m_can.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736
  1. /*
  2. * CAN bus driver for Bosch M_CAN controller
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. * Dong Aisheng <b29396@freescale.com>
  6. *
  7. * Bosch M_CAN user manual can be obtained from:
  8. * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
  9. * mcan_users_manual_v302.pdf
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/iopoll.h>
  26. #include <linux/can/dev.h>
  27. /* napi related */
  28. #define M_CAN_NAPI_WEIGHT 64
  29. /* message ram configuration data length */
  30. #define MRAM_CFG_LEN 8
  31. /* registers definition */
  32. enum m_can_reg {
  33. M_CAN_CREL = 0x0,
  34. M_CAN_ENDN = 0x4,
  35. M_CAN_CUST = 0x8,
  36. M_CAN_DBTP = 0xc,
  37. M_CAN_TEST = 0x10,
  38. M_CAN_RWD = 0x14,
  39. M_CAN_CCCR = 0x18,
  40. M_CAN_NBTP = 0x1c,
  41. M_CAN_TSCC = 0x20,
  42. M_CAN_TSCV = 0x24,
  43. M_CAN_TOCC = 0x28,
  44. M_CAN_TOCV = 0x2c,
  45. M_CAN_ECR = 0x40,
  46. M_CAN_PSR = 0x44,
  47. /* TDCR Register only available for version >=3.1.x */
  48. M_CAN_TDCR = 0x48,
  49. M_CAN_IR = 0x50,
  50. M_CAN_IE = 0x54,
  51. M_CAN_ILS = 0x58,
  52. M_CAN_ILE = 0x5c,
  53. M_CAN_GFC = 0x80,
  54. M_CAN_SIDFC = 0x84,
  55. M_CAN_XIDFC = 0x88,
  56. M_CAN_XIDAM = 0x90,
  57. M_CAN_HPMS = 0x94,
  58. M_CAN_NDAT1 = 0x98,
  59. M_CAN_NDAT2 = 0x9c,
  60. M_CAN_RXF0C = 0xa0,
  61. M_CAN_RXF0S = 0xa4,
  62. M_CAN_RXF0A = 0xa8,
  63. M_CAN_RXBC = 0xac,
  64. M_CAN_RXF1C = 0xb0,
  65. M_CAN_RXF1S = 0xb4,
  66. M_CAN_RXF1A = 0xb8,
  67. M_CAN_RXESC = 0xbc,
  68. M_CAN_TXBC = 0xc0,
  69. M_CAN_TXFQS = 0xc4,
  70. M_CAN_TXESC = 0xc8,
  71. M_CAN_TXBRP = 0xcc,
  72. M_CAN_TXBAR = 0xd0,
  73. M_CAN_TXBCR = 0xd4,
  74. M_CAN_TXBTO = 0xd8,
  75. M_CAN_TXBCF = 0xdc,
  76. M_CAN_TXBTIE = 0xe0,
  77. M_CAN_TXBCIE = 0xe4,
  78. M_CAN_TXEFC = 0xf0,
  79. M_CAN_TXEFS = 0xf4,
  80. M_CAN_TXEFA = 0xf8,
  81. };
  82. /* m_can lec values */
  83. enum m_can_lec_type {
  84. LEC_NO_ERROR = 0,
  85. LEC_STUFF_ERROR,
  86. LEC_FORM_ERROR,
  87. LEC_ACK_ERROR,
  88. LEC_BIT1_ERROR,
  89. LEC_BIT0_ERROR,
  90. LEC_CRC_ERROR,
  91. LEC_UNUSED,
  92. };
  93. enum m_can_mram_cfg {
  94. MRAM_SIDF = 0,
  95. MRAM_XIDF,
  96. MRAM_RXF0,
  97. MRAM_RXF1,
  98. MRAM_RXB,
  99. MRAM_TXE,
  100. MRAM_TXB,
  101. MRAM_CFG_NUM,
  102. };
  103. /* Core Release Register (CREL) */
  104. #define CREL_REL_SHIFT 28
  105. #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
  106. #define CREL_STEP_SHIFT 24
  107. #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
  108. #define CREL_SUBSTEP_SHIFT 20
  109. #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
  110. /* Data Bit Timing & Prescaler Register (DBTP) */
  111. #define DBTP_TDC BIT(23)
  112. #define DBTP_DBRP_SHIFT 16
  113. #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
  114. #define DBTP_DTSEG1_SHIFT 8
  115. #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
  116. #define DBTP_DTSEG2_SHIFT 4
  117. #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
  118. #define DBTP_DSJW_SHIFT 0
  119. #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
  120. /* Test Register (TEST) */
  121. #define TEST_LBCK BIT(4)
  122. /* CC Control Register(CCCR) */
  123. #define CCCR_CMR_MASK 0x3
  124. #define CCCR_CMR_SHIFT 10
  125. #define CCCR_CMR_CANFD 0x1
  126. #define CCCR_CMR_CANFD_BRS 0x2
  127. #define CCCR_CMR_CAN 0x3
  128. #define CCCR_CME_MASK 0x3
  129. #define CCCR_CME_SHIFT 8
  130. #define CCCR_CME_CAN 0
  131. #define CCCR_CME_CANFD 0x1
  132. #define CCCR_CME_CANFD_BRS 0x2
  133. #define CCCR_TXP BIT(14)
  134. #define CCCR_TEST BIT(7)
  135. #define CCCR_MON BIT(5)
  136. #define CCCR_CSR BIT(4)
  137. #define CCCR_CSA BIT(3)
  138. #define CCCR_ASM BIT(2)
  139. #define CCCR_CCE BIT(1)
  140. #define CCCR_INIT BIT(0)
  141. #define CCCR_CANFD 0x10
  142. /* for version >=3.1.x */
  143. #define CCCR_EFBI BIT(13)
  144. #define CCCR_PXHD BIT(12)
  145. #define CCCR_BRSE BIT(9)
  146. #define CCCR_FDOE BIT(8)
  147. /* only for version >=3.2.x */
  148. #define CCCR_NISO BIT(15)
  149. /* Nominal Bit Timing & Prescaler Register (NBTP) */
  150. #define NBTP_NSJW_SHIFT 25
  151. #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
  152. #define NBTP_NBRP_SHIFT 16
  153. #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
  154. #define NBTP_NTSEG1_SHIFT 8
  155. #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
  156. #define NBTP_NTSEG2_SHIFT 0
  157. #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
  158. /* Error Counter Register(ECR) */
  159. #define ECR_RP BIT(15)
  160. #define ECR_REC_SHIFT 8
  161. #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
  162. #define ECR_TEC_SHIFT 0
  163. #define ECR_TEC_MASK 0xff
  164. /* Protocol Status Register(PSR) */
  165. #define PSR_BO BIT(7)
  166. #define PSR_EW BIT(6)
  167. #define PSR_EP BIT(5)
  168. #define PSR_LEC_MASK 0x7
  169. /* Interrupt Register(IR) */
  170. #define IR_ALL_INT 0xffffffff
  171. /* Renamed bits for versions > 3.1.x */
  172. #define IR_ARA BIT(29)
  173. #define IR_PED BIT(28)
  174. #define IR_PEA BIT(27)
  175. /* Bits for version 3.0.x */
  176. #define IR_STE BIT(31)
  177. #define IR_FOE BIT(30)
  178. #define IR_ACKE BIT(29)
  179. #define IR_BE BIT(28)
  180. #define IR_CRCE BIT(27)
  181. #define IR_WDI BIT(26)
  182. #define IR_BO BIT(25)
  183. #define IR_EW BIT(24)
  184. #define IR_EP BIT(23)
  185. #define IR_ELO BIT(22)
  186. #define IR_BEU BIT(21)
  187. #define IR_BEC BIT(20)
  188. #define IR_DRX BIT(19)
  189. #define IR_TOO BIT(18)
  190. #define IR_MRAF BIT(17)
  191. #define IR_TSW BIT(16)
  192. #define IR_TEFL BIT(15)
  193. #define IR_TEFF BIT(14)
  194. #define IR_TEFW BIT(13)
  195. #define IR_TEFN BIT(12)
  196. #define IR_TFE BIT(11)
  197. #define IR_TCF BIT(10)
  198. #define IR_TC BIT(9)
  199. #define IR_HPM BIT(8)
  200. #define IR_RF1L BIT(7)
  201. #define IR_RF1F BIT(6)
  202. #define IR_RF1W BIT(5)
  203. #define IR_RF1N BIT(4)
  204. #define IR_RF0L BIT(3)
  205. #define IR_RF0F BIT(2)
  206. #define IR_RF0W BIT(1)
  207. #define IR_RF0N BIT(0)
  208. #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
  209. /* Interrupts for version 3.0.x */
  210. #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
  211. #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
  212. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  213. IR_RF1L | IR_RF0L)
  214. #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
  215. /* Interrupts for version >= 3.1.x */
  216. #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
  217. #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
  218. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  219. IR_RF1L | IR_RF0L)
  220. #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
  221. /* Interrupt Line Select (ILS) */
  222. #define ILS_ALL_INT0 0x0
  223. #define ILS_ALL_INT1 0xFFFFFFFF
  224. /* Interrupt Line Enable (ILE) */
  225. #define ILE_EINT1 BIT(1)
  226. #define ILE_EINT0 BIT(0)
  227. /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
  228. #define RXFC_FWM_SHIFT 24
  229. #define RXFC_FWM_MASK (0x7f < RXFC_FWM_SHIFT)
  230. #define RXFC_FS_SHIFT 16
  231. #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
  232. /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
  233. #define RXFS_RFL BIT(25)
  234. #define RXFS_FF BIT(24)
  235. #define RXFS_FPI_SHIFT 16
  236. #define RXFS_FPI_MASK 0x3f0000
  237. #define RXFS_FGI_SHIFT 8
  238. #define RXFS_FGI_MASK 0x3f00
  239. #define RXFS_FFL_MASK 0x7f
  240. /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
  241. #define M_CAN_RXESC_8BYTES 0x0
  242. #define M_CAN_RXESC_64BYTES 0x777
  243. /* Tx Buffer Configuration(TXBC) */
  244. #define TXBC_NDTB_SHIFT 16
  245. #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
  246. #define TXBC_TFQS_SHIFT 24
  247. #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
  248. /* Tx FIFO/Queue Status (TXFQS) */
  249. #define TXFQS_TFQF BIT(21)
  250. #define TXFQS_TFQPI_SHIFT 16
  251. #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
  252. #define TXFQS_TFGI_SHIFT 8
  253. #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
  254. #define TXFQS_TFFL_SHIFT 0
  255. #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
  256. /* Tx Buffer Element Size Configuration(TXESC) */
  257. #define TXESC_TBDS_8BYTES 0x0
  258. #define TXESC_TBDS_64BYTES 0x7
  259. /* Tx Event FIFO Configuration (TXEFC) */
  260. #define TXEFC_EFS_SHIFT 16
  261. #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
  262. /* Tx Event FIFO Status (TXEFS) */
  263. #define TXEFS_TEFL BIT(25)
  264. #define TXEFS_EFF BIT(24)
  265. #define TXEFS_EFGI_SHIFT 8
  266. #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
  267. #define TXEFS_EFFL_SHIFT 0
  268. #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
  269. /* Tx Event FIFO Acknowledge (TXEFA) */
  270. #define TXEFA_EFAI_SHIFT 0
  271. #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
  272. /* Message RAM Configuration (in bytes) */
  273. #define SIDF_ELEMENT_SIZE 4
  274. #define XIDF_ELEMENT_SIZE 8
  275. #define RXF0_ELEMENT_SIZE 72
  276. #define RXF1_ELEMENT_SIZE 72
  277. #define RXB_ELEMENT_SIZE 72
  278. #define TXE_ELEMENT_SIZE 8
  279. #define TXB_ELEMENT_SIZE 72
  280. /* Message RAM Elements */
  281. #define M_CAN_FIFO_ID 0x0
  282. #define M_CAN_FIFO_DLC 0x4
  283. #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
  284. /* Rx Buffer Element */
  285. /* R0 */
  286. #define RX_BUF_ESI BIT(31)
  287. #define RX_BUF_XTD BIT(30)
  288. #define RX_BUF_RTR BIT(29)
  289. /* R1 */
  290. #define RX_BUF_ANMF BIT(31)
  291. #define RX_BUF_FDF BIT(21)
  292. #define RX_BUF_BRS BIT(20)
  293. /* Tx Buffer Element */
  294. /* T0 */
  295. #define TX_BUF_ESI BIT(31)
  296. #define TX_BUF_XTD BIT(30)
  297. #define TX_BUF_RTR BIT(29)
  298. /* T1 */
  299. #define TX_BUF_EFC BIT(23)
  300. #define TX_BUF_FDF BIT(21)
  301. #define TX_BUF_BRS BIT(20)
  302. #define TX_BUF_MM_SHIFT 24
  303. #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
  304. /* Tx event FIFO Element */
  305. /* E1 */
  306. #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
  307. #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
  308. /* address offset and element number for each FIFO/Buffer in the Message RAM */
  309. struct mram_cfg {
  310. u16 off;
  311. u8 num;
  312. };
  313. /* m_can private data structure */
  314. struct m_can_priv {
  315. struct can_priv can; /* must be the first member */
  316. struct napi_struct napi;
  317. struct net_device *dev;
  318. struct device *device;
  319. struct clk *hclk;
  320. struct clk *cclk;
  321. void __iomem *base;
  322. u32 irqstatus;
  323. int version;
  324. /* message ram configuration */
  325. void __iomem *mram_base;
  326. struct mram_cfg mcfg[MRAM_CFG_NUM];
  327. };
  328. static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
  329. {
  330. return readl(priv->base + reg);
  331. }
  332. static inline void m_can_write(const struct m_can_priv *priv,
  333. enum m_can_reg reg, u32 val)
  334. {
  335. writel(val, priv->base + reg);
  336. }
  337. static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
  338. u32 fgi, unsigned int offset)
  339. {
  340. return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
  341. fgi * RXF0_ELEMENT_SIZE + offset);
  342. }
  343. static inline void m_can_fifo_write(const struct m_can_priv *priv,
  344. u32 fpi, unsigned int offset, u32 val)
  345. {
  346. writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
  347. fpi * TXB_ELEMENT_SIZE + offset);
  348. }
  349. static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
  350. u32 fgi,
  351. u32 offset) {
  352. return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
  353. fgi * TXE_ELEMENT_SIZE + offset);
  354. }
  355. static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
  356. {
  357. return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
  358. }
  359. static inline void m_can_config_endisable(const struct m_can_priv *priv,
  360. bool enable)
  361. {
  362. u32 cccr = m_can_read(priv, M_CAN_CCCR);
  363. u32 timeout = 10;
  364. u32 val = 0;
  365. if (enable) {
  366. /* enable m_can configuration */
  367. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
  368. udelay(5);
  369. /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
  370. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
  371. } else {
  372. m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
  373. }
  374. /* there's a delay for module initialization */
  375. if (enable)
  376. val = CCCR_INIT | CCCR_CCE;
  377. while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
  378. if (timeout == 0) {
  379. netdev_warn(priv->dev, "Failed to init module\n");
  380. return;
  381. }
  382. timeout--;
  383. udelay(1);
  384. }
  385. }
  386. static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
  387. {
  388. /* Only interrupt line 0 is used in this driver */
  389. m_can_write(priv, M_CAN_ILE, ILE_EINT0);
  390. }
  391. static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
  392. {
  393. m_can_write(priv, M_CAN_ILE, 0x0);
  394. }
  395. static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
  396. {
  397. struct net_device_stats *stats = &dev->stats;
  398. struct m_can_priv *priv = netdev_priv(dev);
  399. struct canfd_frame *cf;
  400. struct sk_buff *skb;
  401. u32 id, fgi, dlc;
  402. int i;
  403. /* calculate the fifo get index for where to read data */
  404. fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
  405. dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
  406. if (dlc & RX_BUF_FDF)
  407. skb = alloc_canfd_skb(dev, &cf);
  408. else
  409. skb = alloc_can_skb(dev, (struct can_frame **)&cf);
  410. if (!skb) {
  411. stats->rx_dropped++;
  412. return;
  413. }
  414. if (dlc & RX_BUF_FDF)
  415. cf->len = can_dlc2len((dlc >> 16) & 0x0F);
  416. else
  417. cf->len = get_can_dlc((dlc >> 16) & 0x0F);
  418. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
  419. if (id & RX_BUF_XTD)
  420. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  421. else
  422. cf->can_id = (id >> 18) & CAN_SFF_MASK;
  423. if (id & RX_BUF_ESI) {
  424. cf->flags |= CANFD_ESI;
  425. netdev_dbg(dev, "ESI Error\n");
  426. }
  427. if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
  428. cf->can_id |= CAN_RTR_FLAG;
  429. } else {
  430. if (dlc & RX_BUF_BRS)
  431. cf->flags |= CANFD_BRS;
  432. for (i = 0; i < cf->len; i += 4)
  433. *(u32 *)(cf->data + i) =
  434. m_can_fifo_read(priv, fgi,
  435. M_CAN_FIFO_DATA(i / 4));
  436. }
  437. /* acknowledge rx fifo 0 */
  438. m_can_write(priv, M_CAN_RXF0A, fgi);
  439. stats->rx_packets++;
  440. stats->rx_bytes += cf->len;
  441. netif_receive_skb(skb);
  442. }
  443. static int m_can_do_rx_poll(struct net_device *dev, int quota)
  444. {
  445. struct m_can_priv *priv = netdev_priv(dev);
  446. u32 pkts = 0;
  447. u32 rxfs;
  448. rxfs = m_can_read(priv, M_CAN_RXF0S);
  449. if (!(rxfs & RXFS_FFL_MASK)) {
  450. netdev_dbg(dev, "no messages in fifo0\n");
  451. return 0;
  452. }
  453. while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
  454. if (rxfs & RXFS_RFL)
  455. netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
  456. m_can_read_fifo(dev, rxfs);
  457. quota--;
  458. pkts++;
  459. rxfs = m_can_read(priv, M_CAN_RXF0S);
  460. }
  461. if (pkts)
  462. can_led_event(dev, CAN_LED_EVENT_RX);
  463. return pkts;
  464. }
  465. static int m_can_handle_lost_msg(struct net_device *dev)
  466. {
  467. struct net_device_stats *stats = &dev->stats;
  468. struct sk_buff *skb;
  469. struct can_frame *frame;
  470. netdev_err(dev, "msg lost in rxf0\n");
  471. stats->rx_errors++;
  472. stats->rx_over_errors++;
  473. skb = alloc_can_err_skb(dev, &frame);
  474. if (unlikely(!skb))
  475. return 0;
  476. frame->can_id |= CAN_ERR_CRTL;
  477. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  478. netif_receive_skb(skb);
  479. return 1;
  480. }
  481. static int m_can_handle_lec_err(struct net_device *dev,
  482. enum m_can_lec_type lec_type)
  483. {
  484. struct m_can_priv *priv = netdev_priv(dev);
  485. struct net_device_stats *stats = &dev->stats;
  486. struct can_frame *cf;
  487. struct sk_buff *skb;
  488. priv->can.can_stats.bus_error++;
  489. stats->rx_errors++;
  490. /* propagate the error condition to the CAN stack */
  491. skb = alloc_can_err_skb(dev, &cf);
  492. if (unlikely(!skb))
  493. return 0;
  494. /* check for 'last error code' which tells us the
  495. * type of the last error to occur on the CAN bus
  496. */
  497. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  498. switch (lec_type) {
  499. case LEC_STUFF_ERROR:
  500. netdev_dbg(dev, "stuff error\n");
  501. cf->data[2] |= CAN_ERR_PROT_STUFF;
  502. break;
  503. case LEC_FORM_ERROR:
  504. netdev_dbg(dev, "form error\n");
  505. cf->data[2] |= CAN_ERR_PROT_FORM;
  506. break;
  507. case LEC_ACK_ERROR:
  508. netdev_dbg(dev, "ack error\n");
  509. cf->data[3] = CAN_ERR_PROT_LOC_ACK;
  510. break;
  511. case LEC_BIT1_ERROR:
  512. netdev_dbg(dev, "bit1 error\n");
  513. cf->data[2] |= CAN_ERR_PROT_BIT1;
  514. break;
  515. case LEC_BIT0_ERROR:
  516. netdev_dbg(dev, "bit0 error\n");
  517. cf->data[2] |= CAN_ERR_PROT_BIT0;
  518. break;
  519. case LEC_CRC_ERROR:
  520. netdev_dbg(dev, "CRC error\n");
  521. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  522. break;
  523. default:
  524. break;
  525. }
  526. stats->rx_packets++;
  527. stats->rx_bytes += cf->can_dlc;
  528. netif_receive_skb(skb);
  529. return 1;
  530. }
  531. static int __m_can_get_berr_counter(const struct net_device *dev,
  532. struct can_berr_counter *bec)
  533. {
  534. struct m_can_priv *priv = netdev_priv(dev);
  535. unsigned int ecr;
  536. ecr = m_can_read(priv, M_CAN_ECR);
  537. bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
  538. bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
  539. return 0;
  540. }
  541. static int m_can_get_berr_counter(const struct net_device *dev,
  542. struct can_berr_counter *bec)
  543. {
  544. struct m_can_priv *priv = netdev_priv(dev);
  545. int err;
  546. err = clk_prepare_enable(priv->hclk);
  547. if (err)
  548. return err;
  549. err = clk_prepare_enable(priv->cclk);
  550. if (err) {
  551. clk_disable_unprepare(priv->hclk);
  552. return err;
  553. }
  554. __m_can_get_berr_counter(dev, bec);
  555. clk_disable_unprepare(priv->cclk);
  556. clk_disable_unprepare(priv->hclk);
  557. return 0;
  558. }
  559. static int m_can_handle_state_change(struct net_device *dev,
  560. enum can_state new_state)
  561. {
  562. struct m_can_priv *priv = netdev_priv(dev);
  563. struct net_device_stats *stats = &dev->stats;
  564. struct can_frame *cf;
  565. struct sk_buff *skb;
  566. struct can_berr_counter bec;
  567. unsigned int ecr;
  568. switch (new_state) {
  569. case CAN_STATE_ERROR_ACTIVE:
  570. /* error warning state */
  571. priv->can.can_stats.error_warning++;
  572. priv->can.state = CAN_STATE_ERROR_WARNING;
  573. break;
  574. case CAN_STATE_ERROR_PASSIVE:
  575. /* error passive state */
  576. priv->can.can_stats.error_passive++;
  577. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  578. break;
  579. case CAN_STATE_BUS_OFF:
  580. /* bus-off state */
  581. priv->can.state = CAN_STATE_BUS_OFF;
  582. m_can_disable_all_interrupts(priv);
  583. priv->can.can_stats.bus_off++;
  584. can_bus_off(dev);
  585. break;
  586. default:
  587. break;
  588. }
  589. /* propagate the error condition to the CAN stack */
  590. skb = alloc_can_err_skb(dev, &cf);
  591. if (unlikely(!skb))
  592. return 0;
  593. __m_can_get_berr_counter(dev, &bec);
  594. switch (new_state) {
  595. case CAN_STATE_ERROR_ACTIVE:
  596. /* error warning state */
  597. cf->can_id |= CAN_ERR_CRTL;
  598. cf->data[1] = (bec.txerr > bec.rxerr) ?
  599. CAN_ERR_CRTL_TX_WARNING :
  600. CAN_ERR_CRTL_RX_WARNING;
  601. cf->data[6] = bec.txerr;
  602. cf->data[7] = bec.rxerr;
  603. break;
  604. case CAN_STATE_ERROR_PASSIVE:
  605. /* error passive state */
  606. cf->can_id |= CAN_ERR_CRTL;
  607. ecr = m_can_read(priv, M_CAN_ECR);
  608. if (ecr & ECR_RP)
  609. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  610. if (bec.txerr > 127)
  611. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  612. cf->data[6] = bec.txerr;
  613. cf->data[7] = bec.rxerr;
  614. break;
  615. case CAN_STATE_BUS_OFF:
  616. /* bus-off state */
  617. cf->can_id |= CAN_ERR_BUSOFF;
  618. break;
  619. default:
  620. break;
  621. }
  622. stats->rx_packets++;
  623. stats->rx_bytes += cf->can_dlc;
  624. netif_receive_skb(skb);
  625. return 1;
  626. }
  627. static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
  628. {
  629. struct m_can_priv *priv = netdev_priv(dev);
  630. int work_done = 0;
  631. if ((psr & PSR_EW) &&
  632. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  633. netdev_dbg(dev, "entered error warning state\n");
  634. work_done += m_can_handle_state_change(dev,
  635. CAN_STATE_ERROR_WARNING);
  636. }
  637. if ((psr & PSR_EP) &&
  638. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  639. netdev_dbg(dev, "entered error passive state\n");
  640. work_done += m_can_handle_state_change(dev,
  641. CAN_STATE_ERROR_PASSIVE);
  642. }
  643. if ((psr & PSR_BO) &&
  644. (priv->can.state != CAN_STATE_BUS_OFF)) {
  645. netdev_dbg(dev, "entered error bus off state\n");
  646. work_done += m_can_handle_state_change(dev,
  647. CAN_STATE_BUS_OFF);
  648. }
  649. return work_done;
  650. }
  651. static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
  652. {
  653. if (irqstatus & IR_WDI)
  654. netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
  655. if (irqstatus & IR_ELO)
  656. netdev_err(dev, "Error Logging Overflow\n");
  657. if (irqstatus & IR_BEU)
  658. netdev_err(dev, "Bit Error Uncorrected\n");
  659. if (irqstatus & IR_BEC)
  660. netdev_err(dev, "Bit Error Corrected\n");
  661. if (irqstatus & IR_TOO)
  662. netdev_err(dev, "Timeout reached\n");
  663. if (irqstatus & IR_MRAF)
  664. netdev_err(dev, "Message RAM access failure occurred\n");
  665. }
  666. static inline bool is_lec_err(u32 psr)
  667. {
  668. psr &= LEC_UNUSED;
  669. return psr && (psr != LEC_UNUSED);
  670. }
  671. static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
  672. u32 psr)
  673. {
  674. struct m_can_priv *priv = netdev_priv(dev);
  675. int work_done = 0;
  676. if (irqstatus & IR_RF0L)
  677. work_done += m_can_handle_lost_msg(dev);
  678. /* handle lec errors on the bus */
  679. if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  680. is_lec_err(psr))
  681. work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
  682. /* other unproccessed error interrupts */
  683. m_can_handle_other_err(dev, irqstatus);
  684. return work_done;
  685. }
  686. static int m_can_poll(struct napi_struct *napi, int quota)
  687. {
  688. struct net_device *dev = napi->dev;
  689. struct m_can_priv *priv = netdev_priv(dev);
  690. int work_done = 0;
  691. u32 irqstatus, psr;
  692. irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
  693. if (!irqstatus)
  694. goto end;
  695. psr = m_can_read(priv, M_CAN_PSR);
  696. if (irqstatus & IR_ERR_STATE)
  697. work_done += m_can_handle_state_errors(dev, psr);
  698. if (irqstatus & IR_ERR_BUS_30X)
  699. work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
  700. if (irqstatus & IR_RF0N)
  701. work_done += m_can_do_rx_poll(dev, (quota - work_done));
  702. if (work_done < quota) {
  703. napi_complete_done(napi, work_done);
  704. m_can_enable_all_interrupts(priv);
  705. }
  706. end:
  707. return work_done;
  708. }
  709. static void m_can_echo_tx_event(struct net_device *dev)
  710. {
  711. u32 txe_count = 0;
  712. u32 m_can_txefs;
  713. u32 fgi = 0;
  714. int i = 0;
  715. unsigned int msg_mark;
  716. struct m_can_priv *priv = netdev_priv(dev);
  717. struct net_device_stats *stats = &dev->stats;
  718. /* read tx event fifo status */
  719. m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
  720. /* Get Tx Event fifo element count */
  721. txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
  722. >> TXEFS_EFFL_SHIFT;
  723. /* Get and process all sent elements */
  724. for (i = 0; i < txe_count; i++) {
  725. /* retrieve get index */
  726. fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
  727. >> TXEFS_EFGI_SHIFT;
  728. /* get message marker */
  729. msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
  730. TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
  731. /* ack txe element */
  732. m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
  733. (fgi << TXEFA_EFAI_SHIFT)));
  734. /* update stats */
  735. stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
  736. stats->tx_packets++;
  737. }
  738. }
  739. static irqreturn_t m_can_isr(int irq, void *dev_id)
  740. {
  741. struct net_device *dev = (struct net_device *)dev_id;
  742. struct m_can_priv *priv = netdev_priv(dev);
  743. struct net_device_stats *stats = &dev->stats;
  744. u32 ir;
  745. ir = m_can_read(priv, M_CAN_IR);
  746. if (!ir)
  747. return IRQ_NONE;
  748. /* ACK all irqs */
  749. if (ir & IR_ALL_INT)
  750. m_can_write(priv, M_CAN_IR, ir);
  751. /* schedule NAPI in case of
  752. * - rx IRQ
  753. * - state change IRQ
  754. * - bus error IRQ and bus error reporting
  755. */
  756. if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
  757. priv->irqstatus = ir;
  758. m_can_disable_all_interrupts(priv);
  759. napi_schedule(&priv->napi);
  760. }
  761. if (priv->version == 30) {
  762. if (ir & IR_TC) {
  763. /* Transmission Complete Interrupt*/
  764. stats->tx_bytes += can_get_echo_skb(dev, 0);
  765. stats->tx_packets++;
  766. can_led_event(dev, CAN_LED_EVENT_TX);
  767. netif_wake_queue(dev);
  768. }
  769. } else {
  770. if (ir & IR_TEFN) {
  771. /* New TX FIFO Element arrived */
  772. m_can_echo_tx_event(dev);
  773. can_led_event(dev, CAN_LED_EVENT_TX);
  774. if (netif_queue_stopped(dev) &&
  775. !m_can_tx_fifo_full(priv))
  776. netif_wake_queue(dev);
  777. }
  778. }
  779. return IRQ_HANDLED;
  780. }
  781. static const struct can_bittiming_const m_can_bittiming_const_30X = {
  782. .name = KBUILD_MODNAME,
  783. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  784. .tseg1_max = 64,
  785. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  786. .tseg2_max = 16,
  787. .sjw_max = 16,
  788. .brp_min = 1,
  789. .brp_max = 1024,
  790. .brp_inc = 1,
  791. };
  792. static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
  793. .name = KBUILD_MODNAME,
  794. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  795. .tseg1_max = 16,
  796. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  797. .tseg2_max = 8,
  798. .sjw_max = 4,
  799. .brp_min = 1,
  800. .brp_max = 32,
  801. .brp_inc = 1,
  802. };
  803. static const struct can_bittiming_const m_can_bittiming_const_31X = {
  804. .name = KBUILD_MODNAME,
  805. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  806. .tseg1_max = 256,
  807. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  808. .tseg2_max = 128,
  809. .sjw_max = 128,
  810. .brp_min = 1,
  811. .brp_max = 512,
  812. .brp_inc = 1,
  813. };
  814. static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
  815. .name = KBUILD_MODNAME,
  816. .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
  817. .tseg1_max = 32,
  818. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  819. .tseg2_max = 16,
  820. .sjw_max = 16,
  821. .brp_min = 1,
  822. .brp_max = 32,
  823. .brp_inc = 1,
  824. };
  825. static int m_can_set_bittiming(struct net_device *dev)
  826. {
  827. struct m_can_priv *priv = netdev_priv(dev);
  828. const struct can_bittiming *bt = &priv->can.bittiming;
  829. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  830. u16 brp, sjw, tseg1, tseg2;
  831. u32 reg_btp;
  832. brp = bt->brp - 1;
  833. sjw = bt->sjw - 1;
  834. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  835. tseg2 = bt->phase_seg2 - 1;
  836. reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
  837. (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
  838. m_can_write(priv, M_CAN_NBTP, reg_btp);
  839. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  840. brp = dbt->brp - 1;
  841. sjw = dbt->sjw - 1;
  842. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  843. tseg2 = dbt->phase_seg2 - 1;
  844. reg_btp = (brp << DBTP_DBRP_SHIFT) | (sjw << DBTP_DSJW_SHIFT) |
  845. (tseg1 << DBTP_DTSEG1_SHIFT) |
  846. (tseg2 << DBTP_DTSEG2_SHIFT);
  847. m_can_write(priv, M_CAN_DBTP, reg_btp);
  848. }
  849. return 0;
  850. }
  851. /* Configure M_CAN chip:
  852. * - set rx buffer/fifo element size
  853. * - configure rx fifo
  854. * - accept non-matching frame into fifo 0
  855. * - configure tx buffer
  856. * - >= v3.1.x: TX FIFO is used
  857. * - configure mode
  858. * - setup bittiming
  859. */
  860. static void m_can_chip_config(struct net_device *dev)
  861. {
  862. struct m_can_priv *priv = netdev_priv(dev);
  863. u32 cccr, test;
  864. m_can_config_endisable(priv, true);
  865. /* RX Buffer/FIFO Element Size 64 bytes data field */
  866. m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
  867. /* Accept Non-matching Frames Into FIFO 0 */
  868. m_can_write(priv, M_CAN_GFC, 0x0);
  869. if (priv->version == 30) {
  870. /* only support one Tx Buffer currently */
  871. m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
  872. priv->mcfg[MRAM_TXB].off);
  873. } else {
  874. /* TX FIFO is used for newer IP Core versions */
  875. m_can_write(priv, M_CAN_TXBC,
  876. (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
  877. (priv->mcfg[MRAM_TXB].off));
  878. }
  879. /* support 64 bytes payload */
  880. m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
  881. /* TX Event FIFO */
  882. if (priv->version == 30) {
  883. m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
  884. priv->mcfg[MRAM_TXE].off);
  885. } else {
  886. /* Full TX Event FIFO is used */
  887. m_can_write(priv, M_CAN_TXEFC,
  888. ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
  889. & TXEFC_EFS_MASK) |
  890. priv->mcfg[MRAM_TXE].off);
  891. }
  892. /* rx fifo configuration, blocking mode, fifo size 1 */
  893. m_can_write(priv, M_CAN_RXF0C,
  894. (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
  895. priv->mcfg[MRAM_RXF0].off);
  896. m_can_write(priv, M_CAN_RXF1C,
  897. (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
  898. priv->mcfg[MRAM_RXF1].off);
  899. cccr = m_can_read(priv, M_CAN_CCCR);
  900. test = m_can_read(priv, M_CAN_TEST);
  901. test &= ~TEST_LBCK;
  902. if (priv->version == 30) {
  903. /* Version 3.0.x */
  904. cccr &= ~(CCCR_TEST | CCCR_MON |
  905. (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
  906. (CCCR_CME_MASK << CCCR_CME_SHIFT));
  907. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  908. cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
  909. } else {
  910. /* Version 3.1.x or 3.2.x */
  911. cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
  912. /* Only 3.2.x has NISO Bit implemented */
  913. if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
  914. cccr |= CCCR_NISO;
  915. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  916. cccr |= (CCCR_BRSE | CCCR_FDOE);
  917. }
  918. /* Loopback Mode */
  919. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  920. cccr |= CCCR_TEST | CCCR_MON;
  921. test |= TEST_LBCK;
  922. }
  923. /* Enable Monitoring (all versions) */
  924. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  925. cccr |= CCCR_MON;
  926. /* Write config */
  927. m_can_write(priv, M_CAN_CCCR, cccr);
  928. m_can_write(priv, M_CAN_TEST, test);
  929. /* Enable interrupts */
  930. m_can_write(priv, M_CAN_IR, IR_ALL_INT);
  931. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  932. if (priv->version == 30)
  933. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  934. ~(IR_ERR_LEC_30X));
  935. else
  936. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  937. ~(IR_ERR_LEC_31X));
  938. else
  939. m_can_write(priv, M_CAN_IE, IR_ALL_INT);
  940. /* route all interrupts to INT0 */
  941. m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
  942. /* set bittiming params */
  943. m_can_set_bittiming(dev);
  944. m_can_config_endisable(priv, false);
  945. }
  946. static void m_can_start(struct net_device *dev)
  947. {
  948. struct m_can_priv *priv = netdev_priv(dev);
  949. /* basic m_can configuration */
  950. m_can_chip_config(dev);
  951. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  952. m_can_enable_all_interrupts(priv);
  953. }
  954. static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
  955. {
  956. switch (mode) {
  957. case CAN_MODE_START:
  958. m_can_start(dev);
  959. netif_wake_queue(dev);
  960. break;
  961. default:
  962. return -EOPNOTSUPP;
  963. }
  964. return 0;
  965. }
  966. static void free_m_can_dev(struct net_device *dev)
  967. {
  968. free_candev(dev);
  969. }
  970. /* Checks core release number of M_CAN
  971. * returns 0 if an unsupported device is detected
  972. * else it returns the release and step coded as:
  973. * return value = 10 * <release> + 1 * <step>
  974. */
  975. static int m_can_check_core_release(void __iomem *m_can_base)
  976. {
  977. u32 crel_reg;
  978. u8 rel;
  979. u8 step;
  980. int res;
  981. struct m_can_priv temp_priv = {
  982. .base = m_can_base
  983. };
  984. /* Read Core Release Version and split into version number
  985. * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
  986. */
  987. crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
  988. rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
  989. step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
  990. if (rel == 3) {
  991. /* M_CAN v3.x.y: create return value */
  992. res = 30 + step;
  993. } else {
  994. /* Unsupported M_CAN version */
  995. res = 0;
  996. }
  997. return res;
  998. }
  999. /* Selectable Non ISO support only in version 3.2.x
  1000. * This function checks if the bit is writable.
  1001. */
  1002. static bool m_can_niso_supported(const struct m_can_priv *priv)
  1003. {
  1004. u32 cccr_reg, cccr_poll;
  1005. int niso_timeout;
  1006. m_can_config_endisable(priv, true);
  1007. cccr_reg = m_can_read(priv, M_CAN_CCCR);
  1008. cccr_reg |= CCCR_NISO;
  1009. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1010. niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
  1011. (cccr_poll == cccr_reg), 0, 10);
  1012. /* Clear NISO */
  1013. cccr_reg &= ~(CCCR_NISO);
  1014. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1015. m_can_config_endisable(priv, false);
  1016. /* return false if time out (-ETIMEDOUT), else return true */
  1017. return !niso_timeout;
  1018. }
  1019. static struct net_device *alloc_m_can_dev(struct platform_device *pdev,
  1020. void __iomem *addr, u32 tx_fifo_size)
  1021. {
  1022. struct net_device *dev;
  1023. struct m_can_priv *priv;
  1024. int m_can_version;
  1025. unsigned int echo_buffer_count;
  1026. m_can_version = m_can_check_core_release(addr);
  1027. /* return if unsupported version */
  1028. if (!m_can_version) {
  1029. dev = NULL;
  1030. goto return_dev;
  1031. }
  1032. /* If version < 3.1.x, then only one echo buffer is used */
  1033. echo_buffer_count = ((m_can_version == 30)
  1034. ? 1U
  1035. : (unsigned int)tx_fifo_size);
  1036. dev = alloc_candev(sizeof(*priv), echo_buffer_count);
  1037. if (!dev) {
  1038. dev = NULL;
  1039. goto return_dev;
  1040. }
  1041. priv = netdev_priv(dev);
  1042. netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
  1043. /* Shared properties of all M_CAN versions */
  1044. priv->version = m_can_version;
  1045. priv->dev = dev;
  1046. priv->base = addr;
  1047. priv->can.do_set_mode = m_can_set_mode;
  1048. priv->can.do_get_berr_counter = m_can_get_berr_counter;
  1049. /* Set M_CAN supported operations */
  1050. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  1051. CAN_CTRLMODE_LISTENONLY |
  1052. CAN_CTRLMODE_BERR_REPORTING |
  1053. CAN_CTRLMODE_FD;
  1054. /* Set properties depending on M_CAN version */
  1055. switch (priv->version) {
  1056. case 30:
  1057. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
  1058. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1059. priv->can.bittiming_const = &m_can_bittiming_const_30X;
  1060. priv->can.data_bittiming_const =
  1061. &m_can_data_bittiming_const_30X;
  1062. break;
  1063. case 31:
  1064. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
  1065. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1066. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1067. priv->can.data_bittiming_const =
  1068. &m_can_data_bittiming_const_31X;
  1069. break;
  1070. case 32:
  1071. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1072. priv->can.data_bittiming_const =
  1073. &m_can_data_bittiming_const_31X;
  1074. priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
  1075. ? CAN_CTRLMODE_FD_NON_ISO
  1076. : 0);
  1077. break;
  1078. default:
  1079. /* Unsupported device: free candev */
  1080. free_m_can_dev(dev);
  1081. dev_err(&pdev->dev, "Unsupported version number: %2d",
  1082. priv->version);
  1083. dev = NULL;
  1084. break;
  1085. }
  1086. return_dev:
  1087. return dev;
  1088. }
  1089. static int m_can_open(struct net_device *dev)
  1090. {
  1091. struct m_can_priv *priv = netdev_priv(dev);
  1092. int err;
  1093. err = clk_prepare_enable(priv->hclk);
  1094. if (err)
  1095. return err;
  1096. err = clk_prepare_enable(priv->cclk);
  1097. if (err)
  1098. goto exit_disable_hclk;
  1099. /* open the can device */
  1100. err = open_candev(dev);
  1101. if (err) {
  1102. netdev_err(dev, "failed to open can device\n");
  1103. goto exit_disable_cclk;
  1104. }
  1105. /* register interrupt handler */
  1106. err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
  1107. dev);
  1108. if (err < 0) {
  1109. netdev_err(dev, "failed to request interrupt\n");
  1110. goto exit_irq_fail;
  1111. }
  1112. /* start the m_can controller */
  1113. m_can_start(dev);
  1114. can_led_event(dev, CAN_LED_EVENT_OPEN);
  1115. napi_enable(&priv->napi);
  1116. netif_start_queue(dev);
  1117. return 0;
  1118. exit_irq_fail:
  1119. close_candev(dev);
  1120. exit_disable_cclk:
  1121. clk_disable_unprepare(priv->cclk);
  1122. exit_disable_hclk:
  1123. clk_disable_unprepare(priv->hclk);
  1124. return err;
  1125. }
  1126. static void m_can_stop(struct net_device *dev)
  1127. {
  1128. struct m_can_priv *priv = netdev_priv(dev);
  1129. /* disable all interrupts */
  1130. m_can_disable_all_interrupts(priv);
  1131. clk_disable_unprepare(priv->hclk);
  1132. clk_disable_unprepare(priv->cclk);
  1133. /* set the state as STOPPED */
  1134. priv->can.state = CAN_STATE_STOPPED;
  1135. }
  1136. static int m_can_close(struct net_device *dev)
  1137. {
  1138. struct m_can_priv *priv = netdev_priv(dev);
  1139. netif_stop_queue(dev);
  1140. napi_disable(&priv->napi);
  1141. m_can_stop(dev);
  1142. free_irq(dev->irq, dev);
  1143. close_candev(dev);
  1144. can_led_event(dev, CAN_LED_EVENT_STOP);
  1145. return 0;
  1146. }
  1147. static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
  1148. {
  1149. struct m_can_priv *priv = netdev_priv(dev);
  1150. /*get wrap around for loopback skb index */
  1151. unsigned int wrap = priv->can.echo_skb_max;
  1152. int next_idx;
  1153. /* calculate next index */
  1154. next_idx = (++putidx >= wrap ? 0 : putidx);
  1155. /* check if occupied */
  1156. return !!priv->can.echo_skb[next_idx];
  1157. }
  1158. static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
  1159. struct net_device *dev)
  1160. {
  1161. struct m_can_priv *priv = netdev_priv(dev);
  1162. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  1163. u32 id, cccr, fdflags;
  1164. int i;
  1165. int putidx;
  1166. if (can_dropped_invalid_skb(dev, skb))
  1167. return NETDEV_TX_OK;
  1168. /* Generate ID field for TX buffer Element */
  1169. /* Common to all supported M_CAN versions */
  1170. if (cf->can_id & CAN_EFF_FLAG) {
  1171. id = cf->can_id & CAN_EFF_MASK;
  1172. id |= TX_BUF_XTD;
  1173. } else {
  1174. id = ((cf->can_id & CAN_SFF_MASK) << 18);
  1175. }
  1176. if (cf->can_id & CAN_RTR_FLAG)
  1177. id |= TX_BUF_RTR;
  1178. if (priv->version == 30) {
  1179. netif_stop_queue(dev);
  1180. /* message ram configuration */
  1181. m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
  1182. m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
  1183. can_len2dlc(cf->len) << 16);
  1184. for (i = 0; i < cf->len; i += 4)
  1185. m_can_fifo_write(priv, 0,
  1186. M_CAN_FIFO_DATA(i / 4),
  1187. *(u32 *)(cf->data + i));
  1188. can_put_echo_skb(skb, dev, 0);
  1189. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  1190. cccr = m_can_read(priv, M_CAN_CCCR);
  1191. cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
  1192. if (can_is_canfd_skb(skb)) {
  1193. if (cf->flags & CANFD_BRS)
  1194. cccr |= CCCR_CMR_CANFD_BRS <<
  1195. CCCR_CMR_SHIFT;
  1196. else
  1197. cccr |= CCCR_CMR_CANFD <<
  1198. CCCR_CMR_SHIFT;
  1199. } else {
  1200. cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
  1201. }
  1202. m_can_write(priv, M_CAN_CCCR, cccr);
  1203. }
  1204. m_can_write(priv, M_CAN_TXBTIE, 0x1);
  1205. m_can_write(priv, M_CAN_TXBAR, 0x1);
  1206. /* End of xmit function for version 3.0.x */
  1207. } else {
  1208. /* Transmit routine for version >= v3.1.x */
  1209. /* Check if FIFO full */
  1210. if (m_can_tx_fifo_full(priv)) {
  1211. /* This shouldn't happen */
  1212. netif_stop_queue(dev);
  1213. netdev_warn(dev,
  1214. "TX queue active although FIFO is full.");
  1215. return NETDEV_TX_BUSY;
  1216. }
  1217. /* get put index for frame */
  1218. putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
  1219. >> TXFQS_TFQPI_SHIFT);
  1220. /* Write ID Field to FIFO Element */
  1221. m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
  1222. /* get CAN FD configuration of frame */
  1223. fdflags = 0;
  1224. if (can_is_canfd_skb(skb)) {
  1225. fdflags |= TX_BUF_FDF;
  1226. if (cf->flags & CANFD_BRS)
  1227. fdflags |= TX_BUF_BRS;
  1228. }
  1229. /* Construct DLC Field. Also contains CAN-FD configuration
  1230. * use put index of fifo as message marker
  1231. * it is used in TX interrupt for
  1232. * sending the correct echo frame
  1233. */
  1234. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
  1235. ((putidx << TX_BUF_MM_SHIFT) &
  1236. TX_BUF_MM_MASK) |
  1237. (can_len2dlc(cf->len) << 16) |
  1238. fdflags | TX_BUF_EFC);
  1239. for (i = 0; i < cf->len; i += 4)
  1240. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
  1241. *(u32 *)(cf->data + i));
  1242. /* Push loopback echo.
  1243. * Will be looped back on TX interrupt based on message marker
  1244. */
  1245. can_put_echo_skb(skb, dev, putidx);
  1246. /* Enable TX FIFO element to start transfer */
  1247. m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
  1248. /* stop network queue if fifo full */
  1249. if (m_can_tx_fifo_full(priv) ||
  1250. m_can_next_echo_skb_occupied(dev, putidx))
  1251. netif_stop_queue(dev);
  1252. }
  1253. return NETDEV_TX_OK;
  1254. }
  1255. static const struct net_device_ops m_can_netdev_ops = {
  1256. .ndo_open = m_can_open,
  1257. .ndo_stop = m_can_close,
  1258. .ndo_start_xmit = m_can_start_xmit,
  1259. .ndo_change_mtu = can_change_mtu,
  1260. };
  1261. static int register_m_can_dev(struct net_device *dev)
  1262. {
  1263. dev->flags |= IFF_ECHO; /* we support local echo */
  1264. dev->netdev_ops = &m_can_netdev_ops;
  1265. return register_candev(dev);
  1266. }
  1267. static void m_can_of_parse_mram(struct m_can_priv *priv,
  1268. const u32 *mram_config_vals)
  1269. {
  1270. int i, start, end;
  1271. priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
  1272. priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
  1273. priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
  1274. priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
  1275. priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
  1276. priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
  1277. priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
  1278. priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
  1279. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1280. priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
  1281. priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
  1282. priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
  1283. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1284. priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
  1285. priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
  1286. priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
  1287. priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
  1288. priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
  1289. priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
  1290. priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
  1291. priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
  1292. priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
  1293. (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
  1294. dev_dbg(priv->device,
  1295. "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
  1296. priv->mram_base,
  1297. priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
  1298. priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
  1299. priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
  1300. priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
  1301. priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
  1302. priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
  1303. priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
  1304. /* initialize the entire Message RAM in use to avoid possible
  1305. * ECC/parity checksum errors when reading an uninitialized buffer
  1306. */
  1307. start = priv->mcfg[MRAM_SIDF].off;
  1308. end = priv->mcfg[MRAM_TXB].off +
  1309. priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
  1310. for (i = start; i < end; i += 4)
  1311. writel(0x0, priv->mram_base + i);
  1312. }
  1313. static int m_can_plat_probe(struct platform_device *pdev)
  1314. {
  1315. struct net_device *dev;
  1316. struct m_can_priv *priv;
  1317. struct resource *res;
  1318. void __iomem *addr;
  1319. void __iomem *mram_addr;
  1320. struct clk *hclk, *cclk;
  1321. int irq, ret;
  1322. struct device_node *np;
  1323. u32 mram_config_vals[MRAM_CFG_LEN];
  1324. u32 tx_fifo_size;
  1325. np = pdev->dev.of_node;
  1326. hclk = devm_clk_get(&pdev->dev, "hclk");
  1327. cclk = devm_clk_get(&pdev->dev, "cclk");
  1328. if (IS_ERR(hclk) || IS_ERR(cclk)) {
  1329. dev_err(&pdev->dev, "no clock found\n");
  1330. ret = -ENODEV;
  1331. goto failed_ret;
  1332. }
  1333. /* Enable clocks. Necessary to read Core Release in order to determine
  1334. * M_CAN version
  1335. */
  1336. ret = clk_prepare_enable(hclk);
  1337. if (ret)
  1338. goto disable_hclk_ret;
  1339. ret = clk_prepare_enable(cclk);
  1340. if (ret)
  1341. goto disable_cclk_ret;
  1342. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
  1343. addr = devm_ioremap_resource(&pdev->dev, res);
  1344. irq = platform_get_irq_byname(pdev, "int0");
  1345. if (IS_ERR(addr) || irq < 0) {
  1346. ret = -EINVAL;
  1347. goto disable_cclk_ret;
  1348. }
  1349. /* message ram could be shared */
  1350. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
  1351. if (!res) {
  1352. ret = -ENODEV;
  1353. goto disable_cclk_ret;
  1354. }
  1355. mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  1356. if (!mram_addr) {
  1357. ret = -ENOMEM;
  1358. goto disable_cclk_ret;
  1359. }
  1360. /* get message ram configuration */
  1361. ret = of_property_read_u32_array(np, "bosch,mram-cfg",
  1362. mram_config_vals,
  1363. sizeof(mram_config_vals) / 4);
  1364. if (ret) {
  1365. dev_err(&pdev->dev, "Could not get Message RAM configuration.");
  1366. goto disable_cclk_ret;
  1367. }
  1368. /* Get TX FIFO size
  1369. * Defines the total amount of echo buffers for loopback
  1370. */
  1371. tx_fifo_size = mram_config_vals[7];
  1372. /* allocate the m_can device */
  1373. dev = alloc_m_can_dev(pdev, addr, tx_fifo_size);
  1374. if (!dev) {
  1375. ret = -ENOMEM;
  1376. goto disable_cclk_ret;
  1377. }
  1378. priv = netdev_priv(dev);
  1379. dev->irq = irq;
  1380. priv->device = &pdev->dev;
  1381. priv->hclk = hclk;
  1382. priv->cclk = cclk;
  1383. priv->can.clock.freq = clk_get_rate(cclk);
  1384. priv->mram_base = mram_addr;
  1385. m_can_of_parse_mram(priv, mram_config_vals);
  1386. platform_set_drvdata(pdev, dev);
  1387. SET_NETDEV_DEV(dev, &pdev->dev);
  1388. ret = register_m_can_dev(dev);
  1389. if (ret) {
  1390. dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
  1391. KBUILD_MODNAME, ret);
  1392. goto failed_free_dev;
  1393. }
  1394. devm_can_led_init(dev);
  1395. dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
  1396. KBUILD_MODNAME, dev->irq, priv->version);
  1397. /* Probe finished
  1398. * Stop clocks. They will be reactivated once the M_CAN device is opened
  1399. */
  1400. goto disable_cclk_ret;
  1401. failed_free_dev:
  1402. free_m_can_dev(dev);
  1403. disable_cclk_ret:
  1404. clk_disable_unprepare(cclk);
  1405. disable_hclk_ret:
  1406. clk_disable_unprepare(hclk);
  1407. failed_ret:
  1408. return ret;
  1409. }
  1410. static __maybe_unused int m_can_suspend(struct device *dev)
  1411. {
  1412. struct net_device *ndev = dev_get_drvdata(dev);
  1413. struct m_can_priv *priv = netdev_priv(ndev);
  1414. if (netif_running(ndev)) {
  1415. netif_stop_queue(ndev);
  1416. netif_device_detach(ndev);
  1417. }
  1418. /* TODO: enter low power */
  1419. priv->can.state = CAN_STATE_SLEEPING;
  1420. return 0;
  1421. }
  1422. static __maybe_unused int m_can_resume(struct device *dev)
  1423. {
  1424. struct net_device *ndev = dev_get_drvdata(dev);
  1425. struct m_can_priv *priv = netdev_priv(ndev);
  1426. /* TODO: exit low power */
  1427. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1428. if (netif_running(ndev)) {
  1429. netif_device_attach(ndev);
  1430. netif_start_queue(ndev);
  1431. }
  1432. return 0;
  1433. }
  1434. static void unregister_m_can_dev(struct net_device *dev)
  1435. {
  1436. unregister_candev(dev);
  1437. }
  1438. static int m_can_plat_remove(struct platform_device *pdev)
  1439. {
  1440. struct net_device *dev = platform_get_drvdata(pdev);
  1441. unregister_m_can_dev(dev);
  1442. platform_set_drvdata(pdev, NULL);
  1443. free_m_can_dev(dev);
  1444. return 0;
  1445. }
  1446. static const struct dev_pm_ops m_can_pmops = {
  1447. SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
  1448. };
  1449. static const struct of_device_id m_can_of_table[] = {
  1450. { .compatible = "bosch,m_can", .data = NULL },
  1451. { /* sentinel */ },
  1452. };
  1453. MODULE_DEVICE_TABLE(of, m_can_of_table);
  1454. static struct platform_driver m_can_plat_driver = {
  1455. .driver = {
  1456. .name = KBUILD_MODNAME,
  1457. .of_match_table = m_can_of_table,
  1458. .pm = &m_can_pmops,
  1459. },
  1460. .probe = m_can_plat_probe,
  1461. .remove = m_can_plat_remove,
  1462. };
  1463. module_platform_driver(m_can_plat_driver);
  1464. MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
  1465. MODULE_LICENSE("GPL v2");
  1466. MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");