m25p80.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /*
  2. * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3. *
  4. * Author: Mike Lavender, mike@steroidmicros.com
  5. *
  6. * Copyright (c) 2005, Intec Automation Inc.
  7. *
  8. * Some parts are based on lart.c by Abraham Van Der Merwe
  9. *
  10. * Cleaned up and generalized based on mtd_dataflash.c
  11. *
  12. * This code is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/err.h>
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/mtd/mtd.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/spi/spi.h>
  24. #include <linux/spi/flash.h>
  25. #include <linux/mtd/spi-nor.h>
  26. #define MAX_CMD_SIZE 6
  27. struct m25p {
  28. struct spi_device *spi;
  29. struct spi_nor spi_nor;
  30. u8 command[MAX_CMD_SIZE];
  31. };
  32. static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
  33. {
  34. struct m25p *flash = nor->priv;
  35. struct spi_device *spi = flash->spi;
  36. int ret;
  37. ret = spi_write_then_read(spi, &code, 1, val, len);
  38. if (ret < 0)
  39. dev_err(&spi->dev, "error %d reading %x\n", ret, code);
  40. return ret;
  41. }
  42. static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd)
  43. {
  44. /* opcode is in cmd[0] */
  45. cmd[1] = addr >> (nor->addr_width * 8 - 8);
  46. cmd[2] = addr >> (nor->addr_width * 8 - 16);
  47. cmd[3] = addr >> (nor->addr_width * 8 - 24);
  48. cmd[4] = addr >> (nor->addr_width * 8 - 32);
  49. }
  50. static int m25p_cmdsz(struct spi_nor *nor)
  51. {
  52. return 1 + nor->addr_width;
  53. }
  54. static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  55. {
  56. struct m25p *flash = nor->priv;
  57. struct spi_device *spi = flash->spi;
  58. flash->command[0] = opcode;
  59. if (buf)
  60. memcpy(&flash->command[1], buf, len);
  61. return spi_write(spi, flash->command, len + 1);
  62. }
  63. static ssize_t m25p80_write(struct spi_nor *nor, loff_t to, size_t len,
  64. const u_char *buf)
  65. {
  66. struct m25p *flash = nor->priv;
  67. struct spi_device *spi = flash->spi;
  68. struct spi_transfer t[2] = {};
  69. struct spi_message m;
  70. int cmd_sz = m25p_cmdsz(nor);
  71. ssize_t ret;
  72. spi_message_init(&m);
  73. if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
  74. cmd_sz = 1;
  75. flash->command[0] = nor->program_opcode;
  76. m25p_addr2cmd(nor, to, flash->command);
  77. t[0].tx_buf = flash->command;
  78. t[0].len = cmd_sz;
  79. spi_message_add_tail(&t[0], &m);
  80. t[1].tx_buf = buf;
  81. t[1].len = len;
  82. spi_message_add_tail(&t[1], &m);
  83. ret = spi_sync(spi, &m);
  84. if (ret)
  85. return ret;
  86. ret = m.actual_length - cmd_sz;
  87. if (ret < 0)
  88. return -EIO;
  89. return ret;
  90. }
  91. static inline unsigned int m25p80_rx_nbits(struct spi_nor *nor)
  92. {
  93. switch (nor->flash_read) {
  94. case SPI_NOR_DUAL:
  95. return 2;
  96. case SPI_NOR_QUAD:
  97. return 4;
  98. default:
  99. return 0;
  100. }
  101. }
  102. /*
  103. * Read an address range from the nor chip. The address range
  104. * may be any size provided it is within the physical boundaries.
  105. */
  106. static ssize_t m25p80_read(struct spi_nor *nor, loff_t from, size_t len,
  107. u_char *buf)
  108. {
  109. struct m25p *flash = nor->priv;
  110. struct spi_device *spi = flash->spi;
  111. struct spi_transfer t[2];
  112. struct spi_message m;
  113. unsigned int dummy = nor->read_dummy;
  114. ssize_t ret;
  115. /* convert the dummy cycles to the number of bytes */
  116. dummy /= 8;
  117. if (spi_flash_read_supported(spi)) {
  118. struct spi_flash_read_message msg;
  119. memset(&msg, 0, sizeof(msg));
  120. msg.buf = buf;
  121. msg.from = from;
  122. msg.len = len;
  123. msg.read_opcode = nor->read_opcode;
  124. msg.addr_width = nor->addr_width;
  125. msg.dummy_bytes = dummy;
  126. /* TODO: Support other combinations */
  127. msg.opcode_nbits = SPI_NBITS_SINGLE;
  128. msg.addr_nbits = SPI_NBITS_SINGLE;
  129. msg.data_nbits = m25p80_rx_nbits(nor);
  130. ret = spi_flash_read(spi, &msg);
  131. if (ret < 0)
  132. return ret;
  133. return msg.retlen;
  134. }
  135. spi_message_init(&m);
  136. memset(t, 0, (sizeof t));
  137. flash->command[0] = nor->read_opcode;
  138. m25p_addr2cmd(nor, from, flash->command);
  139. t[0].tx_buf = flash->command;
  140. t[0].len = m25p_cmdsz(nor) + dummy;
  141. spi_message_add_tail(&t[0], &m);
  142. t[1].rx_buf = buf;
  143. t[1].rx_nbits = m25p80_rx_nbits(nor);
  144. t[1].len = min3(len, spi_max_transfer_size(spi),
  145. spi_max_message_size(spi) - t[0].len);
  146. spi_message_add_tail(&t[1], &m);
  147. ret = spi_sync(spi, &m);
  148. if (ret)
  149. return ret;
  150. ret = m.actual_length - m25p_cmdsz(nor) - dummy;
  151. if (ret < 0)
  152. return -EIO;
  153. return ret;
  154. }
  155. /*
  156. * board specific setup should have ensured the SPI clock used here
  157. * matches what the READ command supports, at least until this driver
  158. * understands FAST_READ (for clocks over 25 MHz).
  159. */
  160. static int m25p_probe(struct spi_device *spi)
  161. {
  162. struct flash_platform_data *data;
  163. struct m25p *flash;
  164. struct spi_nor *nor;
  165. enum read_mode mode = SPI_NOR_NORMAL;
  166. char *flash_name;
  167. int ret;
  168. data = dev_get_platdata(&spi->dev);
  169. flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
  170. if (!flash)
  171. return -ENOMEM;
  172. nor = &flash->spi_nor;
  173. /* install the hooks */
  174. nor->read = m25p80_read;
  175. nor->write = m25p80_write;
  176. nor->write_reg = m25p80_write_reg;
  177. nor->read_reg = m25p80_read_reg;
  178. nor->dev = &spi->dev;
  179. spi_nor_set_flash_node(nor, spi->dev.of_node);
  180. nor->priv = flash;
  181. spi_set_drvdata(spi, flash);
  182. flash->spi = spi;
  183. if (spi->mode & SPI_RX_QUAD)
  184. mode = SPI_NOR_QUAD;
  185. else if (spi->mode & SPI_RX_DUAL)
  186. mode = SPI_NOR_DUAL;
  187. if (data && data->name)
  188. nor->mtd.name = data->name;
  189. /* For some (historical?) reason many platforms provide two different
  190. * names in flash_platform_data: "name" and "type". Quite often name is
  191. * set to "m25p80" and then "type" provides a real chip name.
  192. * If that's the case, respect "type" and ignore a "name".
  193. */
  194. if (data && data->type)
  195. flash_name = data->type;
  196. else if (!strcmp(spi->modalias, "spi-nor"))
  197. flash_name = NULL; /* auto-detect */
  198. else
  199. flash_name = spi->modalias;
  200. ret = spi_nor_scan(nor, flash_name, mode);
  201. if (ret)
  202. return ret;
  203. return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
  204. data ? data->nr_parts : 0);
  205. }
  206. static int m25p_remove(struct spi_device *spi)
  207. {
  208. struct m25p *flash = spi_get_drvdata(spi);
  209. /* Clean up MTD stuff. */
  210. return mtd_device_unregister(&flash->spi_nor.mtd);
  211. }
  212. /*
  213. * Do NOT add to this array without reading the following:
  214. *
  215. * Historically, many flash devices are bound to this driver by their name. But
  216. * since most of these flash are compatible to some extent, and their
  217. * differences can often be differentiated by the JEDEC read-ID command, we
  218. * encourage new users to add support to the spi-nor library, and simply bind
  219. * against a generic string here (e.g., "jedec,spi-nor").
  220. *
  221. * Many flash names are kept here in this list (as well as in spi-nor.c) to
  222. * keep them available as module aliases for existing platforms.
  223. */
  224. static const struct spi_device_id m25p_ids[] = {
  225. /*
  226. * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
  227. * hack around the fact that the SPI core does not provide uevent
  228. * matching for .of_match_table
  229. */
  230. {"spi-nor"},
  231. /*
  232. * Entries not used in DTs that should be safe to drop after replacing
  233. * them with "spi-nor" in platform data.
  234. */
  235. {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
  236. /*
  237. * Entries that were used in DTs without "jedec,spi-nor" fallback and
  238. * should be kept for backward compatibility.
  239. */
  240. {"at25df321a"}, {"at25df641"}, {"at26df081a"},
  241. {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
  242. {"mx25l25635e"},{"mx66l51235l"},
  243. {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
  244. {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
  245. {"s25fl064k"},
  246. {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
  247. {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
  248. {"m25p64"}, {"m25p128"},
  249. {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
  250. {"w25q80bl"}, {"w25q128"}, {"w25q256"},
  251. /* Flashes that can't be detected using JEDEC */
  252. {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
  253. {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
  254. {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
  255. /* Everspin MRAMs (non-JEDEC) */
  256. { "mr25h256" }, /* 256 Kib, 40 MHz */
  257. { "mr25h10" }, /* 1 Mib, 40 MHz */
  258. { "mr25h40" }, /* 4 Mib, 40 MHz */
  259. { },
  260. };
  261. MODULE_DEVICE_TABLE(spi, m25p_ids);
  262. static const struct of_device_id m25p_of_table[] = {
  263. /*
  264. * Generic compatibility for SPI NOR that can be identified by the
  265. * JEDEC READ ID opcode (0x9F). Use this, if possible.
  266. */
  267. { .compatible = "jedec,spi-nor" },
  268. {}
  269. };
  270. MODULE_DEVICE_TABLE(of, m25p_of_table);
  271. static struct spi_driver m25p80_driver = {
  272. .driver = {
  273. .name = "m25p80",
  274. .of_match_table = m25p_of_table,
  275. },
  276. .id_table = m25p_ids,
  277. .probe = m25p_probe,
  278. .remove = m25p_remove,
  279. /* REVISIT: many of these chips have deep power-down modes, which
  280. * should clearly be entered on suspend() to minimize power use.
  281. * And also when they're otherwise idle...
  282. */
  283. };
  284. module_spi_driver(m25p80_driver);
  285. MODULE_LICENSE("GPL");
  286. MODULE_AUTHOR("Mike Lavender");
  287. MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");