writeback.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "writeback.h"
  12. #include <linux/delay.h>
  13. #include <linux/kthread.h>
  14. #include <linux/sched/clock.h>
  15. #include <trace/events/bcache.h>
  16. /* Rate limiting */
  17. static void __update_writeback_rate(struct cached_dev *dc)
  18. {
  19. struct cache_set *c = dc->disk.c;
  20. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  21. uint64_t cache_dirty_target =
  22. div_u64(cache_sectors * dc->writeback_percent, 100);
  23. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  24. c->cached_dev_sectors);
  25. /* PD controller */
  26. int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  27. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  28. int64_t proportional = dirty - target;
  29. int64_t change;
  30. dc->disk.sectors_dirty_last = dirty;
  31. /* Scale to sectors per second */
  32. proportional *= dc->writeback_rate_update_seconds;
  33. proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
  34. derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
  35. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  36. (dc->writeback_rate_d_term /
  37. dc->writeback_rate_update_seconds) ?: 1, 0);
  38. derivative *= dc->writeback_rate_d_term;
  39. derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
  40. change = proportional + derivative;
  41. /* Don't increase writeback rate if the device isn't keeping up */
  42. if (change > 0 &&
  43. time_after64(local_clock(),
  44. dc->writeback_rate.next + NSEC_PER_MSEC))
  45. change = 0;
  46. dc->writeback_rate.rate =
  47. clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
  48. 1, NSEC_PER_MSEC);
  49. dc->writeback_rate_proportional = proportional;
  50. dc->writeback_rate_derivative = derivative;
  51. dc->writeback_rate_change = change;
  52. dc->writeback_rate_target = target;
  53. }
  54. static void update_writeback_rate(struct work_struct *work)
  55. {
  56. struct cached_dev *dc = container_of(to_delayed_work(work),
  57. struct cached_dev,
  58. writeback_rate_update);
  59. down_read(&dc->writeback_lock);
  60. if (atomic_read(&dc->has_dirty) &&
  61. dc->writeback_percent)
  62. __update_writeback_rate(dc);
  63. up_read(&dc->writeback_lock);
  64. schedule_delayed_work(&dc->writeback_rate_update,
  65. dc->writeback_rate_update_seconds * HZ);
  66. }
  67. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  68. {
  69. if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
  70. !dc->writeback_percent)
  71. return 0;
  72. return bch_next_delay(&dc->writeback_rate, sectors);
  73. }
  74. struct dirty_io {
  75. struct closure cl;
  76. struct cached_dev *dc;
  77. struct bio bio;
  78. };
  79. static void dirty_init(struct keybuf_key *w)
  80. {
  81. struct dirty_io *io = w->private;
  82. struct bio *bio = &io->bio;
  83. bio_init(bio, bio->bi_inline_vecs,
  84. DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
  85. if (!io->dc->writeback_percent)
  86. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  87. bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
  88. bio->bi_private = w;
  89. bch_bio_map(bio, NULL);
  90. }
  91. static void dirty_io_destructor(struct closure *cl)
  92. {
  93. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  94. kfree(io);
  95. }
  96. static void write_dirty_finish(struct closure *cl)
  97. {
  98. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  99. struct keybuf_key *w = io->bio.bi_private;
  100. struct cached_dev *dc = io->dc;
  101. bio_free_pages(&io->bio);
  102. /* This is kind of a dumb way of signalling errors. */
  103. if (KEY_DIRTY(&w->key)) {
  104. int ret;
  105. unsigned i;
  106. struct keylist keys;
  107. bch_keylist_init(&keys);
  108. bkey_copy(keys.top, &w->key);
  109. SET_KEY_DIRTY(keys.top, false);
  110. bch_keylist_push(&keys);
  111. for (i = 0; i < KEY_PTRS(&w->key); i++)
  112. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  113. ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
  114. if (ret)
  115. trace_bcache_writeback_collision(&w->key);
  116. atomic_long_inc(ret
  117. ? &dc->disk.c->writeback_keys_failed
  118. : &dc->disk.c->writeback_keys_done);
  119. }
  120. bch_keybuf_del(&dc->writeback_keys, w);
  121. up(&dc->in_flight);
  122. closure_return_with_destructor(cl, dirty_io_destructor);
  123. }
  124. static void dirty_endio(struct bio *bio)
  125. {
  126. struct keybuf_key *w = bio->bi_private;
  127. struct dirty_io *io = w->private;
  128. if (bio->bi_error)
  129. SET_KEY_DIRTY(&w->key, false);
  130. closure_put(&io->cl);
  131. }
  132. static void write_dirty(struct closure *cl)
  133. {
  134. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  135. struct keybuf_key *w = io->bio.bi_private;
  136. dirty_init(w);
  137. bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
  138. io->bio.bi_iter.bi_sector = KEY_START(&w->key);
  139. io->bio.bi_bdev = io->dc->bdev;
  140. io->bio.bi_end_io = dirty_endio;
  141. closure_bio_submit(&io->bio, cl);
  142. continue_at(cl, write_dirty_finish, system_wq);
  143. }
  144. static void read_dirty_endio(struct bio *bio)
  145. {
  146. struct keybuf_key *w = bio->bi_private;
  147. struct dirty_io *io = w->private;
  148. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  149. bio->bi_error, "reading dirty data from cache");
  150. dirty_endio(bio);
  151. }
  152. static void read_dirty_submit(struct closure *cl)
  153. {
  154. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  155. closure_bio_submit(&io->bio, cl);
  156. continue_at(cl, write_dirty, system_wq);
  157. }
  158. static void read_dirty(struct cached_dev *dc)
  159. {
  160. unsigned delay = 0;
  161. struct keybuf_key *w;
  162. struct dirty_io *io;
  163. struct closure cl;
  164. closure_init_stack(&cl);
  165. /*
  166. * XXX: if we error, background writeback just spins. Should use some
  167. * mempools.
  168. */
  169. while (!kthread_should_stop()) {
  170. w = bch_keybuf_next(&dc->writeback_keys);
  171. if (!w)
  172. break;
  173. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  174. if (KEY_START(&w->key) != dc->last_read ||
  175. jiffies_to_msecs(delay) > 50)
  176. while (!kthread_should_stop() && delay)
  177. delay = schedule_timeout_interruptible(delay);
  178. dc->last_read = KEY_OFFSET(&w->key);
  179. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  180. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  181. GFP_KERNEL);
  182. if (!io)
  183. goto err;
  184. w->private = io;
  185. io->dc = dc;
  186. dirty_init(w);
  187. bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
  188. io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
  189. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  190. &w->key, 0)->bdev;
  191. io->bio.bi_end_io = read_dirty_endio;
  192. if (bio_alloc_pages(&io->bio, GFP_KERNEL))
  193. goto err_free;
  194. trace_bcache_writeback(&w->key);
  195. down(&dc->in_flight);
  196. closure_call(&io->cl, read_dirty_submit, NULL, &cl);
  197. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  198. }
  199. if (0) {
  200. err_free:
  201. kfree(w->private);
  202. err:
  203. bch_keybuf_del(&dc->writeback_keys, w);
  204. }
  205. /*
  206. * Wait for outstanding writeback IOs to finish (and keybuf slots to be
  207. * freed) before refilling again
  208. */
  209. closure_sync(&cl);
  210. }
  211. /* Scan for dirty data */
  212. void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
  213. uint64_t offset, int nr_sectors)
  214. {
  215. struct bcache_device *d = c->devices[inode];
  216. unsigned stripe_offset, stripe, sectors_dirty;
  217. if (!d)
  218. return;
  219. stripe = offset_to_stripe(d, offset);
  220. stripe_offset = offset & (d->stripe_size - 1);
  221. while (nr_sectors) {
  222. int s = min_t(unsigned, abs(nr_sectors),
  223. d->stripe_size - stripe_offset);
  224. if (nr_sectors < 0)
  225. s = -s;
  226. if (stripe >= d->nr_stripes)
  227. return;
  228. sectors_dirty = atomic_add_return(s,
  229. d->stripe_sectors_dirty + stripe);
  230. if (sectors_dirty == d->stripe_size)
  231. set_bit(stripe, d->full_dirty_stripes);
  232. else
  233. clear_bit(stripe, d->full_dirty_stripes);
  234. nr_sectors -= s;
  235. stripe_offset = 0;
  236. stripe++;
  237. }
  238. }
  239. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  240. {
  241. struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
  242. BUG_ON(KEY_INODE(k) != dc->disk.id);
  243. return KEY_DIRTY(k);
  244. }
  245. static void refill_full_stripes(struct cached_dev *dc)
  246. {
  247. struct keybuf *buf = &dc->writeback_keys;
  248. unsigned start_stripe, stripe, next_stripe;
  249. bool wrapped = false;
  250. stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
  251. if (stripe >= dc->disk.nr_stripes)
  252. stripe = 0;
  253. start_stripe = stripe;
  254. while (1) {
  255. stripe = find_next_bit(dc->disk.full_dirty_stripes,
  256. dc->disk.nr_stripes, stripe);
  257. if (stripe == dc->disk.nr_stripes)
  258. goto next;
  259. next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
  260. dc->disk.nr_stripes, stripe);
  261. buf->last_scanned = KEY(dc->disk.id,
  262. stripe * dc->disk.stripe_size, 0);
  263. bch_refill_keybuf(dc->disk.c, buf,
  264. &KEY(dc->disk.id,
  265. next_stripe * dc->disk.stripe_size, 0),
  266. dirty_pred);
  267. if (array_freelist_empty(&buf->freelist))
  268. return;
  269. stripe = next_stripe;
  270. next:
  271. if (wrapped && stripe > start_stripe)
  272. return;
  273. if (stripe == dc->disk.nr_stripes) {
  274. stripe = 0;
  275. wrapped = true;
  276. }
  277. }
  278. }
  279. /*
  280. * Returns true if we scanned the entire disk
  281. */
  282. static bool refill_dirty(struct cached_dev *dc)
  283. {
  284. struct keybuf *buf = &dc->writeback_keys;
  285. struct bkey start = KEY(dc->disk.id, 0, 0);
  286. struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
  287. struct bkey start_pos;
  288. /*
  289. * make sure keybuf pos is inside the range for this disk - at bringup
  290. * we might not be attached yet so this disk's inode nr isn't
  291. * initialized then
  292. */
  293. if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
  294. bkey_cmp(&buf->last_scanned, &end) > 0)
  295. buf->last_scanned = start;
  296. if (dc->partial_stripes_expensive) {
  297. refill_full_stripes(dc);
  298. if (array_freelist_empty(&buf->freelist))
  299. return false;
  300. }
  301. start_pos = buf->last_scanned;
  302. bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
  303. if (bkey_cmp(&buf->last_scanned, &end) < 0)
  304. return false;
  305. /*
  306. * If we get to the end start scanning again from the beginning, and
  307. * only scan up to where we initially started scanning from:
  308. */
  309. buf->last_scanned = start;
  310. bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
  311. return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
  312. }
  313. static int bch_writeback_thread(void *arg)
  314. {
  315. struct cached_dev *dc = arg;
  316. bool searched_full_index;
  317. while (!kthread_should_stop()) {
  318. down_write(&dc->writeback_lock);
  319. if (!atomic_read(&dc->has_dirty) ||
  320. (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
  321. !dc->writeback_running)) {
  322. up_write(&dc->writeback_lock);
  323. set_current_state(TASK_INTERRUPTIBLE);
  324. if (kthread_should_stop())
  325. return 0;
  326. schedule();
  327. continue;
  328. }
  329. searched_full_index = refill_dirty(dc);
  330. if (searched_full_index &&
  331. RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
  332. atomic_set(&dc->has_dirty, 0);
  333. cached_dev_put(dc);
  334. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  335. bch_write_bdev_super(dc, NULL);
  336. }
  337. up_write(&dc->writeback_lock);
  338. bch_ratelimit_reset(&dc->writeback_rate);
  339. read_dirty(dc);
  340. if (searched_full_index) {
  341. unsigned delay = dc->writeback_delay * HZ;
  342. while (delay &&
  343. !kthread_should_stop() &&
  344. !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
  345. delay = schedule_timeout_interruptible(delay);
  346. }
  347. }
  348. return 0;
  349. }
  350. /* Init */
  351. struct sectors_dirty_init {
  352. struct btree_op op;
  353. unsigned inode;
  354. };
  355. static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
  356. struct bkey *k)
  357. {
  358. struct sectors_dirty_init *op = container_of(_op,
  359. struct sectors_dirty_init, op);
  360. if (KEY_INODE(k) > op->inode)
  361. return MAP_DONE;
  362. if (KEY_DIRTY(k))
  363. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  364. KEY_START(k), KEY_SIZE(k));
  365. return MAP_CONTINUE;
  366. }
  367. void bch_sectors_dirty_init(struct cached_dev *dc)
  368. {
  369. struct sectors_dirty_init op;
  370. bch_btree_op_init(&op.op, -1);
  371. op.inode = dc->disk.id;
  372. bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
  373. sectors_dirty_init_fn, 0);
  374. dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
  375. }
  376. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  377. {
  378. sema_init(&dc->in_flight, 64);
  379. init_rwsem(&dc->writeback_lock);
  380. bch_keybuf_init(&dc->writeback_keys);
  381. dc->writeback_metadata = true;
  382. dc->writeback_running = true;
  383. dc->writeback_percent = 10;
  384. dc->writeback_delay = 30;
  385. dc->writeback_rate.rate = 1024;
  386. dc->writeback_rate_update_seconds = 5;
  387. dc->writeback_rate_d_term = 30;
  388. dc->writeback_rate_p_term_inverse = 6000;
  389. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  390. }
  391. int bch_cached_dev_writeback_start(struct cached_dev *dc)
  392. {
  393. dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
  394. "bcache_writeback");
  395. if (IS_ERR(dc->writeback_thread))
  396. return PTR_ERR(dc->writeback_thread);
  397. schedule_delayed_work(&dc->writeback_rate_update,
  398. dc->writeback_rate_update_seconds * HZ);
  399. bch_writeback_queue(dc);
  400. return 0;
  401. }