aspeed-smc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * ASPEED Static Memory Controller driver
  3. *
  4. * Copyright (c) 2015-2016, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/bug.h>
  12. #include <linux/device.h>
  13. #include <linux/io.h>
  14. #include <linux/module.h>
  15. #include <linux/mutex.h>
  16. #include <linux/mtd/mtd.h>
  17. #include <linux/mtd/partitions.h>
  18. #include <linux/mtd/spi-nor.h>
  19. #include <linux/of.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/sysfs.h>
  22. #define DEVICE_NAME "aspeed-smc"
  23. /*
  24. * The driver only support SPI flash
  25. */
  26. enum aspeed_smc_flash_type {
  27. smc_type_nor = 0,
  28. smc_type_nand = 1,
  29. smc_type_spi = 2,
  30. };
  31. struct aspeed_smc_chip;
  32. struct aspeed_smc_info {
  33. u32 maxsize; /* maximum size of chip window */
  34. u8 nce; /* number of chip enables */
  35. bool hastype; /* flash type field exists in config reg */
  36. u8 we0; /* shift for write enable bit for CE0 */
  37. u8 ctl0; /* offset in regs of ctl for CE0 */
  38. void (*set_4b)(struct aspeed_smc_chip *chip);
  39. };
  40. static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
  41. static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
  42. static const struct aspeed_smc_info fmc_2400_info = {
  43. .maxsize = 64 * 1024 * 1024,
  44. .nce = 5,
  45. .hastype = true,
  46. .we0 = 16,
  47. .ctl0 = 0x10,
  48. .set_4b = aspeed_smc_chip_set_4b,
  49. };
  50. static const struct aspeed_smc_info spi_2400_info = {
  51. .maxsize = 64 * 1024 * 1024,
  52. .nce = 1,
  53. .hastype = false,
  54. .we0 = 0,
  55. .ctl0 = 0x04,
  56. .set_4b = aspeed_smc_chip_set_4b_spi_2400,
  57. };
  58. static const struct aspeed_smc_info fmc_2500_info = {
  59. .maxsize = 256 * 1024 * 1024,
  60. .nce = 3,
  61. .hastype = true,
  62. .we0 = 16,
  63. .ctl0 = 0x10,
  64. .set_4b = aspeed_smc_chip_set_4b,
  65. };
  66. static const struct aspeed_smc_info spi_2500_info = {
  67. .maxsize = 128 * 1024 * 1024,
  68. .nce = 2,
  69. .hastype = false,
  70. .we0 = 16,
  71. .ctl0 = 0x10,
  72. .set_4b = aspeed_smc_chip_set_4b,
  73. };
  74. enum aspeed_smc_ctl_reg_value {
  75. smc_base, /* base value without mode for other commands */
  76. smc_read, /* command reg for (maybe fast) reads */
  77. smc_write, /* command reg for writes */
  78. smc_max,
  79. };
  80. struct aspeed_smc_controller;
  81. struct aspeed_smc_chip {
  82. int cs;
  83. struct aspeed_smc_controller *controller;
  84. void __iomem *ctl; /* control register */
  85. void __iomem *ahb_base; /* base of chip window */
  86. u32 ctl_val[smc_max]; /* control settings */
  87. enum aspeed_smc_flash_type type; /* what type of flash */
  88. struct spi_nor nor;
  89. };
  90. struct aspeed_smc_controller {
  91. struct device *dev;
  92. struct mutex mutex; /* controller access mutex */
  93. const struct aspeed_smc_info *info; /* type info of controller */
  94. void __iomem *regs; /* controller registers */
  95. void __iomem *ahb_base; /* per-chip windows resource */
  96. struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */
  97. };
  98. /*
  99. * SPI Flash Configuration Register (AST2500 SPI)
  100. * or
  101. * Type setting Register (AST2500 FMC).
  102. * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
  103. * driver does not support it.
  104. */
  105. #define CONFIG_REG 0x0
  106. #define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
  107. #define CONFIG_CE2_WRITE BIT(18)
  108. #define CONFIG_CE1_WRITE BIT(17)
  109. #define CONFIG_CE0_WRITE BIT(16)
  110. #define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
  111. #define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
  112. #define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
  113. /*
  114. * CE Control Register
  115. */
  116. #define CE_CONTROL_REG 0x4
  117. /*
  118. * CEx Control Register
  119. */
  120. #define CONTROL_AAF_MODE BIT(31)
  121. #define CONTROL_IO_MODE_MASK GENMASK(30, 28)
  122. #define CONTROL_IO_DUAL_DATA BIT(29)
  123. #define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
  124. #define CONTROL_IO_QUAD_DATA BIT(30)
  125. #define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
  126. #define CONTROL_CE_INACTIVE_SHIFT 24
  127. #define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
  128. CONTROL_CE_INACTIVE_SHIFT)
  129. /* 0 = 16T ... 15 = 1T T=HCLK */
  130. #define CONTROL_COMMAND_SHIFT 16
  131. #define CONTROL_DUMMY_COMMAND_OUT BIT(15)
  132. #define CONTROL_IO_DUMMY_HI BIT(14)
  133. #define CONTROL_IO_DUMMY_HI_SHIFT 14
  134. #define CONTROL_CLK_DIV4 BIT(13) /* others */
  135. #define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
  136. #define CONTROL_RW_MERGE BIT(12)
  137. #define CONTROL_IO_DUMMY_LO_SHIFT 6
  138. #define CONTROL_IO_DUMMY_LO GENMASK(7, \
  139. CONTROL_IO_DUMMY_LO_SHIFT)
  140. #define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
  141. CONTROL_IO_DUMMY_LO)
  142. #define CONTROL_IO_DUMMY_SET(dummy) \
  143. (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
  144. (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
  145. #define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
  146. #define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
  147. CONTROL_CLOCK_FREQ_SEL_SHIFT)
  148. #define CONTROL_LSB_FIRST BIT(5)
  149. #define CONTROL_CLOCK_MODE_3 BIT(4)
  150. #define CONTROL_IN_DUAL_DATA BIT(3)
  151. #define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
  152. #define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
  153. #define CONTROL_COMMAND_MODE_NORMAL 0
  154. #define CONTROL_COMMAND_MODE_FREAD 1
  155. #define CONTROL_COMMAND_MODE_WRITE 2
  156. #define CONTROL_COMMAND_MODE_USER 3
  157. #define CONTROL_KEEP_MASK \
  158. (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
  159. CONTROL_IO_DUMMY_MASK | CONTROL_CLOCK_FREQ_SEL_MASK | \
  160. CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
  161. /*
  162. * The Segment Register uses a 8MB unit to encode the start address
  163. * and the end address of the mapping window of a flash SPI slave :
  164. *
  165. * | byte 1 | byte 2 | byte 3 | byte 4 |
  166. * +--------+--------+--------+--------+
  167. * | end | start | 0 | 0 |
  168. */
  169. #define SEGMENT_ADDR_REG0 0x30
  170. #define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
  171. #define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
  172. /*
  173. * In user mode all data bytes read or written to the chip decode address
  174. * range are transferred to or from the SPI bus. The range is treated as a
  175. * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
  176. * to its size. The address within the multiple 8kB range is ignored when
  177. * sending bytes to the SPI bus.
  178. *
  179. * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
  180. * memcpy_toio on little endian targets use the optimized memcpy routines
  181. * that were designed for well behavied memory storage. These routines
  182. * have a stutter if the source and destination are not both word aligned,
  183. * once with a duplicate access to the source after aligning to the
  184. * destination to a word boundary, and again with a duplicate access to
  185. * the source when the final byte count is not word aligned.
  186. *
  187. * When writing or reading the fifo this stutter discards data or sends
  188. * too much data to the fifo and can not be used by this driver.
  189. *
  190. * While the low level io string routines that implement the insl family do
  191. * the desired accesses and memory increments, the cross architecture io
  192. * macros make them essentially impossible to use on a memory mapped address
  193. * instead of a a token from the call to iomap of an io port.
  194. *
  195. * These fifo routines use readl and friends to a constant io port and update
  196. * the memory buffer pointer and count via explicit code. The final updates
  197. * to len are optimistically suppressed.
  198. */
  199. static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
  200. {
  201. size_t offset = 0;
  202. if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
  203. IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
  204. ioread32_rep(src, buf, len >> 2);
  205. offset = len & ~0x3;
  206. len -= offset;
  207. }
  208. ioread8_rep(src, (u8 *)buf + offset, len);
  209. return 0;
  210. }
  211. static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
  212. size_t len)
  213. {
  214. size_t offset = 0;
  215. if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
  216. IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
  217. iowrite32_rep(dst, buf, len >> 2);
  218. offset = len & ~0x3;
  219. len -= offset;
  220. }
  221. iowrite8_rep(dst, (const u8 *)buf + offset, len);
  222. return 0;
  223. }
  224. static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
  225. {
  226. return BIT(chip->controller->info->we0 + chip->cs);
  227. }
  228. static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
  229. {
  230. struct aspeed_smc_controller *controller = chip->controller;
  231. u32 reg;
  232. reg = readl(controller->regs + CONFIG_REG);
  233. if (reg & aspeed_smc_chip_write_bit(chip))
  234. return;
  235. dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
  236. controller->regs + CONFIG_REG, reg);
  237. reg |= aspeed_smc_chip_write_bit(chip);
  238. writel(reg, controller->regs + CONFIG_REG);
  239. }
  240. static void aspeed_smc_start_user(struct spi_nor *nor)
  241. {
  242. struct aspeed_smc_chip *chip = nor->priv;
  243. u32 ctl = chip->ctl_val[smc_base];
  244. /*
  245. * When the chip is controlled in user mode, we need write
  246. * access to send the opcodes to it. So check the config.
  247. */
  248. aspeed_smc_chip_check_config(chip);
  249. ctl |= CONTROL_COMMAND_MODE_USER |
  250. CONTROL_CE_STOP_ACTIVE_CONTROL;
  251. writel(ctl, chip->ctl);
  252. ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
  253. writel(ctl, chip->ctl);
  254. }
  255. static void aspeed_smc_stop_user(struct spi_nor *nor)
  256. {
  257. struct aspeed_smc_chip *chip = nor->priv;
  258. u32 ctl = chip->ctl_val[smc_read];
  259. u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
  260. CONTROL_CE_STOP_ACTIVE_CONTROL;
  261. writel(ctl2, chip->ctl); /* stop user CE control */
  262. writel(ctl, chip->ctl); /* default to fread or read mode */
  263. }
  264. static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  265. {
  266. struct aspeed_smc_chip *chip = nor->priv;
  267. mutex_lock(&chip->controller->mutex);
  268. return 0;
  269. }
  270. static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  271. {
  272. struct aspeed_smc_chip *chip = nor->priv;
  273. mutex_unlock(&chip->controller->mutex);
  274. }
  275. static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  276. {
  277. struct aspeed_smc_chip *chip = nor->priv;
  278. aspeed_smc_start_user(nor);
  279. aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
  280. aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
  281. aspeed_smc_stop_user(nor);
  282. return 0;
  283. }
  284. static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
  285. int len)
  286. {
  287. struct aspeed_smc_chip *chip = nor->priv;
  288. aspeed_smc_start_user(nor);
  289. aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
  290. aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
  291. aspeed_smc_stop_user(nor);
  292. return 0;
  293. }
  294. static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
  295. {
  296. struct aspeed_smc_chip *chip = nor->priv;
  297. __be32 temp;
  298. u32 cmdaddr;
  299. switch (nor->addr_width) {
  300. default:
  301. WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
  302. nor->addr_width);
  303. /* FALLTHROUGH */
  304. case 3:
  305. cmdaddr = addr & 0xFFFFFF;
  306. cmdaddr |= cmd << 24;
  307. temp = cpu_to_be32(cmdaddr);
  308. aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
  309. break;
  310. case 4:
  311. temp = cpu_to_be32(addr);
  312. aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
  313. aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
  314. break;
  315. }
  316. }
  317. static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
  318. size_t len, u_char *read_buf)
  319. {
  320. struct aspeed_smc_chip *chip = nor->priv;
  321. int i;
  322. u8 dummy = 0xFF;
  323. aspeed_smc_start_user(nor);
  324. aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
  325. for (i = 0; i < chip->nor.read_dummy / 8; i++)
  326. aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
  327. aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
  328. aspeed_smc_stop_user(nor);
  329. return len;
  330. }
  331. static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
  332. size_t len, const u_char *write_buf)
  333. {
  334. struct aspeed_smc_chip *chip = nor->priv;
  335. aspeed_smc_start_user(nor);
  336. aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
  337. aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
  338. aspeed_smc_stop_user(nor);
  339. return len;
  340. }
  341. static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
  342. {
  343. struct aspeed_smc_chip *chip;
  344. int n;
  345. for (n = 0; n < controller->info->nce; n++) {
  346. chip = controller->chips[n];
  347. if (chip)
  348. mtd_device_unregister(&chip->nor.mtd);
  349. }
  350. return 0;
  351. }
  352. static int aspeed_smc_remove(struct platform_device *dev)
  353. {
  354. return aspeed_smc_unregister(platform_get_drvdata(dev));
  355. }
  356. static const struct of_device_id aspeed_smc_matches[] = {
  357. { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
  358. { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
  359. { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
  360. { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
  361. { }
  362. };
  363. MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
  364. /*
  365. * Each chip has a mapping window defined by a segment address
  366. * register defining a start and an end address on the AHB bus. These
  367. * addresses can be configured to fit the chip size and offer a
  368. * contiguous memory region across chips. For the moment, we only
  369. * check that each chip segment is valid.
  370. */
  371. static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
  372. struct resource *res)
  373. {
  374. struct aspeed_smc_controller *controller = chip->controller;
  375. u32 offset = 0;
  376. u32 reg;
  377. if (controller->info->nce > 1) {
  378. reg = readl(controller->regs + SEGMENT_ADDR_REG0 +
  379. chip->cs * 4);
  380. if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
  381. return NULL;
  382. offset = SEGMENT_ADDR_START(reg) - res->start;
  383. }
  384. return controller->ahb_base + offset;
  385. }
  386. static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
  387. {
  388. struct aspeed_smc_controller *controller = chip->controller;
  389. u32 reg;
  390. reg = readl(controller->regs + CONFIG_REG);
  391. reg |= aspeed_smc_chip_write_bit(chip);
  392. writel(reg, controller->regs + CONFIG_REG);
  393. }
  394. static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
  395. {
  396. struct aspeed_smc_controller *controller = chip->controller;
  397. u32 reg;
  398. chip->type = type;
  399. reg = readl(controller->regs + CONFIG_REG);
  400. reg &= ~(3 << (chip->cs * 2));
  401. reg |= chip->type << (chip->cs * 2);
  402. writel(reg, controller->regs + CONFIG_REG);
  403. }
  404. /*
  405. * The AST2500 FMC flash controller should be strapped by hardware, or
  406. * autodetected, but the AST2500 SPI flash needs to be set.
  407. */
  408. static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
  409. {
  410. struct aspeed_smc_controller *controller = chip->controller;
  411. u32 reg;
  412. if (chip->controller->info == &spi_2500_info) {
  413. reg = readl(controller->regs + CE_CONTROL_REG);
  414. reg |= 1 << chip->cs;
  415. writel(reg, controller->regs + CE_CONTROL_REG);
  416. }
  417. }
  418. /*
  419. * The AST2400 SPI flash controller does not have a CE Control
  420. * register. It uses the CE0 control register to set 4Byte mode at the
  421. * controller level.
  422. */
  423. static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
  424. {
  425. chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
  426. chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
  427. }
  428. static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
  429. struct resource *res)
  430. {
  431. struct aspeed_smc_controller *controller = chip->controller;
  432. const struct aspeed_smc_info *info = controller->info;
  433. u32 reg, base_reg;
  434. /*
  435. * Always turn on the write enable bit to allow opcodes to be
  436. * sent in user mode.
  437. */
  438. aspeed_smc_chip_enable_write(chip);
  439. /* The driver only supports SPI type flash */
  440. if (info->hastype)
  441. aspeed_smc_chip_set_type(chip, smc_type_spi);
  442. /*
  443. * Configure chip base address in memory
  444. */
  445. chip->ahb_base = aspeed_smc_chip_base(chip, res);
  446. if (!chip->ahb_base) {
  447. dev_warn(chip->nor.dev, "CE segment window closed.\n");
  448. return -EINVAL;
  449. }
  450. /*
  451. * Get value of the inherited control register. U-Boot usually
  452. * does some timing calibration on the FMC chip, so it's good
  453. * to keep them. In the future, we should handle calibration
  454. * from Linux.
  455. */
  456. reg = readl(chip->ctl);
  457. dev_dbg(controller->dev, "control register: %08x\n", reg);
  458. base_reg = reg & CONTROL_KEEP_MASK;
  459. if (base_reg != reg) {
  460. dev_dbg(controller->dev,
  461. "control register changed to: %08x\n",
  462. base_reg);
  463. }
  464. chip->ctl_val[smc_base] = base_reg;
  465. /*
  466. * Retain the prior value of the control register as the
  467. * default if it was normal access mode. Otherwise start with
  468. * the sanitized base value set to read mode.
  469. */
  470. if ((reg & CONTROL_COMMAND_MODE_MASK) ==
  471. CONTROL_COMMAND_MODE_NORMAL)
  472. chip->ctl_val[smc_read] = reg;
  473. else
  474. chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
  475. CONTROL_COMMAND_MODE_NORMAL;
  476. dev_dbg(controller->dev, "default control register: %08x\n",
  477. chip->ctl_val[smc_read]);
  478. return 0;
  479. }
  480. static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
  481. {
  482. struct aspeed_smc_controller *controller = chip->controller;
  483. const struct aspeed_smc_info *info = controller->info;
  484. u32 cmd;
  485. if (chip->nor.addr_width == 4 && info->set_4b)
  486. info->set_4b(chip);
  487. /*
  488. * base mode has not been optimized yet. use it for writes.
  489. */
  490. chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
  491. chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
  492. CONTROL_COMMAND_MODE_WRITE;
  493. dev_dbg(controller->dev, "write control register: %08x\n",
  494. chip->ctl_val[smc_write]);
  495. /*
  496. * TODO: Adjust clocks if fast read is supported and interpret
  497. * SPI-NOR flags to adjust controller settings.
  498. */
  499. switch (chip->nor.flash_read) {
  500. case SPI_NOR_NORMAL:
  501. cmd = CONTROL_COMMAND_MODE_NORMAL;
  502. break;
  503. case SPI_NOR_FAST:
  504. cmd = CONTROL_COMMAND_MODE_FREAD;
  505. break;
  506. default:
  507. dev_err(chip->nor.dev, "unsupported SPI read mode\n");
  508. return -EINVAL;
  509. }
  510. chip->ctl_val[smc_read] |= cmd |
  511. CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
  512. dev_dbg(controller->dev, "base control register: %08x\n",
  513. chip->ctl_val[smc_read]);
  514. return 0;
  515. }
  516. static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
  517. struct device_node *np, struct resource *r)
  518. {
  519. const struct aspeed_smc_info *info = controller->info;
  520. struct device *dev = controller->dev;
  521. struct device_node *child;
  522. unsigned int cs;
  523. int ret = -ENODEV;
  524. for_each_available_child_of_node(np, child) {
  525. struct aspeed_smc_chip *chip;
  526. struct spi_nor *nor;
  527. struct mtd_info *mtd;
  528. /* This driver does not support NAND or NOR flash devices. */
  529. if (!of_device_is_compatible(child, "jedec,spi-nor"))
  530. continue;
  531. ret = of_property_read_u32(child, "reg", &cs);
  532. if (ret) {
  533. dev_err(dev, "Couldn't not read chip select.\n");
  534. break;
  535. }
  536. if (cs >= info->nce) {
  537. dev_err(dev, "Chip select %d out of range.\n",
  538. cs);
  539. ret = -ERANGE;
  540. break;
  541. }
  542. if (controller->chips[cs]) {
  543. dev_err(dev, "Chip select %d already in use by %s\n",
  544. cs, dev_name(controller->chips[cs]->nor.dev));
  545. ret = -EBUSY;
  546. break;
  547. }
  548. chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
  549. if (!chip) {
  550. ret = -ENOMEM;
  551. break;
  552. }
  553. chip->controller = controller;
  554. chip->ctl = controller->regs + info->ctl0 + cs * 4;
  555. chip->cs = cs;
  556. nor = &chip->nor;
  557. mtd = &nor->mtd;
  558. nor->dev = dev;
  559. nor->priv = chip;
  560. spi_nor_set_flash_node(nor, child);
  561. nor->read = aspeed_smc_read_user;
  562. nor->write = aspeed_smc_write_user;
  563. nor->read_reg = aspeed_smc_read_reg;
  564. nor->write_reg = aspeed_smc_write_reg;
  565. nor->prepare = aspeed_smc_prep;
  566. nor->unprepare = aspeed_smc_unprep;
  567. ret = aspeed_smc_chip_setup_init(chip, r);
  568. if (ret)
  569. break;
  570. /*
  571. * TODO: Add support for SPI_NOR_QUAD and SPI_NOR_DUAL
  572. * attach when board support is present as determined
  573. * by of property.
  574. */
  575. ret = spi_nor_scan(nor, NULL, SPI_NOR_NORMAL);
  576. if (ret)
  577. break;
  578. ret = aspeed_smc_chip_setup_finish(chip);
  579. if (ret)
  580. break;
  581. ret = mtd_device_register(mtd, NULL, 0);
  582. if (ret)
  583. break;
  584. controller->chips[cs] = chip;
  585. }
  586. if (ret)
  587. aspeed_smc_unregister(controller);
  588. return ret;
  589. }
  590. static int aspeed_smc_probe(struct platform_device *pdev)
  591. {
  592. struct device_node *np = pdev->dev.of_node;
  593. struct device *dev = &pdev->dev;
  594. struct aspeed_smc_controller *controller;
  595. const struct of_device_id *match;
  596. const struct aspeed_smc_info *info;
  597. struct resource *res;
  598. int ret;
  599. match = of_match_device(aspeed_smc_matches, &pdev->dev);
  600. if (!match || !match->data)
  601. return -ENODEV;
  602. info = match->data;
  603. controller = devm_kzalloc(&pdev->dev, sizeof(*controller) +
  604. info->nce * sizeof(controller->chips[0]), GFP_KERNEL);
  605. if (!controller)
  606. return -ENOMEM;
  607. controller->info = info;
  608. controller->dev = dev;
  609. mutex_init(&controller->mutex);
  610. platform_set_drvdata(pdev, controller);
  611. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  612. controller->regs = devm_ioremap_resource(dev, res);
  613. if (IS_ERR(controller->regs))
  614. return PTR_ERR(controller->regs);
  615. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  616. controller->ahb_base = devm_ioremap_resource(dev, res);
  617. if (IS_ERR(controller->ahb_base))
  618. return PTR_ERR(controller->ahb_base);
  619. ret = aspeed_smc_setup_flash(controller, np, res);
  620. if (ret)
  621. dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
  622. return ret;
  623. }
  624. static struct platform_driver aspeed_smc_driver = {
  625. .probe = aspeed_smc_probe,
  626. .remove = aspeed_smc_remove,
  627. .driver = {
  628. .name = DEVICE_NAME,
  629. .of_match_table = aspeed_smc_matches,
  630. }
  631. };
  632. module_platform_driver(aspeed_smc_driver);
  633. MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
  634. MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
  635. MODULE_LICENSE("GPL v2");