global2.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. /*
  2. * Marvell 88E6xxx Switch Global 2 Registers support (device address
  3. * 0x1C)
  4. *
  5. * Copyright (c) 2008 Marvell Semiconductor
  6. *
  7. * Copyright (c) 2016-2017 Savoir-faire Linux Inc.
  8. * Vivien Didelot <vivien.didelot@savoirfairelinux.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/interrupt.h>
  16. #include <linux/irqdomain.h>
  17. #include "mv88e6xxx.h"
  18. #include "global2.h"
  19. #define ADDR_GLOBAL2 0x1c
  20. static int mv88e6xxx_g2_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
  21. {
  22. return mv88e6xxx_read(chip, ADDR_GLOBAL2, reg, val);
  23. }
  24. static int mv88e6xxx_g2_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
  25. {
  26. return mv88e6xxx_write(chip, ADDR_GLOBAL2, reg, val);
  27. }
  28. static int mv88e6xxx_g2_update(struct mv88e6xxx_chip *chip, int reg, u16 update)
  29. {
  30. return mv88e6xxx_update(chip, ADDR_GLOBAL2, reg, update);
  31. }
  32. static int mv88e6xxx_g2_wait(struct mv88e6xxx_chip *chip, int reg, u16 mask)
  33. {
  34. return mv88e6xxx_wait(chip, ADDR_GLOBAL2, reg, mask);
  35. }
  36. /* Offset 0x02: Management Enable 2x */
  37. /* Offset 0x03: Management Enable 0x */
  38. int mv88e6095_g2_mgmt_rsvd2cpu(struct mv88e6xxx_chip *chip)
  39. {
  40. int err;
  41. /* Consider the frames with reserved multicast destination
  42. * addresses matching 01:80:c2:00:00:2x as MGMT.
  43. */
  44. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
  45. err = mv88e6xxx_g2_write(chip, GLOBAL2_MGMT_EN_2X, 0xffff);
  46. if (err)
  47. return err;
  48. }
  49. /* Consider the frames with reserved multicast destination
  50. * addresses matching 01:80:c2:00:00:0x as MGMT.
  51. */
  52. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X))
  53. return mv88e6xxx_g2_write(chip, GLOBAL2_MGMT_EN_0X, 0xffff);
  54. return 0;
  55. }
  56. /* Offset 0x06: Device Mapping Table register */
  57. static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
  58. int target, int port)
  59. {
  60. u16 val = (target << 8) | (port & 0xf);
  61. return mv88e6xxx_g2_update(chip, GLOBAL2_DEVICE_MAPPING, val);
  62. }
  63. static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
  64. {
  65. int target, port;
  66. int err;
  67. /* Initialize the routing port to the 32 possible target devices */
  68. for (target = 0; target < 32; ++target) {
  69. port = 0xf;
  70. if (target < DSA_MAX_SWITCHES) {
  71. port = chip->ds->rtable[target];
  72. if (port == DSA_RTABLE_NONE)
  73. port = 0xf;
  74. }
  75. err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
  76. if (err)
  77. break;
  78. }
  79. return err;
  80. }
  81. /* Offset 0x07: Trunk Mask Table register */
  82. static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
  83. bool hask, u16 mask)
  84. {
  85. const u16 port_mask = BIT(mv88e6xxx_num_ports(chip)) - 1;
  86. u16 val = (num << 12) | (mask & port_mask);
  87. if (hask)
  88. val |= GLOBAL2_TRUNK_MASK_HASK;
  89. return mv88e6xxx_g2_update(chip, GLOBAL2_TRUNK_MASK, val);
  90. }
  91. /* Offset 0x08: Trunk Mapping Table register */
  92. static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
  93. u16 map)
  94. {
  95. const u16 port_mask = BIT(mv88e6xxx_num_ports(chip)) - 1;
  96. u16 val = (id << 11) | (map & port_mask);
  97. return mv88e6xxx_g2_update(chip, GLOBAL2_TRUNK_MAPPING, val);
  98. }
  99. static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
  100. {
  101. const u16 port_mask = BIT(mv88e6xxx_num_ports(chip)) - 1;
  102. int i, err;
  103. /* Clear all eight possible Trunk Mask vectors */
  104. for (i = 0; i < 8; ++i) {
  105. err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
  106. if (err)
  107. return err;
  108. }
  109. /* Clear all sixteen possible Trunk ID routing vectors */
  110. for (i = 0; i < 16; ++i) {
  111. err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
  112. if (err)
  113. return err;
  114. }
  115. return 0;
  116. }
  117. /* Offset 0x09: Ingress Rate Command register
  118. * Offset 0x0A: Ingress Rate Data register
  119. */
  120. static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
  121. {
  122. int port, err;
  123. /* Init all Ingress Rate Limit resources of all ports */
  124. for (port = 0; port < mv88e6xxx_num_ports(chip); ++port) {
  125. /* XXX newer chips (like 88E6390) have different 2-bit ops */
  126. err = mv88e6xxx_g2_write(chip, GLOBAL2_IRL_CMD,
  127. GLOBAL2_IRL_CMD_OP_INIT_ALL |
  128. (port << 8));
  129. if (err)
  130. break;
  131. /* Wait for the operation to complete */
  132. err = mv88e6xxx_g2_wait(chip, GLOBAL2_IRL_CMD,
  133. GLOBAL2_IRL_CMD_BUSY);
  134. if (err)
  135. break;
  136. }
  137. return err;
  138. }
  139. /* Offset 0x0B: Cross-chip Port VLAN (Addr) Register
  140. * Offset 0x0C: Cross-chip Port VLAN Data Register
  141. */
  142. static int mv88e6xxx_g2_pvt_op_wait(struct mv88e6xxx_chip *chip)
  143. {
  144. return mv88e6xxx_g2_wait(chip, GLOBAL2_PVT_ADDR, GLOBAL2_PVT_ADDR_BUSY);
  145. }
  146. static int mv88e6xxx_g2_pvt_op(struct mv88e6xxx_chip *chip, int src_dev,
  147. int src_port, u16 op)
  148. {
  149. int err;
  150. /* 9-bit Cross-chip PVT pointer: with GLOBAL2_MISC_5_BIT_PORT cleared,
  151. * source device is 5-bit, source port is 4-bit.
  152. */
  153. op |= (src_dev & 0x1f) << 4;
  154. op |= (src_port & 0xf);
  155. err = mv88e6xxx_g2_write(chip, GLOBAL2_PVT_ADDR, op);
  156. if (err)
  157. return err;
  158. return mv88e6xxx_g2_pvt_op_wait(chip);
  159. }
  160. int mv88e6xxx_g2_pvt_write(struct mv88e6xxx_chip *chip, int src_dev,
  161. int src_port, u16 data)
  162. {
  163. int err;
  164. err = mv88e6xxx_g2_pvt_op_wait(chip);
  165. if (err)
  166. return err;
  167. err = mv88e6xxx_g2_write(chip, GLOBAL2_PVT_DATA, data);
  168. if (err)
  169. return err;
  170. return mv88e6xxx_g2_pvt_op(chip, src_dev, src_port,
  171. GLOBAL2_PVT_ADDR_OP_WRITE_PVLAN);
  172. }
  173. /* Offset 0x0D: Switch MAC/WoL/WoF register */
  174. static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
  175. unsigned int pointer, u8 data)
  176. {
  177. u16 val = (pointer << 8) | data;
  178. return mv88e6xxx_g2_update(chip, GLOBAL2_SWITCH_MAC, val);
  179. }
  180. int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
  181. {
  182. int i, err;
  183. for (i = 0; i < 6; i++) {
  184. err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
  185. if (err)
  186. break;
  187. }
  188. return err;
  189. }
  190. /* Offset 0x0F: Priority Override Table */
  191. static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
  192. u8 data)
  193. {
  194. u16 val = (pointer << 8) | (data & 0x7);
  195. return mv88e6xxx_g2_update(chip, GLOBAL2_PRIO_OVERRIDE, val);
  196. }
  197. static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
  198. {
  199. int i, err;
  200. /* Clear all sixteen possible Priority Override entries */
  201. for (i = 0; i < 16; i++) {
  202. err = mv88e6xxx_g2_pot_write(chip, i, 0);
  203. if (err)
  204. break;
  205. }
  206. return err;
  207. }
  208. /* Offset 0x14: EEPROM Command
  209. * Offset 0x15: EEPROM Data (for 16-bit data access)
  210. * Offset 0x15: EEPROM Addr (for 8-bit data access)
  211. */
  212. static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
  213. {
  214. return mv88e6xxx_g2_wait(chip, GLOBAL2_EEPROM_CMD,
  215. GLOBAL2_EEPROM_CMD_BUSY |
  216. GLOBAL2_EEPROM_CMD_RUNNING);
  217. }
  218. static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
  219. {
  220. int err;
  221. err = mv88e6xxx_g2_write(chip, GLOBAL2_EEPROM_CMD, cmd);
  222. if (err)
  223. return err;
  224. return mv88e6xxx_g2_eeprom_wait(chip);
  225. }
  226. static int mv88e6xxx_g2_eeprom_read8(struct mv88e6xxx_chip *chip,
  227. u16 addr, u8 *data)
  228. {
  229. u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ;
  230. int err;
  231. err = mv88e6xxx_g2_eeprom_wait(chip);
  232. if (err)
  233. return err;
  234. err = mv88e6xxx_g2_write(chip, GLOBAL2_EEPROM_ADDR, addr);
  235. if (err)
  236. return err;
  237. err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
  238. if (err)
  239. return err;
  240. err = mv88e6xxx_g2_read(chip, GLOBAL2_EEPROM_CMD, &cmd);
  241. if (err)
  242. return err;
  243. *data = cmd & 0xff;
  244. return 0;
  245. }
  246. static int mv88e6xxx_g2_eeprom_write8(struct mv88e6xxx_chip *chip,
  247. u16 addr, u8 data)
  248. {
  249. u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | GLOBAL2_EEPROM_CMD_WRITE_EN;
  250. int err;
  251. err = mv88e6xxx_g2_eeprom_wait(chip);
  252. if (err)
  253. return err;
  254. err = mv88e6xxx_g2_write(chip, GLOBAL2_EEPROM_ADDR, addr);
  255. if (err)
  256. return err;
  257. return mv88e6xxx_g2_eeprom_cmd(chip, cmd | data);
  258. }
  259. static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
  260. u8 addr, u16 *data)
  261. {
  262. u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
  263. int err;
  264. err = mv88e6xxx_g2_eeprom_wait(chip);
  265. if (err)
  266. return err;
  267. err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
  268. if (err)
  269. return err;
  270. return mv88e6xxx_g2_read(chip, GLOBAL2_EEPROM_DATA, data);
  271. }
  272. static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
  273. u8 addr, u16 data)
  274. {
  275. u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
  276. int err;
  277. err = mv88e6xxx_g2_eeprom_wait(chip);
  278. if (err)
  279. return err;
  280. err = mv88e6xxx_g2_write(chip, GLOBAL2_EEPROM_DATA, data);
  281. if (err)
  282. return err;
  283. return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
  284. }
  285. int mv88e6xxx_g2_get_eeprom8(struct mv88e6xxx_chip *chip,
  286. struct ethtool_eeprom *eeprom, u8 *data)
  287. {
  288. unsigned int offset = eeprom->offset;
  289. unsigned int len = eeprom->len;
  290. int err;
  291. eeprom->len = 0;
  292. while (len) {
  293. err = mv88e6xxx_g2_eeprom_read8(chip, offset, data);
  294. if (err)
  295. return err;
  296. eeprom->len++;
  297. offset++;
  298. data++;
  299. len--;
  300. }
  301. return 0;
  302. }
  303. int mv88e6xxx_g2_set_eeprom8(struct mv88e6xxx_chip *chip,
  304. struct ethtool_eeprom *eeprom, u8 *data)
  305. {
  306. unsigned int offset = eeprom->offset;
  307. unsigned int len = eeprom->len;
  308. int err;
  309. eeprom->len = 0;
  310. while (len) {
  311. err = mv88e6xxx_g2_eeprom_write8(chip, offset, *data);
  312. if (err)
  313. return err;
  314. eeprom->len++;
  315. offset++;
  316. data++;
  317. len--;
  318. }
  319. return 0;
  320. }
  321. int mv88e6xxx_g2_get_eeprom16(struct mv88e6xxx_chip *chip,
  322. struct ethtool_eeprom *eeprom, u8 *data)
  323. {
  324. unsigned int offset = eeprom->offset;
  325. unsigned int len = eeprom->len;
  326. u16 val;
  327. int err;
  328. eeprom->len = 0;
  329. if (offset & 1) {
  330. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  331. if (err)
  332. return err;
  333. *data++ = (val >> 8) & 0xff;
  334. offset++;
  335. len--;
  336. eeprom->len++;
  337. }
  338. while (len >= 2) {
  339. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  340. if (err)
  341. return err;
  342. *data++ = val & 0xff;
  343. *data++ = (val >> 8) & 0xff;
  344. offset += 2;
  345. len -= 2;
  346. eeprom->len += 2;
  347. }
  348. if (len) {
  349. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  350. if (err)
  351. return err;
  352. *data++ = val & 0xff;
  353. offset++;
  354. len--;
  355. eeprom->len++;
  356. }
  357. return 0;
  358. }
  359. int mv88e6xxx_g2_set_eeprom16(struct mv88e6xxx_chip *chip,
  360. struct ethtool_eeprom *eeprom, u8 *data)
  361. {
  362. unsigned int offset = eeprom->offset;
  363. unsigned int len = eeprom->len;
  364. u16 val;
  365. int err;
  366. /* Ensure the RO WriteEn bit is set */
  367. err = mv88e6xxx_g2_read(chip, GLOBAL2_EEPROM_CMD, &val);
  368. if (err)
  369. return err;
  370. if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
  371. return -EROFS;
  372. eeprom->len = 0;
  373. if (offset & 1) {
  374. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  375. if (err)
  376. return err;
  377. val = (*data++ << 8) | (val & 0xff);
  378. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  379. if (err)
  380. return err;
  381. offset++;
  382. len--;
  383. eeprom->len++;
  384. }
  385. while (len >= 2) {
  386. val = *data++;
  387. val |= *data++ << 8;
  388. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  389. if (err)
  390. return err;
  391. offset += 2;
  392. len -= 2;
  393. eeprom->len += 2;
  394. }
  395. if (len) {
  396. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  397. if (err)
  398. return err;
  399. val = (val & 0xff00) | *data++;
  400. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  401. if (err)
  402. return err;
  403. offset++;
  404. len--;
  405. eeprom->len++;
  406. }
  407. return 0;
  408. }
  409. /* Offset 0x18: SMI PHY Command Register
  410. * Offset 0x19: SMI PHY Data Register
  411. */
  412. static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
  413. {
  414. return mv88e6xxx_g2_wait(chip, GLOBAL2_SMI_PHY_CMD,
  415. GLOBAL2_SMI_PHY_CMD_BUSY);
  416. }
  417. static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
  418. {
  419. int err;
  420. err = mv88e6xxx_g2_write(chip, GLOBAL2_SMI_PHY_CMD, cmd);
  421. if (err)
  422. return err;
  423. return mv88e6xxx_g2_smi_phy_wait(chip);
  424. }
  425. static int mv88e6xxx_g2_smi_phy_write_addr(struct mv88e6xxx_chip *chip,
  426. int addr, int device, int reg,
  427. bool external)
  428. {
  429. int cmd = SMI_CMD_OP_45_WRITE_ADDR | (addr << 5) | device;
  430. int err;
  431. if (external)
  432. cmd |= GLOBAL2_SMI_PHY_CMD_EXTERNAL;
  433. err = mv88e6xxx_g2_smi_phy_wait(chip);
  434. if (err)
  435. return err;
  436. err = mv88e6xxx_g2_write(chip, GLOBAL2_SMI_PHY_DATA, reg);
  437. if (err)
  438. return err;
  439. return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
  440. }
  441. static int mv88e6xxx_g2_smi_phy_read_c45(struct mv88e6xxx_chip *chip,
  442. int addr, int reg_c45, u16 *val,
  443. bool external)
  444. {
  445. int device = (reg_c45 >> 16) & 0x1f;
  446. int reg = reg_c45 & 0xffff;
  447. int err;
  448. u16 cmd;
  449. err = mv88e6xxx_g2_smi_phy_write_addr(chip, addr, device, reg,
  450. external);
  451. if (err)
  452. return err;
  453. cmd = GLOBAL2_SMI_PHY_CMD_OP_45_READ_DATA | (addr << 5) | device;
  454. if (external)
  455. cmd |= GLOBAL2_SMI_PHY_CMD_EXTERNAL;
  456. err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
  457. if (err)
  458. return err;
  459. err = mv88e6xxx_g2_read(chip, GLOBAL2_SMI_PHY_DATA, val);
  460. if (err)
  461. return err;
  462. err = *val;
  463. return 0;
  464. }
  465. static int mv88e6xxx_g2_smi_phy_read_c22(struct mv88e6xxx_chip *chip,
  466. int addr, int reg, u16 *val,
  467. bool external)
  468. {
  469. u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
  470. int err;
  471. if (external)
  472. cmd |= GLOBAL2_SMI_PHY_CMD_EXTERNAL;
  473. err = mv88e6xxx_g2_smi_phy_wait(chip);
  474. if (err)
  475. return err;
  476. err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
  477. if (err)
  478. return err;
  479. return mv88e6xxx_g2_read(chip, GLOBAL2_SMI_PHY_DATA, val);
  480. }
  481. int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip,
  482. struct mii_bus *bus,
  483. int addr, int reg, u16 *val)
  484. {
  485. struct mv88e6xxx_mdio_bus *mdio_bus = bus->priv;
  486. bool external = mdio_bus->external;
  487. if (reg & MII_ADDR_C45)
  488. return mv88e6xxx_g2_smi_phy_read_c45(chip, addr, reg, val,
  489. external);
  490. return mv88e6xxx_g2_smi_phy_read_c22(chip, addr, reg, val, external);
  491. }
  492. static int mv88e6xxx_g2_smi_phy_write_c45(struct mv88e6xxx_chip *chip,
  493. int addr, int reg_c45, u16 val,
  494. bool external)
  495. {
  496. int device = (reg_c45 >> 16) & 0x1f;
  497. int reg = reg_c45 & 0xffff;
  498. int err;
  499. u16 cmd;
  500. err = mv88e6xxx_g2_smi_phy_write_addr(chip, addr, device, reg,
  501. external);
  502. if (err)
  503. return err;
  504. cmd = GLOBAL2_SMI_PHY_CMD_OP_45_WRITE_DATA | (addr << 5) | device;
  505. if (external)
  506. cmd |= GLOBAL2_SMI_PHY_CMD_EXTERNAL;
  507. err = mv88e6xxx_g2_write(chip, GLOBAL2_SMI_PHY_DATA, val);
  508. if (err)
  509. return err;
  510. err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
  511. if (err)
  512. return err;
  513. return 0;
  514. }
  515. static int mv88e6xxx_g2_smi_phy_write_c22(struct mv88e6xxx_chip *chip,
  516. int addr, int reg, u16 val,
  517. bool external)
  518. {
  519. u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
  520. int err;
  521. if (external)
  522. cmd |= GLOBAL2_SMI_PHY_CMD_EXTERNAL;
  523. err = mv88e6xxx_g2_smi_phy_wait(chip);
  524. if (err)
  525. return err;
  526. err = mv88e6xxx_g2_write(chip, GLOBAL2_SMI_PHY_DATA, val);
  527. if (err)
  528. return err;
  529. return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
  530. }
  531. int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip,
  532. struct mii_bus *bus,
  533. int addr, int reg, u16 val)
  534. {
  535. struct mv88e6xxx_mdio_bus *mdio_bus = bus->priv;
  536. bool external = mdio_bus->external;
  537. if (reg & MII_ADDR_C45)
  538. return mv88e6xxx_g2_smi_phy_write_c45(chip, addr, reg, val,
  539. external);
  540. return mv88e6xxx_g2_smi_phy_write_c22(chip, addr, reg, val, external);
  541. }
  542. static int mv88e6097_watchdog_action(struct mv88e6xxx_chip *chip, int irq)
  543. {
  544. u16 reg;
  545. mv88e6xxx_g2_read(chip, GLOBAL2_WDOG_CONTROL, &reg);
  546. dev_info(chip->dev, "Watchdog event: 0x%04x", reg);
  547. return IRQ_HANDLED;
  548. }
  549. static void mv88e6097_watchdog_free(struct mv88e6xxx_chip *chip)
  550. {
  551. u16 reg;
  552. mv88e6xxx_g2_read(chip, GLOBAL2_WDOG_CONTROL, &reg);
  553. reg &= ~(GLOBAL2_WDOG_CONTROL_EGRESS_ENABLE |
  554. GLOBAL2_WDOG_CONTROL_QC_ENABLE);
  555. mv88e6xxx_g2_write(chip, GLOBAL2_WDOG_CONTROL, reg);
  556. }
  557. static int mv88e6097_watchdog_setup(struct mv88e6xxx_chip *chip)
  558. {
  559. return mv88e6xxx_g2_write(chip, GLOBAL2_WDOG_CONTROL,
  560. GLOBAL2_WDOG_CONTROL_EGRESS_ENABLE |
  561. GLOBAL2_WDOG_CONTROL_QC_ENABLE |
  562. GLOBAL2_WDOG_CONTROL_SWRESET);
  563. }
  564. const struct mv88e6xxx_irq_ops mv88e6097_watchdog_ops = {
  565. .irq_action = mv88e6097_watchdog_action,
  566. .irq_setup = mv88e6097_watchdog_setup,
  567. .irq_free = mv88e6097_watchdog_free,
  568. };
  569. static int mv88e6390_watchdog_setup(struct mv88e6xxx_chip *chip)
  570. {
  571. return mv88e6xxx_g2_update(chip, GLOBAL2_WDOG_CONTROL,
  572. GLOBAL2_WDOG_INT_ENABLE |
  573. GLOBAL2_WDOG_CUT_THROUGH |
  574. GLOBAL2_WDOG_QUEUE_CONTROLLER |
  575. GLOBAL2_WDOG_EGRESS |
  576. GLOBAL2_WDOG_FORCE_IRQ);
  577. }
  578. static int mv88e6390_watchdog_action(struct mv88e6xxx_chip *chip, int irq)
  579. {
  580. int err;
  581. u16 reg;
  582. mv88e6xxx_g2_write(chip, GLOBAL2_WDOG_CONTROL, GLOBAL2_WDOG_EVENT);
  583. err = mv88e6xxx_g2_read(chip, GLOBAL2_WDOG_CONTROL, &reg);
  584. dev_info(chip->dev, "Watchdog event: 0x%04x",
  585. reg & GLOBAL2_WDOG_DATA_MASK);
  586. mv88e6xxx_g2_write(chip, GLOBAL2_WDOG_CONTROL, GLOBAL2_WDOG_HISTORY);
  587. err = mv88e6xxx_g2_read(chip, GLOBAL2_WDOG_CONTROL, &reg);
  588. dev_info(chip->dev, "Watchdog history: 0x%04x",
  589. reg & GLOBAL2_WDOG_DATA_MASK);
  590. /* Trigger a software reset to try to recover the switch */
  591. if (chip->info->ops->reset)
  592. chip->info->ops->reset(chip);
  593. mv88e6390_watchdog_setup(chip);
  594. return IRQ_HANDLED;
  595. }
  596. static void mv88e6390_watchdog_free(struct mv88e6xxx_chip *chip)
  597. {
  598. mv88e6xxx_g2_update(chip, GLOBAL2_WDOG_CONTROL,
  599. GLOBAL2_WDOG_INT_ENABLE);
  600. }
  601. const struct mv88e6xxx_irq_ops mv88e6390_watchdog_ops = {
  602. .irq_action = mv88e6390_watchdog_action,
  603. .irq_setup = mv88e6390_watchdog_setup,
  604. .irq_free = mv88e6390_watchdog_free,
  605. };
  606. static irqreturn_t mv88e6xxx_g2_watchdog_thread_fn(int irq, void *dev_id)
  607. {
  608. struct mv88e6xxx_chip *chip = dev_id;
  609. irqreturn_t ret = IRQ_NONE;
  610. mutex_lock(&chip->reg_lock);
  611. if (chip->info->ops->watchdog_ops->irq_action)
  612. ret = chip->info->ops->watchdog_ops->irq_action(chip, irq);
  613. mutex_unlock(&chip->reg_lock);
  614. return ret;
  615. }
  616. static void mv88e6xxx_g2_watchdog_free(struct mv88e6xxx_chip *chip)
  617. {
  618. mutex_lock(&chip->reg_lock);
  619. if (chip->info->ops->watchdog_ops->irq_free)
  620. chip->info->ops->watchdog_ops->irq_free(chip);
  621. mutex_unlock(&chip->reg_lock);
  622. free_irq(chip->watchdog_irq, chip);
  623. irq_dispose_mapping(chip->watchdog_irq);
  624. }
  625. static int mv88e6xxx_g2_watchdog_setup(struct mv88e6xxx_chip *chip)
  626. {
  627. int err;
  628. chip->watchdog_irq = irq_find_mapping(chip->g2_irq.domain,
  629. GLOBAL2_INT_SOURCE_WATCHDOG);
  630. if (chip->watchdog_irq < 0)
  631. return chip->watchdog_irq;
  632. err = request_threaded_irq(chip->watchdog_irq, NULL,
  633. mv88e6xxx_g2_watchdog_thread_fn,
  634. IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
  635. "mv88e6xxx-watchdog", chip);
  636. if (err)
  637. return err;
  638. mutex_lock(&chip->reg_lock);
  639. if (chip->info->ops->watchdog_ops->irq_setup)
  640. err = chip->info->ops->watchdog_ops->irq_setup(chip);
  641. mutex_unlock(&chip->reg_lock);
  642. return err;
  643. }
  644. /* Offset 0x1D: Misc Register */
  645. static int mv88e6xxx_g2_misc_5_bit_port(struct mv88e6xxx_chip *chip,
  646. bool port_5_bit)
  647. {
  648. u16 val;
  649. int err;
  650. err = mv88e6xxx_g2_read(chip, GLOBAL2_MISC, &val);
  651. if (err)
  652. return err;
  653. if (port_5_bit)
  654. val |= GLOBAL2_MISC_5_BIT_PORT;
  655. else
  656. val &= ~GLOBAL2_MISC_5_BIT_PORT;
  657. return mv88e6xxx_g2_write(chip, GLOBAL2_MISC, val);
  658. }
  659. int mv88e6xxx_g2_misc_4_bit_port(struct mv88e6xxx_chip *chip)
  660. {
  661. return mv88e6xxx_g2_misc_5_bit_port(chip, false);
  662. }
  663. static void mv88e6xxx_g2_irq_mask(struct irq_data *d)
  664. {
  665. struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
  666. unsigned int n = d->hwirq;
  667. chip->g2_irq.masked |= (1 << n);
  668. }
  669. static void mv88e6xxx_g2_irq_unmask(struct irq_data *d)
  670. {
  671. struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
  672. unsigned int n = d->hwirq;
  673. chip->g2_irq.masked &= ~(1 << n);
  674. }
  675. static irqreturn_t mv88e6xxx_g2_irq_thread_fn(int irq, void *dev_id)
  676. {
  677. struct mv88e6xxx_chip *chip = dev_id;
  678. unsigned int nhandled = 0;
  679. unsigned int sub_irq;
  680. unsigned int n;
  681. int err;
  682. u16 reg;
  683. mutex_lock(&chip->reg_lock);
  684. err = mv88e6xxx_g2_read(chip, GLOBAL2_INT_SOURCE, &reg);
  685. mutex_unlock(&chip->reg_lock);
  686. if (err)
  687. goto out;
  688. for (n = 0; n < 16; ++n) {
  689. if (reg & (1 << n)) {
  690. sub_irq = irq_find_mapping(chip->g2_irq.domain, n);
  691. handle_nested_irq(sub_irq);
  692. ++nhandled;
  693. }
  694. }
  695. out:
  696. return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
  697. }
  698. static void mv88e6xxx_g2_irq_bus_lock(struct irq_data *d)
  699. {
  700. struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
  701. mutex_lock(&chip->reg_lock);
  702. }
  703. static void mv88e6xxx_g2_irq_bus_sync_unlock(struct irq_data *d)
  704. {
  705. struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
  706. mv88e6xxx_g2_write(chip, GLOBAL2_INT_MASK, ~chip->g2_irq.masked);
  707. mutex_unlock(&chip->reg_lock);
  708. }
  709. static struct irq_chip mv88e6xxx_g2_irq_chip = {
  710. .name = "mv88e6xxx-g2",
  711. .irq_mask = mv88e6xxx_g2_irq_mask,
  712. .irq_unmask = mv88e6xxx_g2_irq_unmask,
  713. .irq_bus_lock = mv88e6xxx_g2_irq_bus_lock,
  714. .irq_bus_sync_unlock = mv88e6xxx_g2_irq_bus_sync_unlock,
  715. };
  716. static int mv88e6xxx_g2_irq_domain_map(struct irq_domain *d,
  717. unsigned int irq,
  718. irq_hw_number_t hwirq)
  719. {
  720. struct mv88e6xxx_chip *chip = d->host_data;
  721. irq_set_chip_data(irq, d->host_data);
  722. irq_set_chip_and_handler(irq, &chip->g2_irq.chip, handle_level_irq);
  723. irq_set_noprobe(irq);
  724. return 0;
  725. }
  726. static const struct irq_domain_ops mv88e6xxx_g2_irq_domain_ops = {
  727. .map = mv88e6xxx_g2_irq_domain_map,
  728. .xlate = irq_domain_xlate_twocell,
  729. };
  730. void mv88e6xxx_g2_irq_free(struct mv88e6xxx_chip *chip)
  731. {
  732. int irq, virq;
  733. mv88e6xxx_g2_watchdog_free(chip);
  734. free_irq(chip->device_irq, chip);
  735. irq_dispose_mapping(chip->device_irq);
  736. for (irq = 0; irq < 16; irq++) {
  737. virq = irq_find_mapping(chip->g2_irq.domain, irq);
  738. irq_dispose_mapping(virq);
  739. }
  740. irq_domain_remove(chip->g2_irq.domain);
  741. }
  742. int mv88e6xxx_g2_irq_setup(struct mv88e6xxx_chip *chip)
  743. {
  744. int err, irq, virq;
  745. if (!chip->dev->of_node)
  746. return -EINVAL;
  747. chip->g2_irq.domain = irq_domain_add_simple(
  748. chip->dev->of_node, 16, 0, &mv88e6xxx_g2_irq_domain_ops, chip);
  749. if (!chip->g2_irq.domain)
  750. return -ENOMEM;
  751. for (irq = 0; irq < 16; irq++)
  752. irq_create_mapping(chip->g2_irq.domain, irq);
  753. chip->g2_irq.chip = mv88e6xxx_g2_irq_chip;
  754. chip->g2_irq.masked = ~0;
  755. chip->device_irq = irq_find_mapping(chip->g1_irq.domain,
  756. GLOBAL_STATUS_IRQ_DEVICE);
  757. if (chip->device_irq < 0) {
  758. err = chip->device_irq;
  759. goto out;
  760. }
  761. err = request_threaded_irq(chip->device_irq, NULL,
  762. mv88e6xxx_g2_irq_thread_fn,
  763. IRQF_ONESHOT, "mv88e6xxx-g1", chip);
  764. if (err)
  765. goto out;
  766. return mv88e6xxx_g2_watchdog_setup(chip);
  767. out:
  768. for (irq = 0; irq < 16; irq++) {
  769. virq = irq_find_mapping(chip->g2_irq.domain, irq);
  770. irq_dispose_mapping(virq);
  771. }
  772. irq_domain_remove(chip->g2_irq.domain);
  773. return err;
  774. }
  775. int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
  776. {
  777. u16 reg;
  778. int err;
  779. /* Ignore removed tag data on doubly tagged packets, disable
  780. * flow control messages, force flow control priority to the
  781. * highest, and send all special multicast frames to the CPU
  782. * port at the highest priority.
  783. */
  784. reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
  785. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
  786. mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
  787. reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
  788. err = mv88e6xxx_g2_write(chip, GLOBAL2_SWITCH_MGMT, reg);
  789. if (err)
  790. return err;
  791. /* Program the DSA routing table. */
  792. err = mv88e6xxx_g2_set_device_mapping(chip);
  793. if (err)
  794. return err;
  795. /* Clear all trunk masks and mapping. */
  796. err = mv88e6xxx_g2_clear_trunk(chip);
  797. if (err)
  798. return err;
  799. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
  800. /* Disable ingress rate limiting by resetting all per port
  801. * ingress rate limit resources to their initial state.
  802. */
  803. err = mv88e6xxx_g2_clear_irl(chip);
  804. if (err)
  805. return err;
  806. }
  807. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
  808. /* Clear the priority override table. */
  809. err = mv88e6xxx_g2_clear_pot(chip);
  810. if (err)
  811. return err;
  812. }
  813. return 0;
  814. }