nand-controller.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio.h>
  55. #include <linux/gpio/consumer.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/mfd/syscon.h>
  58. #include <linux/mfd/syscon/atmel-matrix.h>
  59. #include <linux/module.h>
  60. #include <linux/mtd/nand.h>
  61. #include <linux/of_address.h>
  62. #include <linux/of_irq.h>
  63. #include <linux/of_platform.h>
  64. #include <linux/iopoll.h>
  65. #include <linux/platform_device.h>
  66. #include <linux/platform_data/atmel.h>
  67. #include <linux/regmap.h>
  68. #include "pmecc.h"
  69. #define ATMEL_HSMC_NFC_CFG 0x0
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  71. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  72. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  73. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  74. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  75. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  76. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  77. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  79. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  80. #define ATMEL_HSMC_NFC_CTRL 0x4
  81. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  82. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  83. #define ATMEL_HSMC_NFC_SR 0x8
  84. #define ATMEL_HSMC_NFC_IER 0xc
  85. #define ATMEL_HSMC_NFC_IDR 0x10
  86. #define ATMEL_HSMC_NFC_IMR 0x14
  87. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  88. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  89. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  90. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  91. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  92. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  93. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  94. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  95. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  96. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  97. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  98. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  99. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  100. ATMEL_HSMC_NFC_SR_UNDEF | \
  101. ATMEL_HSMC_NFC_SR_AWB | \
  102. ATMEL_HSMC_NFC_SR_NFCASE)
  103. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  104. #define ATMEL_HSMC_NFC_ADDR 0x18
  105. #define ATMEL_HSMC_NFC_BANK 0x1c
  106. #define ATMEL_NFC_MAX_RB_ID 7
  107. #define ATMEL_NFC_SRAM_SIZE 0x2400
  108. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  109. #define ATMEL_NFC_VCMD2 BIT(18)
  110. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  111. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  112. #define ATMEL_NFC_DATAEN BIT(25)
  113. #define ATMEL_NFC_NFCWR BIT(26)
  114. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  115. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  116. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  117. #define DEFAULT_TIMEOUT_MS 1000
  118. #define MIN_DMA_LEN 128
  119. enum atmel_nand_rb_type {
  120. ATMEL_NAND_NO_RB,
  121. ATMEL_NAND_NATIVE_RB,
  122. ATMEL_NAND_GPIO_RB,
  123. };
  124. struct atmel_nand_rb {
  125. enum atmel_nand_rb_type type;
  126. union {
  127. struct gpio_desc *gpio;
  128. int id;
  129. };
  130. };
  131. struct atmel_nand_cs {
  132. int id;
  133. struct atmel_nand_rb rb;
  134. struct gpio_desc *csgpio;
  135. struct {
  136. void __iomem *virt;
  137. dma_addr_t dma;
  138. } io;
  139. };
  140. struct atmel_nand {
  141. struct list_head node;
  142. struct device *dev;
  143. struct nand_chip base;
  144. struct atmel_nand_cs *activecs;
  145. struct atmel_pmecc_user *pmecc;
  146. struct gpio_desc *cdgpio;
  147. int numcs;
  148. struct atmel_nand_cs cs[];
  149. };
  150. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  151. {
  152. return container_of(chip, struct atmel_nand, base);
  153. }
  154. enum atmel_nfc_data_xfer {
  155. ATMEL_NFC_NO_DATA,
  156. ATMEL_NFC_READ_DATA,
  157. ATMEL_NFC_WRITE_DATA,
  158. };
  159. struct atmel_nfc_op {
  160. u8 cs;
  161. u8 ncmds;
  162. u8 cmds[2];
  163. u8 naddrs;
  164. u8 addrs[5];
  165. enum atmel_nfc_data_xfer data;
  166. u32 wait;
  167. u32 errors;
  168. };
  169. struct atmel_nand_controller;
  170. struct atmel_nand_controller_caps;
  171. struct atmel_nand_controller_ops {
  172. int (*probe)(struct platform_device *pdev,
  173. const struct atmel_nand_controller_caps *caps);
  174. int (*remove)(struct atmel_nand_controller *nc);
  175. void (*nand_init)(struct atmel_nand_controller *nc,
  176. struct atmel_nand *nand);
  177. int (*ecc_init)(struct atmel_nand *nand);
  178. };
  179. struct atmel_nand_controller_caps {
  180. bool has_dma;
  181. bool legacy_of_bindings;
  182. u32 ale_offs;
  183. u32 cle_offs;
  184. const struct atmel_nand_controller_ops *ops;
  185. };
  186. struct atmel_nand_controller {
  187. struct nand_hw_control base;
  188. const struct atmel_nand_controller_caps *caps;
  189. struct device *dev;
  190. struct regmap *smc;
  191. struct dma_chan *dmac;
  192. struct atmel_pmecc *pmecc;
  193. struct list_head chips;
  194. struct clk *mck;
  195. };
  196. static inline struct atmel_nand_controller *
  197. to_nand_controller(struct nand_hw_control *ctl)
  198. {
  199. return container_of(ctl, struct atmel_nand_controller, base);
  200. }
  201. struct atmel_smc_nand_controller {
  202. struct atmel_nand_controller base;
  203. struct regmap *matrix;
  204. unsigned int ebi_csa_offs;
  205. };
  206. static inline struct atmel_smc_nand_controller *
  207. to_smc_nand_controller(struct nand_hw_control *ctl)
  208. {
  209. return container_of(to_nand_controller(ctl),
  210. struct atmel_smc_nand_controller, base);
  211. }
  212. struct atmel_hsmc_nand_controller {
  213. struct atmel_nand_controller base;
  214. struct {
  215. struct gen_pool *pool;
  216. void __iomem *virt;
  217. dma_addr_t dma;
  218. } sram;
  219. struct regmap *io;
  220. struct atmel_nfc_op op;
  221. struct completion complete;
  222. int irq;
  223. /* Only used when instantiating from legacy DT bindings. */
  224. struct clk *clk;
  225. };
  226. static inline struct atmel_hsmc_nand_controller *
  227. to_hsmc_nand_controller(struct nand_hw_control *ctl)
  228. {
  229. return container_of(to_nand_controller(ctl),
  230. struct atmel_hsmc_nand_controller, base);
  231. }
  232. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  233. {
  234. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  235. op->wait ^= status & op->wait;
  236. return !op->wait || op->errors;
  237. }
  238. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  239. {
  240. struct atmel_hsmc_nand_controller *nc = data;
  241. u32 sr, rcvd;
  242. bool done;
  243. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  244. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  245. done = atmel_nfc_op_done(&nc->op, sr);
  246. if (rcvd)
  247. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  248. if (done)
  249. complete(&nc->complete);
  250. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  251. }
  252. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  253. unsigned int timeout_ms)
  254. {
  255. int ret;
  256. if (!timeout_ms)
  257. timeout_ms = DEFAULT_TIMEOUT_MS;
  258. if (poll) {
  259. u32 status;
  260. ret = regmap_read_poll_timeout(nc->base.smc,
  261. ATMEL_HSMC_NFC_SR, status,
  262. atmel_nfc_op_done(&nc->op,
  263. status),
  264. 0, timeout_ms * 1000);
  265. } else {
  266. init_completion(&nc->complete);
  267. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  268. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  269. ret = wait_for_completion_timeout(&nc->complete,
  270. msecs_to_jiffies(timeout_ms));
  271. if (!ret)
  272. ret = -ETIMEDOUT;
  273. else
  274. ret = 0;
  275. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  276. }
  277. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  278. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  279. ret = -ETIMEDOUT;
  280. }
  281. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  282. dev_err(nc->base.dev, "Access to an undefined area\n");
  283. ret = -EIO;
  284. }
  285. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  286. dev_err(nc->base.dev, "Access while busy\n");
  287. ret = -EIO;
  288. }
  289. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  290. dev_err(nc->base.dev, "Wrong access size\n");
  291. ret = -EIO;
  292. }
  293. return ret;
  294. }
  295. static void atmel_nand_dma_transfer_finished(void *data)
  296. {
  297. struct completion *finished = data;
  298. complete(finished);
  299. }
  300. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  301. void *buf, dma_addr_t dev_dma, size_t len,
  302. enum dma_data_direction dir)
  303. {
  304. DECLARE_COMPLETION_ONSTACK(finished);
  305. dma_addr_t src_dma, dst_dma, buf_dma;
  306. struct dma_async_tx_descriptor *tx;
  307. dma_cookie_t cookie;
  308. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  309. if (dma_mapping_error(nc->dev, dev_dma)) {
  310. dev_err(nc->dev,
  311. "Failed to prepare a buffer for DMA access\n");
  312. goto err;
  313. }
  314. if (dir == DMA_FROM_DEVICE) {
  315. src_dma = dev_dma;
  316. dst_dma = buf_dma;
  317. } else {
  318. src_dma = buf_dma;
  319. dst_dma = dev_dma;
  320. }
  321. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  322. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  323. if (!tx) {
  324. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  325. goto err_unmap;
  326. }
  327. tx->callback = atmel_nand_dma_transfer_finished;
  328. tx->callback_param = &finished;
  329. cookie = dmaengine_submit(tx);
  330. if (dma_submit_error(cookie)) {
  331. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  332. goto err_unmap;
  333. }
  334. dma_async_issue_pending(nc->dmac);
  335. wait_for_completion(&finished);
  336. return 0;
  337. err_unmap:
  338. dma_unmap_single(nc->dev, buf_dma, len, dir);
  339. err:
  340. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  341. return -EIO;
  342. }
  343. static u8 atmel_nand_read_byte(struct mtd_info *mtd)
  344. {
  345. struct nand_chip *chip = mtd_to_nand(mtd);
  346. struct atmel_nand *nand = to_atmel_nand(chip);
  347. return ioread8(nand->activecs->io.virt);
  348. }
  349. static u16 atmel_nand_read_word(struct mtd_info *mtd)
  350. {
  351. struct nand_chip *chip = mtd_to_nand(mtd);
  352. struct atmel_nand *nand = to_atmel_nand(chip);
  353. return ioread16(nand->activecs->io.virt);
  354. }
  355. static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
  356. {
  357. struct nand_chip *chip = mtd_to_nand(mtd);
  358. struct atmel_nand *nand = to_atmel_nand(chip);
  359. if (chip->options & NAND_BUSWIDTH_16)
  360. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  361. else
  362. iowrite8(byte, nand->activecs->io.virt);
  363. }
  364. static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  365. {
  366. struct nand_chip *chip = mtd_to_nand(mtd);
  367. struct atmel_nand *nand = to_atmel_nand(chip);
  368. struct atmel_nand_controller *nc;
  369. nc = to_nand_controller(chip->controller);
  370. /*
  371. * If the controller supports DMA, the buffer address is DMA-able and
  372. * len is long enough to make DMA transfers profitable, let's trigger
  373. * a DMA transfer. If it fails, fallback to PIO mode.
  374. */
  375. if (nc->dmac && virt_addr_valid(buf) &&
  376. len >= MIN_DMA_LEN &&
  377. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  378. DMA_FROM_DEVICE))
  379. return;
  380. if (chip->options & NAND_BUSWIDTH_16)
  381. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  382. else
  383. ioread8_rep(nand->activecs->io.virt, buf, len);
  384. }
  385. static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  386. {
  387. struct nand_chip *chip = mtd_to_nand(mtd);
  388. struct atmel_nand *nand = to_atmel_nand(chip);
  389. struct atmel_nand_controller *nc;
  390. nc = to_nand_controller(chip->controller);
  391. /*
  392. * If the controller supports DMA, the buffer address is DMA-able and
  393. * len is long enough to make DMA transfers profitable, let's trigger
  394. * a DMA transfer. If it fails, fallback to PIO mode.
  395. */
  396. if (nc->dmac && virt_addr_valid(buf) &&
  397. len >= MIN_DMA_LEN &&
  398. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  399. len, DMA_TO_DEVICE))
  400. return;
  401. if (chip->options & NAND_BUSWIDTH_16)
  402. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  403. else
  404. iowrite8_rep(nand->activecs->io.virt, buf, len);
  405. }
  406. static int atmel_nand_dev_ready(struct mtd_info *mtd)
  407. {
  408. struct nand_chip *chip = mtd_to_nand(mtd);
  409. struct atmel_nand *nand = to_atmel_nand(chip);
  410. return gpiod_get_value(nand->activecs->rb.gpio);
  411. }
  412. static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
  413. {
  414. struct nand_chip *chip = mtd_to_nand(mtd);
  415. struct atmel_nand *nand = to_atmel_nand(chip);
  416. if (cs < 0 || cs >= nand->numcs) {
  417. nand->activecs = NULL;
  418. chip->dev_ready = NULL;
  419. return;
  420. }
  421. nand->activecs = &nand->cs[cs];
  422. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  423. chip->dev_ready = atmel_nand_dev_ready;
  424. }
  425. static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
  426. {
  427. struct nand_chip *chip = mtd_to_nand(mtd);
  428. struct atmel_nand *nand = to_atmel_nand(chip);
  429. struct atmel_hsmc_nand_controller *nc;
  430. u32 status;
  431. nc = to_hsmc_nand_controller(chip->controller);
  432. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  433. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  434. }
  435. static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
  436. {
  437. struct nand_chip *chip = mtd_to_nand(mtd);
  438. struct atmel_nand *nand = to_atmel_nand(chip);
  439. struct atmel_hsmc_nand_controller *nc;
  440. nc = to_hsmc_nand_controller(chip->controller);
  441. atmel_nand_select_chip(mtd, cs);
  442. if (!nand->activecs) {
  443. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  444. ATMEL_HSMC_NFC_CTRL_DIS);
  445. return;
  446. }
  447. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  448. chip->dev_ready = atmel_hsmc_nand_dev_ready;
  449. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  450. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  451. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  452. ATMEL_HSMC_NFC_CFG_RSPARE |
  453. ATMEL_HSMC_NFC_CFG_WSPARE,
  454. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  455. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  456. ATMEL_HSMC_NFC_CFG_RSPARE);
  457. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  458. ATMEL_HSMC_NFC_CTRL_EN);
  459. }
  460. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  461. {
  462. u8 *addrs = nc->op.addrs;
  463. unsigned int op = 0;
  464. u32 addr, val;
  465. int i, ret;
  466. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  467. for (i = 0; i < nc->op.ncmds; i++)
  468. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  469. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  470. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  471. op |= ATMEL_NFC_CSID(nc->op.cs) |
  472. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  473. if (nc->op.ncmds > 1)
  474. op |= ATMEL_NFC_VCMD2;
  475. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  476. (addrs[3] << 24);
  477. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  478. op |= ATMEL_NFC_DATAEN;
  479. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  480. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  481. op |= ATMEL_NFC_NFCWR;
  482. }
  483. /* Clear all flags. */
  484. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  485. /* Send the command. */
  486. regmap_write(nc->io, op, addr);
  487. ret = atmel_nfc_wait(nc, poll, 0);
  488. if (ret)
  489. dev_err(nc->base.dev,
  490. "Failed to send NAND command (err = %d)!",
  491. ret);
  492. /* Reset the op state. */
  493. memset(&nc->op, 0, sizeof(nc->op));
  494. return ret;
  495. }
  496. static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
  497. unsigned int ctrl)
  498. {
  499. struct nand_chip *chip = mtd_to_nand(mtd);
  500. struct atmel_nand *nand = to_atmel_nand(chip);
  501. struct atmel_hsmc_nand_controller *nc;
  502. nc = to_hsmc_nand_controller(chip->controller);
  503. if (ctrl & NAND_ALE) {
  504. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  505. return;
  506. nc->op.addrs[nc->op.naddrs++] = dat;
  507. } else if (ctrl & NAND_CLE) {
  508. if (nc->op.ncmds > 1)
  509. return;
  510. nc->op.cmds[nc->op.ncmds++] = dat;
  511. }
  512. if (dat == NAND_CMD_NONE) {
  513. nc->op.cs = nand->activecs->id;
  514. atmel_nfc_exec_op(nc, true);
  515. }
  516. }
  517. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  518. unsigned int ctrl)
  519. {
  520. struct nand_chip *chip = mtd_to_nand(mtd);
  521. struct atmel_nand *nand = to_atmel_nand(chip);
  522. struct atmel_nand_controller *nc;
  523. nc = to_nand_controller(chip->controller);
  524. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  525. if (ctrl & NAND_NCE)
  526. gpiod_set_value(nand->activecs->csgpio, 0);
  527. else
  528. gpiod_set_value(nand->activecs->csgpio, 1);
  529. }
  530. if (ctrl & NAND_ALE)
  531. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  532. else if (ctrl & NAND_CLE)
  533. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  534. }
  535. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  536. bool oob_required)
  537. {
  538. struct mtd_info *mtd = nand_to_mtd(chip);
  539. struct atmel_hsmc_nand_controller *nc;
  540. int ret = -EIO;
  541. nc = to_hsmc_nand_controller(chip->controller);
  542. if (nc->base.dmac)
  543. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  544. nc->sram.dma, mtd->writesize,
  545. DMA_TO_DEVICE);
  546. /* Falling back to CPU copy. */
  547. if (ret)
  548. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  549. if (oob_required)
  550. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  551. mtd->oobsize);
  552. }
  553. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  554. bool oob_required)
  555. {
  556. struct mtd_info *mtd = nand_to_mtd(chip);
  557. struct atmel_hsmc_nand_controller *nc;
  558. int ret = -EIO;
  559. nc = to_hsmc_nand_controller(chip->controller);
  560. if (nc->base.dmac)
  561. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  562. mtd->writesize, DMA_FROM_DEVICE);
  563. /* Falling back to CPU copy. */
  564. if (ret)
  565. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  566. if (oob_required)
  567. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  568. mtd->oobsize);
  569. }
  570. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  571. {
  572. struct mtd_info *mtd = nand_to_mtd(chip);
  573. struct atmel_hsmc_nand_controller *nc;
  574. nc = to_hsmc_nand_controller(chip->controller);
  575. if (column >= 0) {
  576. nc->op.addrs[nc->op.naddrs++] = column;
  577. /*
  578. * 2 address cycles for the column offset on large page NANDs.
  579. */
  580. if (mtd->writesize > 512)
  581. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  582. }
  583. if (page >= 0) {
  584. nc->op.addrs[nc->op.naddrs++] = page;
  585. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  586. if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
  587. (mtd->writesize <= 512 && chip->chipsize > SZ_32M))
  588. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  589. }
  590. }
  591. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  592. {
  593. struct atmel_nand *nand = to_atmel_nand(chip);
  594. struct atmel_nand_controller *nc;
  595. int ret;
  596. nc = to_nand_controller(chip->controller);
  597. if (raw)
  598. return 0;
  599. ret = atmel_pmecc_enable(nand->pmecc, op);
  600. if (ret)
  601. dev_err(nc->dev,
  602. "Failed to enable ECC engine (err = %d)\n", ret);
  603. return ret;
  604. }
  605. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  606. {
  607. struct atmel_nand *nand = to_atmel_nand(chip);
  608. if (!raw)
  609. atmel_pmecc_disable(nand->pmecc);
  610. }
  611. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  612. {
  613. struct atmel_nand *nand = to_atmel_nand(chip);
  614. struct mtd_info *mtd = nand_to_mtd(chip);
  615. struct atmel_nand_controller *nc;
  616. struct mtd_oob_region oobregion;
  617. void *eccbuf;
  618. int ret, i;
  619. nc = to_nand_controller(chip->controller);
  620. if (raw)
  621. return 0;
  622. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  623. if (ret) {
  624. dev_err(nc->dev,
  625. "Failed to transfer NAND page data (err = %d)\n",
  626. ret);
  627. return ret;
  628. }
  629. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  630. eccbuf = chip->oob_poi + oobregion.offset;
  631. for (i = 0; i < chip->ecc.steps; i++) {
  632. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  633. eccbuf);
  634. eccbuf += chip->ecc.bytes;
  635. }
  636. return 0;
  637. }
  638. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  639. bool raw)
  640. {
  641. struct atmel_nand *nand = to_atmel_nand(chip);
  642. struct mtd_info *mtd = nand_to_mtd(chip);
  643. struct atmel_nand_controller *nc;
  644. struct mtd_oob_region oobregion;
  645. int ret, i, max_bitflips = 0;
  646. void *databuf, *eccbuf;
  647. nc = to_nand_controller(chip->controller);
  648. if (raw)
  649. return 0;
  650. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  651. if (ret) {
  652. dev_err(nc->dev,
  653. "Failed to read NAND page data (err = %d)\n",
  654. ret);
  655. return ret;
  656. }
  657. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  658. eccbuf = chip->oob_poi + oobregion.offset;
  659. databuf = buf;
  660. for (i = 0; i < chip->ecc.steps; i++) {
  661. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  662. eccbuf);
  663. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  664. ret = nand_check_erased_ecc_chunk(databuf,
  665. chip->ecc.size,
  666. eccbuf,
  667. chip->ecc.bytes,
  668. NULL, 0,
  669. chip->ecc.strength);
  670. if (ret >= 0)
  671. max_bitflips = max(ret, max_bitflips);
  672. else
  673. mtd->ecc_stats.failed++;
  674. databuf += chip->ecc.size;
  675. eccbuf += chip->ecc.bytes;
  676. }
  677. return max_bitflips;
  678. }
  679. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  680. bool oob_required, int page, bool raw)
  681. {
  682. struct mtd_info *mtd = nand_to_mtd(chip);
  683. struct atmel_nand *nand = to_atmel_nand(chip);
  684. int ret;
  685. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  686. if (ret)
  687. return ret;
  688. atmel_nand_write_buf(mtd, buf, mtd->writesize);
  689. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  690. if (ret) {
  691. atmel_pmecc_disable(nand->pmecc);
  692. return ret;
  693. }
  694. atmel_nand_pmecc_disable(chip, raw);
  695. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  696. return 0;
  697. }
  698. static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
  699. struct nand_chip *chip, const u8 *buf,
  700. int oob_required, int page)
  701. {
  702. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  703. }
  704. static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  705. struct nand_chip *chip,
  706. const u8 *buf, int oob_required,
  707. int page)
  708. {
  709. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  710. }
  711. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  712. bool oob_required, int page, bool raw)
  713. {
  714. struct mtd_info *mtd = nand_to_mtd(chip);
  715. int ret;
  716. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  717. if (ret)
  718. return ret;
  719. atmel_nand_read_buf(mtd, buf, mtd->writesize);
  720. atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  721. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  722. atmel_nand_pmecc_disable(chip, raw);
  723. return ret;
  724. }
  725. static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
  726. struct nand_chip *chip, u8 *buf,
  727. int oob_required, int page)
  728. {
  729. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  730. }
  731. static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  732. struct nand_chip *chip, u8 *buf,
  733. int oob_required, int page)
  734. {
  735. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  736. }
  737. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  738. const u8 *buf, bool oob_required,
  739. int page, bool raw)
  740. {
  741. struct mtd_info *mtd = nand_to_mtd(chip);
  742. struct atmel_nand *nand = to_atmel_nand(chip);
  743. struct atmel_hsmc_nand_controller *nc;
  744. int ret;
  745. nc = to_hsmc_nand_controller(chip->controller);
  746. atmel_nfc_copy_to_sram(chip, buf, false);
  747. nc->op.cmds[0] = NAND_CMD_SEQIN;
  748. nc->op.ncmds = 1;
  749. atmel_nfc_set_op_addr(chip, page, 0x0);
  750. nc->op.cs = nand->activecs->id;
  751. nc->op.data = ATMEL_NFC_WRITE_DATA;
  752. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  753. if (ret)
  754. return ret;
  755. ret = atmel_nfc_exec_op(nc, false);
  756. if (ret) {
  757. atmel_nand_pmecc_disable(chip, raw);
  758. dev_err(nc->base.dev,
  759. "Failed to transfer NAND page data (err = %d)\n",
  760. ret);
  761. return ret;
  762. }
  763. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  764. atmel_nand_pmecc_disable(chip, raw);
  765. if (ret)
  766. return ret;
  767. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  768. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  769. nc->op.ncmds = 1;
  770. nc->op.cs = nand->activecs->id;
  771. ret = atmel_nfc_exec_op(nc, false);
  772. if (ret)
  773. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  774. ret);
  775. return ret;
  776. }
  777. static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
  778. struct nand_chip *chip,
  779. const u8 *buf, int oob_required,
  780. int page)
  781. {
  782. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  783. false);
  784. }
  785. static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  786. struct nand_chip *chip,
  787. const u8 *buf,
  788. int oob_required, int page)
  789. {
  790. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  791. true);
  792. }
  793. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  794. bool oob_required, int page,
  795. bool raw)
  796. {
  797. struct mtd_info *mtd = nand_to_mtd(chip);
  798. struct atmel_nand *nand = to_atmel_nand(chip);
  799. struct atmel_hsmc_nand_controller *nc;
  800. int ret;
  801. nc = to_hsmc_nand_controller(chip->controller);
  802. /*
  803. * Optimized read page accessors only work when the NAND R/B pin is
  804. * connected to a native SoC R/B pin. If that's not the case, fallback
  805. * to the non-optimized one.
  806. */
  807. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  808. chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
  809. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  810. raw);
  811. }
  812. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  813. if (mtd->writesize > 512)
  814. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  815. atmel_nfc_set_op_addr(chip, page, 0x0);
  816. nc->op.cs = nand->activecs->id;
  817. nc->op.data = ATMEL_NFC_READ_DATA;
  818. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  819. if (ret)
  820. return ret;
  821. ret = atmel_nfc_exec_op(nc, false);
  822. if (ret) {
  823. atmel_nand_pmecc_disable(chip, raw);
  824. dev_err(nc->base.dev,
  825. "Failed to load NAND page data (err = %d)\n",
  826. ret);
  827. return ret;
  828. }
  829. atmel_nfc_copy_from_sram(chip, buf, true);
  830. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  831. atmel_nand_pmecc_disable(chip, raw);
  832. return ret;
  833. }
  834. static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
  835. struct nand_chip *chip, u8 *buf,
  836. int oob_required, int page)
  837. {
  838. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  839. false);
  840. }
  841. static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  842. struct nand_chip *chip,
  843. u8 *buf, int oob_required,
  844. int page)
  845. {
  846. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  847. true);
  848. }
  849. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  850. {
  851. struct mtd_info *mtd = nand_to_mtd(chip);
  852. struct atmel_nand *nand = to_atmel_nand(chip);
  853. struct atmel_nand_controller *nc;
  854. struct atmel_pmecc_user_req req;
  855. nc = to_nand_controller(chip->controller);
  856. if (!nc->pmecc) {
  857. dev_err(nc->dev, "HW ECC not supported\n");
  858. return -ENOTSUPP;
  859. }
  860. if (nc->caps->legacy_of_bindings) {
  861. u32 val;
  862. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  863. &val))
  864. chip->ecc.strength = val;
  865. if (!of_property_read_u32(nc->dev->of_node,
  866. "atmel,pmecc-sector-size",
  867. &val))
  868. chip->ecc.size = val;
  869. }
  870. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  871. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  872. else if (chip->ecc.strength)
  873. req.ecc.strength = chip->ecc.strength;
  874. else if (chip->ecc_strength_ds)
  875. req.ecc.strength = chip->ecc_strength_ds;
  876. else
  877. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  878. if (chip->ecc.size)
  879. req.ecc.sectorsize = chip->ecc.size;
  880. else if (chip->ecc_step_ds)
  881. req.ecc.sectorsize = chip->ecc_step_ds;
  882. else
  883. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  884. req.pagesize = mtd->writesize;
  885. req.oobsize = mtd->oobsize;
  886. if (mtd->writesize <= 512) {
  887. req.ecc.bytes = 4;
  888. req.ecc.ooboffset = 0;
  889. } else {
  890. req.ecc.bytes = mtd->oobsize - 2;
  891. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  892. }
  893. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  894. if (IS_ERR(nand->pmecc))
  895. return PTR_ERR(nand->pmecc);
  896. chip->ecc.algo = NAND_ECC_BCH;
  897. chip->ecc.size = req.ecc.sectorsize;
  898. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  899. chip->ecc.strength = req.ecc.strength;
  900. chip->options |= NAND_NO_SUBPAGE_WRITE;
  901. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  902. return 0;
  903. }
  904. static int atmel_nand_ecc_init(struct atmel_nand *nand)
  905. {
  906. struct nand_chip *chip = &nand->base;
  907. struct atmel_nand_controller *nc;
  908. int ret;
  909. nc = to_nand_controller(chip->controller);
  910. switch (chip->ecc.mode) {
  911. case NAND_ECC_NONE:
  912. case NAND_ECC_SOFT:
  913. /*
  914. * Nothing to do, the core will initialize everything for us.
  915. */
  916. break;
  917. case NAND_ECC_HW:
  918. ret = atmel_nand_pmecc_init(chip);
  919. if (ret)
  920. return ret;
  921. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  922. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  923. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  924. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  925. break;
  926. default:
  927. /* Other modes are not supported. */
  928. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  929. chip->ecc.mode);
  930. return -ENOTSUPP;
  931. }
  932. return 0;
  933. }
  934. static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
  935. {
  936. struct nand_chip *chip = &nand->base;
  937. int ret;
  938. ret = atmel_nand_ecc_init(nand);
  939. if (ret)
  940. return ret;
  941. if (chip->ecc.mode != NAND_ECC_HW)
  942. return 0;
  943. /* Adjust the ECC operations for the HSMC IP. */
  944. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  945. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  946. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  947. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  948. chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
  949. return 0;
  950. }
  951. static void atmel_nand_init(struct atmel_nand_controller *nc,
  952. struct atmel_nand *nand)
  953. {
  954. struct nand_chip *chip = &nand->base;
  955. struct mtd_info *mtd = nand_to_mtd(chip);
  956. mtd->dev.parent = nc->dev;
  957. nand->base.controller = &nc->base;
  958. chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  959. chip->read_byte = atmel_nand_read_byte;
  960. chip->read_word = atmel_nand_read_word;
  961. chip->write_byte = atmel_nand_write_byte;
  962. chip->read_buf = atmel_nand_read_buf;
  963. chip->write_buf = atmel_nand_write_buf;
  964. chip->select_chip = atmel_nand_select_chip;
  965. /* Some NANDs require a longer delay than the default one (20us). */
  966. chip->chip_delay = 40;
  967. /*
  968. * Use a bounce buffer when the buffer passed by the MTD user is not
  969. * suitable for DMA.
  970. */
  971. if (nc->dmac)
  972. chip->options |= NAND_USE_BOUNCE_BUFFER;
  973. /* Default to HW ECC if pmecc is available. */
  974. if (nc->pmecc)
  975. chip->ecc.mode = NAND_ECC_HW;
  976. }
  977. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  978. struct atmel_nand *nand)
  979. {
  980. struct nand_chip *chip = &nand->base;
  981. struct atmel_smc_nand_controller *smc_nc;
  982. int i;
  983. atmel_nand_init(nc, nand);
  984. smc_nc = to_smc_nand_controller(chip->controller);
  985. if (!smc_nc->matrix)
  986. return;
  987. /* Attach the CS to the NAND Flash logic. */
  988. for (i = 0; i < nand->numcs; i++)
  989. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  990. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  991. }
  992. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  993. struct atmel_nand *nand)
  994. {
  995. struct nand_chip *chip = &nand->base;
  996. atmel_nand_init(nc, nand);
  997. /* Overload some methods for the HSMC controller. */
  998. chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  999. chip->select_chip = atmel_hsmc_nand_select_chip;
  1000. }
  1001. static int atmel_nand_detect(struct atmel_nand *nand)
  1002. {
  1003. struct nand_chip *chip = &nand->base;
  1004. struct mtd_info *mtd = nand_to_mtd(chip);
  1005. struct atmel_nand_controller *nc;
  1006. int ret;
  1007. nc = to_nand_controller(chip->controller);
  1008. ret = nand_scan_ident(mtd, nand->numcs, NULL);
  1009. if (ret)
  1010. dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
  1011. return ret;
  1012. }
  1013. static int atmel_nand_unregister(struct atmel_nand *nand)
  1014. {
  1015. struct nand_chip *chip = &nand->base;
  1016. struct mtd_info *mtd = nand_to_mtd(chip);
  1017. int ret;
  1018. ret = mtd_device_unregister(mtd);
  1019. if (ret)
  1020. return ret;
  1021. nand_cleanup(chip);
  1022. list_del(&nand->node);
  1023. return 0;
  1024. }
  1025. static int atmel_nand_register(struct atmel_nand *nand)
  1026. {
  1027. struct nand_chip *chip = &nand->base;
  1028. struct mtd_info *mtd = nand_to_mtd(chip);
  1029. struct atmel_nand_controller *nc;
  1030. int ret;
  1031. nc = to_nand_controller(chip->controller);
  1032. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1033. /*
  1034. * We keep the MTD name unchanged to avoid breaking platforms
  1035. * where the MTD cmdline parser is used and the bootloader
  1036. * has not been updated to use the new naming scheme.
  1037. */
  1038. mtd->name = "atmel_nand";
  1039. } else if (!mtd->name) {
  1040. /*
  1041. * If the new bindings are used and the bootloader has not been
  1042. * updated to pass a new mtdparts parameter on the cmdline, you
  1043. * should define the following property in your nand node:
  1044. *
  1045. * label = "atmel_nand";
  1046. *
  1047. * This way, mtd->name will be set by the core when
  1048. * nand_set_flash_node() is called.
  1049. */
  1050. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1051. "%s:nand.%d", dev_name(nc->dev),
  1052. nand->cs[0].id);
  1053. if (!mtd->name) {
  1054. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1055. return -ENOMEM;
  1056. }
  1057. }
  1058. ret = nand_scan_tail(mtd);
  1059. if (ret) {
  1060. dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
  1061. return ret;
  1062. }
  1063. ret = mtd_device_register(mtd, NULL, 0);
  1064. if (ret) {
  1065. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1066. nand_cleanup(chip);
  1067. return ret;
  1068. }
  1069. list_add_tail(&nand->node, &nc->chips);
  1070. return 0;
  1071. }
  1072. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1073. struct device_node *np,
  1074. int reg_cells)
  1075. {
  1076. struct atmel_nand *nand;
  1077. struct gpio_desc *gpio;
  1078. int numcs, ret, i;
  1079. numcs = of_property_count_elems_of_size(np, "reg",
  1080. reg_cells * sizeof(u32));
  1081. if (numcs < 1) {
  1082. dev_err(nc->dev, "Missing or invalid reg property\n");
  1083. return ERR_PTR(-EINVAL);
  1084. }
  1085. nand = devm_kzalloc(nc->dev,
  1086. sizeof(*nand) + (numcs * sizeof(*nand->cs)),
  1087. GFP_KERNEL);
  1088. if (!nand) {
  1089. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1090. return ERR_PTR(-ENOMEM);
  1091. }
  1092. nand->numcs = numcs;
  1093. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1094. &np->fwnode, GPIOD_IN,
  1095. "nand-det");
  1096. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1097. dev_err(nc->dev,
  1098. "Failed to get detect gpio (err = %ld)\n",
  1099. PTR_ERR(gpio));
  1100. return ERR_CAST(gpio);
  1101. }
  1102. if (!IS_ERR(gpio))
  1103. nand->cdgpio = gpio;
  1104. for (i = 0; i < numcs; i++) {
  1105. struct resource res;
  1106. u32 val;
  1107. ret = of_address_to_resource(np, 0, &res);
  1108. if (ret) {
  1109. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1110. ret);
  1111. return ERR_PTR(ret);
  1112. }
  1113. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1114. &val);
  1115. if (ret) {
  1116. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1117. ret);
  1118. return ERR_PTR(ret);
  1119. }
  1120. nand->cs[i].id = val;
  1121. nand->cs[i].io.dma = res.start;
  1122. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1123. if (IS_ERR(nand->cs[i].io.virt))
  1124. return ERR_CAST(nand->cs[i].io.virt);
  1125. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1126. if (val > ATMEL_NFC_MAX_RB_ID)
  1127. return ERR_PTR(-EINVAL);
  1128. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1129. nand->cs[i].rb.id = val;
  1130. } else {
  1131. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1132. "rb", i, &np->fwnode,
  1133. GPIOD_IN, "nand-rb");
  1134. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1135. dev_err(nc->dev,
  1136. "Failed to get R/B gpio (err = %ld)\n",
  1137. PTR_ERR(gpio));
  1138. return ERR_CAST(gpio);
  1139. }
  1140. if (!IS_ERR(gpio)) {
  1141. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1142. nand->cs[i].rb.gpio = gpio;
  1143. }
  1144. }
  1145. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1146. i, &np->fwnode,
  1147. GPIOD_OUT_HIGH,
  1148. "nand-cs");
  1149. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1150. dev_err(nc->dev,
  1151. "Failed to get CS gpio (err = %ld)\n",
  1152. PTR_ERR(gpio));
  1153. return ERR_CAST(gpio);
  1154. }
  1155. if (!IS_ERR(gpio))
  1156. nand->cs[i].csgpio = gpio;
  1157. }
  1158. nand_set_flash_node(&nand->base, np);
  1159. return nand;
  1160. }
  1161. static int
  1162. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1163. struct atmel_nand *nand)
  1164. {
  1165. int ret;
  1166. /* No card inserted, skip this NAND. */
  1167. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1168. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1169. return 0;
  1170. }
  1171. nc->caps->ops->nand_init(nc, nand);
  1172. ret = atmel_nand_detect(nand);
  1173. if (ret)
  1174. return ret;
  1175. ret = nc->caps->ops->ecc_init(nand);
  1176. if (ret)
  1177. return ret;
  1178. return atmel_nand_register(nand);
  1179. }
  1180. static int
  1181. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1182. {
  1183. struct atmel_nand *nand, *tmp;
  1184. int ret;
  1185. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1186. ret = atmel_nand_unregister(nand);
  1187. if (ret)
  1188. return ret;
  1189. }
  1190. return 0;
  1191. }
  1192. static int
  1193. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1194. {
  1195. struct device *dev = nc->dev;
  1196. struct platform_device *pdev = to_platform_device(dev);
  1197. struct atmel_nand *nand;
  1198. struct gpio_desc *gpio;
  1199. struct resource *res;
  1200. /*
  1201. * Legacy bindings only allow connecting a single NAND with a unique CS
  1202. * line to the controller.
  1203. */
  1204. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1205. GFP_KERNEL);
  1206. if (!nand)
  1207. return -ENOMEM;
  1208. nand->numcs = 1;
  1209. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1210. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1211. if (IS_ERR(nand->cs[0].io.virt))
  1212. return PTR_ERR(nand->cs[0].io.virt);
  1213. nand->cs[0].io.dma = res->start;
  1214. /*
  1215. * The old driver was hardcoding the CS id to 3 for all sama5
  1216. * controllers. Since this id is only meaningful for the sama5
  1217. * controller we can safely assign this id to 3 no matter the
  1218. * controller.
  1219. * If one wants to connect a NAND to a different CS line, he will
  1220. * have to use the new bindings.
  1221. */
  1222. nand->cs[0].id = 3;
  1223. /* R/B GPIO. */
  1224. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1225. if (IS_ERR(gpio)) {
  1226. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1227. PTR_ERR(gpio));
  1228. return PTR_ERR(gpio);
  1229. }
  1230. if (gpio) {
  1231. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1232. nand->cs[0].rb.gpio = gpio;
  1233. }
  1234. /* CS GPIO. */
  1235. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1236. if (IS_ERR(gpio)) {
  1237. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1238. PTR_ERR(gpio));
  1239. return PTR_ERR(gpio);
  1240. }
  1241. nand->cs[0].csgpio = gpio;
  1242. /* Card detect GPIO. */
  1243. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1244. if (IS_ERR(gpio)) {
  1245. dev_err(dev,
  1246. "Failed to get detect gpio (err = %ld)\n",
  1247. PTR_ERR(gpio));
  1248. return PTR_ERR(gpio);
  1249. }
  1250. nand->cdgpio = gpio;
  1251. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1252. return atmel_nand_controller_add_nand(nc, nand);
  1253. }
  1254. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1255. {
  1256. struct device_node *np, *nand_np;
  1257. struct device *dev = nc->dev;
  1258. int ret, reg_cells;
  1259. u32 val;
  1260. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1261. if (nc->caps->legacy_of_bindings)
  1262. return atmel_nand_controller_legacy_add_nands(nc);
  1263. np = dev->of_node;
  1264. ret = of_property_read_u32(np, "#address-cells", &val);
  1265. if (ret) {
  1266. dev_err(dev, "missing #address-cells property\n");
  1267. return ret;
  1268. }
  1269. reg_cells = val;
  1270. ret = of_property_read_u32(np, "#size-cells", &val);
  1271. if (ret) {
  1272. dev_err(dev, "missing #address-cells property\n");
  1273. return ret;
  1274. }
  1275. reg_cells += val;
  1276. for_each_child_of_node(np, nand_np) {
  1277. struct atmel_nand *nand;
  1278. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1279. if (IS_ERR(nand)) {
  1280. ret = PTR_ERR(nand);
  1281. goto err;
  1282. }
  1283. ret = atmel_nand_controller_add_nand(nc, nand);
  1284. if (ret)
  1285. goto err;
  1286. }
  1287. return 0;
  1288. err:
  1289. atmel_nand_controller_remove_nands(nc);
  1290. return ret;
  1291. }
  1292. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1293. {
  1294. if (nc->dmac)
  1295. dma_release_channel(nc->dmac);
  1296. clk_put(nc->mck);
  1297. }
  1298. static const struct of_device_id atmel_matrix_of_ids[] = {
  1299. {
  1300. .compatible = "atmel,at91sam9260-matrix",
  1301. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1302. },
  1303. {
  1304. .compatible = "atmel,at91sam9261-matrix",
  1305. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1306. },
  1307. {
  1308. .compatible = "atmel,at91sam9263-matrix",
  1309. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1310. },
  1311. {
  1312. .compatible = "atmel,at91sam9rl-matrix",
  1313. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1314. },
  1315. {
  1316. .compatible = "atmel,at91sam9g45-matrix",
  1317. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1318. },
  1319. {
  1320. .compatible = "atmel,at91sam9n12-matrix",
  1321. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1322. },
  1323. {
  1324. .compatible = "atmel,at91sam9x5-matrix",
  1325. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1326. },
  1327. { /* sentinel */ },
  1328. };
  1329. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1330. struct platform_device *pdev,
  1331. const struct atmel_nand_controller_caps *caps)
  1332. {
  1333. struct device *dev = &pdev->dev;
  1334. struct device_node *np = dev->of_node;
  1335. int ret;
  1336. nand_hw_control_init(&nc->base);
  1337. INIT_LIST_HEAD(&nc->chips);
  1338. nc->dev = dev;
  1339. nc->caps = caps;
  1340. platform_set_drvdata(pdev, nc);
  1341. nc->pmecc = devm_atmel_pmecc_get(dev);
  1342. if (IS_ERR(nc->pmecc)) {
  1343. ret = PTR_ERR(nc->pmecc);
  1344. if (ret != -EPROBE_DEFER)
  1345. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1346. ret);
  1347. return ret;
  1348. }
  1349. if (nc->caps->has_dma) {
  1350. dma_cap_mask_t mask;
  1351. dma_cap_zero(mask);
  1352. dma_cap_set(DMA_MEMCPY, mask);
  1353. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1354. if (!nc->dmac)
  1355. dev_err(nc->dev, "Failed to request DMA channel\n");
  1356. }
  1357. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1358. if (nc->caps->legacy_of_bindings)
  1359. return 0;
  1360. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1361. if (!np) {
  1362. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1363. return -EINVAL;
  1364. }
  1365. nc->smc = syscon_node_to_regmap(np);
  1366. of_node_put(np);
  1367. if (IS_ERR(nc->smc)) {
  1368. ret = PTR_ERR(nc->smc);
  1369. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1370. return ret;
  1371. }
  1372. return 0;
  1373. }
  1374. static int
  1375. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1376. {
  1377. struct device *dev = nc->base.dev;
  1378. const struct of_device_id *match;
  1379. struct device_node *np;
  1380. int ret;
  1381. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1382. if (nc->base.caps->legacy_of_bindings)
  1383. return 0;
  1384. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1385. if (!np)
  1386. return 0;
  1387. match = of_match_node(atmel_matrix_of_ids, np);
  1388. if (!match) {
  1389. of_node_put(np);
  1390. return 0;
  1391. }
  1392. nc->matrix = syscon_node_to_regmap(np);
  1393. of_node_put(np);
  1394. if (IS_ERR(nc->matrix)) {
  1395. ret = PTR_ERR(nc->matrix);
  1396. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1397. return ret;
  1398. }
  1399. nc->ebi_csa_offs = (unsigned int)match->data;
  1400. /*
  1401. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1402. * add 4 to ->ebi_csa_offs.
  1403. */
  1404. if (of_device_is_compatible(dev->parent->of_node,
  1405. "atmel,at91sam9263-ebi1"))
  1406. nc->ebi_csa_offs += 4;
  1407. return 0;
  1408. }
  1409. static int
  1410. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1411. {
  1412. struct regmap_config regmap_conf = {
  1413. .reg_bits = 32,
  1414. .val_bits = 32,
  1415. .reg_stride = 4,
  1416. };
  1417. struct device *dev = nc->base.dev;
  1418. struct device_node *nand_np, *nfc_np;
  1419. void __iomem *iomem;
  1420. struct resource res;
  1421. int ret;
  1422. nand_np = dev->of_node;
  1423. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1424. "atmel,sama5d3-nfc");
  1425. nc->clk = of_clk_get(nfc_np, 0);
  1426. if (IS_ERR(nc->clk)) {
  1427. ret = PTR_ERR(nc->clk);
  1428. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1429. ret);
  1430. goto out;
  1431. }
  1432. ret = clk_prepare_enable(nc->clk);
  1433. if (ret) {
  1434. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1435. ret);
  1436. goto out;
  1437. }
  1438. nc->irq = of_irq_get(nand_np, 0);
  1439. if (nc->irq < 0) {
  1440. ret = nc->irq;
  1441. if (ret != -EPROBE_DEFER)
  1442. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1443. ret);
  1444. goto out;
  1445. }
  1446. ret = of_address_to_resource(nfc_np, 0, &res);
  1447. if (ret) {
  1448. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1449. ret);
  1450. goto out;
  1451. }
  1452. iomem = devm_ioremap_resource(dev, &res);
  1453. if (IS_ERR(iomem)) {
  1454. ret = PTR_ERR(iomem);
  1455. goto out;
  1456. }
  1457. regmap_conf.name = "nfc-io";
  1458. regmap_conf.max_register = resource_size(&res) - 4;
  1459. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1460. if (IS_ERR(nc->io)) {
  1461. ret = PTR_ERR(nc->io);
  1462. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1463. ret);
  1464. goto out;
  1465. }
  1466. ret = of_address_to_resource(nfc_np, 1, &res);
  1467. if (ret) {
  1468. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1469. ret);
  1470. goto out;
  1471. }
  1472. iomem = devm_ioremap_resource(dev, &res);
  1473. if (IS_ERR(iomem)) {
  1474. ret = PTR_ERR(iomem);
  1475. goto out;
  1476. }
  1477. regmap_conf.name = "smc";
  1478. regmap_conf.max_register = resource_size(&res) - 4;
  1479. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1480. if (IS_ERR(nc->base.smc)) {
  1481. ret = PTR_ERR(nc->base.smc);
  1482. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1483. ret);
  1484. goto out;
  1485. }
  1486. ret = of_address_to_resource(nfc_np, 2, &res);
  1487. if (ret) {
  1488. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1489. ret);
  1490. goto out;
  1491. }
  1492. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1493. if (IS_ERR(nc->sram.virt)) {
  1494. ret = PTR_ERR(nc->sram.virt);
  1495. goto out;
  1496. }
  1497. nc->sram.dma = res.start;
  1498. out:
  1499. of_node_put(nfc_np);
  1500. return ret;
  1501. }
  1502. static int
  1503. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1504. {
  1505. struct device *dev = nc->base.dev;
  1506. struct device_node *np;
  1507. int ret;
  1508. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1509. if (!np) {
  1510. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1511. return -EINVAL;
  1512. }
  1513. nc->irq = of_irq_get(np, 0);
  1514. of_node_put(np);
  1515. if (nc->irq < 0) {
  1516. if (nc->irq != -EPROBE_DEFER)
  1517. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1518. nc->irq);
  1519. return nc->irq;
  1520. }
  1521. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1522. if (!np) {
  1523. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1524. return -EINVAL;
  1525. }
  1526. nc->io = syscon_node_to_regmap(np);
  1527. of_node_put(np);
  1528. if (IS_ERR(nc->io)) {
  1529. ret = PTR_ERR(nc->io);
  1530. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1531. return ret;
  1532. }
  1533. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1534. "atmel,nfc-sram", 0);
  1535. if (!nc->sram.pool) {
  1536. dev_err(nc->base.dev, "Missing SRAM\n");
  1537. return -ENOMEM;
  1538. }
  1539. nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
  1540. ATMEL_NFC_SRAM_SIZE,
  1541. &nc->sram.dma);
  1542. if (!nc->sram.virt) {
  1543. dev_err(nc->base.dev,
  1544. "Could not allocate memory from the NFC SRAM pool\n");
  1545. return -ENOMEM;
  1546. }
  1547. return 0;
  1548. }
  1549. static int
  1550. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1551. {
  1552. struct atmel_hsmc_nand_controller *hsmc_nc;
  1553. int ret;
  1554. ret = atmel_nand_controller_remove_nands(nc);
  1555. if (ret)
  1556. return ret;
  1557. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1558. if (hsmc_nc->sram.pool)
  1559. gen_pool_free(hsmc_nc->sram.pool,
  1560. (unsigned long)hsmc_nc->sram.virt,
  1561. ATMEL_NFC_SRAM_SIZE);
  1562. if (hsmc_nc->clk) {
  1563. clk_disable_unprepare(hsmc_nc->clk);
  1564. clk_put(hsmc_nc->clk);
  1565. }
  1566. atmel_nand_controller_cleanup(nc);
  1567. return 0;
  1568. }
  1569. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1570. const struct atmel_nand_controller_caps *caps)
  1571. {
  1572. struct device *dev = &pdev->dev;
  1573. struct atmel_hsmc_nand_controller *nc;
  1574. int ret;
  1575. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1576. if (!nc)
  1577. return -ENOMEM;
  1578. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1579. if (ret)
  1580. return ret;
  1581. if (caps->legacy_of_bindings)
  1582. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1583. else
  1584. ret = atmel_hsmc_nand_controller_init(nc);
  1585. if (ret)
  1586. return ret;
  1587. /* Make sure all irqs are masked before registering our IRQ handler. */
  1588. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1589. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1590. IRQF_SHARED, "nfc", nc);
  1591. if (ret) {
  1592. dev_err(dev,
  1593. "Could not get register NFC interrupt handler (err = %d)\n",
  1594. ret);
  1595. goto err;
  1596. }
  1597. /* Initial NFC configuration. */
  1598. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1599. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1600. ret = atmel_nand_controller_add_nands(&nc->base);
  1601. if (ret)
  1602. goto err;
  1603. return 0;
  1604. err:
  1605. atmel_hsmc_nand_controller_remove(&nc->base);
  1606. return ret;
  1607. }
  1608. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1609. .probe = atmel_hsmc_nand_controller_probe,
  1610. .remove = atmel_hsmc_nand_controller_remove,
  1611. .ecc_init = atmel_hsmc_nand_ecc_init,
  1612. .nand_init = atmel_hsmc_nand_init,
  1613. };
  1614. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1615. .has_dma = true,
  1616. .ale_offs = BIT(21),
  1617. .cle_offs = BIT(22),
  1618. .ops = &atmel_hsmc_nc_ops,
  1619. };
  1620. /* Only used to parse old bindings. */
  1621. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1622. .has_dma = true,
  1623. .ale_offs = BIT(21),
  1624. .cle_offs = BIT(22),
  1625. .ops = &atmel_hsmc_nc_ops,
  1626. .legacy_of_bindings = true,
  1627. };
  1628. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1629. const struct atmel_nand_controller_caps *caps)
  1630. {
  1631. struct device *dev = &pdev->dev;
  1632. struct atmel_smc_nand_controller *nc;
  1633. int ret;
  1634. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1635. if (!nc)
  1636. return -ENOMEM;
  1637. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1638. if (ret)
  1639. return ret;
  1640. ret = atmel_smc_nand_controller_init(nc);
  1641. if (ret)
  1642. return ret;
  1643. return atmel_nand_controller_add_nands(&nc->base);
  1644. }
  1645. static int
  1646. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1647. {
  1648. int ret;
  1649. ret = atmel_nand_controller_remove_nands(nc);
  1650. if (ret)
  1651. return ret;
  1652. atmel_nand_controller_cleanup(nc);
  1653. return 0;
  1654. }
  1655. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1656. .probe = atmel_smc_nand_controller_probe,
  1657. .remove = atmel_smc_nand_controller_remove,
  1658. .ecc_init = atmel_nand_ecc_init,
  1659. .nand_init = atmel_smc_nand_init,
  1660. };
  1661. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1662. .ale_offs = BIT(21),
  1663. .cle_offs = BIT(22),
  1664. .ops = &atmel_smc_nc_ops,
  1665. };
  1666. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1667. .ale_offs = BIT(22),
  1668. .cle_offs = BIT(21),
  1669. .ops = &atmel_smc_nc_ops,
  1670. };
  1671. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1672. .has_dma = true,
  1673. .ale_offs = BIT(21),
  1674. .cle_offs = BIT(22),
  1675. .ops = &atmel_smc_nc_ops,
  1676. };
  1677. /* Only used to parse old bindings. */
  1678. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1679. .ale_offs = BIT(21),
  1680. .cle_offs = BIT(22),
  1681. .ops = &atmel_smc_nc_ops,
  1682. .legacy_of_bindings = true,
  1683. };
  1684. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1685. .ale_offs = BIT(22),
  1686. .cle_offs = BIT(21),
  1687. .ops = &atmel_smc_nc_ops,
  1688. .legacy_of_bindings = true,
  1689. };
  1690. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1691. .has_dma = true,
  1692. .ale_offs = BIT(21),
  1693. .cle_offs = BIT(22),
  1694. .ops = &atmel_smc_nc_ops,
  1695. .legacy_of_bindings = true,
  1696. };
  1697. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1698. {
  1699. .compatible = "atmel,at91rm9200-nand-controller",
  1700. .data = &atmel_rm9200_nc_caps,
  1701. },
  1702. {
  1703. .compatible = "atmel,at91sam9260-nand-controller",
  1704. .data = &atmel_rm9200_nc_caps,
  1705. },
  1706. {
  1707. .compatible = "atmel,at91sam9261-nand-controller",
  1708. .data = &atmel_sam9261_nc_caps,
  1709. },
  1710. {
  1711. .compatible = "atmel,at91sam9g45-nand-controller",
  1712. .data = &atmel_sam9g45_nc_caps,
  1713. },
  1714. {
  1715. .compatible = "atmel,sama5d3-nand-controller",
  1716. .data = &atmel_sama5_nc_caps,
  1717. },
  1718. /* Support for old/deprecated bindings: */
  1719. {
  1720. .compatible = "atmel,at91rm9200-nand",
  1721. .data = &atmel_rm9200_nand_caps,
  1722. },
  1723. {
  1724. .compatible = "atmel,sama5d4-nand",
  1725. .data = &atmel_rm9200_nand_caps,
  1726. },
  1727. {
  1728. .compatible = "atmel,sama5d2-nand",
  1729. .data = &atmel_rm9200_nand_caps,
  1730. },
  1731. { /* sentinel */ },
  1732. };
  1733. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  1734. static int atmel_nand_controller_probe(struct platform_device *pdev)
  1735. {
  1736. const struct atmel_nand_controller_caps *caps;
  1737. if (pdev->id_entry)
  1738. caps = (void *)pdev->id_entry->driver_data;
  1739. else
  1740. caps = of_device_get_match_data(&pdev->dev);
  1741. if (!caps) {
  1742. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  1743. return -EINVAL;
  1744. }
  1745. if (caps->legacy_of_bindings) {
  1746. u32 ale_offs = 21;
  1747. /*
  1748. * If we are parsing legacy DT props and the DT contains a
  1749. * valid NFC node, forward the request to the sama5 logic.
  1750. */
  1751. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  1752. "atmel,sama5d3-nfc"))
  1753. caps = &atmel_sama5_nand_caps;
  1754. /*
  1755. * Even if the compatible says we are dealing with an
  1756. * at91rm9200 controller, the atmel,nand-has-dma specify that
  1757. * this controller supports DMA, which means we are in fact
  1758. * dealing with an at91sam9g45+ controller.
  1759. */
  1760. if (!caps->has_dma &&
  1761. of_property_read_bool(pdev->dev.of_node,
  1762. "atmel,nand-has-dma"))
  1763. caps = &atmel_sam9g45_nand_caps;
  1764. /*
  1765. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  1766. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  1767. * actually dealing with an at91sam9261 controller.
  1768. */
  1769. of_property_read_u32(pdev->dev.of_node,
  1770. "atmel,nand-addr-offset", &ale_offs);
  1771. if (ale_offs != 21)
  1772. caps = &atmel_sam9261_nand_caps;
  1773. }
  1774. return caps->ops->probe(pdev, caps);
  1775. }
  1776. static int atmel_nand_controller_remove(struct platform_device *pdev)
  1777. {
  1778. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  1779. return nc->caps->ops->remove(nc);
  1780. }
  1781. static struct platform_driver atmel_nand_controller_driver = {
  1782. .driver = {
  1783. .name = "atmel-nand-controller",
  1784. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  1785. },
  1786. .probe = atmel_nand_controller_probe,
  1787. .remove = atmel_nand_controller_remove,
  1788. };
  1789. module_platform_driver(atmel_nand_controller_driver);
  1790. MODULE_LICENSE("GPL");
  1791. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  1792. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  1793. MODULE_ALIAS("platform:atmel-nand-controller");