dm-btree.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-btree-internal.h"
  7. #include "dm-space-map.h"
  8. #include "dm-transaction-manager.h"
  9. #include <linux/export.h>
  10. #include <linux/device-mapper.h>
  11. #define DM_MSG_PREFIX "btree"
  12. /*----------------------------------------------------------------
  13. * Array manipulation
  14. *--------------------------------------------------------------*/
  15. static void memcpy_disk(void *dest, const void *src, size_t len)
  16. __dm_written_to_disk(src)
  17. {
  18. memcpy(dest, src, len);
  19. __dm_unbless_for_disk(src);
  20. }
  21. static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  22. unsigned index, void *elt)
  23. __dm_written_to_disk(elt)
  24. {
  25. if (index < nr_elts)
  26. memmove(base + (elt_size * (index + 1)),
  27. base + (elt_size * index),
  28. (nr_elts - index) * elt_size);
  29. memcpy_disk(base + (elt_size * index), elt, elt_size);
  30. }
  31. /*----------------------------------------------------------------*/
  32. /* makes the assumption that no two keys are the same. */
  33. static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  34. {
  35. int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  36. while (hi - lo > 1) {
  37. int mid = lo + ((hi - lo) / 2);
  38. uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  39. if (mid_key == key)
  40. return mid;
  41. if (mid_key < key)
  42. lo = mid;
  43. else
  44. hi = mid;
  45. }
  46. return want_hi ? hi : lo;
  47. }
  48. int lower_bound(struct btree_node *n, uint64_t key)
  49. {
  50. return bsearch(n, key, 0);
  51. }
  52. static int upper_bound(struct btree_node *n, uint64_t key)
  53. {
  54. return bsearch(n, key, 1);
  55. }
  56. void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  57. struct dm_btree_value_type *vt)
  58. {
  59. unsigned i;
  60. uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  61. if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  62. for (i = 0; i < nr_entries; i++)
  63. dm_tm_inc(tm, value64(n, i));
  64. else if (vt->inc)
  65. for (i = 0; i < nr_entries; i++)
  66. vt->inc(vt->context, value_ptr(n, i));
  67. }
  68. static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  69. uint64_t key, void *value)
  70. __dm_written_to_disk(value)
  71. {
  72. uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  73. __le64 key_le = cpu_to_le64(key);
  74. if (index > nr_entries ||
  75. index >= le32_to_cpu(node->header.max_entries)) {
  76. DMERR("too many entries in btree node for insert");
  77. __dm_unbless_for_disk(value);
  78. return -ENOMEM;
  79. }
  80. __dm_bless_for_disk(&key_le);
  81. array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
  82. array_insert(value_base(node), value_size, nr_entries, index, value);
  83. node->header.nr_entries = cpu_to_le32(nr_entries + 1);
  84. return 0;
  85. }
  86. /*----------------------------------------------------------------*/
  87. /*
  88. * We want 3n entries (for some n). This works more nicely for repeated
  89. * insert remove loops than (2n + 1).
  90. */
  91. static uint32_t calc_max_entries(size_t value_size, size_t block_size)
  92. {
  93. uint32_t total, n;
  94. size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
  95. block_size -= sizeof(struct node_header);
  96. total = block_size / elt_size;
  97. n = total / 3; /* rounds down */
  98. return 3 * n;
  99. }
  100. int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
  101. {
  102. int r;
  103. struct dm_block *b;
  104. struct btree_node *n;
  105. size_t block_size;
  106. uint32_t max_entries;
  107. r = new_block(info, &b);
  108. if (r < 0)
  109. return r;
  110. block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
  111. max_entries = calc_max_entries(info->value_type.size, block_size);
  112. n = dm_block_data(b);
  113. memset(n, 0, block_size);
  114. n->header.flags = cpu_to_le32(LEAF_NODE);
  115. n->header.nr_entries = cpu_to_le32(0);
  116. n->header.max_entries = cpu_to_le32(max_entries);
  117. n->header.value_size = cpu_to_le32(info->value_type.size);
  118. *root = dm_block_location(b);
  119. unlock_block(info, b);
  120. return 0;
  121. }
  122. EXPORT_SYMBOL_GPL(dm_btree_empty);
  123. /*----------------------------------------------------------------*/
  124. /*
  125. * Deletion uses a recursive algorithm, since we have limited stack space
  126. * we explicitly manage our own stack on the heap.
  127. */
  128. #define MAX_SPINE_DEPTH 64
  129. struct frame {
  130. struct dm_block *b;
  131. struct btree_node *n;
  132. unsigned level;
  133. unsigned nr_children;
  134. unsigned current_child;
  135. };
  136. struct del_stack {
  137. struct dm_btree_info *info;
  138. struct dm_transaction_manager *tm;
  139. int top;
  140. struct frame spine[MAX_SPINE_DEPTH];
  141. };
  142. static int top_frame(struct del_stack *s, struct frame **f)
  143. {
  144. if (s->top < 0) {
  145. DMERR("btree deletion stack empty");
  146. return -EINVAL;
  147. }
  148. *f = s->spine + s->top;
  149. return 0;
  150. }
  151. static int unprocessed_frames(struct del_stack *s)
  152. {
  153. return s->top >= 0;
  154. }
  155. static void prefetch_children(struct del_stack *s, struct frame *f)
  156. {
  157. unsigned i;
  158. struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
  159. for (i = 0; i < f->nr_children; i++)
  160. dm_bm_prefetch(bm, value64(f->n, i));
  161. }
  162. static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
  163. {
  164. return f->level < (info->levels - 1);
  165. }
  166. static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
  167. {
  168. int r;
  169. uint32_t ref_count;
  170. if (s->top >= MAX_SPINE_DEPTH - 1) {
  171. DMERR("btree deletion stack out of memory");
  172. return -ENOMEM;
  173. }
  174. r = dm_tm_ref(s->tm, b, &ref_count);
  175. if (r)
  176. return r;
  177. if (ref_count > 1)
  178. /*
  179. * This is a shared node, so we can just decrement it's
  180. * reference counter and leave the children.
  181. */
  182. dm_tm_dec(s->tm, b);
  183. else {
  184. uint32_t flags;
  185. struct frame *f = s->spine + ++s->top;
  186. r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
  187. if (r) {
  188. s->top--;
  189. return r;
  190. }
  191. f->n = dm_block_data(f->b);
  192. f->level = level;
  193. f->nr_children = le32_to_cpu(f->n->header.nr_entries);
  194. f->current_child = 0;
  195. flags = le32_to_cpu(f->n->header.flags);
  196. if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
  197. prefetch_children(s, f);
  198. }
  199. return 0;
  200. }
  201. static void pop_frame(struct del_stack *s)
  202. {
  203. struct frame *f = s->spine + s->top--;
  204. dm_tm_dec(s->tm, dm_block_location(f->b));
  205. dm_tm_unlock(s->tm, f->b);
  206. }
  207. static void unlock_all_frames(struct del_stack *s)
  208. {
  209. struct frame *f;
  210. while (unprocessed_frames(s)) {
  211. f = s->spine + s->top--;
  212. dm_tm_unlock(s->tm, f->b);
  213. }
  214. }
  215. int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
  216. {
  217. int r;
  218. struct del_stack *s;
  219. /*
  220. * dm_btree_del() is called via an ioctl, as such should be
  221. * considered an FS op. We can't recurse back into the FS, so we
  222. * allocate GFP_NOFS.
  223. */
  224. s = kmalloc(sizeof(*s), GFP_NOFS);
  225. if (!s)
  226. return -ENOMEM;
  227. s->info = info;
  228. s->tm = info->tm;
  229. s->top = -1;
  230. r = push_frame(s, root, 0);
  231. if (r)
  232. goto out;
  233. while (unprocessed_frames(s)) {
  234. uint32_t flags;
  235. struct frame *f;
  236. dm_block_t b;
  237. r = top_frame(s, &f);
  238. if (r)
  239. goto out;
  240. if (f->current_child >= f->nr_children) {
  241. pop_frame(s);
  242. continue;
  243. }
  244. flags = le32_to_cpu(f->n->header.flags);
  245. if (flags & INTERNAL_NODE) {
  246. b = value64(f->n, f->current_child);
  247. f->current_child++;
  248. r = push_frame(s, b, f->level);
  249. if (r)
  250. goto out;
  251. } else if (is_internal_level(info, f)) {
  252. b = value64(f->n, f->current_child);
  253. f->current_child++;
  254. r = push_frame(s, b, f->level + 1);
  255. if (r)
  256. goto out;
  257. } else {
  258. if (info->value_type.dec) {
  259. unsigned i;
  260. for (i = 0; i < f->nr_children; i++)
  261. info->value_type.dec(info->value_type.context,
  262. value_ptr(f->n, i));
  263. }
  264. pop_frame(s);
  265. }
  266. }
  267. out:
  268. if (r) {
  269. /* cleanup all frames of del_stack */
  270. unlock_all_frames(s);
  271. }
  272. kfree(s);
  273. return r;
  274. }
  275. EXPORT_SYMBOL_GPL(dm_btree_del);
  276. /*----------------------------------------------------------------*/
  277. static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
  278. int (*search_fn)(struct btree_node *, uint64_t),
  279. uint64_t *result_key, void *v, size_t value_size)
  280. {
  281. int i, r;
  282. uint32_t flags, nr_entries;
  283. do {
  284. r = ro_step(s, block);
  285. if (r < 0)
  286. return r;
  287. i = search_fn(ro_node(s), key);
  288. flags = le32_to_cpu(ro_node(s)->header.flags);
  289. nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
  290. if (i < 0 || i >= nr_entries)
  291. return -ENODATA;
  292. if (flags & INTERNAL_NODE)
  293. block = value64(ro_node(s), i);
  294. } while (!(flags & LEAF_NODE));
  295. *result_key = le64_to_cpu(ro_node(s)->keys[i]);
  296. memcpy(v, value_ptr(ro_node(s), i), value_size);
  297. return 0;
  298. }
  299. int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
  300. uint64_t *keys, void *value_le)
  301. {
  302. unsigned level, last_level = info->levels - 1;
  303. int r = -ENODATA;
  304. uint64_t rkey;
  305. __le64 internal_value_le;
  306. struct ro_spine spine;
  307. init_ro_spine(&spine, info);
  308. for (level = 0; level < info->levels; level++) {
  309. size_t size;
  310. void *value_p;
  311. if (level == last_level) {
  312. value_p = value_le;
  313. size = info->value_type.size;
  314. } else {
  315. value_p = &internal_value_le;
  316. size = sizeof(uint64_t);
  317. }
  318. r = btree_lookup_raw(&spine, root, keys[level],
  319. lower_bound, &rkey,
  320. value_p, size);
  321. if (!r) {
  322. if (rkey != keys[level]) {
  323. exit_ro_spine(&spine);
  324. return -ENODATA;
  325. }
  326. } else {
  327. exit_ro_spine(&spine);
  328. return r;
  329. }
  330. root = le64_to_cpu(internal_value_le);
  331. }
  332. exit_ro_spine(&spine);
  333. return r;
  334. }
  335. EXPORT_SYMBOL_GPL(dm_btree_lookup);
  336. static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
  337. uint64_t key, uint64_t *rkey, void *value_le)
  338. {
  339. int r, i;
  340. uint32_t flags, nr_entries;
  341. struct dm_block *node;
  342. struct btree_node *n;
  343. r = bn_read_lock(info, root, &node);
  344. if (r)
  345. return r;
  346. n = dm_block_data(node);
  347. flags = le32_to_cpu(n->header.flags);
  348. nr_entries = le32_to_cpu(n->header.nr_entries);
  349. if (flags & INTERNAL_NODE) {
  350. i = lower_bound(n, key);
  351. if (i < 0) {
  352. /*
  353. * avoid early -ENODATA return when all entries are
  354. * higher than the search @key.
  355. */
  356. i = 0;
  357. }
  358. if (i >= nr_entries) {
  359. r = -ENODATA;
  360. goto out;
  361. }
  362. r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
  363. if (r == -ENODATA && i < (nr_entries - 1)) {
  364. i++;
  365. r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
  366. }
  367. } else {
  368. i = upper_bound(n, key);
  369. if (i < 0 || i >= nr_entries) {
  370. r = -ENODATA;
  371. goto out;
  372. }
  373. *rkey = le64_to_cpu(n->keys[i]);
  374. memcpy(value_le, value_ptr(n, i), info->value_type.size);
  375. }
  376. out:
  377. dm_tm_unlock(info->tm, node);
  378. return r;
  379. }
  380. int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
  381. uint64_t *keys, uint64_t *rkey, void *value_le)
  382. {
  383. unsigned level;
  384. int r = -ENODATA;
  385. __le64 internal_value_le;
  386. struct ro_spine spine;
  387. init_ro_spine(&spine, info);
  388. for (level = 0; level < info->levels - 1u; level++) {
  389. r = btree_lookup_raw(&spine, root, keys[level],
  390. lower_bound, rkey,
  391. &internal_value_le, sizeof(uint64_t));
  392. if (r)
  393. goto out;
  394. if (*rkey != keys[level]) {
  395. r = -ENODATA;
  396. goto out;
  397. }
  398. root = le64_to_cpu(internal_value_le);
  399. }
  400. r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
  401. out:
  402. exit_ro_spine(&spine);
  403. return r;
  404. }
  405. EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
  406. /*
  407. * Splits a node by creating a sibling node and shifting half the nodes
  408. * contents across. Assumes there is a parent node, and it has room for
  409. * another child.
  410. *
  411. * Before:
  412. * +--------+
  413. * | Parent |
  414. * +--------+
  415. * |
  416. * v
  417. * +----------+
  418. * | A ++++++ |
  419. * +----------+
  420. *
  421. *
  422. * After:
  423. * +--------+
  424. * | Parent |
  425. * +--------+
  426. * | |
  427. * v +------+
  428. * +---------+ |
  429. * | A* +++ | v
  430. * +---------+ +-------+
  431. * | B +++ |
  432. * +-------+
  433. *
  434. * Where A* is a shadow of A.
  435. */
  436. static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
  437. uint64_t key)
  438. {
  439. int r;
  440. size_t size;
  441. unsigned nr_left, nr_right;
  442. struct dm_block *left, *right, *parent;
  443. struct btree_node *ln, *rn, *pn;
  444. __le64 location;
  445. left = shadow_current(s);
  446. r = new_block(s->info, &right);
  447. if (r < 0)
  448. return r;
  449. ln = dm_block_data(left);
  450. rn = dm_block_data(right);
  451. nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
  452. nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
  453. ln->header.nr_entries = cpu_to_le32(nr_left);
  454. rn->header.flags = ln->header.flags;
  455. rn->header.nr_entries = cpu_to_le32(nr_right);
  456. rn->header.max_entries = ln->header.max_entries;
  457. rn->header.value_size = ln->header.value_size;
  458. memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
  459. size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
  460. sizeof(uint64_t) : s->info->value_type.size;
  461. memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
  462. size * nr_right);
  463. /*
  464. * Patch up the parent
  465. */
  466. parent = shadow_parent(s);
  467. pn = dm_block_data(parent);
  468. location = cpu_to_le64(dm_block_location(left));
  469. __dm_bless_for_disk(&location);
  470. memcpy_disk(value_ptr(pn, parent_index),
  471. &location, sizeof(__le64));
  472. location = cpu_to_le64(dm_block_location(right));
  473. __dm_bless_for_disk(&location);
  474. r = insert_at(sizeof(__le64), pn, parent_index + 1,
  475. le64_to_cpu(rn->keys[0]), &location);
  476. if (r) {
  477. unlock_block(s->info, right);
  478. return r;
  479. }
  480. if (key < le64_to_cpu(rn->keys[0])) {
  481. unlock_block(s->info, right);
  482. s->nodes[1] = left;
  483. } else {
  484. unlock_block(s->info, left);
  485. s->nodes[1] = right;
  486. }
  487. return 0;
  488. }
  489. /*
  490. * Splits a node by creating two new children beneath the given node.
  491. *
  492. * Before:
  493. * +----------+
  494. * | A ++++++ |
  495. * +----------+
  496. *
  497. *
  498. * After:
  499. * +------------+
  500. * | A (shadow) |
  501. * +------------+
  502. * | |
  503. * +------+ +----+
  504. * | |
  505. * v v
  506. * +-------+ +-------+
  507. * | B +++ | | C +++ |
  508. * +-------+ +-------+
  509. */
  510. static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
  511. {
  512. int r;
  513. size_t size;
  514. unsigned nr_left, nr_right;
  515. struct dm_block *left, *right, *new_parent;
  516. struct btree_node *pn, *ln, *rn;
  517. __le64 val;
  518. new_parent = shadow_current(s);
  519. r = new_block(s->info, &left);
  520. if (r < 0)
  521. return r;
  522. r = new_block(s->info, &right);
  523. if (r < 0) {
  524. unlock_block(s->info, left);
  525. return r;
  526. }
  527. pn = dm_block_data(new_parent);
  528. ln = dm_block_data(left);
  529. rn = dm_block_data(right);
  530. nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
  531. nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
  532. ln->header.flags = pn->header.flags;
  533. ln->header.nr_entries = cpu_to_le32(nr_left);
  534. ln->header.max_entries = pn->header.max_entries;
  535. ln->header.value_size = pn->header.value_size;
  536. rn->header.flags = pn->header.flags;
  537. rn->header.nr_entries = cpu_to_le32(nr_right);
  538. rn->header.max_entries = pn->header.max_entries;
  539. rn->header.value_size = pn->header.value_size;
  540. memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
  541. memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
  542. size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
  543. sizeof(__le64) : s->info->value_type.size;
  544. memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
  545. memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
  546. nr_right * size);
  547. /* new_parent should just point to l and r now */
  548. pn->header.flags = cpu_to_le32(INTERNAL_NODE);
  549. pn->header.nr_entries = cpu_to_le32(2);
  550. pn->header.max_entries = cpu_to_le32(
  551. calc_max_entries(sizeof(__le64),
  552. dm_bm_block_size(
  553. dm_tm_get_bm(s->info->tm))));
  554. pn->header.value_size = cpu_to_le32(sizeof(__le64));
  555. val = cpu_to_le64(dm_block_location(left));
  556. __dm_bless_for_disk(&val);
  557. pn->keys[0] = ln->keys[0];
  558. memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
  559. val = cpu_to_le64(dm_block_location(right));
  560. __dm_bless_for_disk(&val);
  561. pn->keys[1] = rn->keys[0];
  562. memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
  563. /*
  564. * rejig the spine. This is ugly, since it knows too
  565. * much about the spine
  566. */
  567. if (s->nodes[0] != new_parent) {
  568. unlock_block(s->info, s->nodes[0]);
  569. s->nodes[0] = new_parent;
  570. }
  571. if (key < le64_to_cpu(rn->keys[0])) {
  572. unlock_block(s->info, right);
  573. s->nodes[1] = left;
  574. } else {
  575. unlock_block(s->info, left);
  576. s->nodes[1] = right;
  577. }
  578. s->count = 2;
  579. return 0;
  580. }
  581. static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
  582. struct dm_btree_value_type *vt,
  583. uint64_t key, unsigned *index)
  584. {
  585. int r, i = *index, top = 1;
  586. struct btree_node *node;
  587. for (;;) {
  588. r = shadow_step(s, root, vt);
  589. if (r < 0)
  590. return r;
  591. node = dm_block_data(shadow_current(s));
  592. /*
  593. * We have to patch up the parent node, ugly, but I don't
  594. * see a way to do this automatically as part of the spine
  595. * op.
  596. */
  597. if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
  598. __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
  599. __dm_bless_for_disk(&location);
  600. memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
  601. &location, sizeof(__le64));
  602. }
  603. node = dm_block_data(shadow_current(s));
  604. if (node->header.nr_entries == node->header.max_entries) {
  605. if (top)
  606. r = btree_split_beneath(s, key);
  607. else
  608. r = btree_split_sibling(s, i, key);
  609. if (r < 0)
  610. return r;
  611. }
  612. node = dm_block_data(shadow_current(s));
  613. i = lower_bound(node, key);
  614. if (le32_to_cpu(node->header.flags) & LEAF_NODE)
  615. break;
  616. if (i < 0) {
  617. /* change the bounds on the lowest key */
  618. node->keys[0] = cpu_to_le64(key);
  619. i = 0;
  620. }
  621. root = value64(node, i);
  622. top = 0;
  623. }
  624. if (i < 0 || le64_to_cpu(node->keys[i]) != key)
  625. i++;
  626. *index = i;
  627. return 0;
  628. }
  629. static bool need_insert(struct btree_node *node, uint64_t *keys,
  630. unsigned level, unsigned index)
  631. {
  632. return ((index >= le32_to_cpu(node->header.nr_entries)) ||
  633. (le64_to_cpu(node->keys[index]) != keys[level]));
  634. }
  635. static int insert(struct dm_btree_info *info, dm_block_t root,
  636. uint64_t *keys, void *value, dm_block_t *new_root,
  637. int *inserted)
  638. __dm_written_to_disk(value)
  639. {
  640. int r;
  641. unsigned level, index = -1, last_level = info->levels - 1;
  642. dm_block_t block = root;
  643. struct shadow_spine spine;
  644. struct btree_node *n;
  645. struct dm_btree_value_type le64_type;
  646. init_le64_type(info->tm, &le64_type);
  647. init_shadow_spine(&spine, info);
  648. for (level = 0; level < (info->levels - 1); level++) {
  649. r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
  650. if (r < 0)
  651. goto bad;
  652. n = dm_block_data(shadow_current(&spine));
  653. if (need_insert(n, keys, level, index)) {
  654. dm_block_t new_tree;
  655. __le64 new_le;
  656. r = dm_btree_empty(info, &new_tree);
  657. if (r < 0)
  658. goto bad;
  659. new_le = cpu_to_le64(new_tree);
  660. __dm_bless_for_disk(&new_le);
  661. r = insert_at(sizeof(uint64_t), n, index,
  662. keys[level], &new_le);
  663. if (r)
  664. goto bad;
  665. }
  666. if (level < last_level)
  667. block = value64(n, index);
  668. }
  669. r = btree_insert_raw(&spine, block, &info->value_type,
  670. keys[level], &index);
  671. if (r < 0)
  672. goto bad;
  673. n = dm_block_data(shadow_current(&spine));
  674. if (need_insert(n, keys, level, index)) {
  675. if (inserted)
  676. *inserted = 1;
  677. r = insert_at(info->value_type.size, n, index,
  678. keys[level], value);
  679. if (r)
  680. goto bad_unblessed;
  681. } else {
  682. if (inserted)
  683. *inserted = 0;
  684. if (info->value_type.dec &&
  685. (!info->value_type.equal ||
  686. !info->value_type.equal(
  687. info->value_type.context,
  688. value_ptr(n, index),
  689. value))) {
  690. info->value_type.dec(info->value_type.context,
  691. value_ptr(n, index));
  692. }
  693. memcpy_disk(value_ptr(n, index),
  694. value, info->value_type.size);
  695. }
  696. *new_root = shadow_root(&spine);
  697. exit_shadow_spine(&spine);
  698. return 0;
  699. bad:
  700. __dm_unbless_for_disk(value);
  701. bad_unblessed:
  702. exit_shadow_spine(&spine);
  703. return r;
  704. }
  705. int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
  706. uint64_t *keys, void *value, dm_block_t *new_root)
  707. __dm_written_to_disk(value)
  708. {
  709. return insert(info, root, keys, value, new_root, NULL);
  710. }
  711. EXPORT_SYMBOL_GPL(dm_btree_insert);
  712. int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
  713. uint64_t *keys, void *value, dm_block_t *new_root,
  714. int *inserted)
  715. __dm_written_to_disk(value)
  716. {
  717. return insert(info, root, keys, value, new_root, inserted);
  718. }
  719. EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
  720. /*----------------------------------------------------------------*/
  721. static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
  722. uint64_t *result_key, dm_block_t *next_block)
  723. {
  724. int i, r;
  725. uint32_t flags;
  726. do {
  727. r = ro_step(s, block);
  728. if (r < 0)
  729. return r;
  730. flags = le32_to_cpu(ro_node(s)->header.flags);
  731. i = le32_to_cpu(ro_node(s)->header.nr_entries);
  732. if (!i)
  733. return -ENODATA;
  734. else
  735. i--;
  736. if (find_highest)
  737. *result_key = le64_to_cpu(ro_node(s)->keys[i]);
  738. else
  739. *result_key = le64_to_cpu(ro_node(s)->keys[0]);
  740. if (next_block || flags & INTERNAL_NODE) {
  741. if (find_highest)
  742. block = value64(ro_node(s), i);
  743. else
  744. block = value64(ro_node(s), 0);
  745. }
  746. } while (flags & INTERNAL_NODE);
  747. if (next_block)
  748. *next_block = block;
  749. return 0;
  750. }
  751. static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
  752. bool find_highest, uint64_t *result_keys)
  753. {
  754. int r = 0, count = 0, level;
  755. struct ro_spine spine;
  756. init_ro_spine(&spine, info);
  757. for (level = 0; level < info->levels; level++) {
  758. r = find_key(&spine, root, find_highest, result_keys + level,
  759. level == info->levels - 1 ? NULL : &root);
  760. if (r == -ENODATA) {
  761. r = 0;
  762. break;
  763. } else if (r)
  764. break;
  765. count++;
  766. }
  767. exit_ro_spine(&spine);
  768. return r ? r : count;
  769. }
  770. int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
  771. uint64_t *result_keys)
  772. {
  773. return dm_btree_find_key(info, root, true, result_keys);
  774. }
  775. EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
  776. int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
  777. uint64_t *result_keys)
  778. {
  779. return dm_btree_find_key(info, root, false, result_keys);
  780. }
  781. EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
  782. /*----------------------------------------------------------------*/
  783. /*
  784. * FIXME: We shouldn't use a recursive algorithm when we have limited stack
  785. * space. Also this only works for single level trees.
  786. */
  787. static int walk_node(struct dm_btree_info *info, dm_block_t block,
  788. int (*fn)(void *context, uint64_t *keys, void *leaf),
  789. void *context)
  790. {
  791. int r;
  792. unsigned i, nr;
  793. struct dm_block *node;
  794. struct btree_node *n;
  795. uint64_t keys;
  796. r = bn_read_lock(info, block, &node);
  797. if (r)
  798. return r;
  799. n = dm_block_data(node);
  800. nr = le32_to_cpu(n->header.nr_entries);
  801. for (i = 0; i < nr; i++) {
  802. if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
  803. r = walk_node(info, value64(n, i), fn, context);
  804. if (r)
  805. goto out;
  806. } else {
  807. keys = le64_to_cpu(*key_ptr(n, i));
  808. r = fn(context, &keys, value_ptr(n, i));
  809. if (r)
  810. goto out;
  811. }
  812. }
  813. out:
  814. dm_tm_unlock(info->tm, node);
  815. return r;
  816. }
  817. int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
  818. int (*fn)(void *context, uint64_t *keys, void *leaf),
  819. void *context)
  820. {
  821. BUG_ON(info->levels > 1);
  822. return walk_node(info, root, fn, context);
  823. }
  824. EXPORT_SYMBOL_GPL(dm_btree_walk);
  825. /*----------------------------------------------------------------*/
  826. static void prefetch_values(struct dm_btree_cursor *c)
  827. {
  828. unsigned i, nr;
  829. __le64 value_le;
  830. struct cursor_node *n = c->nodes + c->depth - 1;
  831. struct btree_node *bn = dm_block_data(n->b);
  832. struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
  833. BUG_ON(c->info->value_type.size != sizeof(value_le));
  834. nr = le32_to_cpu(bn->header.nr_entries);
  835. for (i = 0; i < nr; i++) {
  836. memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
  837. dm_bm_prefetch(bm, le64_to_cpu(value_le));
  838. }
  839. }
  840. static bool leaf_node(struct dm_btree_cursor *c)
  841. {
  842. struct cursor_node *n = c->nodes + c->depth - 1;
  843. struct btree_node *bn = dm_block_data(n->b);
  844. return le32_to_cpu(bn->header.flags) & LEAF_NODE;
  845. }
  846. static int push_node(struct dm_btree_cursor *c, dm_block_t b)
  847. {
  848. int r;
  849. struct cursor_node *n = c->nodes + c->depth;
  850. if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
  851. DMERR("couldn't push cursor node, stack depth too high");
  852. return -EINVAL;
  853. }
  854. r = bn_read_lock(c->info, b, &n->b);
  855. if (r)
  856. return r;
  857. n->index = 0;
  858. c->depth++;
  859. if (c->prefetch_leaves || !leaf_node(c))
  860. prefetch_values(c);
  861. return 0;
  862. }
  863. static void pop_node(struct dm_btree_cursor *c)
  864. {
  865. c->depth--;
  866. unlock_block(c->info, c->nodes[c->depth].b);
  867. }
  868. static int inc_or_backtrack(struct dm_btree_cursor *c)
  869. {
  870. struct cursor_node *n;
  871. struct btree_node *bn;
  872. for (;;) {
  873. if (!c->depth)
  874. return -ENODATA;
  875. n = c->nodes + c->depth - 1;
  876. bn = dm_block_data(n->b);
  877. n->index++;
  878. if (n->index < le32_to_cpu(bn->header.nr_entries))
  879. break;
  880. pop_node(c);
  881. }
  882. return 0;
  883. }
  884. static int find_leaf(struct dm_btree_cursor *c)
  885. {
  886. int r = 0;
  887. struct cursor_node *n;
  888. struct btree_node *bn;
  889. __le64 value_le;
  890. for (;;) {
  891. n = c->nodes + c->depth - 1;
  892. bn = dm_block_data(n->b);
  893. if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
  894. break;
  895. memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
  896. r = push_node(c, le64_to_cpu(value_le));
  897. if (r) {
  898. DMERR("push_node failed");
  899. break;
  900. }
  901. }
  902. if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
  903. return -ENODATA;
  904. return r;
  905. }
  906. int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
  907. bool prefetch_leaves, struct dm_btree_cursor *c)
  908. {
  909. int r;
  910. c->info = info;
  911. c->root = root;
  912. c->depth = 0;
  913. c->prefetch_leaves = prefetch_leaves;
  914. r = push_node(c, root);
  915. if (r)
  916. return r;
  917. return find_leaf(c);
  918. }
  919. EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
  920. void dm_btree_cursor_end(struct dm_btree_cursor *c)
  921. {
  922. while (c->depth)
  923. pop_node(c);
  924. }
  925. EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
  926. int dm_btree_cursor_next(struct dm_btree_cursor *c)
  927. {
  928. int r = inc_or_backtrack(c);
  929. if (!r) {
  930. r = find_leaf(c);
  931. if (r)
  932. DMERR("find_leaf failed");
  933. }
  934. return r;
  935. }
  936. EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
  937. int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
  938. {
  939. int r = 0;
  940. while (count-- && !r)
  941. r = dm_btree_cursor_next(c);
  942. return r;
  943. }
  944. EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
  945. int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
  946. {
  947. if (c->depth) {
  948. struct cursor_node *n = c->nodes + c->depth - 1;
  949. struct btree_node *bn = dm_block_data(n->b);
  950. if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
  951. return -EINVAL;
  952. *key = le64_to_cpu(*key_ptr(bn, n->index));
  953. memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
  954. return 0;
  955. } else
  956. return -ENODATA;
  957. }
  958. EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);