dm-thin-metadata.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 2
  75. #define SECTOR_TO_BLOCK_SHIFT 3
  76. /*
  77. * 3 for btree insert +
  78. * 2 for btree lookup used within space map
  79. */
  80. #define THIN_MAX_CONCURRENT_LOCKS 5
  81. /* This should be plenty */
  82. #define SPACE_MAP_ROOT_SIZE 128
  83. /*
  84. * Little endian on-disk superblock and device details.
  85. */
  86. struct thin_disk_superblock {
  87. __le32 csum; /* Checksum of superblock except for this field. */
  88. __le32 flags;
  89. __le64 blocknr; /* This block number, dm_block_t. */
  90. __u8 uuid[16];
  91. __le64 magic;
  92. __le32 version;
  93. __le32 time;
  94. __le64 trans_id;
  95. /*
  96. * Root held by userspace transactions.
  97. */
  98. __le64 held_root;
  99. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  100. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. /*
  102. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  103. */
  104. __le64 data_mapping_root;
  105. /*
  106. * Device detail root mapping dev_id -> device_details
  107. */
  108. __le64 device_details_root;
  109. __le32 data_block_size; /* In 512-byte sectors. */
  110. __le32 metadata_block_size; /* In 512-byte sectors. */
  111. __le64 metadata_nr_blocks;
  112. __le32 compat_flags;
  113. __le32 compat_ro_flags;
  114. __le32 incompat_flags;
  115. } __packed;
  116. struct disk_device_details {
  117. __le64 mapped_blocks;
  118. __le64 transaction_id; /* When created. */
  119. __le32 creation_time;
  120. __le32 snapshotted_time;
  121. } __packed;
  122. struct dm_pool_metadata {
  123. struct hlist_node hash;
  124. struct block_device *bdev;
  125. struct dm_block_manager *bm;
  126. struct dm_space_map *metadata_sm;
  127. struct dm_space_map *data_sm;
  128. struct dm_transaction_manager *tm;
  129. struct dm_transaction_manager *nb_tm;
  130. /*
  131. * Two-level btree.
  132. * First level holds thin_dev_t.
  133. * Second level holds mappings.
  134. */
  135. struct dm_btree_info info;
  136. /*
  137. * Non-blocking version of the above.
  138. */
  139. struct dm_btree_info nb_info;
  140. /*
  141. * Just the top level for deleting whole devices.
  142. */
  143. struct dm_btree_info tl_info;
  144. /*
  145. * Just the bottom level for creating new devices.
  146. */
  147. struct dm_btree_info bl_info;
  148. /*
  149. * Describes the device details btree.
  150. */
  151. struct dm_btree_info details_info;
  152. struct rw_semaphore root_lock;
  153. uint32_t time;
  154. dm_block_t root;
  155. dm_block_t details_root;
  156. struct list_head thin_devices;
  157. uint64_t trans_id;
  158. unsigned long flags;
  159. sector_t data_block_size;
  160. /*
  161. * Set if a transaction has to be aborted but the attempt to roll back
  162. * to the previous (good) transaction failed. The only pool metadata
  163. * operation possible in this state is the closing of the device.
  164. */
  165. bool fail_io:1;
  166. /*
  167. * Reading the space map roots can fail, so we read it into these
  168. * buffers before the superblock is locked and updated.
  169. */
  170. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  171. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  172. };
  173. struct dm_thin_device {
  174. struct list_head list;
  175. struct dm_pool_metadata *pmd;
  176. dm_thin_id id;
  177. int open_count;
  178. bool changed:1;
  179. bool aborted_with_changes:1;
  180. uint64_t mapped_blocks;
  181. uint64_t transaction_id;
  182. uint32_t creation_time;
  183. uint32_t snapshotted_time;
  184. };
  185. /*----------------------------------------------------------------
  186. * superblock validator
  187. *--------------------------------------------------------------*/
  188. #define SUPERBLOCK_CSUM_XOR 160774
  189. static void sb_prepare_for_write(struct dm_block_validator *v,
  190. struct dm_block *b,
  191. size_t block_size)
  192. {
  193. struct thin_disk_superblock *disk_super = dm_block_data(b);
  194. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  195. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  196. block_size - sizeof(__le32),
  197. SUPERBLOCK_CSUM_XOR));
  198. }
  199. static int sb_check(struct dm_block_validator *v,
  200. struct dm_block *b,
  201. size_t block_size)
  202. {
  203. struct thin_disk_superblock *disk_super = dm_block_data(b);
  204. __le32 csum_le;
  205. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  206. DMERR("sb_check failed: blocknr %llu: "
  207. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  208. (unsigned long long)dm_block_location(b));
  209. return -ENOTBLK;
  210. }
  211. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  212. DMERR("sb_check failed: magic %llu: "
  213. "wanted %llu", le64_to_cpu(disk_super->magic),
  214. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  215. return -EILSEQ;
  216. }
  217. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  218. block_size - sizeof(__le32),
  219. SUPERBLOCK_CSUM_XOR));
  220. if (csum_le != disk_super->csum) {
  221. DMERR("sb_check failed: csum %u: wanted %u",
  222. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  223. return -EILSEQ;
  224. }
  225. return 0;
  226. }
  227. static struct dm_block_validator sb_validator = {
  228. .name = "superblock",
  229. .prepare_for_write = sb_prepare_for_write,
  230. .check = sb_check
  231. };
  232. /*----------------------------------------------------------------
  233. * Methods for the btree value types
  234. *--------------------------------------------------------------*/
  235. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  236. {
  237. return (b << 24) | t;
  238. }
  239. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  240. {
  241. *b = v >> 24;
  242. *t = v & ((1 << 24) - 1);
  243. }
  244. static void data_block_inc(void *context, const void *value_le)
  245. {
  246. struct dm_space_map *sm = context;
  247. __le64 v_le;
  248. uint64_t b;
  249. uint32_t t;
  250. memcpy(&v_le, value_le, sizeof(v_le));
  251. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  252. dm_sm_inc_block(sm, b);
  253. }
  254. static void data_block_dec(void *context, const void *value_le)
  255. {
  256. struct dm_space_map *sm = context;
  257. __le64 v_le;
  258. uint64_t b;
  259. uint32_t t;
  260. memcpy(&v_le, value_le, sizeof(v_le));
  261. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  262. dm_sm_dec_block(sm, b);
  263. }
  264. static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
  265. {
  266. __le64 v1_le, v2_le;
  267. uint64_t b1, b2;
  268. uint32_t t;
  269. memcpy(&v1_le, value1_le, sizeof(v1_le));
  270. memcpy(&v2_le, value2_le, sizeof(v2_le));
  271. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  272. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  273. return b1 == b2;
  274. }
  275. static void subtree_inc(void *context, const void *value)
  276. {
  277. struct dm_btree_info *info = context;
  278. __le64 root_le;
  279. uint64_t root;
  280. memcpy(&root_le, value, sizeof(root_le));
  281. root = le64_to_cpu(root_le);
  282. dm_tm_inc(info->tm, root);
  283. }
  284. static void subtree_dec(void *context, const void *value)
  285. {
  286. struct dm_btree_info *info = context;
  287. __le64 root_le;
  288. uint64_t root;
  289. memcpy(&root_le, value, sizeof(root_le));
  290. root = le64_to_cpu(root_le);
  291. if (dm_btree_del(info, root))
  292. DMERR("btree delete failed");
  293. }
  294. static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
  295. {
  296. __le64 v1_le, v2_le;
  297. memcpy(&v1_le, value1_le, sizeof(v1_le));
  298. memcpy(&v2_le, value2_le, sizeof(v2_le));
  299. return v1_le == v2_le;
  300. }
  301. /*----------------------------------------------------------------*/
  302. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  303. struct dm_block **sblock)
  304. {
  305. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  306. &sb_validator, sblock);
  307. }
  308. static int superblock_lock(struct dm_pool_metadata *pmd,
  309. struct dm_block **sblock)
  310. {
  311. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  312. &sb_validator, sblock);
  313. }
  314. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  315. {
  316. int r;
  317. unsigned i;
  318. struct dm_block *b;
  319. __le64 *data_le, zero = cpu_to_le64(0);
  320. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  321. /*
  322. * We can't use a validator here - it may be all zeroes.
  323. */
  324. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  325. if (r)
  326. return r;
  327. data_le = dm_block_data(b);
  328. *result = 1;
  329. for (i = 0; i < block_size; i++) {
  330. if (data_le[i] != zero) {
  331. *result = 0;
  332. break;
  333. }
  334. }
  335. dm_bm_unlock(b);
  336. return 0;
  337. }
  338. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  339. {
  340. pmd->info.tm = pmd->tm;
  341. pmd->info.levels = 2;
  342. pmd->info.value_type.context = pmd->data_sm;
  343. pmd->info.value_type.size = sizeof(__le64);
  344. pmd->info.value_type.inc = data_block_inc;
  345. pmd->info.value_type.dec = data_block_dec;
  346. pmd->info.value_type.equal = data_block_equal;
  347. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  348. pmd->nb_info.tm = pmd->nb_tm;
  349. pmd->tl_info.tm = pmd->tm;
  350. pmd->tl_info.levels = 1;
  351. pmd->tl_info.value_type.context = &pmd->bl_info;
  352. pmd->tl_info.value_type.size = sizeof(__le64);
  353. pmd->tl_info.value_type.inc = subtree_inc;
  354. pmd->tl_info.value_type.dec = subtree_dec;
  355. pmd->tl_info.value_type.equal = subtree_equal;
  356. pmd->bl_info.tm = pmd->tm;
  357. pmd->bl_info.levels = 1;
  358. pmd->bl_info.value_type.context = pmd->data_sm;
  359. pmd->bl_info.value_type.size = sizeof(__le64);
  360. pmd->bl_info.value_type.inc = data_block_inc;
  361. pmd->bl_info.value_type.dec = data_block_dec;
  362. pmd->bl_info.value_type.equal = data_block_equal;
  363. pmd->details_info.tm = pmd->tm;
  364. pmd->details_info.levels = 1;
  365. pmd->details_info.value_type.context = NULL;
  366. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  367. pmd->details_info.value_type.inc = NULL;
  368. pmd->details_info.value_type.dec = NULL;
  369. pmd->details_info.value_type.equal = NULL;
  370. }
  371. static int save_sm_roots(struct dm_pool_metadata *pmd)
  372. {
  373. int r;
  374. size_t len;
  375. r = dm_sm_root_size(pmd->metadata_sm, &len);
  376. if (r < 0)
  377. return r;
  378. r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
  379. if (r < 0)
  380. return r;
  381. r = dm_sm_root_size(pmd->data_sm, &len);
  382. if (r < 0)
  383. return r;
  384. return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
  385. }
  386. static void copy_sm_roots(struct dm_pool_metadata *pmd,
  387. struct thin_disk_superblock *disk)
  388. {
  389. memcpy(&disk->metadata_space_map_root,
  390. &pmd->metadata_space_map_root,
  391. sizeof(pmd->metadata_space_map_root));
  392. memcpy(&disk->data_space_map_root,
  393. &pmd->data_space_map_root,
  394. sizeof(pmd->data_space_map_root));
  395. }
  396. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  397. {
  398. int r;
  399. struct dm_block *sblock;
  400. struct thin_disk_superblock *disk_super;
  401. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  402. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  403. bdev_size = THIN_METADATA_MAX_SECTORS;
  404. r = dm_sm_commit(pmd->data_sm);
  405. if (r < 0)
  406. return r;
  407. r = dm_tm_pre_commit(pmd->tm);
  408. if (r < 0)
  409. return r;
  410. r = save_sm_roots(pmd);
  411. if (r < 0)
  412. return r;
  413. r = superblock_lock_zero(pmd, &sblock);
  414. if (r)
  415. return r;
  416. disk_super = dm_block_data(sblock);
  417. disk_super->flags = 0;
  418. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  419. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  420. disk_super->version = cpu_to_le32(THIN_VERSION);
  421. disk_super->time = 0;
  422. disk_super->trans_id = 0;
  423. disk_super->held_root = 0;
  424. copy_sm_roots(pmd, disk_super);
  425. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  426. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  427. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
  428. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  429. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  430. return dm_tm_commit(pmd->tm, sblock);
  431. }
  432. static int __format_metadata(struct dm_pool_metadata *pmd)
  433. {
  434. int r;
  435. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  436. &pmd->tm, &pmd->metadata_sm);
  437. if (r < 0) {
  438. DMERR("tm_create_with_sm failed");
  439. return r;
  440. }
  441. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  442. if (IS_ERR(pmd->data_sm)) {
  443. DMERR("sm_disk_create failed");
  444. r = PTR_ERR(pmd->data_sm);
  445. goto bad_cleanup_tm;
  446. }
  447. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  448. if (!pmd->nb_tm) {
  449. DMERR("could not create non-blocking clone tm");
  450. r = -ENOMEM;
  451. goto bad_cleanup_data_sm;
  452. }
  453. __setup_btree_details(pmd);
  454. r = dm_btree_empty(&pmd->info, &pmd->root);
  455. if (r < 0)
  456. goto bad_cleanup_nb_tm;
  457. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  458. if (r < 0) {
  459. DMERR("couldn't create devices root");
  460. goto bad_cleanup_nb_tm;
  461. }
  462. r = __write_initial_superblock(pmd);
  463. if (r)
  464. goto bad_cleanup_nb_tm;
  465. return 0;
  466. bad_cleanup_nb_tm:
  467. dm_tm_destroy(pmd->nb_tm);
  468. bad_cleanup_data_sm:
  469. dm_sm_destroy(pmd->data_sm);
  470. bad_cleanup_tm:
  471. dm_tm_destroy(pmd->tm);
  472. dm_sm_destroy(pmd->metadata_sm);
  473. return r;
  474. }
  475. static int __check_incompat_features(struct thin_disk_superblock *disk_super,
  476. struct dm_pool_metadata *pmd)
  477. {
  478. uint32_t features;
  479. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  480. if (features) {
  481. DMERR("could not access metadata due to unsupported optional features (%lx).",
  482. (unsigned long)features);
  483. return -EINVAL;
  484. }
  485. /*
  486. * Check for read-only metadata to skip the following RDWR checks.
  487. */
  488. if (get_disk_ro(pmd->bdev->bd_disk))
  489. return 0;
  490. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  491. if (features) {
  492. DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
  493. (unsigned long)features);
  494. return -EINVAL;
  495. }
  496. return 0;
  497. }
  498. static int __open_metadata(struct dm_pool_metadata *pmd)
  499. {
  500. int r;
  501. struct dm_block *sblock;
  502. struct thin_disk_superblock *disk_super;
  503. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  504. &sb_validator, &sblock);
  505. if (r < 0) {
  506. DMERR("couldn't read superblock");
  507. return r;
  508. }
  509. disk_super = dm_block_data(sblock);
  510. /* Verify the data block size hasn't changed */
  511. if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
  512. DMERR("changing the data block size (from %u to %llu) is not supported",
  513. le32_to_cpu(disk_super->data_block_size),
  514. (unsigned long long)pmd->data_block_size);
  515. r = -EINVAL;
  516. goto bad_unlock_sblock;
  517. }
  518. r = __check_incompat_features(disk_super, pmd);
  519. if (r < 0)
  520. goto bad_unlock_sblock;
  521. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  522. disk_super->metadata_space_map_root,
  523. sizeof(disk_super->metadata_space_map_root),
  524. &pmd->tm, &pmd->metadata_sm);
  525. if (r < 0) {
  526. DMERR("tm_open_with_sm failed");
  527. goto bad_unlock_sblock;
  528. }
  529. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  530. sizeof(disk_super->data_space_map_root));
  531. if (IS_ERR(pmd->data_sm)) {
  532. DMERR("sm_disk_open failed");
  533. r = PTR_ERR(pmd->data_sm);
  534. goto bad_cleanup_tm;
  535. }
  536. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  537. if (!pmd->nb_tm) {
  538. DMERR("could not create non-blocking clone tm");
  539. r = -ENOMEM;
  540. goto bad_cleanup_data_sm;
  541. }
  542. __setup_btree_details(pmd);
  543. dm_bm_unlock(sblock);
  544. return 0;
  545. bad_cleanup_data_sm:
  546. dm_sm_destroy(pmd->data_sm);
  547. bad_cleanup_tm:
  548. dm_tm_destroy(pmd->tm);
  549. dm_sm_destroy(pmd->metadata_sm);
  550. bad_unlock_sblock:
  551. dm_bm_unlock(sblock);
  552. return r;
  553. }
  554. static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
  555. {
  556. int r, unformatted;
  557. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  558. if (r)
  559. return r;
  560. if (unformatted)
  561. return format_device ? __format_metadata(pmd) : -EPERM;
  562. return __open_metadata(pmd);
  563. }
  564. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
  565. {
  566. int r;
  567. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
  568. THIN_MAX_CONCURRENT_LOCKS);
  569. if (IS_ERR(pmd->bm)) {
  570. DMERR("could not create block manager");
  571. return PTR_ERR(pmd->bm);
  572. }
  573. r = __open_or_format_metadata(pmd, format_device);
  574. if (r)
  575. dm_block_manager_destroy(pmd->bm);
  576. return r;
  577. }
  578. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  579. {
  580. dm_sm_destroy(pmd->data_sm);
  581. dm_sm_destroy(pmd->metadata_sm);
  582. dm_tm_destroy(pmd->nb_tm);
  583. dm_tm_destroy(pmd->tm);
  584. dm_block_manager_destroy(pmd->bm);
  585. }
  586. static int __begin_transaction(struct dm_pool_metadata *pmd)
  587. {
  588. int r;
  589. struct thin_disk_superblock *disk_super;
  590. struct dm_block *sblock;
  591. /*
  592. * We re-read the superblock every time. Shouldn't need to do this
  593. * really.
  594. */
  595. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  596. &sb_validator, &sblock);
  597. if (r)
  598. return r;
  599. disk_super = dm_block_data(sblock);
  600. pmd->time = le32_to_cpu(disk_super->time);
  601. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  602. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  603. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  604. pmd->flags = le32_to_cpu(disk_super->flags);
  605. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  606. dm_bm_unlock(sblock);
  607. return 0;
  608. }
  609. static int __write_changed_details(struct dm_pool_metadata *pmd)
  610. {
  611. int r;
  612. struct dm_thin_device *td, *tmp;
  613. struct disk_device_details details;
  614. uint64_t key;
  615. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  616. if (!td->changed)
  617. continue;
  618. key = td->id;
  619. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  620. details.transaction_id = cpu_to_le64(td->transaction_id);
  621. details.creation_time = cpu_to_le32(td->creation_time);
  622. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  623. __dm_bless_for_disk(&details);
  624. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  625. &key, &details, &pmd->details_root);
  626. if (r)
  627. return r;
  628. if (td->open_count)
  629. td->changed = 0;
  630. else {
  631. list_del(&td->list);
  632. kfree(td);
  633. }
  634. }
  635. return 0;
  636. }
  637. static int __commit_transaction(struct dm_pool_metadata *pmd)
  638. {
  639. int r;
  640. size_t metadata_len, data_len;
  641. struct thin_disk_superblock *disk_super;
  642. struct dm_block *sblock;
  643. /*
  644. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  645. */
  646. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  647. r = __write_changed_details(pmd);
  648. if (r < 0)
  649. return r;
  650. r = dm_sm_commit(pmd->data_sm);
  651. if (r < 0)
  652. return r;
  653. r = dm_tm_pre_commit(pmd->tm);
  654. if (r < 0)
  655. return r;
  656. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  657. if (r < 0)
  658. return r;
  659. r = dm_sm_root_size(pmd->data_sm, &data_len);
  660. if (r < 0)
  661. return r;
  662. r = save_sm_roots(pmd);
  663. if (r < 0)
  664. return r;
  665. r = superblock_lock(pmd, &sblock);
  666. if (r)
  667. return r;
  668. disk_super = dm_block_data(sblock);
  669. disk_super->time = cpu_to_le32(pmd->time);
  670. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  671. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  672. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  673. disk_super->flags = cpu_to_le32(pmd->flags);
  674. copy_sm_roots(pmd, disk_super);
  675. return dm_tm_commit(pmd->tm, sblock);
  676. }
  677. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  678. sector_t data_block_size,
  679. bool format_device)
  680. {
  681. int r;
  682. struct dm_pool_metadata *pmd;
  683. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  684. if (!pmd) {
  685. DMERR("could not allocate metadata struct");
  686. return ERR_PTR(-ENOMEM);
  687. }
  688. init_rwsem(&pmd->root_lock);
  689. pmd->time = 0;
  690. INIT_LIST_HEAD(&pmd->thin_devices);
  691. pmd->fail_io = false;
  692. pmd->bdev = bdev;
  693. pmd->data_block_size = data_block_size;
  694. r = __create_persistent_data_objects(pmd, format_device);
  695. if (r) {
  696. kfree(pmd);
  697. return ERR_PTR(r);
  698. }
  699. r = __begin_transaction(pmd);
  700. if (r < 0) {
  701. if (dm_pool_metadata_close(pmd) < 0)
  702. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  703. return ERR_PTR(r);
  704. }
  705. return pmd;
  706. }
  707. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  708. {
  709. int r;
  710. unsigned open_devices = 0;
  711. struct dm_thin_device *td, *tmp;
  712. down_read(&pmd->root_lock);
  713. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  714. if (td->open_count)
  715. open_devices++;
  716. else {
  717. list_del(&td->list);
  718. kfree(td);
  719. }
  720. }
  721. up_read(&pmd->root_lock);
  722. if (open_devices) {
  723. DMERR("attempt to close pmd when %u device(s) are still open",
  724. open_devices);
  725. return -EBUSY;
  726. }
  727. if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
  728. r = __commit_transaction(pmd);
  729. if (r < 0)
  730. DMWARN("%s: __commit_transaction() failed, error = %d",
  731. __func__, r);
  732. }
  733. if (!pmd->fail_io)
  734. __destroy_persistent_data_objects(pmd);
  735. kfree(pmd);
  736. return 0;
  737. }
  738. /*
  739. * __open_device: Returns @td corresponding to device with id @dev,
  740. * creating it if @create is set and incrementing @td->open_count.
  741. * On failure, @td is undefined.
  742. */
  743. static int __open_device(struct dm_pool_metadata *pmd,
  744. dm_thin_id dev, int create,
  745. struct dm_thin_device **td)
  746. {
  747. int r, changed = 0;
  748. struct dm_thin_device *td2;
  749. uint64_t key = dev;
  750. struct disk_device_details details_le;
  751. /*
  752. * If the device is already open, return it.
  753. */
  754. list_for_each_entry(td2, &pmd->thin_devices, list)
  755. if (td2->id == dev) {
  756. /*
  757. * May not create an already-open device.
  758. */
  759. if (create)
  760. return -EEXIST;
  761. td2->open_count++;
  762. *td = td2;
  763. return 0;
  764. }
  765. /*
  766. * Check the device exists.
  767. */
  768. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  769. &key, &details_le);
  770. if (r) {
  771. if (r != -ENODATA || !create)
  772. return r;
  773. /*
  774. * Create new device.
  775. */
  776. changed = 1;
  777. details_le.mapped_blocks = 0;
  778. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  779. details_le.creation_time = cpu_to_le32(pmd->time);
  780. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  781. }
  782. *td = kmalloc(sizeof(**td), GFP_NOIO);
  783. if (!*td)
  784. return -ENOMEM;
  785. (*td)->pmd = pmd;
  786. (*td)->id = dev;
  787. (*td)->open_count = 1;
  788. (*td)->changed = changed;
  789. (*td)->aborted_with_changes = false;
  790. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  791. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  792. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  793. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  794. list_add(&(*td)->list, &pmd->thin_devices);
  795. return 0;
  796. }
  797. static void __close_device(struct dm_thin_device *td)
  798. {
  799. --td->open_count;
  800. }
  801. static int __create_thin(struct dm_pool_metadata *pmd,
  802. dm_thin_id dev)
  803. {
  804. int r;
  805. dm_block_t dev_root;
  806. uint64_t key = dev;
  807. struct disk_device_details details_le;
  808. struct dm_thin_device *td;
  809. __le64 value;
  810. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  811. &key, &details_le);
  812. if (!r)
  813. return -EEXIST;
  814. /*
  815. * Create an empty btree for the mappings.
  816. */
  817. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  818. if (r)
  819. return r;
  820. /*
  821. * Insert it into the main mapping tree.
  822. */
  823. value = cpu_to_le64(dev_root);
  824. __dm_bless_for_disk(&value);
  825. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  826. if (r) {
  827. dm_btree_del(&pmd->bl_info, dev_root);
  828. return r;
  829. }
  830. r = __open_device(pmd, dev, 1, &td);
  831. if (r) {
  832. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  833. dm_btree_del(&pmd->bl_info, dev_root);
  834. return r;
  835. }
  836. __close_device(td);
  837. return r;
  838. }
  839. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  840. {
  841. int r = -EINVAL;
  842. down_write(&pmd->root_lock);
  843. if (!pmd->fail_io)
  844. r = __create_thin(pmd, dev);
  845. up_write(&pmd->root_lock);
  846. return r;
  847. }
  848. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  849. struct dm_thin_device *snap,
  850. dm_thin_id origin, uint32_t time)
  851. {
  852. int r;
  853. struct dm_thin_device *td;
  854. r = __open_device(pmd, origin, 0, &td);
  855. if (r)
  856. return r;
  857. td->changed = 1;
  858. td->snapshotted_time = time;
  859. snap->mapped_blocks = td->mapped_blocks;
  860. snap->snapshotted_time = time;
  861. __close_device(td);
  862. return 0;
  863. }
  864. static int __create_snap(struct dm_pool_metadata *pmd,
  865. dm_thin_id dev, dm_thin_id origin)
  866. {
  867. int r;
  868. dm_block_t origin_root;
  869. uint64_t key = origin, dev_key = dev;
  870. struct dm_thin_device *td;
  871. struct disk_device_details details_le;
  872. __le64 value;
  873. /* check this device is unused */
  874. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  875. &dev_key, &details_le);
  876. if (!r)
  877. return -EEXIST;
  878. /* find the mapping tree for the origin */
  879. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  880. if (r)
  881. return r;
  882. origin_root = le64_to_cpu(value);
  883. /* clone the origin, an inc will do */
  884. dm_tm_inc(pmd->tm, origin_root);
  885. /* insert into the main mapping tree */
  886. value = cpu_to_le64(origin_root);
  887. __dm_bless_for_disk(&value);
  888. key = dev;
  889. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  890. if (r) {
  891. dm_tm_dec(pmd->tm, origin_root);
  892. return r;
  893. }
  894. pmd->time++;
  895. r = __open_device(pmd, dev, 1, &td);
  896. if (r)
  897. goto bad;
  898. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  899. __close_device(td);
  900. if (r)
  901. goto bad;
  902. return 0;
  903. bad:
  904. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  905. dm_btree_remove(&pmd->details_info, pmd->details_root,
  906. &key, &pmd->details_root);
  907. return r;
  908. }
  909. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  910. dm_thin_id dev,
  911. dm_thin_id origin)
  912. {
  913. int r = -EINVAL;
  914. down_write(&pmd->root_lock);
  915. if (!pmd->fail_io)
  916. r = __create_snap(pmd, dev, origin);
  917. up_write(&pmd->root_lock);
  918. return r;
  919. }
  920. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  921. {
  922. int r;
  923. uint64_t key = dev;
  924. struct dm_thin_device *td;
  925. /* TODO: failure should mark the transaction invalid */
  926. r = __open_device(pmd, dev, 0, &td);
  927. if (r)
  928. return r;
  929. if (td->open_count > 1) {
  930. __close_device(td);
  931. return -EBUSY;
  932. }
  933. list_del(&td->list);
  934. kfree(td);
  935. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  936. &key, &pmd->details_root);
  937. if (r)
  938. return r;
  939. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  940. if (r)
  941. return r;
  942. return 0;
  943. }
  944. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  945. dm_thin_id dev)
  946. {
  947. int r = -EINVAL;
  948. down_write(&pmd->root_lock);
  949. if (!pmd->fail_io)
  950. r = __delete_device(pmd, dev);
  951. up_write(&pmd->root_lock);
  952. return r;
  953. }
  954. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  955. uint64_t current_id,
  956. uint64_t new_id)
  957. {
  958. int r = -EINVAL;
  959. down_write(&pmd->root_lock);
  960. if (pmd->fail_io)
  961. goto out;
  962. if (pmd->trans_id != current_id) {
  963. DMERR("mismatched transaction id");
  964. goto out;
  965. }
  966. pmd->trans_id = new_id;
  967. r = 0;
  968. out:
  969. up_write(&pmd->root_lock);
  970. return r;
  971. }
  972. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  973. uint64_t *result)
  974. {
  975. int r = -EINVAL;
  976. down_read(&pmd->root_lock);
  977. if (!pmd->fail_io) {
  978. *result = pmd->trans_id;
  979. r = 0;
  980. }
  981. up_read(&pmd->root_lock);
  982. return r;
  983. }
  984. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  985. {
  986. int r, inc;
  987. struct thin_disk_superblock *disk_super;
  988. struct dm_block *copy, *sblock;
  989. dm_block_t held_root;
  990. /*
  991. * We commit to ensure the btree roots which we increment in a
  992. * moment are up to date.
  993. */
  994. __commit_transaction(pmd);
  995. /*
  996. * Copy the superblock.
  997. */
  998. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  999. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  1000. &sb_validator, &copy, &inc);
  1001. if (r)
  1002. return r;
  1003. BUG_ON(!inc);
  1004. held_root = dm_block_location(copy);
  1005. disk_super = dm_block_data(copy);
  1006. if (le64_to_cpu(disk_super->held_root)) {
  1007. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  1008. dm_tm_dec(pmd->tm, held_root);
  1009. dm_tm_unlock(pmd->tm, copy);
  1010. return -EBUSY;
  1011. }
  1012. /*
  1013. * Wipe the spacemap since we're not publishing this.
  1014. */
  1015. memset(&disk_super->data_space_map_root, 0,
  1016. sizeof(disk_super->data_space_map_root));
  1017. memset(&disk_super->metadata_space_map_root, 0,
  1018. sizeof(disk_super->metadata_space_map_root));
  1019. /*
  1020. * Increment the data structures that need to be preserved.
  1021. */
  1022. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  1023. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  1024. dm_tm_unlock(pmd->tm, copy);
  1025. /*
  1026. * Write the held root into the superblock.
  1027. */
  1028. r = superblock_lock(pmd, &sblock);
  1029. if (r) {
  1030. dm_tm_dec(pmd->tm, held_root);
  1031. return r;
  1032. }
  1033. disk_super = dm_block_data(sblock);
  1034. disk_super->held_root = cpu_to_le64(held_root);
  1035. dm_bm_unlock(sblock);
  1036. return 0;
  1037. }
  1038. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1039. {
  1040. int r = -EINVAL;
  1041. down_write(&pmd->root_lock);
  1042. if (!pmd->fail_io)
  1043. r = __reserve_metadata_snap(pmd);
  1044. up_write(&pmd->root_lock);
  1045. return r;
  1046. }
  1047. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  1048. {
  1049. int r;
  1050. struct thin_disk_superblock *disk_super;
  1051. struct dm_block *sblock, *copy;
  1052. dm_block_t held_root;
  1053. r = superblock_lock(pmd, &sblock);
  1054. if (r)
  1055. return r;
  1056. disk_super = dm_block_data(sblock);
  1057. held_root = le64_to_cpu(disk_super->held_root);
  1058. disk_super->held_root = cpu_to_le64(0);
  1059. dm_bm_unlock(sblock);
  1060. if (!held_root) {
  1061. DMWARN("No pool metadata snapshot found: nothing to release.");
  1062. return -EINVAL;
  1063. }
  1064. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1065. if (r)
  1066. return r;
  1067. disk_super = dm_block_data(copy);
  1068. dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
  1069. dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
  1070. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1071. dm_tm_unlock(pmd->tm, copy);
  1072. return 0;
  1073. }
  1074. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1075. {
  1076. int r = -EINVAL;
  1077. down_write(&pmd->root_lock);
  1078. if (!pmd->fail_io)
  1079. r = __release_metadata_snap(pmd);
  1080. up_write(&pmd->root_lock);
  1081. return r;
  1082. }
  1083. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1084. dm_block_t *result)
  1085. {
  1086. int r;
  1087. struct thin_disk_superblock *disk_super;
  1088. struct dm_block *sblock;
  1089. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1090. &sb_validator, &sblock);
  1091. if (r)
  1092. return r;
  1093. disk_super = dm_block_data(sblock);
  1094. *result = le64_to_cpu(disk_super->held_root);
  1095. dm_bm_unlock(sblock);
  1096. return 0;
  1097. }
  1098. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1099. dm_block_t *result)
  1100. {
  1101. int r = -EINVAL;
  1102. down_read(&pmd->root_lock);
  1103. if (!pmd->fail_io)
  1104. r = __get_metadata_snap(pmd, result);
  1105. up_read(&pmd->root_lock);
  1106. return r;
  1107. }
  1108. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1109. struct dm_thin_device **td)
  1110. {
  1111. int r = -EINVAL;
  1112. down_write(&pmd->root_lock);
  1113. if (!pmd->fail_io)
  1114. r = __open_device(pmd, dev, 0, td);
  1115. up_write(&pmd->root_lock);
  1116. return r;
  1117. }
  1118. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1119. {
  1120. down_write(&td->pmd->root_lock);
  1121. __close_device(td);
  1122. up_write(&td->pmd->root_lock);
  1123. return 0;
  1124. }
  1125. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1126. {
  1127. return td->id;
  1128. }
  1129. /*
  1130. * Check whether @time (of block creation) is older than @td's last snapshot.
  1131. * If so then the associated block is shared with the last snapshot device.
  1132. * Any block on a device created *after* the device last got snapshotted is
  1133. * necessarily not shared.
  1134. */
  1135. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1136. {
  1137. return td->snapshotted_time > time;
  1138. }
  1139. static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
  1140. struct dm_thin_lookup_result *result)
  1141. {
  1142. uint64_t block_time = 0;
  1143. dm_block_t exception_block;
  1144. uint32_t exception_time;
  1145. block_time = le64_to_cpu(value);
  1146. unpack_block_time(block_time, &exception_block, &exception_time);
  1147. result->block = exception_block;
  1148. result->shared = __snapshotted_since(td, exception_time);
  1149. }
  1150. static int __find_block(struct dm_thin_device *td, dm_block_t block,
  1151. int can_issue_io, struct dm_thin_lookup_result *result)
  1152. {
  1153. int r;
  1154. __le64 value;
  1155. struct dm_pool_metadata *pmd = td->pmd;
  1156. dm_block_t keys[2] = { td->id, block };
  1157. struct dm_btree_info *info;
  1158. if (can_issue_io) {
  1159. info = &pmd->info;
  1160. } else
  1161. info = &pmd->nb_info;
  1162. r = dm_btree_lookup(info, pmd->root, keys, &value);
  1163. if (!r)
  1164. unpack_lookup_result(td, value, result);
  1165. return r;
  1166. }
  1167. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1168. int can_issue_io, struct dm_thin_lookup_result *result)
  1169. {
  1170. int r;
  1171. struct dm_pool_metadata *pmd = td->pmd;
  1172. down_read(&pmd->root_lock);
  1173. if (pmd->fail_io) {
  1174. up_read(&pmd->root_lock);
  1175. return -EINVAL;
  1176. }
  1177. r = __find_block(td, block, can_issue_io, result);
  1178. up_read(&pmd->root_lock);
  1179. return r;
  1180. }
  1181. static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
  1182. dm_block_t *vblock,
  1183. struct dm_thin_lookup_result *result)
  1184. {
  1185. int r;
  1186. __le64 value;
  1187. struct dm_pool_metadata *pmd = td->pmd;
  1188. dm_block_t keys[2] = { td->id, block };
  1189. r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
  1190. if (!r)
  1191. unpack_lookup_result(td, value, result);
  1192. return r;
  1193. }
  1194. static int __find_mapped_range(struct dm_thin_device *td,
  1195. dm_block_t begin, dm_block_t end,
  1196. dm_block_t *thin_begin, dm_block_t *thin_end,
  1197. dm_block_t *pool_begin, bool *maybe_shared)
  1198. {
  1199. int r;
  1200. dm_block_t pool_end;
  1201. struct dm_thin_lookup_result lookup;
  1202. if (end < begin)
  1203. return -ENODATA;
  1204. r = __find_next_mapped_block(td, begin, &begin, &lookup);
  1205. if (r)
  1206. return r;
  1207. if (begin >= end)
  1208. return -ENODATA;
  1209. *thin_begin = begin;
  1210. *pool_begin = lookup.block;
  1211. *maybe_shared = lookup.shared;
  1212. begin++;
  1213. pool_end = *pool_begin + 1;
  1214. while (begin != end) {
  1215. r = __find_block(td, begin, true, &lookup);
  1216. if (r) {
  1217. if (r == -ENODATA)
  1218. break;
  1219. else
  1220. return r;
  1221. }
  1222. if ((lookup.block != pool_end) ||
  1223. (lookup.shared != *maybe_shared))
  1224. break;
  1225. pool_end++;
  1226. begin++;
  1227. }
  1228. *thin_end = begin;
  1229. return 0;
  1230. }
  1231. int dm_thin_find_mapped_range(struct dm_thin_device *td,
  1232. dm_block_t begin, dm_block_t end,
  1233. dm_block_t *thin_begin, dm_block_t *thin_end,
  1234. dm_block_t *pool_begin, bool *maybe_shared)
  1235. {
  1236. int r = -EINVAL;
  1237. struct dm_pool_metadata *pmd = td->pmd;
  1238. down_read(&pmd->root_lock);
  1239. if (!pmd->fail_io) {
  1240. r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
  1241. pool_begin, maybe_shared);
  1242. }
  1243. up_read(&pmd->root_lock);
  1244. return r;
  1245. }
  1246. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1247. dm_block_t data_block)
  1248. {
  1249. int r, inserted;
  1250. __le64 value;
  1251. struct dm_pool_metadata *pmd = td->pmd;
  1252. dm_block_t keys[2] = { td->id, block };
  1253. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1254. __dm_bless_for_disk(&value);
  1255. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1256. &pmd->root, &inserted);
  1257. if (r)
  1258. return r;
  1259. td->changed = 1;
  1260. if (inserted)
  1261. td->mapped_blocks++;
  1262. return 0;
  1263. }
  1264. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1265. dm_block_t data_block)
  1266. {
  1267. int r = -EINVAL;
  1268. down_write(&td->pmd->root_lock);
  1269. if (!td->pmd->fail_io)
  1270. r = __insert(td, block, data_block);
  1271. up_write(&td->pmd->root_lock);
  1272. return r;
  1273. }
  1274. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1275. {
  1276. int r;
  1277. struct dm_pool_metadata *pmd = td->pmd;
  1278. dm_block_t keys[2] = { td->id, block };
  1279. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1280. if (r)
  1281. return r;
  1282. td->mapped_blocks--;
  1283. td->changed = 1;
  1284. return 0;
  1285. }
  1286. static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
  1287. {
  1288. int r;
  1289. unsigned count, total_count = 0;
  1290. struct dm_pool_metadata *pmd = td->pmd;
  1291. dm_block_t keys[1] = { td->id };
  1292. __le64 value;
  1293. dm_block_t mapping_root;
  1294. /*
  1295. * Find the mapping tree
  1296. */
  1297. r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
  1298. if (r)
  1299. return r;
  1300. /*
  1301. * Remove from the mapping tree, taking care to inc the
  1302. * ref count so it doesn't get deleted.
  1303. */
  1304. mapping_root = le64_to_cpu(value);
  1305. dm_tm_inc(pmd->tm, mapping_root);
  1306. r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
  1307. if (r)
  1308. return r;
  1309. /*
  1310. * Remove leaves stops at the first unmapped entry, so we have to
  1311. * loop round finding mapped ranges.
  1312. */
  1313. while (begin < end) {
  1314. r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
  1315. if (r == -ENODATA)
  1316. break;
  1317. if (r)
  1318. return r;
  1319. if (begin >= end)
  1320. break;
  1321. r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
  1322. if (r)
  1323. return r;
  1324. total_count += count;
  1325. }
  1326. td->mapped_blocks -= total_count;
  1327. td->changed = 1;
  1328. /*
  1329. * Reinsert the mapping tree.
  1330. */
  1331. value = cpu_to_le64(mapping_root);
  1332. __dm_bless_for_disk(&value);
  1333. return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
  1334. }
  1335. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1336. {
  1337. int r = -EINVAL;
  1338. down_write(&td->pmd->root_lock);
  1339. if (!td->pmd->fail_io)
  1340. r = __remove(td, block);
  1341. up_write(&td->pmd->root_lock);
  1342. return r;
  1343. }
  1344. int dm_thin_remove_range(struct dm_thin_device *td,
  1345. dm_block_t begin, dm_block_t end)
  1346. {
  1347. int r = -EINVAL;
  1348. down_write(&td->pmd->root_lock);
  1349. if (!td->pmd->fail_io)
  1350. r = __remove_range(td, begin, end);
  1351. up_write(&td->pmd->root_lock);
  1352. return r;
  1353. }
  1354. int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
  1355. {
  1356. int r;
  1357. uint32_t ref_count;
  1358. down_read(&pmd->root_lock);
  1359. r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
  1360. if (!r)
  1361. *result = (ref_count != 0);
  1362. up_read(&pmd->root_lock);
  1363. return r;
  1364. }
  1365. int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1366. {
  1367. int r = 0;
  1368. down_write(&pmd->root_lock);
  1369. for (; b != e; b++) {
  1370. r = dm_sm_inc_block(pmd->data_sm, b);
  1371. if (r)
  1372. break;
  1373. }
  1374. up_write(&pmd->root_lock);
  1375. return r;
  1376. }
  1377. int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1378. {
  1379. int r = 0;
  1380. down_write(&pmd->root_lock);
  1381. for (; b != e; b++) {
  1382. r = dm_sm_dec_block(pmd->data_sm, b);
  1383. if (r)
  1384. break;
  1385. }
  1386. up_write(&pmd->root_lock);
  1387. return r;
  1388. }
  1389. bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
  1390. {
  1391. int r;
  1392. down_read(&td->pmd->root_lock);
  1393. r = td->changed;
  1394. up_read(&td->pmd->root_lock);
  1395. return r;
  1396. }
  1397. bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
  1398. {
  1399. bool r = false;
  1400. struct dm_thin_device *td, *tmp;
  1401. down_read(&pmd->root_lock);
  1402. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  1403. if (td->changed) {
  1404. r = td->changed;
  1405. break;
  1406. }
  1407. }
  1408. up_read(&pmd->root_lock);
  1409. return r;
  1410. }
  1411. bool dm_thin_aborted_changes(struct dm_thin_device *td)
  1412. {
  1413. bool r;
  1414. down_read(&td->pmd->root_lock);
  1415. r = td->aborted_with_changes;
  1416. up_read(&td->pmd->root_lock);
  1417. return r;
  1418. }
  1419. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1420. {
  1421. int r = -EINVAL;
  1422. down_write(&pmd->root_lock);
  1423. if (!pmd->fail_io)
  1424. r = dm_sm_new_block(pmd->data_sm, result);
  1425. up_write(&pmd->root_lock);
  1426. return r;
  1427. }
  1428. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1429. {
  1430. int r = -EINVAL;
  1431. down_write(&pmd->root_lock);
  1432. if (pmd->fail_io)
  1433. goto out;
  1434. r = __commit_transaction(pmd);
  1435. if (r <= 0)
  1436. goto out;
  1437. /*
  1438. * Open the next transaction.
  1439. */
  1440. r = __begin_transaction(pmd);
  1441. out:
  1442. up_write(&pmd->root_lock);
  1443. return r;
  1444. }
  1445. static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
  1446. {
  1447. struct dm_thin_device *td;
  1448. list_for_each_entry(td, &pmd->thin_devices, list)
  1449. td->aborted_with_changes = td->changed;
  1450. }
  1451. int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
  1452. {
  1453. int r = -EINVAL;
  1454. down_write(&pmd->root_lock);
  1455. if (pmd->fail_io)
  1456. goto out;
  1457. __set_abort_with_changes_flags(pmd);
  1458. __destroy_persistent_data_objects(pmd);
  1459. r = __create_persistent_data_objects(pmd, false);
  1460. if (r)
  1461. pmd->fail_io = true;
  1462. out:
  1463. up_write(&pmd->root_lock);
  1464. return r;
  1465. }
  1466. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1467. {
  1468. int r = -EINVAL;
  1469. down_read(&pmd->root_lock);
  1470. if (!pmd->fail_io)
  1471. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1472. up_read(&pmd->root_lock);
  1473. return r;
  1474. }
  1475. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1476. dm_block_t *result)
  1477. {
  1478. int r = -EINVAL;
  1479. down_read(&pmd->root_lock);
  1480. if (!pmd->fail_io)
  1481. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1482. up_read(&pmd->root_lock);
  1483. return r;
  1484. }
  1485. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1486. dm_block_t *result)
  1487. {
  1488. int r = -EINVAL;
  1489. down_read(&pmd->root_lock);
  1490. if (!pmd->fail_io)
  1491. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1492. up_read(&pmd->root_lock);
  1493. return r;
  1494. }
  1495. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1496. {
  1497. int r = -EINVAL;
  1498. down_read(&pmd->root_lock);
  1499. if (!pmd->fail_io)
  1500. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1501. up_read(&pmd->root_lock);
  1502. return r;
  1503. }
  1504. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1505. {
  1506. int r = -EINVAL;
  1507. struct dm_pool_metadata *pmd = td->pmd;
  1508. down_read(&pmd->root_lock);
  1509. if (!pmd->fail_io) {
  1510. *result = td->mapped_blocks;
  1511. r = 0;
  1512. }
  1513. up_read(&pmd->root_lock);
  1514. return r;
  1515. }
  1516. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1517. {
  1518. int r;
  1519. __le64 value_le;
  1520. dm_block_t thin_root;
  1521. struct dm_pool_metadata *pmd = td->pmd;
  1522. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1523. if (r)
  1524. return r;
  1525. thin_root = le64_to_cpu(value_le);
  1526. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1527. }
  1528. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1529. dm_block_t *result)
  1530. {
  1531. int r = -EINVAL;
  1532. struct dm_pool_metadata *pmd = td->pmd;
  1533. down_read(&pmd->root_lock);
  1534. if (!pmd->fail_io)
  1535. r = __highest_block(td, result);
  1536. up_read(&pmd->root_lock);
  1537. return r;
  1538. }
  1539. static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
  1540. {
  1541. int r;
  1542. dm_block_t old_count;
  1543. r = dm_sm_get_nr_blocks(sm, &old_count);
  1544. if (r)
  1545. return r;
  1546. if (new_count == old_count)
  1547. return 0;
  1548. if (new_count < old_count) {
  1549. DMERR("cannot reduce size of space map");
  1550. return -EINVAL;
  1551. }
  1552. return dm_sm_extend(sm, new_count - old_count);
  1553. }
  1554. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1555. {
  1556. int r = -EINVAL;
  1557. down_write(&pmd->root_lock);
  1558. if (!pmd->fail_io)
  1559. r = __resize_space_map(pmd->data_sm, new_count);
  1560. up_write(&pmd->root_lock);
  1561. return r;
  1562. }
  1563. int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1564. {
  1565. int r = -EINVAL;
  1566. down_write(&pmd->root_lock);
  1567. if (!pmd->fail_io)
  1568. r = __resize_space_map(pmd->metadata_sm, new_count);
  1569. up_write(&pmd->root_lock);
  1570. return r;
  1571. }
  1572. void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
  1573. {
  1574. down_write(&pmd->root_lock);
  1575. dm_bm_set_read_only(pmd->bm);
  1576. up_write(&pmd->root_lock);
  1577. }
  1578. void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
  1579. {
  1580. down_write(&pmd->root_lock);
  1581. dm_bm_set_read_write(pmd->bm);
  1582. up_write(&pmd->root_lock);
  1583. }
  1584. int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
  1585. dm_block_t threshold,
  1586. dm_sm_threshold_fn fn,
  1587. void *context)
  1588. {
  1589. int r;
  1590. down_write(&pmd->root_lock);
  1591. r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
  1592. up_write(&pmd->root_lock);
  1593. return r;
  1594. }
  1595. int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
  1596. {
  1597. int r;
  1598. struct dm_block *sblock;
  1599. struct thin_disk_superblock *disk_super;
  1600. down_write(&pmd->root_lock);
  1601. pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
  1602. r = superblock_lock(pmd, &sblock);
  1603. if (r) {
  1604. DMERR("couldn't read superblock");
  1605. goto out;
  1606. }
  1607. disk_super = dm_block_data(sblock);
  1608. disk_super->flags = cpu_to_le32(pmd->flags);
  1609. dm_bm_unlock(sblock);
  1610. out:
  1611. up_write(&pmd->root_lock);
  1612. return r;
  1613. }
  1614. bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
  1615. {
  1616. bool needs_check;
  1617. down_read(&pmd->root_lock);
  1618. needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
  1619. up_read(&pmd->root_lock);
  1620. return needs_check;
  1621. }
  1622. void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
  1623. {
  1624. down_read(&pmd->root_lock);
  1625. if (!pmd->fail_io)
  1626. dm_tm_issue_prefetches(pmd->tm);
  1627. up_read(&pmd->root_lock);
  1628. }