stm32-quadspi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. /*
  2. * stm32_quadspi.c
  3. *
  4. * Copyright (C) 2017, Ludovic Barre
  5. *
  6. * License terms: GNU General Public License (GPL), version 2
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/errno.h>
  10. #include <linux/io.h>
  11. #include <linux/iopoll.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/module.h>
  14. #include <linux/mtd/mtd.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/mtd/spi-nor.h>
  17. #include <linux/mutex.h>
  18. #include <linux/of.h>
  19. #include <linux/of_device.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/reset.h>
  22. #define QUADSPI_CR 0x00
  23. #define CR_EN BIT(0)
  24. #define CR_ABORT BIT(1)
  25. #define CR_DMAEN BIT(2)
  26. #define CR_TCEN BIT(3)
  27. #define CR_SSHIFT BIT(4)
  28. #define CR_DFM BIT(6)
  29. #define CR_FSEL BIT(7)
  30. #define CR_FTHRES_SHIFT 8
  31. #define CR_FTHRES_MASK GENMASK(12, 8)
  32. #define CR_FTHRES(n) (((n) << CR_FTHRES_SHIFT) & CR_FTHRES_MASK)
  33. #define CR_TEIE BIT(16)
  34. #define CR_TCIE BIT(17)
  35. #define CR_FTIE BIT(18)
  36. #define CR_SMIE BIT(19)
  37. #define CR_TOIE BIT(20)
  38. #define CR_PRESC_SHIFT 24
  39. #define CR_PRESC_MASK GENMASK(31, 24)
  40. #define CR_PRESC(n) (((n) << CR_PRESC_SHIFT) & CR_PRESC_MASK)
  41. #define QUADSPI_DCR 0x04
  42. #define DCR_CSHT_SHIFT 8
  43. #define DCR_CSHT_MASK GENMASK(10, 8)
  44. #define DCR_CSHT(n) (((n) << DCR_CSHT_SHIFT) & DCR_CSHT_MASK)
  45. #define DCR_FSIZE_SHIFT 16
  46. #define DCR_FSIZE_MASK GENMASK(20, 16)
  47. #define DCR_FSIZE(n) (((n) << DCR_FSIZE_SHIFT) & DCR_FSIZE_MASK)
  48. #define QUADSPI_SR 0x08
  49. #define SR_TEF BIT(0)
  50. #define SR_TCF BIT(1)
  51. #define SR_FTF BIT(2)
  52. #define SR_SMF BIT(3)
  53. #define SR_TOF BIT(4)
  54. #define SR_BUSY BIT(5)
  55. #define SR_FLEVEL_SHIFT 8
  56. #define SR_FLEVEL_MASK GENMASK(13, 8)
  57. #define QUADSPI_FCR 0x0c
  58. #define FCR_CTCF BIT(1)
  59. #define QUADSPI_DLR 0x10
  60. #define QUADSPI_CCR 0x14
  61. #define CCR_INST_SHIFT 0
  62. #define CCR_INST_MASK GENMASK(7, 0)
  63. #define CCR_INST(n) (((n) << CCR_INST_SHIFT) & CCR_INST_MASK)
  64. #define CCR_IMODE_NONE (0U << 8)
  65. #define CCR_IMODE_1 (1U << 8)
  66. #define CCR_IMODE_2 (2U << 8)
  67. #define CCR_IMODE_4 (3U << 8)
  68. #define CCR_ADMODE_NONE (0U << 10)
  69. #define CCR_ADMODE_1 (1U << 10)
  70. #define CCR_ADMODE_2 (2U << 10)
  71. #define CCR_ADMODE_4 (3U << 10)
  72. #define CCR_ADSIZE_SHIFT 12
  73. #define CCR_ADSIZE_MASK GENMASK(13, 12)
  74. #define CCR_ADSIZE(n) (((n) << CCR_ADSIZE_SHIFT) & CCR_ADSIZE_MASK)
  75. #define CCR_ABMODE_NONE (0U << 14)
  76. #define CCR_ABMODE_1 (1U << 14)
  77. #define CCR_ABMODE_2 (2U << 14)
  78. #define CCR_ABMODE_4 (3U << 14)
  79. #define CCR_ABSIZE_8 (0U << 16)
  80. #define CCR_ABSIZE_16 (1U << 16)
  81. #define CCR_ABSIZE_24 (2U << 16)
  82. #define CCR_ABSIZE_32 (3U << 16)
  83. #define CCR_DCYC_SHIFT 18
  84. #define CCR_DCYC_MASK GENMASK(22, 18)
  85. #define CCR_DCYC(n) (((n) << CCR_DCYC_SHIFT) & CCR_DCYC_MASK)
  86. #define CCR_DMODE_NONE (0U << 24)
  87. #define CCR_DMODE_1 (1U << 24)
  88. #define CCR_DMODE_2 (2U << 24)
  89. #define CCR_DMODE_4 (3U << 24)
  90. #define CCR_FMODE_INDW (0U << 26)
  91. #define CCR_FMODE_INDR (1U << 26)
  92. #define CCR_FMODE_APM (2U << 26)
  93. #define CCR_FMODE_MM (3U << 26)
  94. #define QUADSPI_AR 0x18
  95. #define QUADSPI_ABR 0x1c
  96. #define QUADSPI_DR 0x20
  97. #define QUADSPI_PSMKR 0x24
  98. #define QUADSPI_PSMAR 0x28
  99. #define QUADSPI_PIR 0x2c
  100. #define QUADSPI_LPTR 0x30
  101. #define LPTR_DFT_TIMEOUT 0x10
  102. #define FSIZE_VAL(size) (__fls(size) - 1)
  103. #define STM32_MAX_MMAP_SZ SZ_256M
  104. #define STM32_MAX_NORCHIP 2
  105. #define STM32_QSPI_FIFO_TIMEOUT_US 30000
  106. #define STM32_QSPI_BUSY_TIMEOUT_US 100000
  107. struct stm32_qspi_flash {
  108. struct spi_nor nor;
  109. struct stm32_qspi *qspi;
  110. u32 cs;
  111. u32 fsize;
  112. u32 presc;
  113. u32 read_mode;
  114. bool registered;
  115. };
  116. struct stm32_qspi {
  117. struct device *dev;
  118. void __iomem *io_base;
  119. void __iomem *mm_base;
  120. resource_size_t mm_size;
  121. u32 nor_num;
  122. struct clk *clk;
  123. u32 clk_rate;
  124. struct stm32_qspi_flash flash[STM32_MAX_NORCHIP];
  125. struct completion cmd_completion;
  126. /*
  127. * to protect device configuration, could be different between
  128. * 2 flash access (bk1, bk2)
  129. */
  130. struct mutex lock;
  131. };
  132. struct stm32_qspi_cmd {
  133. u8 addr_width;
  134. u8 dummy;
  135. bool tx_data;
  136. u8 opcode;
  137. u32 framemode;
  138. u32 qspimode;
  139. u32 addr;
  140. size_t len;
  141. void *buf;
  142. };
  143. static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
  144. {
  145. u32 cr;
  146. int err = 0;
  147. if (readl_relaxed(qspi->io_base + QUADSPI_SR) & SR_TCF)
  148. return 0;
  149. reinit_completion(&qspi->cmd_completion);
  150. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  151. writel_relaxed(cr | CR_TCIE, qspi->io_base + QUADSPI_CR);
  152. if (!wait_for_completion_interruptible_timeout(&qspi->cmd_completion,
  153. msecs_to_jiffies(1000)))
  154. err = -ETIMEDOUT;
  155. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  156. return err;
  157. }
  158. static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
  159. {
  160. u32 sr;
  161. return readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr,
  162. !(sr & SR_BUSY), 10,
  163. STM32_QSPI_BUSY_TIMEOUT_US);
  164. }
  165. static void stm32_qspi_set_framemode(struct spi_nor *nor,
  166. struct stm32_qspi_cmd *cmd, bool read)
  167. {
  168. u32 dmode = CCR_DMODE_1;
  169. cmd->framemode = CCR_IMODE_1;
  170. if (read) {
  171. switch (nor->flash_read) {
  172. case SPI_NOR_NORMAL:
  173. case SPI_NOR_FAST:
  174. dmode = CCR_DMODE_1;
  175. break;
  176. case SPI_NOR_DUAL:
  177. dmode = CCR_DMODE_2;
  178. break;
  179. case SPI_NOR_QUAD:
  180. dmode = CCR_DMODE_4;
  181. break;
  182. }
  183. }
  184. cmd->framemode |= cmd->tx_data ? dmode : 0;
  185. cmd->framemode |= cmd->addr_width ? CCR_ADMODE_1 : 0;
  186. }
  187. static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
  188. {
  189. *val = readb_relaxed(addr);
  190. }
  191. static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
  192. {
  193. writeb_relaxed(*val, addr);
  194. }
  195. static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
  196. const struct stm32_qspi_cmd *cmd)
  197. {
  198. void (*tx_fifo)(u8 *, void __iomem *);
  199. u32 len = cmd->len, sr;
  200. u8 *buf = cmd->buf;
  201. int ret;
  202. if (cmd->qspimode == CCR_FMODE_INDW)
  203. tx_fifo = stm32_qspi_write_fifo;
  204. else
  205. tx_fifo = stm32_qspi_read_fifo;
  206. while (len--) {
  207. ret = readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR,
  208. sr, (sr & SR_FTF), 10,
  209. STM32_QSPI_FIFO_TIMEOUT_US);
  210. if (ret) {
  211. dev_err(qspi->dev, "fifo timeout (stat:%#x)\n", sr);
  212. break;
  213. }
  214. tx_fifo(buf++, qspi->io_base + QUADSPI_DR);
  215. }
  216. return ret;
  217. }
  218. static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
  219. const struct stm32_qspi_cmd *cmd)
  220. {
  221. memcpy_fromio(cmd->buf, qspi->mm_base + cmd->addr, cmd->len);
  222. return 0;
  223. }
  224. static int stm32_qspi_tx(struct stm32_qspi *qspi,
  225. const struct stm32_qspi_cmd *cmd)
  226. {
  227. if (!cmd->tx_data)
  228. return 0;
  229. if (cmd->qspimode == CCR_FMODE_MM)
  230. return stm32_qspi_tx_mm(qspi, cmd);
  231. return stm32_qspi_tx_poll(qspi, cmd);
  232. }
  233. static int stm32_qspi_send(struct stm32_qspi_flash *flash,
  234. const struct stm32_qspi_cmd *cmd)
  235. {
  236. struct stm32_qspi *qspi = flash->qspi;
  237. u32 ccr, dcr, cr;
  238. int err;
  239. err = stm32_qspi_wait_nobusy(qspi);
  240. if (err)
  241. goto abort;
  242. dcr = readl_relaxed(qspi->io_base + QUADSPI_DCR) & ~DCR_FSIZE_MASK;
  243. dcr |= DCR_FSIZE(flash->fsize);
  244. writel_relaxed(dcr, qspi->io_base + QUADSPI_DCR);
  245. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  246. cr &= ~CR_PRESC_MASK & ~CR_FSEL;
  247. cr |= CR_PRESC(flash->presc);
  248. cr |= flash->cs ? CR_FSEL : 0;
  249. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  250. if (cmd->tx_data)
  251. writel_relaxed(cmd->len - 1, qspi->io_base + QUADSPI_DLR);
  252. ccr = cmd->framemode | cmd->qspimode;
  253. if (cmd->dummy)
  254. ccr |= CCR_DCYC(cmd->dummy);
  255. if (cmd->addr_width)
  256. ccr |= CCR_ADSIZE(cmd->addr_width - 1);
  257. ccr |= CCR_INST(cmd->opcode);
  258. writel_relaxed(ccr, qspi->io_base + QUADSPI_CCR);
  259. if (cmd->addr_width && cmd->qspimode != CCR_FMODE_MM)
  260. writel_relaxed(cmd->addr, qspi->io_base + QUADSPI_AR);
  261. err = stm32_qspi_tx(qspi, cmd);
  262. if (err)
  263. goto abort;
  264. if (cmd->qspimode != CCR_FMODE_MM) {
  265. err = stm32_qspi_wait_cmd(qspi);
  266. if (err)
  267. goto abort;
  268. writel_relaxed(FCR_CTCF, qspi->io_base + QUADSPI_FCR);
  269. }
  270. return err;
  271. abort:
  272. cr = readl_relaxed(qspi->io_base + QUADSPI_CR) | CR_ABORT;
  273. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  274. dev_err(qspi->dev, "%s abort err:%d\n", __func__, err);
  275. return err;
  276. }
  277. static int stm32_qspi_read_reg(struct spi_nor *nor,
  278. u8 opcode, u8 *buf, int len)
  279. {
  280. struct stm32_qspi_flash *flash = nor->priv;
  281. struct device *dev = flash->qspi->dev;
  282. struct stm32_qspi_cmd cmd;
  283. dev_dbg(dev, "read_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len);
  284. memset(&cmd, 0, sizeof(cmd));
  285. cmd.opcode = opcode;
  286. cmd.tx_data = true;
  287. cmd.len = len;
  288. cmd.buf = buf;
  289. cmd.qspimode = CCR_FMODE_INDR;
  290. stm32_qspi_set_framemode(nor, &cmd, false);
  291. return stm32_qspi_send(flash, &cmd);
  292. }
  293. static int stm32_qspi_write_reg(struct spi_nor *nor, u8 opcode,
  294. u8 *buf, int len)
  295. {
  296. struct stm32_qspi_flash *flash = nor->priv;
  297. struct device *dev = flash->qspi->dev;
  298. struct stm32_qspi_cmd cmd;
  299. dev_dbg(dev, "write_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len);
  300. memset(&cmd, 0, sizeof(cmd));
  301. cmd.opcode = opcode;
  302. cmd.tx_data = !!(buf && len > 0);
  303. cmd.len = len;
  304. cmd.buf = buf;
  305. cmd.qspimode = CCR_FMODE_INDW;
  306. stm32_qspi_set_framemode(nor, &cmd, false);
  307. return stm32_qspi_send(flash, &cmd);
  308. }
  309. static ssize_t stm32_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
  310. u_char *buf)
  311. {
  312. struct stm32_qspi_flash *flash = nor->priv;
  313. struct stm32_qspi *qspi = flash->qspi;
  314. struct stm32_qspi_cmd cmd;
  315. int err;
  316. dev_dbg(qspi->dev, "read(%#.2x): buf:%p from:%#.8x len:%#x\n",
  317. nor->read_opcode, buf, (u32)from, len);
  318. memset(&cmd, 0, sizeof(cmd));
  319. cmd.opcode = nor->read_opcode;
  320. cmd.addr_width = nor->addr_width;
  321. cmd.addr = (u32)from;
  322. cmd.tx_data = true;
  323. cmd.dummy = nor->read_dummy;
  324. cmd.len = len;
  325. cmd.buf = buf;
  326. cmd.qspimode = flash->read_mode;
  327. stm32_qspi_set_framemode(nor, &cmd, true);
  328. err = stm32_qspi_send(flash, &cmd);
  329. return err ? err : len;
  330. }
  331. static ssize_t stm32_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
  332. const u_char *buf)
  333. {
  334. struct stm32_qspi_flash *flash = nor->priv;
  335. struct device *dev = flash->qspi->dev;
  336. struct stm32_qspi_cmd cmd;
  337. int err;
  338. dev_dbg(dev, "write(%#.2x): buf:%p to:%#.8x len:%#x\n",
  339. nor->program_opcode, buf, (u32)to, len);
  340. memset(&cmd, 0, sizeof(cmd));
  341. cmd.opcode = nor->program_opcode;
  342. cmd.addr_width = nor->addr_width;
  343. cmd.addr = (u32)to;
  344. cmd.tx_data = true;
  345. cmd.len = len;
  346. cmd.buf = (void *)buf;
  347. cmd.qspimode = CCR_FMODE_INDW;
  348. stm32_qspi_set_framemode(nor, &cmd, false);
  349. err = stm32_qspi_send(flash, &cmd);
  350. return err ? err : len;
  351. }
  352. static int stm32_qspi_erase(struct spi_nor *nor, loff_t offs)
  353. {
  354. struct stm32_qspi_flash *flash = nor->priv;
  355. struct device *dev = flash->qspi->dev;
  356. struct stm32_qspi_cmd cmd;
  357. dev_dbg(dev, "erase(%#.2x):offs:%#x\n", nor->erase_opcode, (u32)offs);
  358. memset(&cmd, 0, sizeof(cmd));
  359. cmd.opcode = nor->erase_opcode;
  360. cmd.addr_width = nor->addr_width;
  361. cmd.addr = (u32)offs;
  362. cmd.qspimode = CCR_FMODE_INDW;
  363. stm32_qspi_set_framemode(nor, &cmd, false);
  364. return stm32_qspi_send(flash, &cmd);
  365. }
  366. static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
  367. {
  368. struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
  369. u32 cr, sr, fcr = 0;
  370. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  371. sr = readl_relaxed(qspi->io_base + QUADSPI_SR);
  372. if ((cr & CR_TCIE) && (sr & SR_TCF)) {
  373. /* tx complete */
  374. fcr |= FCR_CTCF;
  375. complete(&qspi->cmd_completion);
  376. } else {
  377. dev_info_ratelimited(qspi->dev, "spurious interrupt\n");
  378. }
  379. writel_relaxed(fcr, qspi->io_base + QUADSPI_FCR);
  380. return IRQ_HANDLED;
  381. }
  382. static int stm32_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  383. {
  384. struct stm32_qspi_flash *flash = nor->priv;
  385. struct stm32_qspi *qspi = flash->qspi;
  386. mutex_lock(&qspi->lock);
  387. return 0;
  388. }
  389. static void stm32_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  390. {
  391. struct stm32_qspi_flash *flash = nor->priv;
  392. struct stm32_qspi *qspi = flash->qspi;
  393. mutex_unlock(&qspi->lock);
  394. }
  395. static int stm32_qspi_flash_setup(struct stm32_qspi *qspi,
  396. struct device_node *np)
  397. {
  398. u32 width, flash_read, presc, cs_num, max_rate = 0;
  399. struct stm32_qspi_flash *flash;
  400. struct mtd_info *mtd;
  401. int ret;
  402. of_property_read_u32(np, "reg", &cs_num);
  403. if (cs_num >= STM32_MAX_NORCHIP)
  404. return -EINVAL;
  405. of_property_read_u32(np, "spi-max-frequency", &max_rate);
  406. if (!max_rate)
  407. return -EINVAL;
  408. presc = DIV_ROUND_UP(qspi->clk_rate, max_rate) - 1;
  409. if (of_property_read_u32(np, "spi-rx-bus-width", &width))
  410. width = 1;
  411. if (width == 4)
  412. flash_read = SPI_NOR_QUAD;
  413. else if (width == 2)
  414. flash_read = SPI_NOR_DUAL;
  415. else if (width == 1)
  416. flash_read = SPI_NOR_NORMAL;
  417. else
  418. return -EINVAL;
  419. flash = &qspi->flash[cs_num];
  420. flash->qspi = qspi;
  421. flash->cs = cs_num;
  422. flash->presc = presc;
  423. flash->nor.dev = qspi->dev;
  424. spi_nor_set_flash_node(&flash->nor, np);
  425. flash->nor.priv = flash;
  426. mtd = &flash->nor.mtd;
  427. flash->nor.read = stm32_qspi_read;
  428. flash->nor.write = stm32_qspi_write;
  429. flash->nor.erase = stm32_qspi_erase;
  430. flash->nor.read_reg = stm32_qspi_read_reg;
  431. flash->nor.write_reg = stm32_qspi_write_reg;
  432. flash->nor.prepare = stm32_qspi_prep;
  433. flash->nor.unprepare = stm32_qspi_unprep;
  434. writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QUADSPI_LPTR);
  435. writel_relaxed(CR_PRESC(presc) | CR_FTHRES(3) | CR_TCEN | CR_SSHIFT
  436. | CR_EN, qspi->io_base + QUADSPI_CR);
  437. /*
  438. * in stm32 qspi controller, QUADSPI_DCR register has a fsize field
  439. * which define the size of nor flash.
  440. * if fsize is NULL, the controller can't sent spi-nor command.
  441. * set a temporary value just to discover the nor flash with
  442. * "spi_nor_scan". After, the right value (mtd->size) can be set.
  443. */
  444. flash->fsize = FSIZE_VAL(SZ_1K);
  445. ret = spi_nor_scan(&flash->nor, NULL, flash_read);
  446. if (ret) {
  447. dev_err(qspi->dev, "device scan failed\n");
  448. return ret;
  449. }
  450. flash->fsize = FSIZE_VAL(mtd->size);
  451. flash->read_mode = CCR_FMODE_MM;
  452. if (mtd->size > qspi->mm_size)
  453. flash->read_mode = CCR_FMODE_INDR;
  454. writel_relaxed(DCR_CSHT(1), qspi->io_base + QUADSPI_DCR);
  455. ret = mtd_device_register(mtd, NULL, 0);
  456. if (ret) {
  457. dev_err(qspi->dev, "mtd device parse failed\n");
  458. return ret;
  459. }
  460. flash->registered = true;
  461. dev_dbg(qspi->dev, "read mm:%s cs:%d bus:%d\n",
  462. flash->read_mode == CCR_FMODE_MM ? "yes" : "no", cs_num, width);
  463. return 0;
  464. }
  465. static void stm32_qspi_mtd_free(struct stm32_qspi *qspi)
  466. {
  467. int i;
  468. for (i = 0; i < STM32_MAX_NORCHIP; i++)
  469. if (qspi->flash[i].registered)
  470. mtd_device_unregister(&qspi->flash[i].nor.mtd);
  471. }
  472. static int stm32_qspi_probe(struct platform_device *pdev)
  473. {
  474. struct device *dev = &pdev->dev;
  475. struct device_node *flash_np;
  476. struct reset_control *rstc;
  477. struct stm32_qspi *qspi;
  478. struct resource *res;
  479. int ret, irq;
  480. qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL);
  481. if (!qspi)
  482. return -ENOMEM;
  483. qspi->nor_num = of_get_child_count(dev->of_node);
  484. if (!qspi->nor_num || qspi->nor_num > STM32_MAX_NORCHIP)
  485. return -ENODEV;
  486. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
  487. qspi->io_base = devm_ioremap_resource(dev, res);
  488. if (IS_ERR(qspi->io_base))
  489. return PTR_ERR(qspi->io_base);
  490. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
  491. qspi->mm_base = devm_ioremap_resource(dev, res);
  492. if (IS_ERR(qspi->mm_base))
  493. return PTR_ERR(qspi->mm_base);
  494. qspi->mm_size = resource_size(res);
  495. irq = platform_get_irq(pdev, 0);
  496. ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
  497. dev_name(dev), qspi);
  498. if (ret) {
  499. dev_err(dev, "failed to request irq\n");
  500. return ret;
  501. }
  502. init_completion(&qspi->cmd_completion);
  503. qspi->clk = devm_clk_get(dev, NULL);
  504. if (IS_ERR(qspi->clk))
  505. return PTR_ERR(qspi->clk);
  506. qspi->clk_rate = clk_get_rate(qspi->clk);
  507. if (!qspi->clk_rate)
  508. return -EINVAL;
  509. ret = clk_prepare_enable(qspi->clk);
  510. if (ret) {
  511. dev_err(dev, "can not enable the clock\n");
  512. return ret;
  513. }
  514. rstc = devm_reset_control_get(dev, NULL);
  515. if (!IS_ERR(rstc)) {
  516. reset_control_assert(rstc);
  517. udelay(2);
  518. reset_control_deassert(rstc);
  519. }
  520. qspi->dev = dev;
  521. platform_set_drvdata(pdev, qspi);
  522. mutex_init(&qspi->lock);
  523. for_each_available_child_of_node(dev->of_node, flash_np) {
  524. ret = stm32_qspi_flash_setup(qspi, flash_np);
  525. if (ret) {
  526. dev_err(dev, "unable to setup flash chip\n");
  527. goto err_flash;
  528. }
  529. }
  530. return 0;
  531. err_flash:
  532. mutex_destroy(&qspi->lock);
  533. stm32_qspi_mtd_free(qspi);
  534. clk_disable_unprepare(qspi->clk);
  535. return ret;
  536. }
  537. static int stm32_qspi_remove(struct platform_device *pdev)
  538. {
  539. struct stm32_qspi *qspi = platform_get_drvdata(pdev);
  540. /* disable qspi */
  541. writel_relaxed(0, qspi->io_base + QUADSPI_CR);
  542. stm32_qspi_mtd_free(qspi);
  543. mutex_destroy(&qspi->lock);
  544. clk_disable_unprepare(qspi->clk);
  545. return 0;
  546. }
  547. static const struct of_device_id stm32_qspi_match[] = {
  548. {.compatible = "st,stm32f469-qspi"},
  549. {}
  550. };
  551. MODULE_DEVICE_TABLE(of, stm32_qspi_match);
  552. static struct platform_driver stm32_qspi_driver = {
  553. .probe = stm32_qspi_probe,
  554. .remove = stm32_qspi_remove,
  555. .driver = {
  556. .name = "stm32-quadspi",
  557. .of_match_table = stm32_qspi_match,
  558. },
  559. };
  560. module_platform_driver(stm32_qspi_driver);
  561. MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
  562. MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
  563. MODULE_LICENSE("GPL v2");