->request_list);
  127. iq->request_list = NULL;
  128. lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
  129. dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
  130. iq_no);
  131. return 1;
  132. }
  133. db_wq = &oct->check_db_wq[iq_no];
  134. INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
  135. db_wq->wk.ctxptr = oct;
  136. db_wq->wk.ctxul = iq_no;
  137. queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
  138. return 0;
  139. }
  140. int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
  141. {
  142. u64 desc_size = 0, q_size;
  143. struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
  144. cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
  145. destroy_workqueue(oct->check_db_wq[iq_no].wq);
  146. if (OCTEON_CN6XXX(oct))
  147. desc_size =
  148. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
  149. else if (OCTEON_CN23XX_PF(oct))
  150. desc_size =
  151. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
  152. else if (OCTEON_CN23XX_VF(oct))
  153. desc_size =
  154. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
  155. vfree(iq->request_list);
  156. if (iq->base_addr) {
  157. q_size = iq->max_count * desc_size;
  158. lio_dma_free(oct, (u32)q_size, iq->base_addr,
  159. iq->base_addr_dma);
  160. return 0;
  161. }
  162. return 1;
  163. }
  164. /* Return 0 on success, 1 on failure */
  165. int octeon_setup_iq(struct octeon_device *oct,
  166. int ifidx,
  167. int q_index,
  168. union oct_txpciq txpciq,
  169. u32 num_descs,
  170. void *app_ctx)
  171. {
  172. u32 iq_no = (u32)txpciq.s.q_no;
  173. int numa_node = dev_to_node(&oct->pci_dev->dev);
  174. if (oct->instr_queue[iq_no]) {
  175. dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
  176. iq_no);
  177. oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
  178. oct->instr_queue[iq_no]->app_ctx = app_ctx;
  179. return 0;
  180. }
  181. oct->instr_queue[iq_no] =
  182. vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
  183. if (!oct->instr_queue[iq_no])
  184. oct->instr_queue[iq_no] =
  185. vmalloc(sizeof(struct octeon_instr_queue));
  186. if (!oct->instr_queue[iq_no])
  187. return 1;
  188. memset(oct->instr_queue[iq_no], 0,
  189. sizeof(struct octeon_instr_queue));
  190. oct->instr_queue[iq_no]->q_index = q_index;
  191. oct->instr_queue[iq_no]->app_ctx = app_ctx;
  192. oct->instr_queue[iq_no]->ifidx = ifidx;
  193. if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
  194. vfree(oct->instr_queue[iq_no]);
  195. oct->instr_queue[iq_no] = NULL;
  196. return 1;
  197. }
  198. oct->num_iqs++;
  199. if (oct->fn_list.enable_io_queues(oct))
  200. return 1;
  201. return 0;
  202. }
  203. int lio_wait_for_instr_fetch(struct octeon_device *oct)
  204. {
  205. int i, retry = 1000, pending, instr_cnt = 0;
  206. do {
  207. instr_cnt = 0;
  208. for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
  209. if (!(oct->io_qmask.iq & BIT_ULL(i)))
  210. continue;
  211. pending =
  212. atomic_read(&oct->
  213. instr_queue[i]->instr_pending);
  214. if (pending)
  215. __check_db_timeout(oct, i);
  216. instr_cnt += pending;
  217. }
  218. if (instr_cnt == 0)
  219. break;
  220. schedule_timeout_uninterruptible(1);
  221. } while (retry-- && instr_cnt);
  222. return instr_cnt;
  223. }
  224. static inline void
  225. ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
  226. {
  227. if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
  228. writel(iq->fill_cnt, iq->doorbell_reg);
  229. /* make sure doorbell write goes through */
  230. mmiowb();
  231. iq->fill_cnt = 0;
  232. iq->last_db_time = jiffies;
  233. return;
  234. }
  235. }
  236. static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
  237. u8 *cmd)
  238. {
  239. u8 *iqptr, cmdsize;
  240. cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
  241. iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
  242. memcpy(iqptr, cmd, cmdsize);
  243. }
  244. static inline struct iq_post_status
  245. __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
  246. {
  247. struct iq_post_status st;
  248. st.status = IQ_SEND_OK;
  249. /* This ensures that the read index does not wrap around to the same
  250. * position if queue gets full before Octeon could fetch any instr.
  251. */
  252. if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
  253. st.status = IQ_SEND_FAILED;
  254. st.index = -1;
  255. return st;
  256. }
  257. if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
  258. st.status = IQ_SEND_STOP;
  259. __copy_cmd_into_iq(iq, cmd);
  260. /* "index" is returned, host_write_index is modified. */
  261. st.index = iq->host_write_index;
  262. iq->host_write_index = incr_index(iq->host_write_index, 1,
  263. iq->max_count);
  264. iq->fill_cnt++;
  265. /* Flush the command into memory. We need to be sure the data is in
  266. * memory before indicating that the instruction is pending.
  267. */
  268. wmb();
  269. atomic_inc(&iq->instr_pending);
  270. return st;
  271. }
  272. int
  273. octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
  274. void (*fn)(void *))
  275. {
  276. if (reqtype > REQTYPE_LAST) {
  277. dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
  278. __func__, reqtype);
  279. return -EINVAL;
  280. }
  281. reqtype_free_fn[oct->octeon_id][reqtype] = fn;
  282. return 0;
  283. }
  284. static inline void
  285. __add_to_request_list(struct octeon_instr_queue *iq,
  286. int idx, void *buf, int reqtype)
  287. {
  288. iq->request_list[idx].buf = buf;
  289. iq->request_list[idx].reqtype = reqtype;
  290. }
  291. /* Can only run in process context */
  292. int
  293. lio_process_iq_request_list(struct octeon_device *oct,
  294. struct octeon_instr_queue *iq, u32 napi_budget)
  295. {
  296. int reqtype;
  297. void *buf;
  298. u32 old = iq->flush_index;
  299. u32 inst_count = 0;
  300. unsigned int pkts_compl = 0, bytes_compl = 0;
  301. struct octeon_soft_command *sc;
  302. struct octeon_instr_irh *irh;
  303. unsigned long flags;
  304. while (old != iq->octeon_read_index) {
  305. reqtype = iq->request_list[old].reqtype;
  306. buf = iq->request_list[old].buf;
  307. if (reqtype == REQTYPE_NONE)
  308. goto skip_this;
  309. octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
  310. &bytes_compl);
  311. switch (reqtype) {
  312. case REQTYPE_NORESP_NET:
  313. case REQTYPE_NORESP_NET_SG:
  314. case REQTYPE_RESP_NET_SG:
  315. reqtype_free_fn[oct->octeon_id][reqtype](buf);
  316. break;
  317. case REQTYPE_RESP_NET:
  318. case REQTYPE_SOFT_COMMAND:
  319. sc = buf;
  320. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
  321. irh = (struct octeon_instr_irh *)
  322. &sc->cmd.cmd3.irh;
  323. else
  324. irh = (struct octeon_instr_irh *)
  325. &sc->cmd.cmd2.irh;
  326. if (irh->rflag) {
  327. /* We're expecting a response from Octeon.
  328. * It's up to lio_process_ordered_list() to
  329. * process sc. Add sc to the ordered soft
  330. * command response list because we expect
  331. * a response from Octeon.
  332. */
  333. spin_lock_irqsave
  334. (&oct->response_list
  335. [OCTEON_ORDERED_SC_LIST].lock,
  336. flags);
  337. atomic_inc(&oct->response_list
  338. [OCTEON_ORDERED_SC_LIST].
  339. pending_req_count);
  340. list_add_tail(&sc->node, &oct->response_list
  341. [OCTEON_ORDERED_SC_LIST].head);
  342. spin_unlock_irqrestore
  343. (&oct->response_list
  344. [OCTEON_ORDERED_SC_LIST].lock,
  345. flags);
  346. } else {
  347. if (sc->callback) {
  348. /* This callback must not sleep */
  349. sc->callback(oct, OCTEON_REQUEST_DONE,
  350. sc->callback_arg);
  351. }
  352. }
  353. break;
  354. default:
  355. dev_err(&oct->pci_dev->dev,
  356. "%s Unknown reqtype: %d buf: %p at idx %d\n",
  357. __func__, reqtype, buf, old);
  358. }
  359. iq->request_list[old].buf = NULL;
  360. iq->request_list[old].reqtype = 0;
  361. skip_this:
  362. inst_count++;
  363. old = incr_index(old, 1, iq->max_count);
  364. if ((napi_budget) && (inst_count >= napi_budget))
  365. break;
  366. }
  367. if (bytes_compl)
  368. octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
  369. bytes_compl);
  370. iq->flush_index = old;
  371. return inst_count;
  372. }
  373. /* Can only be called from process context */
  374. int
  375. octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
  376. u32 napi_budget)
  377. {
  378. u32 inst_processed = 0;
  379. u32 tot_inst_processed = 0;
  380. int tx_done = 1;
  381. if (!spin_trylock(&iq->iq_flush_running_lock))
  382. return tx_done;
  383. spin_lock_bh(&iq->lock);
  384. iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
  385. do {
  386. /* Process any outstanding IQ packets. */
  387. if (iq->flush_index == iq->octeon_read_index)
  388. break;
  389. if (napi_budget)
  390. inst_processed =
  391. lio_process_iq_request_list(oct, iq,
  392. napi_budget -
  393. tot_inst_processed);
  394. else
  395. inst_processed =
  396. lio_process_iq_request_list(oct, iq, 0);
  397. if (inst_processed) {
  398. atomic_sub(inst_processed, &iq->instr_pending);
  399. iq->stats.instr_processed += inst_processed;
  400. }
  401. tot_inst_processed += inst_processed;
  402. inst_processed = 0;
  403. } while (tot_inst_processed < napi_budget);
  404. if (napi_budget && (tot_inst_processed >= napi_budget))
  405. tx_done = 0;
  406. iq->last_db_time = jiffies;
  407. spin_unlock_bh(&iq->lock);
  408. spin_unlock(&iq->iq_flush_running_lock);
  409. return tx_done;
  410. }
  411. /* Process instruction queue after timeout.
  412. * This routine gets called from a workqueue or when removing the module.
  413. */
  414. static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
  415. {
  416. struct octeon_instr_queue *iq;
  417. u64 next_time;
  418. if (!oct)
  419. return;
  420. iq = oct->instr_queue[iq_no];
  421. if (!iq)
  422. return;
  423. /* return immediately, if no work pending */
  424. if (!atomic_read(&iq->instr_pending))
  425. return;
  426. /* If jiffies - last_db_time < db_timeout do nothing */
  427. next_time = iq->last_db_time + iq->db_timeout;
  428. if (!time_after(jiffies, (unsigned long)next_time))
  429. return;
  430. iq->last_db_time = jiffies;
  431. /* Flush the instruction queue */
  432. octeon_flush_iq(oct, iq, 0);
  433. lio_enable_irq(NULL, iq);
  434. }
  435. /* Called by the Poll thread at regular intervals to check the instruction
  436. * queue for commands to be posted and for commands that were fetched by Octeon.
  437. */
  438. static void check_db_timeout(struct work_struct *work)
  439. {
  440. struct cavium_wk *wk = (struct cavium_wk *)work;
  441. struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
  442. u64 iq_no = wk->ctxul;
  443. struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
  444. u32 delay = 10;
  445. __check_db_timeout(oct, iq_no);
  446. queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
  447. }
  448. int
  449. octeon_send_command(struct octeon_device *oct, u32 iq_no,
  450. u32 force_db, void *cmd, void *buf,
  451. u32 datasize, u32 reqtype)
  452. {
  453. struct iq_post_status st;
  454. struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
  455. /* Get the lock and prevent other tasks and tx interrupt handler from
  456. * running.
  457. */
  458. spin_lock_bh(&iq->post_lock);
  459. st = __post_command2(iq, cmd);
  460. if (st.status != IQ_SEND_FAILED) {
  461. octeon_report_sent_bytes_to_bql(buf, reqtype);
  462. __add_to_request_list(iq, st.index, buf, reqtype);
  463. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
  464. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
  465. if (force_db)
  466. ring_doorbell(oct, iq);
  467. } else {
  468. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
  469. }
  470. spin_unlock_bh(&iq->post_lock);
  471. /* This is only done here to expedite packets being flushed
  472. * for cases where there are no IQ completion interrupts.
  473. */
  474. return st.status;
  475. }
  476. void
  477. octeon_prepare_soft_command(struct octeon_device *oct,
  478. struct octeon_soft_command *sc,
  479. u8 opcode,
  480. u8 subcode,
  481. u32 irh_ossp,
  482. u64 ossp0,
  483. u64 ossp1)
  484. {
  485. struct octeon_config *oct_cfg;
  486. struct octeon_instr_ih2 *ih2;
  487. struct octeon_instr_ih3 *ih3;
  488. struct octeon_instr_pki_ih3 *pki_ih3;
  489. struct octeon_instr_irh *irh;
  490. struct octeon_instr_rdp *rdp;
  491. WARN_ON(opcode > 15);
  492. WARN_ON(subcode > 127);
  493. oct_cfg = octeon_get_conf(oct);
  494. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
  495. ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  496. ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
  497. pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
  498. pki_ih3->w = 1;
  499. pki_ih3->raw = 1;
  500. pki_ih3->utag = 1;
  501. pki_ih3->uqpg =
  502. oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
  503. pki_ih3->utt = 1;
  504. pki_ih3->tag = LIO_CONTROL;
  505. pki_ih3->tagtype = ATOMIC_TAG;
  506. pki_ih3->qpg =
  507. oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
  508. pki_ih3->pm = 0x7;
  509. pki_ih3->sl = 8;
  510. if (sc->datasize)
  511. ih3->dlengsz = sc->datasize;
  512. irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  513. irh->opcode = opcode;
  514. irh->subcode = subcode;
  515. /* opcode/subcode specific parameters (ossp) */
  516. irh->ossp = irh_ossp;
  517. sc->cmd.cmd3.ossp[0] = ossp0;
  518. sc->cmd.cmd3.ossp[1] = ossp1;
  519. if (sc->rdatasize) {
  520. rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
  521. rdp->pcie_port = oct->pcie_port;
  522. rdp->rlen = sc->rdatasize;
  523. irh->rflag = 1;
  524. /*PKI IH3*/
  525. /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
  526. ih3->fsz = LIO_SOFTCMDRESP_IH3;
  527. } else {
  528. irh->rflag = 0;
  529. /*PKI IH3*/
  530. /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
  531. ih3->fsz = LIO_PCICMD_O3;
  532. }
  533. } else {
  534. ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
  535. ih2->tagtype = ATOMIC_TAG;
  536. ih2->tag = LIO_CONTROL;
  537. ih2->raw = 1;
  538. ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
  539. if (sc->datasize) {
  540. ih2->dlengsz = sc->datasize;
  541. ih2->rs = 1;
  542. }
  543. irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
  544. irh->opcode = opcode;
  545. irh->subcode = subcode;
  546. /* opcode/subcode specific parameters (ossp) */
  547. irh->ossp = irh_ossp;
  548. sc->cmd.cmd2.ossp[0] = ossp0;
  549. sc->cmd.cmd2.ossp[1] = ossp1;
  550. if (sc->rdatasize) {
  551. rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
  552. rdp->pcie_port = oct->pcie_port;
  553. rdp->rlen = sc->rdatasize;
  554. irh->rflag = 1;
  555. /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
  556. ih2->fsz = LIO_SOFTCMDRESP_IH2;
  557. } else {
  558. irh->rflag = 0;
  559. /* irh + ossp[0] + ossp[1] = 24 bytes */
  560. ih2->fsz = LIO_PCICMD_O2;
  561. }
  562. }
  563. }
  564. int octeon_send_soft_command(struct octeon_device *oct,
  565. struct octeon_soft_command *sc)
  566. {
  567. struct octeon_instr_ih2 *ih2;
  568. struct octeon_instr_ih3 *ih3;
  569. struct octeon_instr_irh *irh;
  570. u32 len;
  571. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
  572. ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  573. if (ih3->dlengsz) {
  574. WARN_ON(!sc->dmadptr);
  575. sc->cmd.cmd3.dptr = sc->dmadptr;
  576. }
  577. irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  578. if (irh->rflag) {
  579. WARN_ON(!sc->dmarptr);
  580. WARN_ON(!sc->status_word);
  581. *sc->status_word = COMPLETION_WORD_INIT;
  582. sc->cmd.cmd3.rptr = sc->dmarptr;
  583. }
  584. len = (u32)ih3->dlengsz;
  585. } else {
  586. ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
  587. if (ih2->dlengsz) {
  588. WARN_ON(!sc->dmadptr);
  589. sc->cmd.cmd2.dptr = sc->dmadptr;
  590. }
  591. irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
  592. if (irh->rflag) {
  593. WARN_ON(!sc->dmarptr);
  594. WARN_ON(!sc->status_word);
  595. *sc->status_word = COMPLETION_WORD_INIT;
  596. sc->cmd.cmd2.rptr = sc->dmarptr;
  597. }
  598. len = (u32)ih2->dlengsz;
  599. }
  600. if (sc->wait_time)
  601. sc->timeout = jiffies + sc->wait_time;
  602. return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
  603. len, REQTYPE_SOFT_COMMAND));
  604. }
  605. int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
  606. {
  607. int i;
  608. u64 dma_addr;
  609. struct octeon_soft_command *sc;
  610. INIT_LIST_HEAD(&oct->sc_buf_pool.head);
  611. spin_lock_init(&oct->sc_buf_pool.lock);
  612. atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
  613. for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
  614. sc = (struct octeon_soft_command *)
  615. lio_dma_alloc(oct,
  616. SOFT_COMMAND_BUFFER_SIZE,
  617. (dma_addr_t *)&dma_addr);
  618. if (!sc) {
  619. octeon_free_sc_buffer_pool(oct);
  620. return 1;
  621. }
  622. sc->dma_addr = dma_addr;
  623. sc->size = SOFT_COMMAND_BUFFER_SIZE;
  624. list_add_tail(&sc->node, &oct->sc_buf_pool.head);
  625. }
  626. return 0;
  627. }
  628. int octeon_free_sc_buffer_pool(struct octeon_device *oct)
  629. {
  630. struct list_head *tmp, *tmp2;
  631. struct octeon_soft_command *sc;
  632. spin_lock_bh(&oct->sc_buf_pool.lock);
  633. list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
  634. list_del(tmp);
  635. sc = (struct octeon_soft_command *)tmp;
  636. lio_dma_free(oct, sc->size, sc, sc->dma_addr);
  637. }
  638. INIT_LIST_HEAD(&oct->sc_buf_pool.head);
  639. spin_unlock_bh(&oct->sc_buf_pool.lock);
  640. return 0;
  641. }
  642. struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
  643. u32 datasize,
  644. u32 rdatasize,
  645. u32 ctxsize)
  646. {
  647. u64 dma_addr;
  648. u32 size;
  649. u32 offset = sizeof(struct octeon_soft_command);
  650. struct octeon_soft_command *sc = NULL;
  651. struct list_head *tmp;
  652. WARN_ON((offset + datasize + rdatasize + ctxsize) >
  653. SOFT_COMMAND_BUFFER_SIZE);
  654. spin_lock_bh(&oct->sc_buf_pool.lock);
  655. if (list_empty(&oct->sc_buf_pool.head)) {
  656. spin_unlock_bh(&oct->sc_buf_pool.lock);
  657. return NULL;
  658. }
  659. list_for_each(tmp, &oct->sc_buf_pool.head)
  660. break;
  661. list_del(tmp);
  662. atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
  663. spin_unlock_bh(&oct->sc_buf_pool.lock);
  664. sc = (struct octeon_soft_command *)tmp;
  665. dma_addr = sc->dma_addr;
  666. size = sc->size;
  667. memset(sc, 0, sc->size);
  668. sc->dma_addr = dma_addr;
  669. sc->size = size;
  670. if (ctxsize) {
  671. sc->ctxptr = (u8 *)sc + offset;
  672. sc->ctxsize = ctxsize;
  673. }
  674. /* Start data at 128 byte boundary */
  675. offset = (offset + ctxsize + 127) & 0xffffff80;
  676. if (datasize) {
  677. sc->virtdptr = (u8 *)sc + offset;
  678. sc->dmadptr = dma_addr + offset;
  679. sc->datasize = datasize;
  680. }
  681. /* Start rdata at 128 byte boundary */
  682. offset = (offset + datasize + 127) & 0xffffff80;
  683. if (rdatasize) {
  684. WARN_ON(rdatasize < 16);
  685. sc->virtrptr = (u8 *)sc + offset;
  686. sc->dmarptr = dma_addr + offset;
  687. sc->rdatasize = rdatasize;
  688. sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
  689. }
  690. return sc;
  691. }
  692. void octeon_free_soft_command(struct octeon_device *oct,
  693. struct octeon_soft_command *sc)
  694. {
  695. spin_lock_bh(&oct->sc_buf_pool.lock);
  696. list_add_tail(&sc->node, &oct->sc_buf_pool.head);
  697. atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
  698. spin_unlock_bh(&oct->sc_buf_pool.lock);
  699. }