mtdpart.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure.
  46. */
  47. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  48. {
  49. return container_of(mtd, struct mtd_part, mtd);
  50. }
  51. /*
  52. * MTD methods which simply translate the effective address and pass through
  53. * to the _real_ device.
  54. */
  55. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  56. size_t *retlen, u_char *buf)
  57. {
  58. struct mtd_part *part = mtd_to_part(mtd);
  59. struct mtd_ecc_stats stats;
  60. int res;
  61. stats = part->master->ecc_stats;
  62. res = part->master->_read(part->master, from + part->offset, len,
  63. retlen, buf);
  64. if (unlikely(mtd_is_eccerr(res)))
  65. mtd->ecc_stats.failed +=
  66. part->master->ecc_stats.failed - stats.failed;
  67. else
  68. mtd->ecc_stats.corrected +=
  69. part->master->ecc_stats.corrected - stats.corrected;
  70. return res;
  71. }
  72. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  73. size_t *retlen, void **virt, resource_size_t *phys)
  74. {
  75. struct mtd_part *part = mtd_to_part(mtd);
  76. return part->master->_point(part->master, from + part->offset, len,
  77. retlen, virt, phys);
  78. }
  79. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  80. {
  81. struct mtd_part *part = mtd_to_part(mtd);
  82. return part->master->_unpoint(part->master, from + part->offset, len);
  83. }
  84. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  85. unsigned long len,
  86. unsigned long offset,
  87. unsigned long flags)
  88. {
  89. struct mtd_part *part = mtd_to_part(mtd);
  90. offset += part->offset;
  91. return part->master->_get_unmapped_area(part->master, len, offset,
  92. flags);
  93. }
  94. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  95. struct mtd_oob_ops *ops)
  96. {
  97. struct mtd_part *part = mtd_to_part(mtd);
  98. int res;
  99. if (from >= mtd->size)
  100. return -EINVAL;
  101. if (ops->datbuf && from + ops->len > mtd->size)
  102. return -EINVAL;
  103. /*
  104. * If OOB is also requested, make sure that we do not read past the end
  105. * of this partition.
  106. */
  107. if (ops->oobbuf) {
  108. size_t len, pages;
  109. len = mtd_oobavail(mtd, ops);
  110. pages = mtd_div_by_ws(mtd->size, mtd);
  111. pages -= mtd_div_by_ws(from, mtd);
  112. if (ops->ooboffs + ops->ooblen > pages * len)
  113. return -EINVAL;
  114. }
  115. res = part->master->_read_oob(part->master, from + part->offset, ops);
  116. if (unlikely(res)) {
  117. if (mtd_is_bitflip(res))
  118. mtd->ecc_stats.corrected++;
  119. if (mtd_is_eccerr(res))
  120. mtd->ecc_stats.failed++;
  121. }
  122. return res;
  123. }
  124. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  125. size_t len, size_t *retlen, u_char *buf)
  126. {
  127. struct mtd_part *part = mtd_to_part(mtd);
  128. return part->master->_read_user_prot_reg(part->master, from, len,
  129. retlen, buf);
  130. }
  131. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  132. size_t *retlen, struct otp_info *buf)
  133. {
  134. struct mtd_part *part = mtd_to_part(mtd);
  135. return part->master->_get_user_prot_info(part->master, len, retlen,
  136. buf);
  137. }
  138. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  139. size_t len, size_t *retlen, u_char *buf)
  140. {
  141. struct mtd_part *part = mtd_to_part(mtd);
  142. return part->master->_read_fact_prot_reg(part->master, from, len,
  143. retlen, buf);
  144. }
  145. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  146. size_t *retlen, struct otp_info *buf)
  147. {
  148. struct mtd_part *part = mtd_to_part(mtd);
  149. return part->master->_get_fact_prot_info(part->master, len, retlen,
  150. buf);
  151. }
  152. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  153. size_t *retlen, const u_char *buf)
  154. {
  155. struct mtd_part *part = mtd_to_part(mtd);
  156. return part->master->_write(part->master, to + part->offset, len,
  157. retlen, buf);
  158. }
  159. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  160. size_t *retlen, const u_char *buf)
  161. {
  162. struct mtd_part *part = mtd_to_part(mtd);
  163. return part->master->_panic_write(part->master, to + part->offset, len,
  164. retlen, buf);
  165. }
  166. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  167. struct mtd_oob_ops *ops)
  168. {
  169. struct mtd_part *part = mtd_to_part(mtd);
  170. if (to >= mtd->size)
  171. return -EINVAL;
  172. if (ops->datbuf && to + ops->len > mtd->size)
  173. return -EINVAL;
  174. return part->master->_write_oob(part->master, to + part->offset, ops);
  175. }
  176. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  177. size_t len, size_t *retlen, u_char *buf)
  178. {
  179. struct mtd_part *part = mtd_to_part(mtd);
  180. return part->master->_write_user_prot_reg(part->master, from, len,
  181. retlen, buf);
  182. }
  183. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  184. size_t len)
  185. {
  186. struct mtd_part *part = mtd_to_part(mtd);
  187. return part->master->_lock_user_prot_reg(part->master, from, len);
  188. }
  189. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  190. unsigned long count, loff_t to, size_t *retlen)
  191. {
  192. struct mtd_part *part = mtd_to_part(mtd);
  193. return part->master->_writev(part->master, vecs, count,
  194. to + part->offset, retlen);
  195. }
  196. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  197. {
  198. struct mtd_part *part = mtd_to_part(mtd);
  199. int ret;
  200. instr->addr += part->offset;
  201. ret = part->master->_erase(part->master, instr);
  202. if (ret) {
  203. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  204. instr->fail_addr -= part->offset;
  205. instr->addr -= part->offset;
  206. }
  207. return ret;
  208. }
  209. void mtd_erase_callback(struct erase_info *instr)
  210. {
  211. if (instr->mtd->_erase == part_erase) {
  212. struct mtd_part *part = mtd_to_part(instr->mtd);
  213. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  214. instr->fail_addr -= part->offset;
  215. instr->addr -= part->offset;
  216. }
  217. if (instr->callback)
  218. instr->callback(instr);
  219. }
  220. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  221. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  222. {
  223. struct mtd_part *part = mtd_to_part(mtd);
  224. return part->master->_lock(part->master, ofs + part->offset, len);
  225. }
  226. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  227. {
  228. struct mtd_part *part = mtd_to_part(mtd);
  229. return part->master->_unlock(part->master, ofs + part->offset, len);
  230. }
  231. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  232. {
  233. struct mtd_part *part = mtd_to_part(mtd);
  234. return part->master->_is_locked(part->master, ofs + part->offset, len);
  235. }
  236. static void part_sync(struct mtd_info *mtd)
  237. {
  238. struct mtd_part *part = mtd_to_part(mtd);
  239. part->master->_sync(part->master);
  240. }
  241. static int part_suspend(struct mtd_info *mtd)
  242. {
  243. struct mtd_part *part = mtd_to_part(mtd);
  244. return part->master->_suspend(part->master);
  245. }
  246. static void part_resume(struct mtd_info *mtd)
  247. {
  248. struct mtd_part *part = mtd_to_part(mtd);
  249. part->master->_resume(part->master);
  250. }
  251. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  252. {
  253. struct mtd_part *part = mtd_to_part(mtd);
  254. ofs += part->offset;
  255. return part->master->_block_isreserved(part->master, ofs);
  256. }
  257. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  258. {
  259. struct mtd_part *part = mtd_to_part(mtd);
  260. ofs += part->offset;
  261. return part->master->_block_isbad(part->master, ofs);
  262. }
  263. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  264. {
  265. struct mtd_part *part = mtd_to_part(mtd);
  266. int res;
  267. ofs += part->offset;
  268. res = part->master->_block_markbad(part->master, ofs);
  269. if (!res)
  270. mtd->ecc_stats.badblocks++;
  271. return res;
  272. }
  273. static int part_get_device(struct mtd_info *mtd)
  274. {
  275. struct mtd_part *part = mtd_to_part(mtd);
  276. return part->master->_get_device(part->master);
  277. }
  278. static void part_put_device(struct mtd_info *mtd)
  279. {
  280. struct mtd_part *part = mtd_to_part(mtd);
  281. part->master->_put_device(part->master);
  282. }
  283. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  284. struct mtd_oob_region *oobregion)
  285. {
  286. struct mtd_part *part = mtd_to_part(mtd);
  287. return mtd_ooblayout_ecc(part->master, section, oobregion);
  288. }
  289. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  290. struct mtd_oob_region *oobregion)
  291. {
  292. struct mtd_part *part = mtd_to_part(mtd);
  293. return mtd_ooblayout_free(part->master, section, oobregion);
  294. }
  295. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  296. .ecc = part_ooblayout_ecc,
  297. .free = part_ooblayout_free,
  298. };
  299. static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  300. {
  301. struct mtd_part *part = mtd_to_part(mtd);
  302. return part->master->_max_bad_blocks(part->master,
  303. ofs + part->offset, len);
  304. }
  305. static inline void free_partition(struct mtd_part *p)
  306. {
  307. kfree(p->mtd.name);
  308. kfree(p);
  309. }
  310. /*
  311. * This function unregisters and destroy all slave MTD objects which are
  312. * attached to the given master MTD object.
  313. */
  314. int del_mtd_partitions(struct mtd_info *master)
  315. {
  316. struct mtd_part *slave, *next;
  317. int ret, err = 0;
  318. mutex_lock(&mtd_partitions_mutex);
  319. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  320. if (slave->master == master) {
  321. ret = del_mtd_device(&slave->mtd);
  322. if (ret < 0) {
  323. err = ret;
  324. continue;
  325. }
  326. list_del(&slave->list);
  327. free_partition(slave);
  328. }
  329. mutex_unlock(&mtd_partitions_mutex);
  330. return err;
  331. }
  332. static struct mtd_part *allocate_partition(struct mtd_info *master,
  333. const struct mtd_partition *part, int partno,
  334. uint64_t cur_offset)
  335. {
  336. struct mtd_part *slave;
  337. char *name;
  338. /* allocate the partition structure */
  339. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  340. name = kstrdup(part->name, GFP_KERNEL);
  341. if (!name || !slave) {
  342. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  343. master->name);
  344. kfree(name);
  345. kfree(slave);
  346. return ERR_PTR(-ENOMEM);
  347. }
  348. /* set up the MTD object for this partition */
  349. slave->mtd.type = master->type;
  350. slave->mtd.flags = master->flags & ~part->mask_flags;
  351. slave->mtd.size = part->size;
  352. slave->mtd.writesize = master->writesize;
  353. slave->mtd.writebufsize = master->writebufsize;
  354. slave->mtd.oobsize = master->oobsize;
  355. slave->mtd.oobavail = master->oobavail;
  356. slave->mtd.subpage_sft = master->subpage_sft;
  357. slave->mtd.pairing = master->pairing;
  358. slave->mtd.name = name;
  359. slave->mtd.owner = master->owner;
  360. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  361. * concern for showing the same data in multiple partitions.
  362. * However, it is very useful to have the master node present,
  363. * so the MTD_PARTITIONED_MASTER option allows that. The master
  364. * will have device nodes etc only if this is set, so make the
  365. * parent conditional on that option. Note, this is a way to
  366. * distinguish between the master and the partition in sysfs.
  367. */
  368. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
  369. &master->dev :
  370. master->dev.parent;
  371. slave->mtd.dev.of_node = part->of_node;
  372. slave->mtd._read = part_read;
  373. slave->mtd._write = part_write;
  374. if (master->_panic_write)
  375. slave->mtd._panic_write = part_panic_write;
  376. if (master->_point && master->_unpoint) {
  377. slave->mtd._point = part_point;
  378. slave->mtd._unpoint = part_unpoint;
  379. }
  380. if (master->_get_unmapped_area)
  381. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  382. if (master->_read_oob)
  383. slave->mtd._read_oob = part_read_oob;
  384. if (master->_write_oob)
  385. slave->mtd._write_oob = part_write_oob;
  386. if (master->_read_user_prot_reg)
  387. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  388. if (master->_read_fact_prot_reg)
  389. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  390. if (master->_write_user_prot_reg)
  391. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  392. if (master->_lock_user_prot_reg)
  393. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  394. if (master->_get_user_prot_info)
  395. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  396. if (master->_get_fact_prot_info)
  397. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  398. if (master->_sync)
  399. slave->mtd._sync = part_sync;
  400. if (!partno && !master->dev.class && master->_suspend &&
  401. master->_resume) {
  402. slave->mtd._suspend = part_suspend;
  403. slave->mtd._resume = part_resume;
  404. }
  405. if (master->_writev)
  406. slave->mtd._writev = part_writev;
  407. if (master->_lock)
  408. slave->mtd._lock = part_lock;
  409. if (master->_unlock)
  410. slave->mtd._unlock = part_unlock;
  411. if (master->_is_locked)
  412. slave->mtd._is_locked = part_is_locked;
  413. if (master->_block_isreserved)
  414. slave->mtd._block_isreserved = part_block_isreserved;
  415. if (master->_block_isbad)
  416. slave->mtd._block_isbad = part_block_isbad;
  417. if (master->_block_markbad)
  418. slave->mtd._block_markbad = part_block_markbad;
  419. if (master->_max_bad_blocks)
  420. slave->mtd._max_bad_blocks = part_max_bad_blocks;
  421. if (master->_get_device)
  422. slave->mtd._get_device = part_get_device;
  423. if (master->_put_device)
  424. slave->mtd._put_device = part_put_device;
  425. slave->mtd._erase = part_erase;
  426. slave->master = master;
  427. slave->offset = part->offset;
  428. if (slave->offset == MTDPART_OFS_APPEND)
  429. slave->offset = cur_offset;
  430. if (slave->offset == MTDPART_OFS_NXTBLK) {
  431. slave->offset = cur_offset;
  432. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  433. /* Round up to next erasesize */
  434. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  435. printk(KERN_NOTICE "Moving partition %d: "
  436. "0x%012llx -> 0x%012llx\n", partno,
  437. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  438. }
  439. }
  440. if (slave->offset == MTDPART_OFS_RETAIN) {
  441. slave->offset = cur_offset;
  442. if (master->size - slave->offset >= slave->mtd.size) {
  443. slave->mtd.size = master->size - slave->offset
  444. - slave->mtd.size;
  445. } else {
  446. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  447. part->name, master->size - slave->offset,
  448. slave->mtd.size);
  449. /* register to preserve ordering */
  450. goto out_register;
  451. }
  452. }
  453. if (slave->mtd.size == MTDPART_SIZ_FULL)
  454. slave->mtd.size = master->size - slave->offset;
  455. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  456. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  457. /* let's do some sanity checks */
  458. if (slave->offset >= master->size) {
  459. /* let's register it anyway to preserve ordering */
  460. slave->offset = 0;
  461. slave->mtd.size = 0;
  462. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  463. part->name);
  464. goto out_register;
  465. }
  466. if (slave->offset + slave->mtd.size > master->size) {
  467. slave->mtd.size = master->size - slave->offset;
  468. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  469. part->name, master->name, (unsigned long long)slave->mtd.size);
  470. }
  471. if (master->numeraseregions > 1) {
  472. /* Deal with variable erase size stuff */
  473. int i, max = master->numeraseregions;
  474. u64 end = slave->offset + slave->mtd.size;
  475. struct mtd_erase_region_info *regions = master->eraseregions;
  476. /* Find the first erase regions which is part of this
  477. * partition. */
  478. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  479. ;
  480. /* The loop searched for the region _behind_ the first one */
  481. if (i > 0)
  482. i--;
  483. /* Pick biggest erasesize */
  484. for (; i < max && regions[i].offset < end; i++) {
  485. if (slave->mtd.erasesize < regions[i].erasesize) {
  486. slave->mtd.erasesize = regions[i].erasesize;
  487. }
  488. }
  489. BUG_ON(slave->mtd.erasesize == 0);
  490. } else {
  491. /* Single erase size */
  492. slave->mtd.erasesize = master->erasesize;
  493. }
  494. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  495. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  496. /* Doesn't start on a boundary of major erase size */
  497. /* FIXME: Let it be writable if it is on a boundary of
  498. * _minor_ erase size though */
  499. slave->mtd.flags &= ~MTD_WRITEABLE;
  500. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  501. part->name);
  502. }
  503. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  504. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  505. slave->mtd.flags &= ~MTD_WRITEABLE;
  506. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  507. part->name);
  508. }
  509. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  510. slave->mtd.ecc_step_size = master->ecc_step_size;
  511. slave->mtd.ecc_strength = master->ecc_strength;
  512. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  513. if (master->_block_isbad) {
  514. uint64_t offs = 0;
  515. while (offs < slave->mtd.size) {
  516. if (mtd_block_isreserved(master, offs + slave->offset))
  517. slave->mtd.ecc_stats.bbtblocks++;
  518. else if (mtd_block_isbad(master, offs + slave->offset))
  519. slave->mtd.ecc_stats.badblocks++;
  520. offs += slave->mtd.erasesize;
  521. }
  522. }
  523. out_register:
  524. return slave;
  525. }
  526. static ssize_t mtd_partition_offset_show(struct device *dev,
  527. struct device_attribute *attr, char *buf)
  528. {
  529. struct mtd_info *mtd = dev_get_drvdata(dev);
  530. struct mtd_part *part = mtd_to_part(mtd);
  531. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  532. }
  533. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  534. static const struct attribute *mtd_partition_attrs[] = {
  535. &dev_attr_offset.attr,
  536. NULL
  537. };
  538. static int mtd_add_partition_attrs(struct mtd_part *new)
  539. {
  540. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  541. if (ret)
  542. printk(KERN_WARNING
  543. "mtd: failed to create partition attrs, err=%d\n", ret);
  544. return ret;
  545. }
  546. int mtd_add_partition(struct mtd_info *master, const char *name,
  547. long long offset, long long length)
  548. {
  549. struct mtd_partition part;
  550. struct mtd_part *new;
  551. int ret = 0;
  552. /* the direct offset is expected */
  553. if (offset == MTDPART_OFS_APPEND ||
  554. offset == MTDPART_OFS_NXTBLK)
  555. return -EINVAL;
  556. if (length == MTDPART_SIZ_FULL)
  557. length = master->size - offset;
  558. if (length <= 0)
  559. return -EINVAL;
  560. memset(&part, 0, sizeof(part));
  561. part.name = name;
  562. part.size = length;
  563. part.offset = offset;
  564. new = allocate_partition(master, &part, -1, offset);
  565. if (IS_ERR(new))
  566. return PTR_ERR(new);
  567. mutex_lock(&mtd_partitions_mutex);
  568. list_add(&new->list, &mtd_partitions);
  569. mutex_unlock(&mtd_partitions_mutex);
  570. add_mtd_device(&new->mtd);
  571. mtd_add_partition_attrs(new);
  572. return ret;
  573. }
  574. EXPORT_SYMBOL_GPL(mtd_add_partition);
  575. int mtd_del_partition(struct mtd_info *master, int partno)
  576. {
  577. struct mtd_part *slave, *next;
  578. int ret = -EINVAL;
  579. mutex_lock(&mtd_partitions_mutex);
  580. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  581. if ((slave->master == master) &&
  582. (slave->mtd.index == partno)) {
  583. sysfs_remove_files(&slave->mtd.dev.kobj,
  584. mtd_partition_attrs);
  585. ret = del_mtd_device(&slave->mtd);
  586. if (ret < 0)
  587. break;
  588. list_del(&slave->list);
  589. free_partition(slave);
  590. break;
  591. }
  592. mutex_unlock(&mtd_partitions_mutex);
  593. return ret;
  594. }
  595. EXPORT_SYMBOL_GPL(mtd_del_partition);
  596. /*
  597. * This function, given a master MTD object and a partition table, creates
  598. * and registers slave MTD objects which are bound to the master according to
  599. * the partition definitions.
  600. *
  601. * For historical reasons, this function's caller only registers the master
  602. * if the MTD_PARTITIONED_MASTER config option is set.
  603. */
  604. int add_mtd_partitions(struct mtd_info *master,
  605. const struct mtd_partition *parts,
  606. int nbparts)
  607. {
  608. struct mtd_part *slave;
  609. uint64_t cur_offset = 0;
  610. int i;
  611. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  612. for (i = 0; i < nbparts; i++) {
  613. slave = allocate_partition(master, parts + i, i, cur_offset);
  614. if (IS_ERR(slave)) {
  615. del_mtd_partitions(master);
  616. return PTR_ERR(slave);
  617. }
  618. mutex_lock(&mtd_partitions_mutex);
  619. list_add(&slave->list, &mtd_partitions);
  620. mutex_unlock(&mtd_partitions_mutex);
  621. add_mtd_device(&slave->mtd);
  622. mtd_add_partition_attrs(slave);
  623. cur_offset = slave->offset + slave->mtd.size;
  624. }
  625. return 0;
  626. }
  627. static DEFINE_SPINLOCK(part_parser_lock);
  628. static LIST_HEAD(part_parsers);
  629. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  630. {
  631. struct mtd_part_parser *p, *ret = NULL;
  632. spin_lock(&part_parser_lock);
  633. list_for_each_entry(p, &part_parsers, list)
  634. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  635. ret = p;
  636. break;
  637. }
  638. spin_unlock(&part_parser_lock);
  639. return ret;
  640. }
  641. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  642. {
  643. module_put(p->owner);
  644. }
  645. /*
  646. * Many partition parsers just expected the core to kfree() all their data in
  647. * one chunk. Do that by default.
  648. */
  649. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  650. int nr_parts)
  651. {
  652. kfree(pparts);
  653. }
  654. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  655. {
  656. p->owner = owner;
  657. if (!p->cleanup)
  658. p->cleanup = &mtd_part_parser_cleanup_default;
  659. spin_lock(&part_parser_lock);
  660. list_add(&p->list, &part_parsers);
  661. spin_unlock(&part_parser_lock);
  662. return 0;
  663. }
  664. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  665. void deregister_mtd_parser(struct mtd_part_parser *p)
  666. {
  667. spin_lock(&part_parser_lock);
  668. list_del(&p->list);
  669. spin_unlock(&part_parser_lock);
  670. }
  671. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  672. /*
  673. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  674. * are changing this array!
  675. */
  676. static const char * const default_mtd_part_types[] = {
  677. "cmdlinepart",
  678. "ofpart",
  679. NULL
  680. };
  681. /**
  682. * parse_mtd_partitions - parse MTD partitions
  683. * @master: the master partition (describes whole MTD device)
  684. * @types: names of partition parsers to try or %NULL
  685. * @pparts: info about partitions found is returned here
  686. * @data: MTD partition parser-specific data
  687. *
  688. * This function tries to find partition on MTD device @master. It uses MTD
  689. * partition parsers, specified in @types. However, if @types is %NULL, then
  690. * the default list of parsers is used. The default list contains only the
  691. * "cmdlinepart" and "ofpart" parsers ATM.
  692. * Note: If there are more then one parser in @types, the kernel only takes the
  693. * partitions parsed out by the first parser.
  694. *
  695. * This function may return:
  696. * o a negative error code in case of failure
  697. * o zero otherwise, and @pparts will describe the partitions, number of
  698. * partitions, and the parser which parsed them. Caller must release
  699. * resources with mtd_part_parser_cleanup() when finished with the returned
  700. * data.
  701. */
  702. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  703. struct mtd_partitions *pparts,
  704. struct mtd_part_parser_data *data)
  705. {
  706. struct mtd_part_parser *parser;
  707. int ret, err = 0;
  708. if (!types)
  709. types = default_mtd_part_types;
  710. for ( ; *types; types++) {
  711. pr_debug("%s: parsing partitions %s\n", master->name, *types);
  712. parser = mtd_part_parser_get(*types);
  713. if (!parser && !request_module("%s", *types))
  714. parser = mtd_part_parser_get(*types);
  715. pr_debug("%s: got parser %s\n", master->name,
  716. parser ? parser->name : NULL);
  717. if (!parser)
  718. continue;
  719. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  720. pr_debug("%s: parser %s: %i\n",
  721. master->name, parser->name, ret);
  722. if (ret > 0) {
  723. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  724. ret, parser->name, master->name);
  725. pparts->nr_parts = ret;
  726. pparts->parser = parser;
  727. return 0;
  728. }
  729. mtd_part_parser_put(parser);
  730. /*
  731. * Stash the first error we see; only report it if no parser
  732. * succeeds
  733. */
  734. if (ret < 0 && !err)
  735. err = ret;
  736. }
  737. return err;
  738. }
  739. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  740. {
  741. const struct mtd_part_parser *parser;
  742. if (!parts)
  743. return;
  744. parser = parts->parser;
  745. if (parser) {
  746. if (parser->cleanup)
  747. parser->cleanup(parts->parts, parts->nr_parts);
  748. mtd_part_parser_put(parser);
  749. }
  750. }
  751. int mtd_is_partition(const struct mtd_info *mtd)
  752. {
  753. struct mtd_part *part;
  754. int ispart = 0;
  755. mutex_lock(&mtd_partitions_mutex);
  756. list_for_each_entry(part, &mtd_partitions, list)
  757. if (&part->mtd == mtd) {
  758. ispart = 1;
  759. break;
  760. }
  761. mutex_unlock(&mtd_partitions_mutex);
  762. return ispart;
  763. }
  764. EXPORT_SYMBOL_GPL(mtd_is_partition);
  765. /* Returns the size of the entire flash chip */
  766. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  767. {
  768. if (!mtd_is_partition(mtd))
  769. return mtd->size;
  770. return mtd_to_part(mtd)->master->size;
  771. }
  772. EXPORT_SYMBOL_GPL(mtd_get_device_size);