ngene-core.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * To obtain the license, point your browser to
  23. * http://www.gnu.org/copyleft/gpl.html
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/poll.h>
  29. #include <linux/io.h>
  30. #include <asm/div64.h>
  31. #include <linux/pci.h>
  32. #include <linux/timer.h>
  33. #include <linux/byteorder/generic.h>
  34. #include <linux/firmware.h>
  35. #include <linux/vmalloc.h>
  36. #include "ngene.h"
  37. static int one_adapter;
  38. module_param(one_adapter, int, 0444);
  39. MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
  40. static int shutdown_workaround;
  41. module_param(shutdown_workaround, int, 0644);
  42. MODULE_PARM_DESC(shutdown_workaround, "Activate workaround for shutdown problem with some chipsets.");
  43. static int debug;
  44. module_param(debug, int, 0444);
  45. MODULE_PARM_DESC(debug, "Print debugging information.");
  46. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  47. #define dprintk if (debug) printk
  48. #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
  49. #define ngwritel(dat, adr) writel((dat), dev->iomem + (adr))
  50. #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
  51. #define ngreadl(adr) readl(dev->iomem + (adr))
  52. #define ngreadb(adr) readb(dev->iomem + (adr))
  53. #define ngcpyto(adr, src, count) memcpy_toio(dev->iomem + (adr), (src), (count))
  54. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), dev->iomem + (adr), (count))
  55. /****************************************************************************/
  56. /* nGene interrupt handler **************************************************/
  57. /****************************************************************************/
  58. static void event_tasklet(unsigned long data)
  59. {
  60. struct ngene *dev = (struct ngene *)data;
  61. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  62. struct EVENT_BUFFER Event =
  63. dev->EventQueue[dev->EventQueueReadIndex];
  64. dev->EventQueueReadIndex =
  65. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  66. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  67. dev->TxEventNotify(dev, Event.TimeStamp);
  68. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  69. dev->RxEventNotify(dev, Event.TimeStamp,
  70. Event.RXCharacter);
  71. }
  72. }
  73. static void demux_tasklet(unsigned long data)
  74. {
  75. struct ngene_channel *chan = (struct ngene_channel *)data;
  76. struct SBufferHeader *Cur = chan->nextBuffer;
  77. spin_lock_irq(&chan->state_lock);
  78. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  79. if (chan->mode & NGENE_IO_TSOUT) {
  80. u32 Flags = chan->DataFormatFlags;
  81. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  82. Flags |= BEF_OVERFLOW;
  83. if (chan->pBufferExchange) {
  84. if (!chan->pBufferExchange(chan,
  85. Cur->Buffer1,
  86. chan->Capture1Length,
  87. Cur->ngeneBuffer.SR.
  88. Clock, Flags)) {
  89. /*
  90. We didn't get data
  91. Clear in service flag to make sure we
  92. get called on next interrupt again.
  93. leave fill/empty (0x80) flag alone
  94. to avoid hardware running out of
  95. buffers during startup, we hold only
  96. in run state ( the source may be late
  97. delivering data )
  98. */
  99. if (chan->HWState == HWSTATE_RUN) {
  100. Cur->ngeneBuffer.SR.Flags &=
  101. ~0x40;
  102. break;
  103. /* Stop processing stream */
  104. }
  105. } else {
  106. /* We got a valid buffer,
  107. so switch to run state */
  108. chan->HWState = HWSTATE_RUN;
  109. }
  110. } else {
  111. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  112. if (chan->HWState == HWSTATE_RUN) {
  113. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  114. break; /* Stop processing stream */
  115. }
  116. }
  117. if (chan->AudioDTOUpdated) {
  118. printk(KERN_INFO DEVICE_NAME
  119. ": Update AudioDTO = %d\n",
  120. chan->AudioDTOValue);
  121. Cur->ngeneBuffer.SR.DTOUpdate =
  122. chan->AudioDTOValue;
  123. chan->AudioDTOUpdated = 0;
  124. }
  125. } else {
  126. if (chan->HWState == HWSTATE_RUN) {
  127. u32 Flags = chan->DataFormatFlags;
  128. IBufferExchange *exch1 = chan->pBufferExchange;
  129. IBufferExchange *exch2 = chan->pBufferExchange2;
  130. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  131. Flags |= BEF_EVEN_FIELD;
  132. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  133. Flags |= BEF_OVERFLOW;
  134. spin_unlock_irq(&chan->state_lock);
  135. if (exch1)
  136. exch1(chan, Cur->Buffer1,
  137. chan->Capture1Length,
  138. Cur->ngeneBuffer.SR.Clock,
  139. Flags);
  140. if (exch2)
  141. exch2(chan, Cur->Buffer2,
  142. chan->Capture2Length,
  143. Cur->ngeneBuffer.SR.Clock,
  144. Flags);
  145. spin_lock_irq(&chan->state_lock);
  146. } else if (chan->HWState != HWSTATE_STOP)
  147. chan->HWState = HWSTATE_RUN;
  148. }
  149. Cur->ngeneBuffer.SR.Flags = 0x00;
  150. Cur = Cur->Next;
  151. }
  152. chan->nextBuffer = Cur;
  153. spin_unlock_irq(&chan->state_lock);
  154. }
  155. static irqreturn_t irq_handler(int irq, void *dev_id)
  156. {
  157. struct ngene *dev = (struct ngene *)dev_id;
  158. u32 icounts = 0;
  159. irqreturn_t rc = IRQ_NONE;
  160. u32 i = MAX_STREAM;
  161. u8 *tmpCmdDoneByte;
  162. if (dev->BootFirmware) {
  163. icounts = ngreadl(NGENE_INT_COUNTS);
  164. if (icounts != dev->icounts) {
  165. ngwritel(0, FORCE_NMI);
  166. dev->cmd_done = 1;
  167. wake_up(&dev->cmd_wq);
  168. dev->icounts = icounts;
  169. rc = IRQ_HANDLED;
  170. }
  171. return rc;
  172. }
  173. ngwritel(0, FORCE_NMI);
  174. spin_lock(&dev->cmd_lock);
  175. tmpCmdDoneByte = dev->CmdDoneByte;
  176. if (tmpCmdDoneByte &&
  177. (*tmpCmdDoneByte ||
  178. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  179. dev->CmdDoneByte = NULL;
  180. dev->cmd_done = 1;
  181. wake_up(&dev->cmd_wq);
  182. rc = IRQ_HANDLED;
  183. }
  184. spin_unlock(&dev->cmd_lock);
  185. if (dev->EventBuffer->EventStatus & 0x80) {
  186. u8 nextWriteIndex =
  187. (dev->EventQueueWriteIndex + 1) &
  188. (EVENT_QUEUE_SIZE - 1);
  189. if (nextWriteIndex != dev->EventQueueReadIndex) {
  190. dev->EventQueue[dev->EventQueueWriteIndex] =
  191. *(dev->EventBuffer);
  192. dev->EventQueueWriteIndex = nextWriteIndex;
  193. } else {
  194. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  195. dev->EventQueueOverflowCount += 1;
  196. dev->EventQueueOverflowFlag = 1;
  197. }
  198. dev->EventBuffer->EventStatus &= ~0x80;
  199. tasklet_schedule(&dev->event_tasklet);
  200. rc = IRQ_HANDLED;
  201. }
  202. while (i > 0) {
  203. i--;
  204. spin_lock(&dev->channel[i].state_lock);
  205. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  206. if (dev->channel[i].nextBuffer) {
  207. if ((dev->channel[i].nextBuffer->
  208. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  209. dev->channel[i].nextBuffer->
  210. ngeneBuffer.SR.Flags |= 0x40;
  211. tasklet_schedule(
  212. &dev->channel[i].demux_tasklet);
  213. rc = IRQ_HANDLED;
  214. }
  215. }
  216. spin_unlock(&dev->channel[i].state_lock);
  217. }
  218. /* Request might have been processed by a previous call. */
  219. return IRQ_HANDLED;
  220. }
  221. /****************************************************************************/
  222. /* nGene command interface **************************************************/
  223. /****************************************************************************/
  224. static void dump_command_io(struct ngene *dev)
  225. {
  226. u8 buf[8], *b;
  227. ngcpyfrom(buf, HOST_TO_NGENE, 8);
  228. printk(KERN_ERR "host_to_ngene (%04x): %*ph\n", HOST_TO_NGENE, 8, buf);
  229. ngcpyfrom(buf, NGENE_TO_HOST, 8);
  230. printk(KERN_ERR "ngene_to_host (%04x): %*ph\n", NGENE_TO_HOST, 8, buf);
  231. b = dev->hosttongene;
  232. printk(KERN_ERR "dev->hosttongene (%p): %*ph\n", b, 8, b);
  233. b = dev->ngenetohost;
  234. printk(KERN_ERR "dev->ngenetohost (%p): %*ph\n", b, 8, b);
  235. }
  236. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  237. {
  238. int ret;
  239. u8 *tmpCmdDoneByte;
  240. dev->cmd_done = 0;
  241. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  242. dev->BootFirmware = 1;
  243. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  244. ngwritel(0, NGENE_COMMAND);
  245. ngwritel(0, NGENE_COMMAND_HI);
  246. ngwritel(0, NGENE_STATUS);
  247. ngwritel(0, NGENE_STATUS_HI);
  248. ngwritel(0, NGENE_EVENT);
  249. ngwritel(0, NGENE_EVENT_HI);
  250. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  251. u64 fwio = dev->PAFWInterfaceBuffer;
  252. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  253. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  254. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  255. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  256. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  257. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  258. }
  259. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  260. if (dev->BootFirmware)
  261. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  262. spin_lock_irq(&dev->cmd_lock);
  263. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  264. if (!com->out_len)
  265. tmpCmdDoneByte++;
  266. *tmpCmdDoneByte = 0;
  267. dev->ngenetohost[0] = 0;
  268. dev->ngenetohost[1] = 0;
  269. dev->CmdDoneByte = tmpCmdDoneByte;
  270. spin_unlock_irq(&dev->cmd_lock);
  271. /* Notify 8051. */
  272. ngwritel(1, FORCE_INT);
  273. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  274. if (!ret) {
  275. /*ngwritel(0, FORCE_NMI);*/
  276. printk(KERN_ERR DEVICE_NAME
  277. ": Command timeout cmd=%02x prev=%02x\n",
  278. com->cmd.hdr.Opcode, dev->prev_cmd);
  279. dump_command_io(dev);
  280. return -1;
  281. }
  282. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  283. dev->BootFirmware = 0;
  284. dev->prev_cmd = com->cmd.hdr.Opcode;
  285. if (!com->out_len)
  286. return 0;
  287. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  288. return 0;
  289. }
  290. int ngene_command(struct ngene *dev, struct ngene_command *com)
  291. {
  292. int result;
  293. down(&dev->cmd_mutex);
  294. result = ngene_command_mutex(dev, com);
  295. up(&dev->cmd_mutex);
  296. return result;
  297. }
  298. static int ngene_command_load_firmware(struct ngene *dev,
  299. u8 *ngene_fw, u32 size)
  300. {
  301. #define FIRSTCHUNK (1024)
  302. u32 cleft;
  303. struct ngene_command com;
  304. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  305. com.cmd.hdr.Length = 0;
  306. com.in_len = 0;
  307. com.out_len = 0;
  308. ngene_command(dev, &com);
  309. cleft = (size + 3) & ~3;
  310. if (cleft > FIRSTCHUNK) {
  311. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  312. cleft - FIRSTCHUNK);
  313. cleft = FIRSTCHUNK;
  314. }
  315. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  316. memset(&com, 0, sizeof(struct ngene_command));
  317. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  318. com.cmd.hdr.Length = 4;
  319. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  320. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  321. com.in_len = 4;
  322. com.out_len = 0;
  323. return ngene_command(dev, &com);
  324. }
  325. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  326. {
  327. struct ngene_command com;
  328. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  329. com.cmd.hdr.Length = 1;
  330. com.cmd.ConfigureBuffers.config = config;
  331. com.in_len = 1;
  332. com.out_len = 0;
  333. if (ngene_command(dev, &com) < 0)
  334. return -EIO;
  335. return 0;
  336. }
  337. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  338. {
  339. struct ngene_command com;
  340. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  341. com.cmd.hdr.Length = 6;
  342. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  343. com.in_len = 6;
  344. com.out_len = 0;
  345. if (ngene_command(dev, &com) < 0)
  346. return -EIO;
  347. return 0;
  348. }
  349. int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  350. {
  351. struct ngene_command com;
  352. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  353. com.cmd.hdr.Length = 1;
  354. com.cmd.SetGpioPin.select = select | (level << 7);
  355. com.in_len = 1;
  356. com.out_len = 0;
  357. return ngene_command(dev, &com);
  358. }
  359. /*
  360. 02000640 is sample on rising edge.
  361. 02000740 is sample on falling edge.
  362. 02000040 is ignore "valid" signal
  363. 0: FD_CTL1 Bit 7,6 must be 0,1
  364. 7 disable(fw controlled)
  365. 6 0-AUX,1-TS
  366. 5 0-par,1-ser
  367. 4 0-lsb/1-msb
  368. 3,2 reserved
  369. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  370. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  371. 2: FD_STA is read-only. 0-sync
  372. 3: FD_INSYNC is number of 47s to trigger "in sync".
  373. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  374. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  375. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  376. 7: Top byte is unused.
  377. */
  378. /****************************************************************************/
  379. static u8 TSFeatureDecoderSetup[8 * 5] = {
  380. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  381. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  382. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  383. 0x72, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  384. 0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
  385. };
  386. /* Set NGENE I2S Config to 16 bit packed */
  387. static u8 I2SConfiguration[] = {
  388. 0x00, 0x10, 0x00, 0x00,
  389. 0x80, 0x10, 0x00, 0x00,
  390. };
  391. static u8 SPDIFConfiguration[10] = {
  392. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  393. };
  394. /* Set NGENE I2S Config to transport stream compatible mode */
  395. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x18, 0x00, 0x00 };
  396. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x04, 0x00, 0x00 };
  397. static u8 ITUDecoderSetup[4][16] = {
  398. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  399. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  400. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  401. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  402. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  403. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  404. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  405. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  406. };
  407. /*
  408. * 50 48 60 gleich
  409. * 27p50 9f 00 22 80 42 69 18 ...
  410. * 27p60 93 00 22 80 82 69 1c ...
  411. */
  412. /* Maxbyte to 1144 (for raw data) */
  413. static u8 ITUFeatureDecoderSetup[8] = {
  414. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  415. };
  416. void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  417. {
  418. u32 *ptr = Buffer;
  419. memset(Buffer, TS_FILLER, Length);
  420. while (Length > 0) {
  421. if (Flags & DF_SWAP32)
  422. *ptr = 0x471FFF10;
  423. else
  424. *ptr = 0x10FF1F47;
  425. ptr += (188 / 4);
  426. Length -= 188;
  427. }
  428. }
  429. static void flush_buffers(struct ngene_channel *chan)
  430. {
  431. u8 val;
  432. do {
  433. msleep(1);
  434. spin_lock_irq(&chan->state_lock);
  435. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  436. spin_unlock_irq(&chan->state_lock);
  437. } while (val);
  438. }
  439. static void clear_buffers(struct ngene_channel *chan)
  440. {
  441. struct SBufferHeader *Cur = chan->nextBuffer;
  442. do {
  443. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  444. if (chan->mode & NGENE_IO_TSOUT)
  445. FillTSBuffer(Cur->Buffer1,
  446. chan->Capture1Length,
  447. chan->DataFormatFlags);
  448. Cur = Cur->Next;
  449. } while (Cur != chan->nextBuffer);
  450. if (chan->mode & NGENE_IO_TSOUT) {
  451. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  452. chan->AudioDTOValue;
  453. chan->AudioDTOUpdated = 0;
  454. Cur = chan->TSIdleBuffer.Head;
  455. do {
  456. memset(&Cur->ngeneBuffer.SR, 0,
  457. sizeof(Cur->ngeneBuffer.SR));
  458. FillTSBuffer(Cur->Buffer1,
  459. chan->Capture1Length,
  460. chan->DataFormatFlags);
  461. Cur = Cur->Next;
  462. } while (Cur != chan->TSIdleBuffer.Head);
  463. }
  464. }
  465. static int ngene_command_stream_control(struct ngene *dev, u8 stream,
  466. u8 control, u8 mode, u8 flags)
  467. {
  468. struct ngene_channel *chan = &dev->channel[stream];
  469. struct ngene_command com;
  470. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  471. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  472. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  473. u16 BsSDO = 0x9B00;
  474. down(&dev->stream_mutex);
  475. memset(&com, 0, sizeof(com));
  476. com.cmd.hdr.Opcode = CMD_CONTROL;
  477. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  478. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  479. if (chan->mode & NGENE_IO_TSOUT)
  480. com.cmd.StreamControl.Stream |= 0x07;
  481. com.cmd.StreamControl.Control = control |
  482. (flags & SFLAG_ORDER_LUMA_CHROMA);
  483. com.cmd.StreamControl.Mode = mode;
  484. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  485. com.out_len = 0;
  486. dprintk(KERN_INFO DEVICE_NAME
  487. ": Stream=%02x, Control=%02x, Mode=%02x\n",
  488. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  489. com.cmd.StreamControl.Mode);
  490. chan->Mode = mode;
  491. if (!(control & 0x80)) {
  492. spin_lock_irq(&chan->state_lock);
  493. if (chan->State == KSSTATE_RUN) {
  494. chan->State = KSSTATE_ACQUIRE;
  495. chan->HWState = HWSTATE_STOP;
  496. spin_unlock_irq(&chan->state_lock);
  497. if (ngene_command(dev, &com) < 0) {
  498. up(&dev->stream_mutex);
  499. return -1;
  500. }
  501. /* clear_buffers(chan); */
  502. flush_buffers(chan);
  503. up(&dev->stream_mutex);
  504. return 0;
  505. }
  506. spin_unlock_irq(&chan->state_lock);
  507. up(&dev->stream_mutex);
  508. return 0;
  509. }
  510. if (mode & SMODE_AUDIO_CAPTURE) {
  511. com.cmd.StreamControl.CaptureBlockCount =
  512. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  513. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  514. } else if (mode & SMODE_TRANSPORT_STREAM) {
  515. com.cmd.StreamControl.CaptureBlockCount =
  516. chan->Capture1Length / TS_BLOCK_SIZE;
  517. com.cmd.StreamControl.MaxLinesPerField =
  518. chan->Capture1Length / TS_BLOCK_SIZE;
  519. com.cmd.StreamControl.Buffer_Address =
  520. chan->TSRingBuffer.PAHead;
  521. if (chan->mode & NGENE_IO_TSOUT) {
  522. com.cmd.StreamControl.BytesPerVBILine =
  523. chan->Capture1Length / TS_BLOCK_SIZE;
  524. com.cmd.StreamControl.Stream |= 0x07;
  525. }
  526. } else {
  527. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  528. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  529. com.cmd.StreamControl.MinLinesPerField = 100;
  530. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  531. if (mode & SMODE_VBI_CAPTURE) {
  532. com.cmd.StreamControl.MaxVBILinesPerField =
  533. chan->nVBILines;
  534. com.cmd.StreamControl.MinVBILinesPerField = 0;
  535. com.cmd.StreamControl.BytesPerVBILine =
  536. chan->nBytesPerVBILine;
  537. }
  538. if (flags & SFLAG_COLORBAR)
  539. com.cmd.StreamControl.Stream |= 0x04;
  540. }
  541. spin_lock_irq(&chan->state_lock);
  542. if (mode & SMODE_AUDIO_CAPTURE) {
  543. chan->nextBuffer = chan->RingBuffer.Head;
  544. if (mode & SMODE_AUDIO_SPDIF) {
  545. com.cmd.StreamControl.SetupDataLen =
  546. sizeof(SPDIFConfiguration);
  547. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  548. memcpy(com.cmd.StreamControl.SetupData,
  549. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  550. } else {
  551. com.cmd.StreamControl.SetupDataLen = 4;
  552. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  553. memcpy(com.cmd.StreamControl.SetupData,
  554. I2SConfiguration +
  555. 4 * dev->card_info->i2s[stream], 4);
  556. }
  557. } else if (mode & SMODE_TRANSPORT_STREAM) {
  558. chan->nextBuffer = chan->TSRingBuffer.Head;
  559. if (stream >= STREAM_AUDIOIN1) {
  560. if (chan->mode & NGENE_IO_TSOUT) {
  561. com.cmd.StreamControl.SetupDataLen =
  562. sizeof(TS_I2SOutConfiguration);
  563. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  564. memcpy(com.cmd.StreamControl.SetupData,
  565. TS_I2SOutConfiguration,
  566. sizeof(TS_I2SOutConfiguration));
  567. } else {
  568. com.cmd.StreamControl.SetupDataLen =
  569. sizeof(TS_I2SConfiguration);
  570. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  571. memcpy(com.cmd.StreamControl.SetupData,
  572. TS_I2SConfiguration,
  573. sizeof(TS_I2SConfiguration));
  574. }
  575. } else {
  576. com.cmd.StreamControl.SetupDataLen = 8;
  577. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  578. memcpy(com.cmd.StreamControl.SetupData,
  579. TSFeatureDecoderSetup +
  580. 8 * dev->card_info->tsf[stream], 8);
  581. }
  582. } else {
  583. chan->nextBuffer = chan->RingBuffer.Head;
  584. com.cmd.StreamControl.SetupDataLen =
  585. 16 + sizeof(ITUFeatureDecoderSetup);
  586. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  587. memcpy(com.cmd.StreamControl.SetupData,
  588. ITUDecoderSetup[chan->itumode], 16);
  589. memcpy(com.cmd.StreamControl.SetupData + 16,
  590. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  591. }
  592. clear_buffers(chan);
  593. chan->State = KSSTATE_RUN;
  594. if (mode & SMODE_TRANSPORT_STREAM)
  595. chan->HWState = HWSTATE_RUN;
  596. else
  597. chan->HWState = HWSTATE_STARTUP;
  598. spin_unlock_irq(&chan->state_lock);
  599. if (ngene_command(dev, &com) < 0) {
  600. up(&dev->stream_mutex);
  601. return -1;
  602. }
  603. up(&dev->stream_mutex);
  604. return 0;
  605. }
  606. void set_transfer(struct ngene_channel *chan, int state)
  607. {
  608. u8 control = 0, mode = 0, flags = 0;
  609. struct ngene *dev = chan->dev;
  610. int ret;
  611. /*
  612. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  613. msleep(100);
  614. */
  615. if (state) {
  616. if (chan->running) {
  617. printk(KERN_INFO DEVICE_NAME ": already running\n");
  618. return;
  619. }
  620. } else {
  621. if (!chan->running) {
  622. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  623. return;
  624. }
  625. }
  626. if (dev->card_info->switch_ctrl)
  627. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  628. if (state) {
  629. spin_lock_irq(&chan->state_lock);
  630. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  631. ngreadl(0x9310)); */
  632. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  633. control = 0x80;
  634. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  635. chan->Capture1Length = 512 * 188;
  636. mode = SMODE_TRANSPORT_STREAM;
  637. }
  638. if (chan->mode & NGENE_IO_TSOUT) {
  639. chan->pBufferExchange = tsout_exchange;
  640. /* 0x66666666 = 50MHz *2^33 /250MHz */
  641. chan->AudioDTOValue = 0x80000000;
  642. chan->AudioDTOUpdated = 1;
  643. }
  644. if (chan->mode & NGENE_IO_TSIN)
  645. chan->pBufferExchange = tsin_exchange;
  646. spin_unlock_irq(&chan->state_lock);
  647. }
  648. /* else printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  649. ngreadl(0x9310)); */
  650. ret = ngene_command_stream_control(dev, chan->number,
  651. control, mode, flags);
  652. if (!ret)
  653. chan->running = state;
  654. else
  655. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  656. state);
  657. if (!state) {
  658. spin_lock_irq(&chan->state_lock);
  659. chan->pBufferExchange = NULL;
  660. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  661. spin_unlock_irq(&chan->state_lock);
  662. }
  663. }
  664. /****************************************************************************/
  665. /* nGene hardware init and release functions ********************************/
  666. /****************************************************************************/
  667. static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  668. {
  669. struct SBufferHeader *Cur = rb->Head;
  670. u32 j;
  671. if (!Cur)
  672. return;
  673. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  674. if (Cur->Buffer1)
  675. pci_free_consistent(dev->pci_dev,
  676. rb->Buffer1Length,
  677. Cur->Buffer1,
  678. Cur->scList1->Address);
  679. if (Cur->Buffer2)
  680. pci_free_consistent(dev->pci_dev,
  681. rb->Buffer2Length,
  682. Cur->Buffer2,
  683. Cur->scList2->Address);
  684. }
  685. if (rb->SCListMem)
  686. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  687. rb->SCListMem, rb->PASCListMem);
  688. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  689. }
  690. static void free_idlebuffer(struct ngene *dev,
  691. struct SRingBufferDescriptor *rb,
  692. struct SRingBufferDescriptor *tb)
  693. {
  694. int j;
  695. struct SBufferHeader *Cur = tb->Head;
  696. if (!rb->Head)
  697. return;
  698. free_ringbuffer(dev, rb);
  699. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  700. Cur->Buffer2 = NULL;
  701. Cur->scList2 = NULL;
  702. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  703. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  704. }
  705. }
  706. static void free_common_buffers(struct ngene *dev)
  707. {
  708. u32 i;
  709. struct ngene_channel *chan;
  710. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  711. chan = &dev->channel[i];
  712. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  713. free_ringbuffer(dev, &chan->RingBuffer);
  714. free_ringbuffer(dev, &chan->TSRingBuffer);
  715. }
  716. if (dev->OverflowBuffer)
  717. pci_free_consistent(dev->pci_dev,
  718. OVERFLOW_BUFFER_SIZE,
  719. dev->OverflowBuffer, dev->PAOverflowBuffer);
  720. if (dev->FWInterfaceBuffer)
  721. pci_free_consistent(dev->pci_dev,
  722. 4096,
  723. dev->FWInterfaceBuffer,
  724. dev->PAFWInterfaceBuffer);
  725. }
  726. /****************************************************************************/
  727. /* Ring buffer handling *****************************************************/
  728. /****************************************************************************/
  729. static int create_ring_buffer(struct pci_dev *pci_dev,
  730. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  731. {
  732. dma_addr_t tmp;
  733. struct SBufferHeader *Head;
  734. u32 i;
  735. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  736. u64 PARingBufferHead;
  737. u64 PARingBufferCur;
  738. u64 PARingBufferNext;
  739. struct SBufferHeader *Cur, *Next;
  740. descr->Head = NULL;
  741. descr->MemSize = 0;
  742. descr->PAHead = 0;
  743. descr->NumBuffers = 0;
  744. if (MemSize < 4096)
  745. MemSize = 4096;
  746. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  747. PARingBufferHead = tmp;
  748. if (!Head)
  749. return -ENOMEM;
  750. memset(Head, 0, MemSize);
  751. PARingBufferCur = PARingBufferHead;
  752. Cur = Head;
  753. for (i = 0; i < NumBuffers - 1; i++) {
  754. Next = (struct SBufferHeader *)
  755. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  756. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  757. Cur->Next = Next;
  758. Cur->ngeneBuffer.Next = PARingBufferNext;
  759. Cur = Next;
  760. PARingBufferCur = PARingBufferNext;
  761. }
  762. /* Last Buffer points back to first one */
  763. Cur->Next = Head;
  764. Cur->ngeneBuffer.Next = PARingBufferHead;
  765. descr->Head = Head;
  766. descr->MemSize = MemSize;
  767. descr->PAHead = PARingBufferHead;
  768. descr->NumBuffers = NumBuffers;
  769. return 0;
  770. }
  771. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  772. dma_addr_t of,
  773. struct SRingBufferDescriptor *pRingBuffer,
  774. u32 Buffer1Length, u32 Buffer2Length)
  775. {
  776. dma_addr_t tmp;
  777. u32 i, j;
  778. u32 SCListMemSize = pRingBuffer->NumBuffers
  779. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  780. NUM_SCATTER_GATHER_ENTRIES)
  781. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  782. u64 PASCListMem;
  783. struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
  784. u64 PASCListEntry;
  785. struct SBufferHeader *Cur;
  786. void *SCListMem;
  787. if (SCListMemSize < 4096)
  788. SCListMemSize = 4096;
  789. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  790. PASCListMem = tmp;
  791. if (SCListMem == NULL)
  792. return -ENOMEM;
  793. memset(SCListMem, 0, SCListMemSize);
  794. pRingBuffer->SCListMem = SCListMem;
  795. pRingBuffer->PASCListMem = PASCListMem;
  796. pRingBuffer->SCListMemSize = SCListMemSize;
  797. pRingBuffer->Buffer1Length = Buffer1Length;
  798. pRingBuffer->Buffer2Length = Buffer2Length;
  799. SCListEntry = SCListMem;
  800. PASCListEntry = PASCListMem;
  801. Cur = pRingBuffer->Head;
  802. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  803. u64 PABuffer;
  804. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  805. &tmp);
  806. PABuffer = tmp;
  807. if (Buffer == NULL)
  808. return -ENOMEM;
  809. Cur->Buffer1 = Buffer;
  810. SCListEntry->Address = PABuffer;
  811. SCListEntry->Length = Buffer1Length;
  812. Cur->scList1 = SCListEntry;
  813. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  814. Cur->ngeneBuffer.Number_of_entries_1 =
  815. NUM_SCATTER_GATHER_ENTRIES;
  816. SCListEntry += 1;
  817. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  818. #if NUM_SCATTER_GATHER_ENTRIES > 1
  819. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  820. SCListEntry->Address = of;
  821. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  822. SCListEntry += 1;
  823. PASCListEntry +=
  824. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  825. }
  826. #endif
  827. if (!Buffer2Length)
  828. continue;
  829. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  830. PABuffer = tmp;
  831. if (Buffer == NULL)
  832. return -ENOMEM;
  833. Cur->Buffer2 = Buffer;
  834. SCListEntry->Address = PABuffer;
  835. SCListEntry->Length = Buffer2Length;
  836. Cur->scList2 = SCListEntry;
  837. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  838. Cur->ngeneBuffer.Number_of_entries_2 =
  839. NUM_SCATTER_GATHER_ENTRIES;
  840. SCListEntry += 1;
  841. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  842. #if NUM_SCATTER_GATHER_ENTRIES > 1
  843. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  844. SCListEntry->Address = of;
  845. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  846. SCListEntry += 1;
  847. PASCListEntry +=
  848. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  849. }
  850. #endif
  851. }
  852. return 0;
  853. }
  854. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  855. struct SRingBufferDescriptor *pRingBuffer)
  856. {
  857. /* Copy pointer to scatter gather list in TSRingbuffer
  858. structure for buffer 2
  859. Load number of buffer
  860. */
  861. u32 n = pRingBuffer->NumBuffers;
  862. /* Point to first buffer entry */
  863. struct SBufferHeader *Cur = pRingBuffer->Head;
  864. int i;
  865. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  866. for (i = 0; i < n; i++) {
  867. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  868. Cur->scList2 = pIdleBuffer->Head->scList1;
  869. Cur->ngeneBuffer.Address_of_first_entry_2 =
  870. pIdleBuffer->Head->ngeneBuffer.
  871. Address_of_first_entry_1;
  872. Cur->ngeneBuffer.Number_of_entries_2 =
  873. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  874. Cur = Cur->Next;
  875. }
  876. return 0;
  877. }
  878. static u32 RingBufferSizes[MAX_STREAM] = {
  879. RING_SIZE_VIDEO,
  880. RING_SIZE_VIDEO,
  881. RING_SIZE_AUDIO,
  882. RING_SIZE_AUDIO,
  883. RING_SIZE_AUDIO,
  884. };
  885. static u32 Buffer1Sizes[MAX_STREAM] = {
  886. MAX_VIDEO_BUFFER_SIZE,
  887. MAX_VIDEO_BUFFER_SIZE,
  888. MAX_AUDIO_BUFFER_SIZE,
  889. MAX_AUDIO_BUFFER_SIZE,
  890. MAX_AUDIO_BUFFER_SIZE
  891. };
  892. static u32 Buffer2Sizes[MAX_STREAM] = {
  893. MAX_VBI_BUFFER_SIZE,
  894. MAX_VBI_BUFFER_SIZE,
  895. 0,
  896. 0,
  897. 0
  898. };
  899. static int AllocCommonBuffers(struct ngene *dev)
  900. {
  901. int status = 0, i;
  902. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  903. &dev->PAFWInterfaceBuffer);
  904. if (!dev->FWInterfaceBuffer)
  905. return -ENOMEM;
  906. dev->hosttongene = dev->FWInterfaceBuffer;
  907. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  908. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  909. dev->OverflowBuffer = pci_zalloc_consistent(dev->pci_dev,
  910. OVERFLOW_BUFFER_SIZE,
  911. &dev->PAOverflowBuffer);
  912. if (!dev->OverflowBuffer)
  913. return -ENOMEM;
  914. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  915. int type = dev->card_info->io_type[i];
  916. dev->channel[i].State = KSSTATE_STOP;
  917. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  918. status = create_ring_buffer(dev->pci_dev,
  919. &dev->channel[i].RingBuffer,
  920. RingBufferSizes[i]);
  921. if (status < 0)
  922. break;
  923. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  924. status = AllocateRingBuffers(dev->pci_dev,
  925. dev->
  926. PAOverflowBuffer,
  927. &dev->channel[i].
  928. RingBuffer,
  929. Buffer1Sizes[i],
  930. Buffer2Sizes[i]);
  931. if (status < 0)
  932. break;
  933. } else if (type & NGENE_IO_HDTV) {
  934. status = AllocateRingBuffers(dev->pci_dev,
  935. dev->
  936. PAOverflowBuffer,
  937. &dev->channel[i].
  938. RingBuffer,
  939. MAX_HDTV_BUFFER_SIZE,
  940. 0);
  941. if (status < 0)
  942. break;
  943. }
  944. }
  945. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  946. status = create_ring_buffer(dev->pci_dev,
  947. &dev->channel[i].
  948. TSRingBuffer, RING_SIZE_TS);
  949. if (status < 0)
  950. break;
  951. status = AllocateRingBuffers(dev->pci_dev,
  952. dev->PAOverflowBuffer,
  953. &dev->channel[i].
  954. TSRingBuffer,
  955. MAX_TS_BUFFER_SIZE, 0);
  956. if (status)
  957. break;
  958. }
  959. if (type & NGENE_IO_TSOUT) {
  960. status = create_ring_buffer(dev->pci_dev,
  961. &dev->channel[i].
  962. TSIdleBuffer, 1);
  963. if (status < 0)
  964. break;
  965. status = AllocateRingBuffers(dev->pci_dev,
  966. dev->PAOverflowBuffer,
  967. &dev->channel[i].
  968. TSIdleBuffer,
  969. MAX_TS_BUFFER_SIZE, 0);
  970. if (status)
  971. break;
  972. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  973. &dev->channel[i].TSRingBuffer);
  974. }
  975. }
  976. return status;
  977. }
  978. static void ngene_release_buffers(struct ngene *dev)
  979. {
  980. if (dev->iomem)
  981. iounmap(dev->iomem);
  982. free_common_buffers(dev);
  983. vfree(dev->tsout_buf);
  984. vfree(dev->tsin_buf);
  985. vfree(dev->ain_buf);
  986. vfree(dev->vin_buf);
  987. vfree(dev);
  988. }
  989. static int ngene_get_buffers(struct ngene *dev)
  990. {
  991. if (AllocCommonBuffers(dev))
  992. return -ENOMEM;
  993. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  994. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  995. if (!dev->tsout_buf)
  996. return -ENOMEM;
  997. dvb_ringbuffer_init(&dev->tsout_rbuf,
  998. dev->tsout_buf, TSOUT_BUF_SIZE);
  999. }
  1000. if (dev->card_info->io_type[2]&NGENE_IO_TSIN) {
  1001. dev->tsin_buf = vmalloc(TSIN_BUF_SIZE);
  1002. if (!dev->tsin_buf)
  1003. return -ENOMEM;
  1004. dvb_ringbuffer_init(&dev->tsin_rbuf,
  1005. dev->tsin_buf, TSIN_BUF_SIZE);
  1006. }
  1007. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1008. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1009. if (!dev->ain_buf)
  1010. return -ENOMEM;
  1011. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1012. }
  1013. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1014. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1015. if (!dev->vin_buf)
  1016. return -ENOMEM;
  1017. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1018. }
  1019. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1020. pci_resource_len(dev->pci_dev, 0));
  1021. if (!dev->iomem)
  1022. return -ENOMEM;
  1023. return 0;
  1024. }
  1025. static void ngene_init(struct ngene *dev)
  1026. {
  1027. int i;
  1028. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1029. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1030. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1031. for (i = 0; i < MAX_STREAM; i++) {
  1032. dev->channel[i].dev = dev;
  1033. dev->channel[i].number = i;
  1034. }
  1035. dev->fw_interface_version = 0;
  1036. ngwritel(0, NGENE_INT_ENABLE);
  1037. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1038. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1039. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1040. dev->device_version);
  1041. }
  1042. static int ngene_load_firm(struct ngene *dev)
  1043. {
  1044. u32 size;
  1045. const struct firmware *fw = NULL;
  1046. u8 *ngene_fw;
  1047. char *fw_name;
  1048. int err, version;
  1049. version = dev->card_info->fw_version;
  1050. switch (version) {
  1051. default:
  1052. case 15:
  1053. version = 15;
  1054. size = 23466;
  1055. fw_name = "ngene_15.fw";
  1056. dev->cmd_timeout_workaround = true;
  1057. break;
  1058. case 16:
  1059. size = 23498;
  1060. fw_name = "ngene_16.fw";
  1061. dev->cmd_timeout_workaround = true;
  1062. break;
  1063. case 17:
  1064. size = 24446;
  1065. fw_name = "ngene_17.fw";
  1066. dev->cmd_timeout_workaround = true;
  1067. break;
  1068. case 18:
  1069. size = 0;
  1070. fw_name = "ngene_18.fw";
  1071. break;
  1072. }
  1073. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1074. printk(KERN_ERR DEVICE_NAME
  1075. ": Could not load firmware file %s.\n", fw_name);
  1076. printk(KERN_INFO DEVICE_NAME
  1077. ": Copy %s to your hotplug directory!\n", fw_name);
  1078. return -1;
  1079. }
  1080. if (size == 0)
  1081. size = fw->size;
  1082. if (size != fw->size) {
  1083. printk(KERN_ERR DEVICE_NAME
  1084. ": Firmware %s has invalid size!", fw_name);
  1085. err = -1;
  1086. } else {
  1087. printk(KERN_INFO DEVICE_NAME
  1088. ": Loading firmware file %s.\n", fw_name);
  1089. ngene_fw = (u8 *) fw->data;
  1090. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1091. }
  1092. release_firmware(fw);
  1093. return err;
  1094. }
  1095. static void ngene_stop(struct ngene *dev)
  1096. {
  1097. down(&dev->cmd_mutex);
  1098. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1099. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1100. ngwritel(0, NGENE_INT_ENABLE);
  1101. ngwritel(0, NGENE_COMMAND);
  1102. ngwritel(0, NGENE_COMMAND_HI);
  1103. ngwritel(0, NGENE_STATUS);
  1104. ngwritel(0, NGENE_STATUS_HI);
  1105. ngwritel(0, NGENE_EVENT);
  1106. ngwritel(0, NGENE_EVENT_HI);
  1107. free_irq(dev->pci_dev->irq, dev);
  1108. #ifdef CONFIG_PCI_MSI
  1109. if (dev->msi_enabled)
  1110. pci_disable_msi(dev->pci_dev);
  1111. #endif
  1112. }
  1113. static int ngene_buffer_config(struct ngene *dev)
  1114. {
  1115. int stat;
  1116. if (dev->card_info->fw_version >= 17) {
  1117. u8 tsin12_config[6] = { 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 };
  1118. u8 tsin1234_config[6] = { 0x30, 0x30, 0x00, 0x30, 0x30, 0x00 };
  1119. u8 tsio1235_config[6] = { 0x30, 0x30, 0x00, 0x28, 0x00, 0x38 };
  1120. u8 *bconf = tsin12_config;
  1121. if (dev->card_info->io_type[2]&NGENE_IO_TSIN &&
  1122. dev->card_info->io_type[3]&NGENE_IO_TSIN) {
  1123. bconf = tsin1234_config;
  1124. if (dev->card_info->io_type[4]&NGENE_IO_TSOUT &&
  1125. dev->ci.en)
  1126. bconf = tsio1235_config;
  1127. }
  1128. stat = ngene_command_config_free_buf(dev, bconf);
  1129. } else {
  1130. int bconf = BUFFER_CONFIG_4422;
  1131. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1132. bconf = BUFFER_CONFIG_3333;
  1133. stat = ngene_command_config_buf(dev, bconf);
  1134. }
  1135. return stat;
  1136. }
  1137. static int ngene_start(struct ngene *dev)
  1138. {
  1139. int stat;
  1140. int i;
  1141. pci_set_master(dev->pci_dev);
  1142. ngene_init(dev);
  1143. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1144. IRQF_SHARED, "nGene",
  1145. (void *)dev);
  1146. if (stat < 0)
  1147. return stat;
  1148. init_waitqueue_head(&dev->cmd_wq);
  1149. init_waitqueue_head(&dev->tx_wq);
  1150. init_waitqueue_head(&dev->rx_wq);
  1151. sema_init(&dev->cmd_mutex, 1);
  1152. sema_init(&dev->stream_mutex, 1);
  1153. sema_init(&dev->pll_mutex, 1);
  1154. sema_init(&dev->i2c_switch_mutex, 1);
  1155. spin_lock_init(&dev->cmd_lock);
  1156. for (i = 0; i < MAX_STREAM; i++)
  1157. spin_lock_init(&dev->channel[i].state_lock);
  1158. ngwritel(1, TIMESTAMPS);
  1159. ngwritel(1, NGENE_INT_ENABLE);
  1160. stat = ngene_load_firm(dev);
  1161. if (stat < 0)
  1162. goto fail;
  1163. #ifdef CONFIG_PCI_MSI
  1164. /* enable MSI if kernel and card support it */
  1165. if (pci_msi_enabled() && dev->card_info->msi_supported) {
  1166. unsigned long flags;
  1167. ngwritel(0, NGENE_INT_ENABLE);
  1168. free_irq(dev->pci_dev->irq, dev);
  1169. stat = pci_enable_msi(dev->pci_dev);
  1170. if (stat) {
  1171. printk(KERN_INFO DEVICE_NAME
  1172. ": MSI not available\n");
  1173. flags = IRQF_SHARED;
  1174. } else {
  1175. flags = 0;
  1176. dev->msi_enabled = true;
  1177. }
  1178. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1179. flags, "nGene", dev);
  1180. if (stat < 0)
  1181. goto fail2;
  1182. ngwritel(1, NGENE_INT_ENABLE);
  1183. }
  1184. #endif
  1185. stat = ngene_i2c_init(dev, 0);
  1186. if (stat < 0)
  1187. goto fail;
  1188. stat = ngene_i2c_init(dev, 1);
  1189. if (stat < 0)
  1190. goto fail;
  1191. return 0;
  1192. fail:
  1193. ngwritel(0, NGENE_INT_ENABLE);
  1194. free_irq(dev->pci_dev->irq, dev);
  1195. #ifdef CONFIG_PCI_MSI
  1196. fail2:
  1197. if (dev->msi_enabled)
  1198. pci_disable_msi(dev->pci_dev);
  1199. #endif
  1200. return stat;
  1201. }
  1202. /****************************************************************************/
  1203. /****************************************************************************/
  1204. /****************************************************************************/
  1205. static void release_channel(struct ngene_channel *chan)
  1206. {
  1207. struct dvb_demux *dvbdemux = &chan->demux;
  1208. struct ngene *dev = chan->dev;
  1209. if (chan->running)
  1210. set_transfer(chan, 0);
  1211. tasklet_kill(&chan->demux_tasklet);
  1212. if (chan->ci_dev) {
  1213. dvb_unregister_device(chan->ci_dev);
  1214. chan->ci_dev = NULL;
  1215. }
  1216. if (chan->fe2)
  1217. dvb_unregister_frontend(chan->fe2);
  1218. if (chan->fe) {
  1219. dvb_unregister_frontend(chan->fe);
  1220. dvb_frontend_detach(chan->fe);
  1221. chan->fe = NULL;
  1222. }
  1223. if (chan->has_demux) {
  1224. dvb_net_release(&chan->dvbnet);
  1225. dvbdemux->dmx.close(&dvbdemux->dmx);
  1226. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1227. &chan->hw_frontend);
  1228. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1229. &chan->mem_frontend);
  1230. dvb_dmxdev_release(&chan->dmxdev);
  1231. dvb_dmx_release(&chan->demux);
  1232. chan->has_demux = false;
  1233. }
  1234. if (chan->has_adapter) {
  1235. dvb_unregister_adapter(&dev->adapter[chan->number]);
  1236. chan->has_adapter = false;
  1237. }
  1238. }
  1239. static int init_channel(struct ngene_channel *chan)
  1240. {
  1241. int ret = 0, nr = chan->number;
  1242. struct dvb_adapter *adapter = NULL;
  1243. struct dvb_demux *dvbdemux = &chan->demux;
  1244. struct ngene *dev = chan->dev;
  1245. struct ngene_info *ni = dev->card_info;
  1246. int io = ni->io_type[nr];
  1247. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  1248. chan->users = 0;
  1249. chan->type = io;
  1250. chan->mode = chan->type; /* for now only one mode */
  1251. if (io & NGENE_IO_TSIN) {
  1252. chan->fe = NULL;
  1253. if (ni->demod_attach[nr]) {
  1254. ret = ni->demod_attach[nr](chan);
  1255. if (ret < 0)
  1256. goto err;
  1257. }
  1258. if (chan->fe && ni->tuner_attach[nr]) {
  1259. ret = ni->tuner_attach[nr](chan);
  1260. if (ret < 0)
  1261. goto err;
  1262. }
  1263. }
  1264. if (!dev->ci.en && (io & NGENE_IO_TSOUT))
  1265. return 0;
  1266. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1267. if (nr >= STREAM_AUDIOIN1)
  1268. chan->DataFormatFlags = DF_SWAP32;
  1269. if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
  1270. adapter = &dev->adapter[nr];
  1271. ret = dvb_register_adapter(adapter, "nGene",
  1272. THIS_MODULE,
  1273. &chan->dev->pci_dev->dev,
  1274. adapter_nr);
  1275. if (ret < 0)
  1276. goto err;
  1277. if (dev->first_adapter == NULL)
  1278. dev->first_adapter = adapter;
  1279. chan->has_adapter = true;
  1280. } else
  1281. adapter = dev->first_adapter;
  1282. }
  1283. if (dev->ci.en && (io & NGENE_IO_TSOUT)) {
  1284. dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1);
  1285. set_transfer(chan, 1);
  1286. chan->dev->channel[2].DataFormatFlags = DF_SWAP32;
  1287. set_transfer(&chan->dev->channel[2], 1);
  1288. dvb_register_device(adapter, &chan->ci_dev,
  1289. &ngene_dvbdev_ci, (void *) chan,
  1290. DVB_DEVICE_SEC, 0);
  1291. if (!chan->ci_dev)
  1292. goto err;
  1293. }
  1294. if (chan->fe) {
  1295. if (dvb_register_frontend(adapter, chan->fe) < 0)
  1296. goto err;
  1297. chan->has_demux = true;
  1298. }
  1299. if (chan->fe2) {
  1300. if (dvb_register_frontend(adapter, chan->fe2) < 0)
  1301. goto err;
  1302. if (chan->fe) {
  1303. chan->fe2->tuner_priv = chan->fe->tuner_priv;
  1304. memcpy(&chan->fe2->ops.tuner_ops,
  1305. &chan->fe->ops.tuner_ops,
  1306. sizeof(struct dvb_tuner_ops));
  1307. }
  1308. }
  1309. if (chan->has_demux) {
  1310. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  1311. ngene_start_feed,
  1312. ngene_stop_feed, chan);
  1313. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  1314. &chan->hw_frontend,
  1315. &chan->mem_frontend, adapter);
  1316. ret = dvb_net_init(adapter, &chan->dvbnet, &chan->demux.dmx);
  1317. }
  1318. return ret;
  1319. err:
  1320. if (chan->fe) {
  1321. dvb_frontend_detach(chan->fe);
  1322. chan->fe = NULL;
  1323. }
  1324. release_channel(chan);
  1325. return 0;
  1326. }
  1327. static int init_channels(struct ngene *dev)
  1328. {
  1329. int i, j;
  1330. for (i = 0; i < MAX_STREAM; i++) {
  1331. dev->channel[i].number = i;
  1332. if (init_channel(&dev->channel[i]) < 0) {
  1333. for (j = i - 1; j >= 0; j--)
  1334. release_channel(&dev->channel[j]);
  1335. return -1;
  1336. }
  1337. }
  1338. return 0;
  1339. }
  1340. static struct cxd2099_cfg cxd_cfg = {
  1341. .bitrate = 62000,
  1342. .adr = 0x40,
  1343. .polarity = 0,
  1344. .clock_mode = 0,
  1345. };
  1346. static void cxd_attach(struct ngene *dev)
  1347. {
  1348. struct ngene_ci *ci = &dev->ci;
  1349. ci->en = cxd2099_attach(&cxd_cfg, dev, &dev->channel[0].i2c_adapter);
  1350. ci->dev = dev;
  1351. return;
  1352. }
  1353. static void cxd_detach(struct ngene *dev)
  1354. {
  1355. struct ngene_ci *ci = &dev->ci;
  1356. dvb_ca_en50221_release(ci->en);
  1357. kfree(ci->en);
  1358. ci->en = NULL;
  1359. }
  1360. /***********************************/
  1361. /* workaround for shutdown failure */
  1362. /***********************************/
  1363. static void ngene_unlink(struct ngene *dev)
  1364. {
  1365. struct ngene_command com;
  1366. com.cmd.hdr.Opcode = CMD_MEM_WRITE;
  1367. com.cmd.hdr.Length = 3;
  1368. com.cmd.MemoryWrite.address = 0x910c;
  1369. com.cmd.MemoryWrite.data = 0xff;
  1370. com.in_len = 3;
  1371. com.out_len = 1;
  1372. down(&dev->cmd_mutex);
  1373. ngwritel(0, NGENE_INT_ENABLE);
  1374. ngene_command_mutex(dev, &com);
  1375. up(&dev->cmd_mutex);
  1376. }
  1377. void ngene_shutdown(struct pci_dev *pdev)
  1378. {
  1379. struct ngene *dev = pci_get_drvdata(pdev);
  1380. if (!dev || !shutdown_workaround)
  1381. return;
  1382. printk(KERN_INFO DEVICE_NAME ": shutdown workaround...\n");
  1383. ngene_unlink(dev);
  1384. pci_disable_device(pdev);
  1385. }
  1386. /****************************************************************************/
  1387. /* device probe/remove calls ************************************************/
  1388. /****************************************************************************/
  1389. void ngene_remove(struct pci_dev *pdev)
  1390. {
  1391. struct ngene *dev = pci_get_drvdata(pdev);
  1392. int i;
  1393. tasklet_kill(&dev->event_tasklet);
  1394. for (i = MAX_STREAM - 1; i >= 0; i--)
  1395. release_channel(&dev->channel[i]);
  1396. if (dev->ci.en)
  1397. cxd_detach(dev);
  1398. ngene_stop(dev);
  1399. ngene_release_buffers(dev);
  1400. pci_disable_device(pdev);
  1401. }
  1402. int ngene_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1403. {
  1404. struct ngene *dev;
  1405. int stat = 0;
  1406. if (pci_enable_device(pci_dev) < 0)
  1407. return -ENODEV;
  1408. dev = vzalloc(sizeof(struct ngene));
  1409. if (dev == NULL) {
  1410. stat = -ENOMEM;
  1411. goto fail0;
  1412. }
  1413. dev->pci_dev = pci_dev;
  1414. dev->card_info = (struct ngene_info *)id->driver_data;
  1415. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  1416. pci_set_drvdata(pci_dev, dev);
  1417. /* Alloc buffers and start nGene */
  1418. stat = ngene_get_buffers(dev);
  1419. if (stat < 0)
  1420. goto fail1;
  1421. stat = ngene_start(dev);
  1422. if (stat < 0)
  1423. goto fail1;
  1424. cxd_attach(dev);
  1425. stat = ngene_buffer_config(dev);
  1426. if (stat < 0)
  1427. goto fail1;
  1428. dev->i2c_current_bus = -1;
  1429. /* Register DVB adapters and devices for both channels */
  1430. stat = init_channels(dev);
  1431. if (stat < 0)
  1432. goto fail2;
  1433. return 0;
  1434. fail2:
  1435. ngene_stop(dev);
  1436. fail1:
  1437. ngene_release_buffers(dev);
  1438. fail0:
  1439. pci_disable_device(pci_dev);
  1440. return stat;
  1441. }