fsl-quadspi.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185
  1. /*
  2. * Freescale QuadSPI driver.
  3. *
  4. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/sched.h>
  17. #include <linux/delay.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/err.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/timer.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/completion.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/partitions.h>
  28. #include <linux/mtd/spi-nor.h>
  29. #include <linux/mutex.h>
  30. #include <linux/pm_qos.h>
  31. #include <linux/sizes.h>
  32. /* Controller needs driver to swap endian */
  33. #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
  34. /* Controller needs 4x internal clock */
  35. #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
  36. /*
  37. * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  38. * trigger data transfer even though extern data will not transferred.
  39. */
  40. #define QUADSPI_QUIRK_TKT253890 (1 << 2)
  41. /* Controller cannot wake up from wait mode, TKT245618 */
  42. #define QUADSPI_QUIRK_TKT245618 (1 << 3)
  43. /* The registers */
  44. #define QUADSPI_MCR 0x00
  45. #define QUADSPI_MCR_RESERVED_SHIFT 16
  46. #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  47. #define QUADSPI_MCR_MDIS_SHIFT 14
  48. #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
  49. #define QUADSPI_MCR_CLR_TXF_SHIFT 11
  50. #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  51. #define QUADSPI_MCR_CLR_RXF_SHIFT 10
  52. #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  53. #define QUADSPI_MCR_DDR_EN_SHIFT 7
  54. #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  55. #define QUADSPI_MCR_END_CFG_SHIFT 2
  56. #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
  57. #define QUADSPI_MCR_SWRSTHD_SHIFT 1
  58. #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  59. #define QUADSPI_MCR_SWRSTSD_SHIFT 0
  60. #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  61. #define QUADSPI_IPCR 0x08
  62. #define QUADSPI_IPCR_SEQID_SHIFT 24
  63. #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  64. #define QUADSPI_BUF0CR 0x10
  65. #define QUADSPI_BUF1CR 0x14
  66. #define QUADSPI_BUF2CR 0x18
  67. #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
  68. #define QUADSPI_BUF3CR 0x1c
  69. #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
  70. #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  71. #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
  72. #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  73. #define QUADSPI_BFGENCR 0x20
  74. #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
  75. #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  76. #define QUADSPI_BFGENCR_SEQID_SHIFT 12
  77. #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  78. #define QUADSPI_BUF0IND 0x30
  79. #define QUADSPI_BUF1IND 0x34
  80. #define QUADSPI_BUF2IND 0x38
  81. #define QUADSPI_SFAR 0x100
  82. #define QUADSPI_SMPR 0x108
  83. #define QUADSPI_SMPR_DDRSMP_SHIFT 16
  84. #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  85. #define QUADSPI_SMPR_FSDLY_SHIFT 6
  86. #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  87. #define QUADSPI_SMPR_FSPHS_SHIFT 5
  88. #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  89. #define QUADSPI_SMPR_HSENA_SHIFT 0
  90. #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
  91. #define QUADSPI_RBSR 0x10c
  92. #define QUADSPI_RBSR_RDBFL_SHIFT 8
  93. #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
  94. #define QUADSPI_RBCT 0x110
  95. #define QUADSPI_RBCT_WMRK_MASK 0x1F
  96. #define QUADSPI_RBCT_RXBRD_SHIFT 8
  97. #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
  98. #define QUADSPI_TBSR 0x150
  99. #define QUADSPI_TBDR 0x154
  100. #define QUADSPI_SR 0x15c
  101. #define QUADSPI_SR_IP_ACC_SHIFT 1
  102. #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
  103. #define QUADSPI_SR_AHB_ACC_SHIFT 2
  104. #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
  105. #define QUADSPI_FR 0x160
  106. #define QUADSPI_FR_TFF_MASK 0x1
  107. #define QUADSPI_SFA1AD 0x180
  108. #define QUADSPI_SFA2AD 0x184
  109. #define QUADSPI_SFB1AD 0x188
  110. #define QUADSPI_SFB2AD 0x18c
  111. #define QUADSPI_RBDR 0x200
  112. #define QUADSPI_LUTKEY 0x300
  113. #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
  114. #define QUADSPI_LCKCR 0x304
  115. #define QUADSPI_LCKER_LOCK 0x1
  116. #define QUADSPI_LCKER_UNLOCK 0x2
  117. #define QUADSPI_RSER 0x164
  118. #define QUADSPI_RSER_TFIE (0x1 << 0)
  119. #define QUADSPI_LUT_BASE 0x310
  120. /*
  121. * The definition of the LUT register shows below:
  122. *
  123. * ---------------------------------------------------
  124. * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
  125. * ---------------------------------------------------
  126. */
  127. #define OPRND0_SHIFT 0
  128. #define PAD0_SHIFT 8
  129. #define INSTR0_SHIFT 10
  130. #define OPRND1_SHIFT 16
  131. /* Instruction set for the LUT register. */
  132. #define LUT_STOP 0
  133. #define LUT_CMD 1
  134. #define LUT_ADDR 2
  135. #define LUT_DUMMY 3
  136. #define LUT_MODE 4
  137. #define LUT_MODE2 5
  138. #define LUT_MODE4 6
  139. #define LUT_FSL_READ 7
  140. #define LUT_FSL_WRITE 8
  141. #define LUT_JMP_ON_CS 9
  142. #define LUT_ADDR_DDR 10
  143. #define LUT_MODE_DDR 11
  144. #define LUT_MODE2_DDR 12
  145. #define LUT_MODE4_DDR 13
  146. #define LUT_FSL_READ_DDR 14
  147. #define LUT_FSL_WRITE_DDR 15
  148. #define LUT_DATA_LEARN 16
  149. /*
  150. * The PAD definitions for LUT register.
  151. *
  152. * The pad stands for the lines number of IO[0:3].
  153. * For example, the Quad read need four IO lines, so you should
  154. * set LUT_PAD4 which means we use four IO lines.
  155. */
  156. #define LUT_PAD1 0
  157. #define LUT_PAD2 1
  158. #define LUT_PAD4 2
  159. /* Oprands for the LUT register. */
  160. #define ADDR24BIT 0x18
  161. #define ADDR32BIT 0x20
  162. /* Macros for constructing the LUT register. */
  163. #define LUT0(ins, pad, opr) \
  164. (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
  165. ((LUT_##ins) << INSTR0_SHIFT))
  166. #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
  167. /* other macros for LUT register. */
  168. #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
  169. #define QUADSPI_LUT_NUM 64
  170. /* SEQID -- we can have 16 seqids at most. */
  171. #define SEQID_READ 0
  172. #define SEQID_WREN 1
  173. #define SEQID_WRDI 2
  174. #define SEQID_RDSR 3
  175. #define SEQID_SE 4
  176. #define SEQID_CHIP_ERASE 5
  177. #define SEQID_PP 6
  178. #define SEQID_RDID 7
  179. #define SEQID_WRSR 8
  180. #define SEQID_RDCR 9
  181. #define SEQID_EN4B 10
  182. #define SEQID_BRWR 11
  183. #define QUADSPI_MIN_IOMAP SZ_4M
  184. enum fsl_qspi_devtype {
  185. FSL_QUADSPI_VYBRID,
  186. FSL_QUADSPI_IMX6SX,
  187. FSL_QUADSPI_IMX7D,
  188. FSL_QUADSPI_IMX6UL,
  189. FSL_QUADSPI_LS1021A,
  190. };
  191. struct fsl_qspi_devtype_data {
  192. enum fsl_qspi_devtype devtype;
  193. int rxfifo;
  194. int txfifo;
  195. int ahb_buf_size;
  196. int driver_data;
  197. };
  198. static const struct fsl_qspi_devtype_data vybrid_data = {
  199. .devtype = FSL_QUADSPI_VYBRID,
  200. .rxfifo = 128,
  201. .txfifo = 64,
  202. .ahb_buf_size = 1024,
  203. .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
  204. };
  205. static const struct fsl_qspi_devtype_data imx6sx_data = {
  206. .devtype = FSL_QUADSPI_IMX6SX,
  207. .rxfifo = 128,
  208. .txfifo = 512,
  209. .ahb_buf_size = 1024,
  210. .driver_data = QUADSPI_QUIRK_4X_INT_CLK
  211. | QUADSPI_QUIRK_TKT245618,
  212. };
  213. static const struct fsl_qspi_devtype_data imx7d_data = {
  214. .devtype = FSL_QUADSPI_IMX7D,
  215. .rxfifo = 512,
  216. .txfifo = 512,
  217. .ahb_buf_size = 1024,
  218. .driver_data = QUADSPI_QUIRK_TKT253890
  219. | QUADSPI_QUIRK_4X_INT_CLK,
  220. };
  221. static const struct fsl_qspi_devtype_data imx6ul_data = {
  222. .devtype = FSL_QUADSPI_IMX6UL,
  223. .rxfifo = 128,
  224. .txfifo = 512,
  225. .ahb_buf_size = 1024,
  226. .driver_data = QUADSPI_QUIRK_TKT253890
  227. | QUADSPI_QUIRK_4X_INT_CLK,
  228. };
  229. static struct fsl_qspi_devtype_data ls1021a_data = {
  230. .devtype = FSL_QUADSPI_LS1021A,
  231. .rxfifo = 128,
  232. .txfifo = 64,
  233. .ahb_buf_size = 1024,
  234. .driver_data = 0,
  235. };
  236. #define FSL_QSPI_MAX_CHIP 4
  237. struct fsl_qspi {
  238. struct spi_nor nor[FSL_QSPI_MAX_CHIP];
  239. void __iomem *iobase;
  240. void __iomem *ahb_addr;
  241. u32 memmap_phy;
  242. u32 memmap_offs;
  243. u32 memmap_len;
  244. struct clk *clk, *clk_en;
  245. struct device *dev;
  246. struct completion c;
  247. const struct fsl_qspi_devtype_data *devtype_data;
  248. u32 nor_size;
  249. u32 nor_num;
  250. u32 clk_rate;
  251. unsigned int chip_base_addr; /* We may support two chips. */
  252. bool has_second_chip;
  253. bool big_endian;
  254. struct mutex lock;
  255. struct pm_qos_request pm_qos_req;
  256. };
  257. static inline int needs_swap_endian(struct fsl_qspi *q)
  258. {
  259. return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
  260. }
  261. static inline int needs_4x_clock(struct fsl_qspi *q)
  262. {
  263. return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
  264. }
  265. static inline int needs_fill_txfifo(struct fsl_qspi *q)
  266. {
  267. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
  268. }
  269. static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
  270. {
  271. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
  272. }
  273. /*
  274. * R/W functions for big- or little-endian registers:
  275. * The qSPI controller's endian is independent of the CPU core's endian.
  276. * So far, although the CPU core is little-endian but the qSPI have two
  277. * versions for big-endian and little-endian.
  278. */
  279. static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
  280. {
  281. if (q->big_endian)
  282. iowrite32be(val, addr);
  283. else
  284. iowrite32(val, addr);
  285. }
  286. static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
  287. {
  288. if (q->big_endian)
  289. return ioread32be(addr);
  290. else
  291. return ioread32(addr);
  292. }
  293. /*
  294. * An IC bug makes us to re-arrange the 32-bit data.
  295. * The following chips, such as IMX6SLX, have fixed this bug.
  296. */
  297. static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
  298. {
  299. return needs_swap_endian(q) ? __swab32(a) : a;
  300. }
  301. static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
  302. {
  303. qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  304. qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
  305. }
  306. static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
  307. {
  308. qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  309. qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
  310. }
  311. static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
  312. {
  313. struct fsl_qspi *q = dev_id;
  314. u32 reg;
  315. /* clear interrupt */
  316. reg = qspi_readl(q, q->iobase + QUADSPI_FR);
  317. qspi_writel(q, reg, q->iobase + QUADSPI_FR);
  318. if (reg & QUADSPI_FR_TFF_MASK)
  319. complete(&q->c);
  320. dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
  321. return IRQ_HANDLED;
  322. }
  323. static void fsl_qspi_init_lut(struct fsl_qspi *q)
  324. {
  325. void __iomem *base = q->iobase;
  326. int rxfifo = q->devtype_data->rxfifo;
  327. u32 lut_base;
  328. int i;
  329. struct spi_nor *nor = &q->nor[0];
  330. u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
  331. u8 read_op = nor->read_opcode;
  332. u8 read_dm = nor->read_dummy;
  333. fsl_qspi_unlock_lut(q);
  334. /* Clear all the LUT table */
  335. for (i = 0; i < QUADSPI_LUT_NUM; i++)
  336. qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
  337. /* Read */
  338. lut_base = SEQID_READ * 4;
  339. qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
  340. base + QUADSPI_LUT(lut_base));
  341. qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
  342. LUT1(FSL_READ, PAD4, rxfifo),
  343. base + QUADSPI_LUT(lut_base + 1));
  344. /* Write enable */
  345. lut_base = SEQID_WREN * 4;
  346. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
  347. base + QUADSPI_LUT(lut_base));
  348. /* Page Program */
  349. lut_base = SEQID_PP * 4;
  350. qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
  351. LUT1(ADDR, PAD1, addrlen),
  352. base + QUADSPI_LUT(lut_base));
  353. qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
  354. base + QUADSPI_LUT(lut_base + 1));
  355. /* Read Status */
  356. lut_base = SEQID_RDSR * 4;
  357. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
  358. LUT1(FSL_READ, PAD1, 0x1),
  359. base + QUADSPI_LUT(lut_base));
  360. /* Erase a sector */
  361. lut_base = SEQID_SE * 4;
  362. qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
  363. LUT1(ADDR, PAD1, addrlen),
  364. base + QUADSPI_LUT(lut_base));
  365. /* Erase the whole chip */
  366. lut_base = SEQID_CHIP_ERASE * 4;
  367. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
  368. base + QUADSPI_LUT(lut_base));
  369. /* READ ID */
  370. lut_base = SEQID_RDID * 4;
  371. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
  372. LUT1(FSL_READ, PAD1, 0x8),
  373. base + QUADSPI_LUT(lut_base));
  374. /* Write Register */
  375. lut_base = SEQID_WRSR * 4;
  376. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
  377. LUT1(FSL_WRITE, PAD1, 0x2),
  378. base + QUADSPI_LUT(lut_base));
  379. /* Read Configuration Register */
  380. lut_base = SEQID_RDCR * 4;
  381. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
  382. LUT1(FSL_READ, PAD1, 0x1),
  383. base + QUADSPI_LUT(lut_base));
  384. /* Write disable */
  385. lut_base = SEQID_WRDI * 4;
  386. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
  387. base + QUADSPI_LUT(lut_base));
  388. /* Enter 4 Byte Mode (Micron) */
  389. lut_base = SEQID_EN4B * 4;
  390. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
  391. base + QUADSPI_LUT(lut_base));
  392. /* Enter 4 Byte Mode (Spansion) */
  393. lut_base = SEQID_BRWR * 4;
  394. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
  395. base + QUADSPI_LUT(lut_base));
  396. fsl_qspi_lock_lut(q);
  397. }
  398. /* Get the SEQID for the command */
  399. static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
  400. {
  401. switch (cmd) {
  402. case SPINOR_OP_READ_1_1_4:
  403. return SEQID_READ;
  404. case SPINOR_OP_WREN:
  405. return SEQID_WREN;
  406. case SPINOR_OP_WRDI:
  407. return SEQID_WRDI;
  408. case SPINOR_OP_RDSR:
  409. return SEQID_RDSR;
  410. case SPINOR_OP_SE:
  411. return SEQID_SE;
  412. case SPINOR_OP_CHIP_ERASE:
  413. return SEQID_CHIP_ERASE;
  414. case SPINOR_OP_PP:
  415. return SEQID_PP;
  416. case SPINOR_OP_RDID:
  417. return SEQID_RDID;
  418. case SPINOR_OP_WRSR:
  419. return SEQID_WRSR;
  420. case SPINOR_OP_RDCR:
  421. return SEQID_RDCR;
  422. case SPINOR_OP_EN4B:
  423. return SEQID_EN4B;
  424. case SPINOR_OP_BRWR:
  425. return SEQID_BRWR;
  426. default:
  427. if (cmd == q->nor[0].erase_opcode)
  428. return SEQID_SE;
  429. dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
  430. break;
  431. }
  432. return -EINVAL;
  433. }
  434. static int
  435. fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
  436. {
  437. void __iomem *base = q->iobase;
  438. int seqid;
  439. u32 reg, reg2;
  440. int err;
  441. init_completion(&q->c);
  442. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
  443. q->chip_base_addr, addr, len, cmd);
  444. /* save the reg */
  445. reg = qspi_readl(q, base + QUADSPI_MCR);
  446. qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
  447. base + QUADSPI_SFAR);
  448. qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
  449. base + QUADSPI_RBCT);
  450. qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
  451. do {
  452. reg2 = qspi_readl(q, base + QUADSPI_SR);
  453. if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
  454. udelay(1);
  455. dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
  456. continue;
  457. }
  458. break;
  459. } while (1);
  460. /* trigger the LUT now */
  461. seqid = fsl_qspi_get_seqid(q, cmd);
  462. qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
  463. base + QUADSPI_IPCR);
  464. /* Wait for the interrupt. */
  465. if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
  466. dev_err(q->dev,
  467. "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
  468. cmd, addr, qspi_readl(q, base + QUADSPI_FR),
  469. qspi_readl(q, base + QUADSPI_SR));
  470. err = -ETIMEDOUT;
  471. } else {
  472. err = 0;
  473. }
  474. /* restore the MCR */
  475. qspi_writel(q, reg, base + QUADSPI_MCR);
  476. return err;
  477. }
  478. /* Read out the data from the QUADSPI_RBDR buffer registers. */
  479. static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
  480. {
  481. u32 tmp;
  482. int i = 0;
  483. while (len > 0) {
  484. tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
  485. tmp = fsl_qspi_endian_xchg(q, tmp);
  486. dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
  487. q->chip_base_addr, tmp);
  488. if (len >= 4) {
  489. *((u32 *)rxbuf) = tmp;
  490. rxbuf += 4;
  491. } else {
  492. memcpy(rxbuf, &tmp, len);
  493. break;
  494. }
  495. len -= 4;
  496. i++;
  497. }
  498. }
  499. /*
  500. * If we have changed the content of the flash by writing or erasing,
  501. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  502. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  503. * domain at the same time.
  504. */
  505. static inline void fsl_qspi_invalid(struct fsl_qspi *q)
  506. {
  507. u32 reg;
  508. reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
  509. reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
  510. qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
  511. /*
  512. * The minimum delay : 1 AHB + 2 SFCK clocks.
  513. * Delay 1 us is enough.
  514. */
  515. udelay(1);
  516. reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
  517. qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
  518. }
  519. static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
  520. u8 opcode, unsigned int to, u32 *txbuf,
  521. unsigned count)
  522. {
  523. int ret, i, j;
  524. u32 tmp;
  525. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
  526. q->chip_base_addr, to, count);
  527. /* clear the TX FIFO. */
  528. tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
  529. qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
  530. /* fill the TX data to the FIFO */
  531. for (j = 0, i = ((count + 3) / 4); j < i; j++) {
  532. tmp = fsl_qspi_endian_xchg(q, *txbuf);
  533. qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
  534. txbuf++;
  535. }
  536. /* fill the TXFIFO upto 16 bytes for i.MX7d */
  537. if (needs_fill_txfifo(q))
  538. for (; i < 4; i++)
  539. qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
  540. /* Trigger it */
  541. ret = fsl_qspi_runcmd(q, opcode, to, count);
  542. if (ret == 0)
  543. return count;
  544. return ret;
  545. }
  546. static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
  547. {
  548. int nor_size = q->nor_size;
  549. void __iomem *base = q->iobase;
  550. qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
  551. qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
  552. qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
  553. qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
  554. }
  555. /*
  556. * There are two different ways to read out the data from the flash:
  557. * the "IP Command Read" and the "AHB Command Read".
  558. *
  559. * The IC guy suggests we use the "AHB Command Read" which is faster
  560. * then the "IP Command Read". (What's more is that there is a bug in
  561. * the "IP Command Read" in the Vybrid.)
  562. *
  563. * After we set up the registers for the "AHB Command Read", we can use
  564. * the memcpy to read the data directly. A "missed" access to the buffer
  565. * causes the controller to clear the buffer, and use the sequence pointed
  566. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  567. */
  568. static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
  569. {
  570. void __iomem *base = q->iobase;
  571. int seqid;
  572. /* AHB configuration for access buffer 0/1/2 .*/
  573. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
  574. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
  575. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
  576. /*
  577. * Set ADATSZ with the maximum AHB buffer size to improve the
  578. * read performance.
  579. */
  580. qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
  581. ((q->devtype_data->ahb_buf_size / 8)
  582. << QUADSPI_BUF3CR_ADATSZ_SHIFT),
  583. base + QUADSPI_BUF3CR);
  584. /* We only use the buffer3 */
  585. qspi_writel(q, 0, base + QUADSPI_BUF0IND);
  586. qspi_writel(q, 0, base + QUADSPI_BUF1IND);
  587. qspi_writel(q, 0, base + QUADSPI_BUF2IND);
  588. /* Set the default lut sequence for AHB Read. */
  589. seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
  590. qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
  591. q->iobase + QUADSPI_BFGENCR);
  592. }
  593. /* This function was used to prepare and enable QSPI clock */
  594. static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
  595. {
  596. int ret;
  597. ret = clk_prepare_enable(q->clk_en);
  598. if (ret)
  599. return ret;
  600. ret = clk_prepare_enable(q->clk);
  601. if (ret) {
  602. clk_disable_unprepare(q->clk_en);
  603. return ret;
  604. }
  605. if (needs_wakeup_wait_mode(q))
  606. pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
  607. return 0;
  608. }
  609. /* This function was used to disable and unprepare QSPI clock */
  610. static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
  611. {
  612. if (needs_wakeup_wait_mode(q))
  613. pm_qos_remove_request(&q->pm_qos_req);
  614. clk_disable_unprepare(q->clk);
  615. clk_disable_unprepare(q->clk_en);
  616. }
  617. /* We use this function to do some basic init for spi_nor_scan(). */
  618. static int fsl_qspi_nor_setup(struct fsl_qspi *q)
  619. {
  620. void __iomem *base = q->iobase;
  621. u32 reg;
  622. int ret;
  623. /* disable and unprepare clock to avoid glitch pass to controller */
  624. fsl_qspi_clk_disable_unprep(q);
  625. /* the default frequency, we will change it in the future. */
  626. ret = clk_set_rate(q->clk, 66000000);
  627. if (ret)
  628. return ret;
  629. ret = fsl_qspi_clk_prep_enable(q);
  630. if (ret)
  631. return ret;
  632. /* Reset the module */
  633. qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
  634. base + QUADSPI_MCR);
  635. udelay(1);
  636. /* Init the LUT table. */
  637. fsl_qspi_init_lut(q);
  638. /* Disable the module */
  639. qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
  640. base + QUADSPI_MCR);
  641. reg = qspi_readl(q, base + QUADSPI_SMPR);
  642. qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
  643. | QUADSPI_SMPR_FSPHS_MASK
  644. | QUADSPI_SMPR_HSENA_MASK
  645. | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
  646. /* Enable the module */
  647. qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
  648. base + QUADSPI_MCR);
  649. /* clear all interrupt status */
  650. qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
  651. /* enable the interrupt */
  652. qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
  653. return 0;
  654. }
  655. static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
  656. {
  657. unsigned long rate = q->clk_rate;
  658. int ret;
  659. if (needs_4x_clock(q))
  660. rate *= 4;
  661. /* disable and unprepare clock to avoid glitch pass to controller */
  662. fsl_qspi_clk_disable_unprep(q);
  663. ret = clk_set_rate(q->clk, rate);
  664. if (ret)
  665. return ret;
  666. ret = fsl_qspi_clk_prep_enable(q);
  667. if (ret)
  668. return ret;
  669. /* Init the LUT table again. */
  670. fsl_qspi_init_lut(q);
  671. /* Init for AHB read */
  672. fsl_qspi_init_abh_read(q);
  673. return 0;
  674. }
  675. static const struct of_device_id fsl_qspi_dt_ids[] = {
  676. { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
  677. { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
  678. { .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
  679. { .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
  680. { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
  681. { /* sentinel */ }
  682. };
  683. MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
  684. static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
  685. {
  686. q->chip_base_addr = q->nor_size * (nor - q->nor);
  687. }
  688. static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  689. {
  690. int ret;
  691. struct fsl_qspi *q = nor->priv;
  692. ret = fsl_qspi_runcmd(q, opcode, 0, len);
  693. if (ret)
  694. return ret;
  695. fsl_qspi_read_data(q, len, buf);
  696. return 0;
  697. }
  698. static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  699. {
  700. struct fsl_qspi *q = nor->priv;
  701. int ret;
  702. if (!buf) {
  703. ret = fsl_qspi_runcmd(q, opcode, 0, 1);
  704. if (ret)
  705. return ret;
  706. if (opcode == SPINOR_OP_CHIP_ERASE)
  707. fsl_qspi_invalid(q);
  708. } else if (len > 0) {
  709. ret = fsl_qspi_nor_write(q, nor, opcode, 0,
  710. (u32 *)buf, len);
  711. if (ret > 0)
  712. return 0;
  713. } else {
  714. dev_err(q->dev, "invalid cmd %d\n", opcode);
  715. ret = -EINVAL;
  716. }
  717. return ret;
  718. }
  719. static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
  720. size_t len, const u_char *buf)
  721. {
  722. struct fsl_qspi *q = nor->priv;
  723. ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
  724. (u32 *)buf, len);
  725. /* invalid the data in the AHB buffer. */
  726. fsl_qspi_invalid(q);
  727. return ret;
  728. }
  729. static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
  730. size_t len, u_char *buf)
  731. {
  732. struct fsl_qspi *q = nor->priv;
  733. u8 cmd = nor->read_opcode;
  734. /* if necessary,ioremap buffer before AHB read, */
  735. if (!q->ahb_addr) {
  736. q->memmap_offs = q->chip_base_addr + from;
  737. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  738. q->ahb_addr = ioremap_nocache(
  739. q->memmap_phy + q->memmap_offs,
  740. q->memmap_len);
  741. if (!q->ahb_addr) {
  742. dev_err(q->dev, "ioremap failed\n");
  743. return -ENOMEM;
  744. }
  745. /* ioremap if the data requested is out of range */
  746. } else if (q->chip_base_addr + from < q->memmap_offs
  747. || q->chip_base_addr + from + len >
  748. q->memmap_offs + q->memmap_len) {
  749. iounmap(q->ahb_addr);
  750. q->memmap_offs = q->chip_base_addr + from;
  751. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  752. q->ahb_addr = ioremap_nocache(
  753. q->memmap_phy + q->memmap_offs,
  754. q->memmap_len);
  755. if (!q->ahb_addr) {
  756. dev_err(q->dev, "ioremap failed\n");
  757. return -ENOMEM;
  758. }
  759. }
  760. dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
  761. cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  762. len);
  763. /* Read out the data directly from the AHB buffer.*/
  764. memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  765. len);
  766. return len;
  767. }
  768. static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
  769. {
  770. struct fsl_qspi *q = nor->priv;
  771. int ret;
  772. dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
  773. nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
  774. ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
  775. if (ret)
  776. return ret;
  777. fsl_qspi_invalid(q);
  778. return 0;
  779. }
  780. static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  781. {
  782. struct fsl_qspi *q = nor->priv;
  783. int ret;
  784. mutex_lock(&q->lock);
  785. ret = fsl_qspi_clk_prep_enable(q);
  786. if (ret)
  787. goto err_mutex;
  788. fsl_qspi_set_base_addr(q, nor);
  789. return 0;
  790. err_mutex:
  791. mutex_unlock(&q->lock);
  792. return ret;
  793. }
  794. static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  795. {
  796. struct fsl_qspi *q = nor->priv;
  797. fsl_qspi_clk_disable_unprep(q);
  798. mutex_unlock(&q->lock);
  799. }
  800. static int fsl_qspi_probe(struct platform_device *pdev)
  801. {
  802. struct device_node *np = pdev->dev.of_node;
  803. struct device *dev = &pdev->dev;
  804. struct fsl_qspi *q;
  805. struct resource *res;
  806. struct spi_nor *nor;
  807. struct mtd_info *mtd;
  808. int ret, i = 0;
  809. q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
  810. if (!q)
  811. return -ENOMEM;
  812. q->nor_num = of_get_child_count(dev->of_node);
  813. if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
  814. return -ENODEV;
  815. q->dev = dev;
  816. q->devtype_data = of_device_get_match_data(dev);
  817. if (!q->devtype_data)
  818. return -ENODEV;
  819. platform_set_drvdata(pdev, q);
  820. /* find the resources */
  821. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
  822. q->iobase = devm_ioremap_resource(dev, res);
  823. if (IS_ERR(q->iobase))
  824. return PTR_ERR(q->iobase);
  825. q->big_endian = of_property_read_bool(np, "big-endian");
  826. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  827. "QuadSPI-memory");
  828. if (!devm_request_mem_region(dev, res->start, resource_size(res),
  829. res->name)) {
  830. dev_err(dev, "can't request region for resource %pR\n", res);
  831. return -EBUSY;
  832. }
  833. q->memmap_phy = res->start;
  834. /* find the clocks */
  835. q->clk_en = devm_clk_get(dev, "qspi_en");
  836. if (IS_ERR(q->clk_en))
  837. return PTR_ERR(q->clk_en);
  838. q->clk = devm_clk_get(dev, "qspi");
  839. if (IS_ERR(q->clk))
  840. return PTR_ERR(q->clk);
  841. ret = fsl_qspi_clk_prep_enable(q);
  842. if (ret) {
  843. dev_err(dev, "can not enable the clock\n");
  844. goto clk_failed;
  845. }
  846. /* find the irq */
  847. ret = platform_get_irq(pdev, 0);
  848. if (ret < 0) {
  849. dev_err(dev, "failed to get the irq: %d\n", ret);
  850. goto irq_failed;
  851. }
  852. ret = devm_request_irq(dev, ret,
  853. fsl_qspi_irq_handler, 0, pdev->name, q);
  854. if (ret) {
  855. dev_err(dev, "failed to request irq: %d\n", ret);
  856. goto irq_failed;
  857. }
  858. ret = fsl_qspi_nor_setup(q);
  859. if (ret)
  860. goto irq_failed;
  861. if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
  862. q->has_second_chip = true;
  863. mutex_init(&q->lock);
  864. /* iterate the subnodes. */
  865. for_each_available_child_of_node(dev->of_node, np) {
  866. /* skip the holes */
  867. if (!q->has_second_chip)
  868. i *= 2;
  869. nor = &q->nor[i];
  870. mtd = &nor->mtd;
  871. nor->dev = dev;
  872. spi_nor_set_flash_node(nor, np);
  873. nor->priv = q;
  874. /* fill the hooks */
  875. nor->read_reg = fsl_qspi_read_reg;
  876. nor->write_reg = fsl_qspi_write_reg;
  877. nor->read = fsl_qspi_read;
  878. nor->write = fsl_qspi_write;
  879. nor->erase = fsl_qspi_erase;
  880. nor->prepare = fsl_qspi_prep;
  881. nor->unprepare = fsl_qspi_unprep;
  882. ret = of_property_read_u32(np, "spi-max-frequency",
  883. &q->clk_rate);
  884. if (ret < 0)
  885. goto mutex_failed;
  886. /* set the chip address for READID */
  887. fsl_qspi_set_base_addr(q, nor);
  888. ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
  889. if (ret)
  890. goto mutex_failed;
  891. ret = mtd_device_register(mtd, NULL, 0);
  892. if (ret)
  893. goto mutex_failed;
  894. /* Set the correct NOR size now. */
  895. if (q->nor_size == 0) {
  896. q->nor_size = mtd->size;
  897. /* Map the SPI NOR to accessiable address */
  898. fsl_qspi_set_map_addr(q);
  899. }
  900. /*
  901. * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
  902. * may writes 265 bytes per time. The write is working in the
  903. * unit of the TX FIFO, not in the unit of the SPI NOR's page
  904. * size.
  905. *
  906. * So shrink the spi_nor->page_size if it is larger then the
  907. * TX FIFO.
  908. */
  909. if (nor->page_size > q->devtype_data->txfifo)
  910. nor->page_size = q->devtype_data->txfifo;
  911. i++;
  912. }
  913. /* finish the rest init. */
  914. ret = fsl_qspi_nor_setup_last(q);
  915. if (ret)
  916. goto last_init_failed;
  917. fsl_qspi_clk_disable_unprep(q);
  918. return 0;
  919. last_init_failed:
  920. for (i = 0; i < q->nor_num; i++) {
  921. /* skip the holes */
  922. if (!q->has_second_chip)
  923. i *= 2;
  924. mtd_device_unregister(&q->nor[i].mtd);
  925. }
  926. mutex_failed:
  927. mutex_destroy(&q->lock);
  928. irq_failed:
  929. fsl_qspi_clk_disable_unprep(q);
  930. clk_failed:
  931. dev_err(dev, "Freescale QuadSPI probe failed\n");
  932. return ret;
  933. }
  934. static int fsl_qspi_remove(struct platform_device *pdev)
  935. {
  936. struct fsl_qspi *q = platform_get_drvdata(pdev);
  937. int i;
  938. for (i = 0; i < q->nor_num; i++) {
  939. /* skip the holes */
  940. if (!q->has_second_chip)
  941. i *= 2;
  942. mtd_device_unregister(&q->nor[i].mtd);
  943. }
  944. /* disable the hardware */
  945. qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
  946. qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
  947. mutex_destroy(&q->lock);
  948. if (q->ahb_addr)
  949. iounmap(q->ahb_addr);
  950. return 0;
  951. }
  952. static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
  953. {
  954. return 0;
  955. }
  956. static int fsl_qspi_resume(struct platform_device *pdev)
  957. {
  958. int ret;
  959. struct fsl_qspi *q = platform_get_drvdata(pdev);
  960. ret = fsl_qspi_clk_prep_enable(q);
  961. if (ret)
  962. return ret;
  963. fsl_qspi_nor_setup(q);
  964. fsl_qspi_set_map_addr(q);
  965. fsl_qspi_nor_setup_last(q);
  966. fsl_qspi_clk_disable_unprep(q);
  967. return 0;
  968. }
  969. static struct platform_driver fsl_qspi_driver = {
  970. .driver = {
  971. .name = "fsl-quadspi",
  972. .bus = &platform_bus_type,
  973. .of_match_table = fsl_qspi_dt_ids,
  974. },
  975. .probe = fsl_qspi_probe,
  976. .remove = fsl_qspi_remove,
  977. .suspend = fsl_qspi_suspend,
  978. .resume = fsl_qspi_resume,
  979. };
  980. module_platform_driver(fsl_qspi_driver);
  981. MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
  982. MODULE_AUTHOR("Freescale Semiconductor Inc.");
  983. MODULE_LICENSE("GPL v2");