btree.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "extents.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/hash.h>
  29. #include <linux/kthread.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/random.h>
  32. #include <linux/rcupdate.h>
  33. #include <linux/sched/clock.h>
  34. #include <linux/rculist.h>
  35. #include <trace/events/bcache.h>
  36. /*
  37. * Todo:
  38. * register_bcache: Return errors out to userspace correctly
  39. *
  40. * Writeback: don't undirty key until after a cache flush
  41. *
  42. * Create an iterator for key pointers
  43. *
  44. * On btree write error, mark bucket such that it won't be freed from the cache
  45. *
  46. * Journalling:
  47. * Check for bad keys in replay
  48. * Propagate barriers
  49. * Refcount journal entries in journal_replay
  50. *
  51. * Garbage collection:
  52. * Finish incremental gc
  53. * Gc should free old UUIDs, data for invalid UUIDs
  54. *
  55. * Provide a way to list backing device UUIDs we have data cached for, and
  56. * probably how long it's been since we've seen them, and a way to invalidate
  57. * dirty data for devices that will never be attached again
  58. *
  59. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  60. * that based on that and how much dirty data we have we can keep writeback
  61. * from being starved
  62. *
  63. * Add a tracepoint or somesuch to watch for writeback starvation
  64. *
  65. * When btree depth > 1 and splitting an interior node, we have to make sure
  66. * alloc_bucket() cannot fail. This should be true but is not completely
  67. * obvious.
  68. *
  69. * Plugging?
  70. *
  71. * If data write is less than hard sector size of ssd, round up offset in open
  72. * bucket to the next whole sector
  73. *
  74. * Superblock needs to be fleshed out for multiple cache devices
  75. *
  76. * Add a sysfs tunable for the number of writeback IOs in flight
  77. *
  78. * Add a sysfs tunable for the number of open data buckets
  79. *
  80. * IO tracking: Can we track when one process is doing io on behalf of another?
  81. * IO tracking: Don't use just an average, weigh more recent stuff higher
  82. *
  83. * Test module load/unload
  84. */
  85. #define MAX_NEED_GC 64
  86. #define MAX_SAVE_PRIO 72
  87. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  88. #define PTR_HASH(c, k) \
  89. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  90. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  91. /*
  92. * These macros are for recursing down the btree - they handle the details of
  93. * locking and looking up nodes in the cache for you. They're best treated as
  94. * mere syntax when reading code that uses them.
  95. *
  96. * op->lock determines whether we take a read or a write lock at a given depth.
  97. * If you've got a read lock and find that you need a write lock (i.e. you're
  98. * going to have to split), set op->lock and return -EINTR; btree_root() will
  99. * call you again and you'll have the correct lock.
  100. */
  101. /**
  102. * btree - recurse down the btree on a specified key
  103. * @fn: function to call, which will be passed the child node
  104. * @key: key to recurse on
  105. * @b: parent btree node
  106. * @op: pointer to struct btree_op
  107. */
  108. #define btree(fn, key, b, op, ...) \
  109. ({ \
  110. int _r, l = (b)->level - 1; \
  111. bool _w = l <= (op)->lock; \
  112. struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
  113. _w, b); \
  114. if (!IS_ERR(_child)) { \
  115. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  116. rw_unlock(_w, _child); \
  117. } else \
  118. _r = PTR_ERR(_child); \
  119. _r; \
  120. })
  121. /**
  122. * btree_root - call a function on the root of the btree
  123. * @fn: function to call, which will be passed the child node
  124. * @c: cache set
  125. * @op: pointer to struct btree_op
  126. */
  127. #define btree_root(fn, c, op, ...) \
  128. ({ \
  129. int _r = -EINTR; \
  130. do { \
  131. struct btree *_b = (c)->root; \
  132. bool _w = insert_lock(op, _b); \
  133. rw_lock(_w, _b, _b->level); \
  134. if (_b == (c)->root && \
  135. _w == insert_lock(op, _b)) { \
  136. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  137. } \
  138. rw_unlock(_w, _b); \
  139. bch_cannibalize_unlock(c); \
  140. if (_r == -EINTR) \
  141. schedule(); \
  142. } while (_r == -EINTR); \
  143. \
  144. finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
  145. _r; \
  146. })
  147. static inline struct bset *write_block(struct btree *b)
  148. {
  149. return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
  150. }
  151. static void bch_btree_init_next(struct btree *b)
  152. {
  153. /* If not a leaf node, always sort */
  154. if (b->level && b->keys.nsets)
  155. bch_btree_sort(&b->keys, &b->c->sort);
  156. else
  157. bch_btree_sort_lazy(&b->keys, &b->c->sort);
  158. if (b->written < btree_blocks(b))
  159. bch_bset_init_next(&b->keys, write_block(b),
  160. bset_magic(&b->c->sb));
  161. }
  162. /* Btree key manipulation */
  163. void bkey_put(struct cache_set *c, struct bkey *k)
  164. {
  165. unsigned i;
  166. for (i = 0; i < KEY_PTRS(k); i++)
  167. if (ptr_available(c, k, i))
  168. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  169. }
  170. /* Btree IO */
  171. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  172. {
  173. uint64_t crc = b->key.ptr[0];
  174. void *data = (void *) i + 8, *end = bset_bkey_last(i);
  175. crc = bch_crc64_update(crc, data, end - data);
  176. return crc ^ 0xffffffffffffffffULL;
  177. }
  178. void bch_btree_node_read_done(struct btree *b)
  179. {
  180. const char *err = "bad btree header";
  181. struct bset *i = btree_bset_first(b);
  182. struct btree_iter *iter;
  183. iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
  184. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  185. iter->used = 0;
  186. #ifdef CONFIG_BCACHE_DEBUG
  187. iter->b = &b->keys;
  188. #endif
  189. if (!i->seq)
  190. goto err;
  191. for (;
  192. b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
  193. i = write_block(b)) {
  194. err = "unsupported bset version";
  195. if (i->version > BCACHE_BSET_VERSION)
  196. goto err;
  197. err = "bad btree header";
  198. if (b->written + set_blocks(i, block_bytes(b->c)) >
  199. btree_blocks(b))
  200. goto err;
  201. err = "bad magic";
  202. if (i->magic != bset_magic(&b->c->sb))
  203. goto err;
  204. err = "bad checksum";
  205. switch (i->version) {
  206. case 0:
  207. if (i->csum != csum_set(i))
  208. goto err;
  209. break;
  210. case BCACHE_BSET_VERSION:
  211. if (i->csum != btree_csum_set(b, i))
  212. goto err;
  213. break;
  214. }
  215. err = "empty set";
  216. if (i != b->keys.set[0].data && !i->keys)
  217. goto err;
  218. bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
  219. b->written += set_blocks(i, block_bytes(b->c));
  220. }
  221. err = "corrupted btree";
  222. for (i = write_block(b);
  223. bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
  224. i = ((void *) i) + block_bytes(b->c))
  225. if (i->seq == b->keys.set[0].data->seq)
  226. goto err;
  227. bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
  228. i = b->keys.set[0].data;
  229. err = "short btree key";
  230. if (b->keys.set[0].size &&
  231. bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
  232. goto err;
  233. if (b->written < btree_blocks(b))
  234. bch_bset_init_next(&b->keys, write_block(b),
  235. bset_magic(&b->c->sb));
  236. out:
  237. mempool_free(iter, b->c->fill_iter);
  238. return;
  239. err:
  240. set_btree_node_io_error(b);
  241. bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
  242. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  243. bset_block_offset(b, i), i->keys);
  244. goto out;
  245. }
  246. static void btree_node_read_endio(struct bio *bio)
  247. {
  248. struct closure *cl = bio->bi_private;
  249. closure_put(cl);
  250. }
  251. static void bch_btree_node_read(struct btree *b)
  252. {
  253. uint64_t start_time = local_clock();
  254. struct closure cl;
  255. struct bio *bio;
  256. trace_bcache_btree_read(b);
  257. closure_init_stack(&cl);
  258. bio = bch_bbio_alloc(b->c);
  259. bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
  260. bio->bi_end_io = btree_node_read_endio;
  261. bio->bi_private = &cl;
  262. bio->bi_opf = REQ_OP_READ | REQ_META;
  263. bch_bio_map(bio, b->keys.set[0].data);
  264. bch_submit_bbio(bio, b->c, &b->key, 0);
  265. closure_sync(&cl);
  266. if (bio->bi_error)
  267. set_btree_node_io_error(b);
  268. bch_bbio_free(bio, b->c);
  269. if (btree_node_io_error(b))
  270. goto err;
  271. bch_btree_node_read_done(b);
  272. bch_time_stats_update(&b->c->btree_read_time, start_time);
  273. return;
  274. err:
  275. bch_cache_set_error(b->c, "io error reading bucket %zu",
  276. PTR_BUCKET_NR(b->c, &b->key, 0));
  277. }
  278. static void btree_complete_write(struct btree *b, struct btree_write *w)
  279. {
  280. if (w->prio_blocked &&
  281. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  282. wake_up_allocators(b->c);
  283. if (w->journal) {
  284. atomic_dec_bug(w->journal);
  285. __closure_wake_up(&b->c->journal.wait);
  286. }
  287. w->prio_blocked = 0;
  288. w->journal = NULL;
  289. }
  290. static void btree_node_write_unlock(struct closure *cl)
  291. {
  292. struct btree *b = container_of(cl, struct btree, io);
  293. up(&b->io_mutex);
  294. }
  295. static void __btree_node_write_done(struct closure *cl)
  296. {
  297. struct btree *b = container_of(cl, struct btree, io);
  298. struct btree_write *w = btree_prev_write(b);
  299. bch_bbio_free(b->bio, b->c);
  300. b->bio = NULL;
  301. btree_complete_write(b, w);
  302. if (btree_node_dirty(b))
  303. schedule_delayed_work(&b->work, 30 * HZ);
  304. closure_return_with_destructor(cl, btree_node_write_unlock);
  305. }
  306. static void btree_node_write_done(struct closure *cl)
  307. {
  308. struct btree *b = container_of(cl, struct btree, io);
  309. bio_free_pages(b->bio);
  310. __btree_node_write_done(cl);
  311. }
  312. static void btree_node_write_endio(struct bio *bio)
  313. {
  314. struct closure *cl = bio->bi_private;
  315. struct btree *b = container_of(cl, struct btree, io);
  316. if (bio->bi_error)
  317. set_btree_node_io_error(b);
  318. bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
  319. closure_put(cl);
  320. }
  321. static void do_btree_node_write(struct btree *b)
  322. {
  323. struct closure *cl = &b->io;
  324. struct bset *i = btree_bset_last(b);
  325. BKEY_PADDED(key) k;
  326. i->version = BCACHE_BSET_VERSION;
  327. i->csum = btree_csum_set(b, i);
  328. BUG_ON(b->bio);
  329. b->bio = bch_bbio_alloc(b->c);
  330. b->bio->bi_end_io = btree_node_write_endio;
  331. b->bio->bi_private = cl;
  332. b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
  333. b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
  334. bch_bio_map(b->bio, i);
  335. /*
  336. * If we're appending to a leaf node, we don't technically need FUA -
  337. * this write just needs to be persisted before the next journal write,
  338. * which will be marked FLUSH|FUA.
  339. *
  340. * Similarly if we're writing a new btree root - the pointer is going to
  341. * be in the next journal entry.
  342. *
  343. * But if we're writing a new btree node (that isn't a root) or
  344. * appending to a non leaf btree node, we need either FUA or a flush
  345. * when we write the parent with the new pointer. FUA is cheaper than a
  346. * flush, and writes appending to leaf nodes aren't blocking anything so
  347. * just make all btree node writes FUA to keep things sane.
  348. */
  349. bkey_copy(&k.key, &b->key);
  350. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
  351. bset_sector_offset(&b->keys, i));
  352. if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
  353. int j;
  354. struct bio_vec *bv;
  355. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  356. bio_for_each_segment_all(bv, b->bio, j)
  357. memcpy(page_address(bv->bv_page),
  358. base + j * PAGE_SIZE, PAGE_SIZE);
  359. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  360. continue_at(cl, btree_node_write_done, NULL);
  361. } else {
  362. b->bio->bi_vcnt = 0;
  363. bch_bio_map(b->bio, i);
  364. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  365. closure_sync(cl);
  366. continue_at_nobarrier(cl, __btree_node_write_done, NULL);
  367. }
  368. }
  369. void __bch_btree_node_write(struct btree *b, struct closure *parent)
  370. {
  371. struct bset *i = btree_bset_last(b);
  372. lockdep_assert_held(&b->write_lock);
  373. trace_bcache_btree_write(b);
  374. BUG_ON(current->bio_list);
  375. BUG_ON(b->written >= btree_blocks(b));
  376. BUG_ON(b->written && !i->keys);
  377. BUG_ON(btree_bset_first(b)->seq != i->seq);
  378. bch_check_keys(&b->keys, "writing");
  379. cancel_delayed_work(&b->work);
  380. /* If caller isn't waiting for write, parent refcount is cache set */
  381. down(&b->io_mutex);
  382. closure_init(&b->io, parent ?: &b->c->cl);
  383. clear_bit(BTREE_NODE_dirty, &b->flags);
  384. change_bit(BTREE_NODE_write_idx, &b->flags);
  385. do_btree_node_write(b);
  386. atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
  387. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  388. b->written += set_blocks(i, block_bytes(b->c));
  389. }
  390. void bch_btree_node_write(struct btree *b, struct closure *parent)
  391. {
  392. unsigned nsets = b->keys.nsets;
  393. lockdep_assert_held(&b->lock);
  394. __bch_btree_node_write(b, parent);
  395. /*
  396. * do verify if there was more than one set initially (i.e. we did a
  397. * sort) and we sorted down to a single set:
  398. */
  399. if (nsets && !b->keys.nsets)
  400. bch_btree_verify(b);
  401. bch_btree_init_next(b);
  402. }
  403. static void bch_btree_node_write_sync(struct btree *b)
  404. {
  405. struct closure cl;
  406. closure_init_stack(&cl);
  407. mutex_lock(&b->write_lock);
  408. bch_btree_node_write(b, &cl);
  409. mutex_unlock(&b->write_lock);
  410. closure_sync(&cl);
  411. }
  412. static void btree_node_write_work(struct work_struct *w)
  413. {
  414. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  415. mutex_lock(&b->write_lock);
  416. if (btree_node_dirty(b))
  417. __bch_btree_node_write(b, NULL);
  418. mutex_unlock(&b->write_lock);
  419. }
  420. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  421. {
  422. struct bset *i = btree_bset_last(b);
  423. struct btree_write *w = btree_current_write(b);
  424. lockdep_assert_held(&b->write_lock);
  425. BUG_ON(!b->written);
  426. BUG_ON(!i->keys);
  427. if (!btree_node_dirty(b))
  428. schedule_delayed_work(&b->work, 30 * HZ);
  429. set_btree_node_dirty(b);
  430. if (journal_ref) {
  431. if (w->journal &&
  432. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  433. atomic_dec_bug(w->journal);
  434. w->journal = NULL;
  435. }
  436. if (!w->journal) {
  437. w->journal = journal_ref;
  438. atomic_inc(w->journal);
  439. }
  440. }
  441. /* Force write if set is too big */
  442. if (set_bytes(i) > PAGE_SIZE - 48 &&
  443. !current->bio_list)
  444. bch_btree_node_write(b, NULL);
  445. }
  446. /*
  447. * Btree in memory cache - allocation/freeing
  448. * mca -> memory cache
  449. */
  450. #define mca_reserve(c) (((c->root && c->root->level) \
  451. ? c->root->level : 1) * 8 + 16)
  452. #define mca_can_free(c) \
  453. max_t(int, 0, c->btree_cache_used - mca_reserve(c))
  454. static void mca_data_free(struct btree *b)
  455. {
  456. BUG_ON(b->io_mutex.count != 1);
  457. bch_btree_keys_free(&b->keys);
  458. b->c->btree_cache_used--;
  459. list_move(&b->list, &b->c->btree_cache_freed);
  460. }
  461. static void mca_bucket_free(struct btree *b)
  462. {
  463. BUG_ON(btree_node_dirty(b));
  464. b->key.ptr[0] = 0;
  465. hlist_del_init_rcu(&b->hash);
  466. list_move(&b->list, &b->c->btree_cache_freeable);
  467. }
  468. static unsigned btree_order(struct bkey *k)
  469. {
  470. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  471. }
  472. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  473. {
  474. if (!bch_btree_keys_alloc(&b->keys,
  475. max_t(unsigned,
  476. ilog2(b->c->btree_pages),
  477. btree_order(k)),
  478. gfp)) {
  479. b->c->btree_cache_used++;
  480. list_move(&b->list, &b->c->btree_cache);
  481. } else {
  482. list_move(&b->list, &b->c->btree_cache_freed);
  483. }
  484. }
  485. static struct btree *mca_bucket_alloc(struct cache_set *c,
  486. struct bkey *k, gfp_t gfp)
  487. {
  488. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  489. if (!b)
  490. return NULL;
  491. init_rwsem(&b->lock);
  492. lockdep_set_novalidate_class(&b->lock);
  493. mutex_init(&b->write_lock);
  494. lockdep_set_novalidate_class(&b->write_lock);
  495. INIT_LIST_HEAD(&b->list);
  496. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  497. b->c = c;
  498. sema_init(&b->io_mutex, 1);
  499. mca_data_alloc(b, k, gfp);
  500. return b;
  501. }
  502. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  503. {
  504. struct closure cl;
  505. closure_init_stack(&cl);
  506. lockdep_assert_held(&b->c->bucket_lock);
  507. if (!down_write_trylock(&b->lock))
  508. return -ENOMEM;
  509. BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
  510. if (b->keys.page_order < min_order)
  511. goto out_unlock;
  512. if (!flush) {
  513. if (btree_node_dirty(b))
  514. goto out_unlock;
  515. if (down_trylock(&b->io_mutex))
  516. goto out_unlock;
  517. up(&b->io_mutex);
  518. }
  519. mutex_lock(&b->write_lock);
  520. if (btree_node_dirty(b))
  521. __bch_btree_node_write(b, &cl);
  522. mutex_unlock(&b->write_lock);
  523. closure_sync(&cl);
  524. /* wait for any in flight btree write */
  525. down(&b->io_mutex);
  526. up(&b->io_mutex);
  527. return 0;
  528. out_unlock:
  529. rw_unlock(true, b);
  530. return -ENOMEM;
  531. }
  532. static unsigned long bch_mca_scan(struct shrinker *shrink,
  533. struct shrink_control *sc)
  534. {
  535. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  536. struct btree *b, *t;
  537. unsigned long i, nr = sc->nr_to_scan;
  538. unsigned long freed = 0;
  539. if (c->shrinker_disabled)
  540. return SHRINK_STOP;
  541. if (c->btree_cache_alloc_lock)
  542. return SHRINK_STOP;
  543. /* Return -1 if we can't do anything right now */
  544. if (sc->gfp_mask & __GFP_IO)
  545. mutex_lock(&c->bucket_lock);
  546. else if (!mutex_trylock(&c->bucket_lock))
  547. return -1;
  548. /*
  549. * It's _really_ critical that we don't free too many btree nodes - we
  550. * have to always leave ourselves a reserve. The reserve is how we
  551. * guarantee that allocating memory for a new btree node can always
  552. * succeed, so that inserting keys into the btree can always succeed and
  553. * IO can always make forward progress:
  554. */
  555. nr /= c->btree_pages;
  556. nr = min_t(unsigned long, nr, mca_can_free(c));
  557. i = 0;
  558. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  559. if (freed >= nr)
  560. break;
  561. if (++i > 3 &&
  562. !mca_reap(b, 0, false)) {
  563. mca_data_free(b);
  564. rw_unlock(true, b);
  565. freed++;
  566. }
  567. }
  568. for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
  569. if (list_empty(&c->btree_cache))
  570. goto out;
  571. b = list_first_entry(&c->btree_cache, struct btree, list);
  572. list_rotate_left(&c->btree_cache);
  573. if (!b->accessed &&
  574. !mca_reap(b, 0, false)) {
  575. mca_bucket_free(b);
  576. mca_data_free(b);
  577. rw_unlock(true, b);
  578. freed++;
  579. } else
  580. b->accessed = 0;
  581. }
  582. out:
  583. mutex_unlock(&c->bucket_lock);
  584. return freed;
  585. }
  586. static unsigned long bch_mca_count(struct shrinker *shrink,
  587. struct shrink_control *sc)
  588. {
  589. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  590. if (c->shrinker_disabled)
  591. return 0;
  592. if (c->btree_cache_alloc_lock)
  593. return 0;
  594. return mca_can_free(c) * c->btree_pages;
  595. }
  596. void bch_btree_cache_free(struct cache_set *c)
  597. {
  598. struct btree *b;
  599. struct closure cl;
  600. closure_init_stack(&cl);
  601. if (c->shrink.list.next)
  602. unregister_shrinker(&c->shrink);
  603. mutex_lock(&c->bucket_lock);
  604. #ifdef CONFIG_BCACHE_DEBUG
  605. if (c->verify_data)
  606. list_move(&c->verify_data->list, &c->btree_cache);
  607. free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
  608. #endif
  609. list_splice(&c->btree_cache_freeable,
  610. &c->btree_cache);
  611. while (!list_empty(&c->btree_cache)) {
  612. b = list_first_entry(&c->btree_cache, struct btree, list);
  613. if (btree_node_dirty(b))
  614. btree_complete_write(b, btree_current_write(b));
  615. clear_bit(BTREE_NODE_dirty, &b->flags);
  616. mca_data_free(b);
  617. }
  618. while (!list_empty(&c->btree_cache_freed)) {
  619. b = list_first_entry(&c->btree_cache_freed,
  620. struct btree, list);
  621. list_del(&b->list);
  622. cancel_delayed_work_sync(&b->work);
  623. kfree(b);
  624. }
  625. mutex_unlock(&c->bucket_lock);
  626. }
  627. int bch_btree_cache_alloc(struct cache_set *c)
  628. {
  629. unsigned i;
  630. for (i = 0; i < mca_reserve(c); i++)
  631. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  632. return -ENOMEM;
  633. list_splice_init(&c->btree_cache,
  634. &c->btree_cache_freeable);
  635. #ifdef CONFIG_BCACHE_DEBUG
  636. mutex_init(&c->verify_lock);
  637. c->verify_ondisk = (void *)
  638. __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
  639. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  640. if (c->verify_data &&
  641. c->verify_data->keys.set->data)
  642. list_del_init(&c->verify_data->list);
  643. else
  644. c->verify_data = NULL;
  645. #endif
  646. c->shrink.count_objects = bch_mca_count;
  647. c->shrink.scan_objects = bch_mca_scan;
  648. c->shrink.seeks = 4;
  649. c->shrink.batch = c->btree_pages * 2;
  650. register_shrinker(&c->shrink);
  651. return 0;
  652. }
  653. /* Btree in memory cache - hash table */
  654. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  655. {
  656. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  657. }
  658. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  659. {
  660. struct btree *b;
  661. rcu_read_lock();
  662. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  663. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  664. goto out;
  665. b = NULL;
  666. out:
  667. rcu_read_unlock();
  668. return b;
  669. }
  670. static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
  671. {
  672. struct task_struct *old;
  673. old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
  674. if (old && old != current) {
  675. if (op)
  676. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  677. TASK_UNINTERRUPTIBLE);
  678. return -EINTR;
  679. }
  680. return 0;
  681. }
  682. static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
  683. struct bkey *k)
  684. {
  685. struct btree *b;
  686. trace_bcache_btree_cache_cannibalize(c);
  687. if (mca_cannibalize_lock(c, op))
  688. return ERR_PTR(-EINTR);
  689. list_for_each_entry_reverse(b, &c->btree_cache, list)
  690. if (!mca_reap(b, btree_order(k), false))
  691. return b;
  692. list_for_each_entry_reverse(b, &c->btree_cache, list)
  693. if (!mca_reap(b, btree_order(k), true))
  694. return b;
  695. WARN(1, "btree cache cannibalize failed\n");
  696. return ERR_PTR(-ENOMEM);
  697. }
  698. /*
  699. * We can only have one thread cannibalizing other cached btree nodes at a time,
  700. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  701. * cannibalize_bucket() will take. This means every time we unlock the root of
  702. * the btree, we need to release this lock if we have it held.
  703. */
  704. static void bch_cannibalize_unlock(struct cache_set *c)
  705. {
  706. if (c->btree_cache_alloc_lock == current) {
  707. c->btree_cache_alloc_lock = NULL;
  708. wake_up(&c->btree_cache_wait);
  709. }
  710. }
  711. static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
  712. struct bkey *k, int level)
  713. {
  714. struct btree *b;
  715. BUG_ON(current->bio_list);
  716. lockdep_assert_held(&c->bucket_lock);
  717. if (mca_find(c, k))
  718. return NULL;
  719. /* btree_free() doesn't free memory; it sticks the node on the end of
  720. * the list. Check if there's any freed nodes there:
  721. */
  722. list_for_each_entry(b, &c->btree_cache_freeable, list)
  723. if (!mca_reap(b, btree_order(k), false))
  724. goto out;
  725. /* We never free struct btree itself, just the memory that holds the on
  726. * disk node. Check the freed list before allocating a new one:
  727. */
  728. list_for_each_entry(b, &c->btree_cache_freed, list)
  729. if (!mca_reap(b, 0, false)) {
  730. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  731. if (!b->keys.set[0].data)
  732. goto err;
  733. else
  734. goto out;
  735. }
  736. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  737. if (!b)
  738. goto err;
  739. BUG_ON(!down_write_trylock(&b->lock));
  740. if (!b->keys.set->data)
  741. goto err;
  742. out:
  743. BUG_ON(b->io_mutex.count != 1);
  744. bkey_copy(&b->key, k);
  745. list_move(&b->list, &c->btree_cache);
  746. hlist_del_init_rcu(&b->hash);
  747. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  748. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  749. b->parent = (void *) ~0UL;
  750. b->flags = 0;
  751. b->written = 0;
  752. b->level = level;
  753. if (!b->level)
  754. bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
  755. &b->c->expensive_debug_checks);
  756. else
  757. bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
  758. &b->c->expensive_debug_checks);
  759. return b;
  760. err:
  761. if (b)
  762. rw_unlock(true, b);
  763. b = mca_cannibalize(c, op, k);
  764. if (!IS_ERR(b))
  765. goto out;
  766. return b;
  767. }
  768. /**
  769. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  770. * in from disk if necessary.
  771. *
  772. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  773. *
  774. * The btree node will have either a read or a write lock held, depending on
  775. * level and op->lock.
  776. */
  777. struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
  778. struct bkey *k, int level, bool write,
  779. struct btree *parent)
  780. {
  781. int i = 0;
  782. struct btree *b;
  783. BUG_ON(level < 0);
  784. retry:
  785. b = mca_find(c, k);
  786. if (!b) {
  787. if (current->bio_list)
  788. return ERR_PTR(-EAGAIN);
  789. mutex_lock(&c->bucket_lock);
  790. b = mca_alloc(c, op, k, level);
  791. mutex_unlock(&c->bucket_lock);
  792. if (!b)
  793. goto retry;
  794. if (IS_ERR(b))
  795. return b;
  796. bch_btree_node_read(b);
  797. if (!write)
  798. downgrade_write(&b->lock);
  799. } else {
  800. rw_lock(write, b, level);
  801. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  802. rw_unlock(write, b);
  803. goto retry;
  804. }
  805. BUG_ON(b->level != level);
  806. }
  807. b->parent = parent;
  808. b->accessed = 1;
  809. for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
  810. prefetch(b->keys.set[i].tree);
  811. prefetch(b->keys.set[i].data);
  812. }
  813. for (; i <= b->keys.nsets; i++)
  814. prefetch(b->keys.set[i].data);
  815. if (btree_node_io_error(b)) {
  816. rw_unlock(write, b);
  817. return ERR_PTR(-EIO);
  818. }
  819. BUG_ON(!b->written);
  820. return b;
  821. }
  822. static void btree_node_prefetch(struct btree *parent, struct bkey *k)
  823. {
  824. struct btree *b;
  825. mutex_lock(&parent->c->bucket_lock);
  826. b = mca_alloc(parent->c, NULL, k, parent->level - 1);
  827. mutex_unlock(&parent->c->bucket_lock);
  828. if (!IS_ERR_OR_NULL(b)) {
  829. b->parent = parent;
  830. bch_btree_node_read(b);
  831. rw_unlock(true, b);
  832. }
  833. }
  834. /* Btree alloc */
  835. static void btree_node_free(struct btree *b)
  836. {
  837. trace_bcache_btree_node_free(b);
  838. BUG_ON(b == b->c->root);
  839. mutex_lock(&b->write_lock);
  840. if (btree_node_dirty(b))
  841. btree_complete_write(b, btree_current_write(b));
  842. clear_bit(BTREE_NODE_dirty, &b->flags);
  843. mutex_unlock(&b->write_lock);
  844. cancel_delayed_work(&b->work);
  845. mutex_lock(&b->c->bucket_lock);
  846. bch_bucket_free(b->c, &b->key);
  847. mca_bucket_free(b);
  848. mutex_unlock(&b->c->bucket_lock);
  849. }
  850. struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
  851. int level, bool wait,
  852. struct btree *parent)
  853. {
  854. BKEY_PADDED(key) k;
  855. struct btree *b = ERR_PTR(-EAGAIN);
  856. mutex_lock(&c->bucket_lock);
  857. retry:
  858. if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
  859. goto err;
  860. bkey_put(c, &k.key);
  861. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  862. b = mca_alloc(c, op, &k.key, level);
  863. if (IS_ERR(b))
  864. goto err_free;
  865. if (!b) {
  866. cache_bug(c,
  867. "Tried to allocate bucket that was in btree cache");
  868. goto retry;
  869. }
  870. b->accessed = 1;
  871. b->parent = parent;
  872. bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
  873. mutex_unlock(&c->bucket_lock);
  874. trace_bcache_btree_node_alloc(b);
  875. return b;
  876. err_free:
  877. bch_bucket_free(c, &k.key);
  878. err:
  879. mutex_unlock(&c->bucket_lock);
  880. trace_bcache_btree_node_alloc_fail(c);
  881. return b;
  882. }
  883. static struct btree *bch_btree_node_alloc(struct cache_set *c,
  884. struct btree_op *op, int level,
  885. struct btree *parent)
  886. {
  887. return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
  888. }
  889. static struct btree *btree_node_alloc_replacement(struct btree *b,
  890. struct btree_op *op)
  891. {
  892. struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  893. if (!IS_ERR_OR_NULL(n)) {
  894. mutex_lock(&n->write_lock);
  895. bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
  896. bkey_copy_key(&n->key, &b->key);
  897. mutex_unlock(&n->write_lock);
  898. }
  899. return n;
  900. }
  901. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  902. {
  903. unsigned i;
  904. mutex_lock(&b->c->bucket_lock);
  905. atomic_inc(&b->c->prio_blocked);
  906. bkey_copy(k, &b->key);
  907. bkey_copy_key(k, &ZERO_KEY);
  908. for (i = 0; i < KEY_PTRS(k); i++)
  909. SET_PTR_GEN(k, i,
  910. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  911. PTR_BUCKET(b->c, &b->key, i)));
  912. mutex_unlock(&b->c->bucket_lock);
  913. }
  914. static int btree_check_reserve(struct btree *b, struct btree_op *op)
  915. {
  916. struct cache_set *c = b->c;
  917. struct cache *ca;
  918. unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
  919. mutex_lock(&c->bucket_lock);
  920. for_each_cache(ca, c, i)
  921. if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
  922. if (op)
  923. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  924. TASK_UNINTERRUPTIBLE);
  925. mutex_unlock(&c->bucket_lock);
  926. return -EINTR;
  927. }
  928. mutex_unlock(&c->bucket_lock);
  929. return mca_cannibalize_lock(b->c, op);
  930. }
  931. /* Garbage collection */
  932. static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
  933. struct bkey *k)
  934. {
  935. uint8_t stale = 0;
  936. unsigned i;
  937. struct bucket *g;
  938. /*
  939. * ptr_invalid() can't return true for the keys that mark btree nodes as
  940. * freed, but since ptr_bad() returns true we'll never actually use them
  941. * for anything and thus we don't want mark their pointers here
  942. */
  943. if (!bkey_cmp(k, &ZERO_KEY))
  944. return stale;
  945. for (i = 0; i < KEY_PTRS(k); i++) {
  946. if (!ptr_available(c, k, i))
  947. continue;
  948. g = PTR_BUCKET(c, k, i);
  949. if (gen_after(g->last_gc, PTR_GEN(k, i)))
  950. g->last_gc = PTR_GEN(k, i);
  951. if (ptr_stale(c, k, i)) {
  952. stale = max(stale, ptr_stale(c, k, i));
  953. continue;
  954. }
  955. cache_bug_on(GC_MARK(g) &&
  956. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  957. c, "inconsistent ptrs: mark = %llu, level = %i",
  958. GC_MARK(g), level);
  959. if (level)
  960. SET_GC_MARK(g, GC_MARK_METADATA);
  961. else if (KEY_DIRTY(k))
  962. SET_GC_MARK(g, GC_MARK_DIRTY);
  963. else if (!GC_MARK(g))
  964. SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
  965. /* guard against overflow */
  966. SET_GC_SECTORS_USED(g, min_t(unsigned,
  967. GC_SECTORS_USED(g) + KEY_SIZE(k),
  968. MAX_GC_SECTORS_USED));
  969. BUG_ON(!GC_SECTORS_USED(g));
  970. }
  971. return stale;
  972. }
  973. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  974. void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
  975. {
  976. unsigned i;
  977. for (i = 0; i < KEY_PTRS(k); i++)
  978. if (ptr_available(c, k, i) &&
  979. !ptr_stale(c, k, i)) {
  980. struct bucket *b = PTR_BUCKET(c, k, i);
  981. b->gen = PTR_GEN(k, i);
  982. if (level && bkey_cmp(k, &ZERO_KEY))
  983. b->prio = BTREE_PRIO;
  984. else if (!level && b->prio == BTREE_PRIO)
  985. b->prio = INITIAL_PRIO;
  986. }
  987. __bch_btree_mark_key(c, level, k);
  988. }
  989. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  990. {
  991. uint8_t stale = 0;
  992. unsigned keys = 0, good_keys = 0;
  993. struct bkey *k;
  994. struct btree_iter iter;
  995. struct bset_tree *t;
  996. gc->nodes++;
  997. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
  998. stale = max(stale, btree_mark_key(b, k));
  999. keys++;
  1000. if (bch_ptr_bad(&b->keys, k))
  1001. continue;
  1002. gc->key_bytes += bkey_u64s(k);
  1003. gc->nkeys++;
  1004. good_keys++;
  1005. gc->data += KEY_SIZE(k);
  1006. }
  1007. for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
  1008. btree_bug_on(t->size &&
  1009. bset_written(&b->keys, t) &&
  1010. bkey_cmp(&b->key, &t->end) < 0,
  1011. b, "found short btree key in gc");
  1012. if (b->c->gc_always_rewrite)
  1013. return true;
  1014. if (stale > 10)
  1015. return true;
  1016. if ((keys - good_keys) * 2 > keys)
  1017. return true;
  1018. return false;
  1019. }
  1020. #define GC_MERGE_NODES 4U
  1021. struct gc_merge_info {
  1022. struct btree *b;
  1023. unsigned keys;
  1024. };
  1025. static int bch_btree_insert_node(struct btree *, struct btree_op *,
  1026. struct keylist *, atomic_t *, struct bkey *);
  1027. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  1028. struct gc_stat *gc, struct gc_merge_info *r)
  1029. {
  1030. unsigned i, nodes = 0, keys = 0, blocks;
  1031. struct btree *new_nodes[GC_MERGE_NODES];
  1032. struct keylist keylist;
  1033. struct closure cl;
  1034. struct bkey *k;
  1035. bch_keylist_init(&keylist);
  1036. if (btree_check_reserve(b, NULL))
  1037. return 0;
  1038. memset(new_nodes, 0, sizeof(new_nodes));
  1039. closure_init_stack(&cl);
  1040. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  1041. keys += r[nodes++].keys;
  1042. blocks = btree_default_blocks(b->c) * 2 / 3;
  1043. if (nodes < 2 ||
  1044. __set_blocks(b->keys.set[0].data, keys,
  1045. block_bytes(b->c)) > blocks * (nodes - 1))
  1046. return 0;
  1047. for (i = 0; i < nodes; i++) {
  1048. new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
  1049. if (IS_ERR_OR_NULL(new_nodes[i]))
  1050. goto out_nocoalesce;
  1051. }
  1052. /*
  1053. * We have to check the reserve here, after we've allocated our new
  1054. * nodes, to make sure the insert below will succeed - we also check
  1055. * before as an optimization to potentially avoid a bunch of expensive
  1056. * allocs/sorts
  1057. */
  1058. if (btree_check_reserve(b, NULL))
  1059. goto out_nocoalesce;
  1060. for (i = 0; i < nodes; i++)
  1061. mutex_lock(&new_nodes[i]->write_lock);
  1062. for (i = nodes - 1; i > 0; --i) {
  1063. struct bset *n1 = btree_bset_first(new_nodes[i]);
  1064. struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
  1065. struct bkey *k, *last = NULL;
  1066. keys = 0;
  1067. if (i > 1) {
  1068. for (k = n2->start;
  1069. k < bset_bkey_last(n2);
  1070. k = bkey_next(k)) {
  1071. if (__set_blocks(n1, n1->keys + keys +
  1072. bkey_u64s(k),
  1073. block_bytes(b->c)) > blocks)
  1074. break;
  1075. last = k;
  1076. keys += bkey_u64s(k);
  1077. }
  1078. } else {
  1079. /*
  1080. * Last node we're not getting rid of - we're getting
  1081. * rid of the node at r[0]. Have to try and fit all of
  1082. * the remaining keys into this node; we can't ensure
  1083. * they will always fit due to rounding and variable
  1084. * length keys (shouldn't be possible in practice,
  1085. * though)
  1086. */
  1087. if (__set_blocks(n1, n1->keys + n2->keys,
  1088. block_bytes(b->c)) >
  1089. btree_blocks(new_nodes[i]))
  1090. goto out_nocoalesce;
  1091. keys = n2->keys;
  1092. /* Take the key of the node we're getting rid of */
  1093. last = &r->b->key;
  1094. }
  1095. BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
  1096. btree_blocks(new_nodes[i]));
  1097. if (last)
  1098. bkey_copy_key(&new_nodes[i]->key, last);
  1099. memcpy(bset_bkey_last(n1),
  1100. n2->start,
  1101. (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
  1102. n1->keys += keys;
  1103. r[i].keys = n1->keys;
  1104. memmove(n2->start,
  1105. bset_bkey_idx(n2, keys),
  1106. (void *) bset_bkey_last(n2) -
  1107. (void *) bset_bkey_idx(n2, keys));
  1108. n2->keys -= keys;
  1109. if (__bch_keylist_realloc(&keylist,
  1110. bkey_u64s(&new_nodes[i]->key)))
  1111. goto out_nocoalesce;
  1112. bch_btree_node_write(new_nodes[i], &cl);
  1113. bch_keylist_add(&keylist, &new_nodes[i]->key);
  1114. }
  1115. for (i = 0; i < nodes; i++)
  1116. mutex_unlock(&new_nodes[i]->write_lock);
  1117. closure_sync(&cl);
  1118. /* We emptied out this node */
  1119. BUG_ON(btree_bset_first(new_nodes[0])->keys);
  1120. btree_node_free(new_nodes[0]);
  1121. rw_unlock(true, new_nodes[0]);
  1122. new_nodes[0] = NULL;
  1123. for (i = 0; i < nodes; i++) {
  1124. if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
  1125. goto out_nocoalesce;
  1126. make_btree_freeing_key(r[i].b, keylist.top);
  1127. bch_keylist_push(&keylist);
  1128. }
  1129. bch_btree_insert_node(b, op, &keylist, NULL, NULL);
  1130. BUG_ON(!bch_keylist_empty(&keylist));
  1131. for (i = 0; i < nodes; i++) {
  1132. btree_node_free(r[i].b);
  1133. rw_unlock(true, r[i].b);
  1134. r[i].b = new_nodes[i];
  1135. }
  1136. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1137. r[nodes - 1].b = ERR_PTR(-EINTR);
  1138. trace_bcache_btree_gc_coalesce(nodes);
  1139. gc->nodes--;
  1140. bch_keylist_free(&keylist);
  1141. /* Invalidated our iterator */
  1142. return -EINTR;
  1143. out_nocoalesce:
  1144. closure_sync(&cl);
  1145. bch_keylist_free(&keylist);
  1146. while ((k = bch_keylist_pop(&keylist)))
  1147. if (!bkey_cmp(k, &ZERO_KEY))
  1148. atomic_dec(&b->c->prio_blocked);
  1149. for (i = 0; i < nodes; i++)
  1150. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1151. btree_node_free(new_nodes[i]);
  1152. rw_unlock(true, new_nodes[i]);
  1153. }
  1154. return 0;
  1155. }
  1156. static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
  1157. struct btree *replace)
  1158. {
  1159. struct keylist keys;
  1160. struct btree *n;
  1161. if (btree_check_reserve(b, NULL))
  1162. return 0;
  1163. n = btree_node_alloc_replacement(replace, NULL);
  1164. /* recheck reserve after allocating replacement node */
  1165. if (btree_check_reserve(b, NULL)) {
  1166. btree_node_free(n);
  1167. rw_unlock(true, n);
  1168. return 0;
  1169. }
  1170. bch_btree_node_write_sync(n);
  1171. bch_keylist_init(&keys);
  1172. bch_keylist_add(&keys, &n->key);
  1173. make_btree_freeing_key(replace, keys.top);
  1174. bch_keylist_push(&keys);
  1175. bch_btree_insert_node(b, op, &keys, NULL, NULL);
  1176. BUG_ON(!bch_keylist_empty(&keys));
  1177. btree_node_free(replace);
  1178. rw_unlock(true, n);
  1179. /* Invalidated our iterator */
  1180. return -EINTR;
  1181. }
  1182. static unsigned btree_gc_count_keys(struct btree *b)
  1183. {
  1184. struct bkey *k;
  1185. struct btree_iter iter;
  1186. unsigned ret = 0;
  1187. for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
  1188. ret += bkey_u64s(k);
  1189. return ret;
  1190. }
  1191. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1192. struct closure *writes, struct gc_stat *gc)
  1193. {
  1194. int ret = 0;
  1195. bool should_rewrite;
  1196. struct bkey *k;
  1197. struct btree_iter iter;
  1198. struct gc_merge_info r[GC_MERGE_NODES];
  1199. struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
  1200. bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
  1201. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1202. i->b = ERR_PTR(-EINTR);
  1203. while (1) {
  1204. k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
  1205. if (k) {
  1206. r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
  1207. true, b);
  1208. if (IS_ERR(r->b)) {
  1209. ret = PTR_ERR(r->b);
  1210. break;
  1211. }
  1212. r->keys = btree_gc_count_keys(r->b);
  1213. ret = btree_gc_coalesce(b, op, gc, r);
  1214. if (ret)
  1215. break;
  1216. }
  1217. if (!last->b)
  1218. break;
  1219. if (!IS_ERR(last->b)) {
  1220. should_rewrite = btree_gc_mark_node(last->b, gc);
  1221. if (should_rewrite) {
  1222. ret = btree_gc_rewrite_node(b, op, last->b);
  1223. if (ret)
  1224. break;
  1225. }
  1226. if (last->b->level) {
  1227. ret = btree_gc_recurse(last->b, op, writes, gc);
  1228. if (ret)
  1229. break;
  1230. }
  1231. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1232. /*
  1233. * Must flush leaf nodes before gc ends, since replace
  1234. * operations aren't journalled
  1235. */
  1236. mutex_lock(&last->b->write_lock);
  1237. if (btree_node_dirty(last->b))
  1238. bch_btree_node_write(last->b, writes);
  1239. mutex_unlock(&last->b->write_lock);
  1240. rw_unlock(true, last->b);
  1241. }
  1242. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1243. r->b = NULL;
  1244. if (need_resched()) {
  1245. ret = -EAGAIN;
  1246. break;
  1247. }
  1248. }
  1249. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1250. if (!IS_ERR_OR_NULL(i->b)) {
  1251. mutex_lock(&i->b->write_lock);
  1252. if (btree_node_dirty(i->b))
  1253. bch_btree_node_write(i->b, writes);
  1254. mutex_unlock(&i->b->write_lock);
  1255. rw_unlock(true, i->b);
  1256. }
  1257. return ret;
  1258. }
  1259. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1260. struct closure *writes, struct gc_stat *gc)
  1261. {
  1262. struct btree *n = NULL;
  1263. int ret = 0;
  1264. bool should_rewrite;
  1265. should_rewrite = btree_gc_mark_node(b, gc);
  1266. if (should_rewrite) {
  1267. n = btree_node_alloc_replacement(b, NULL);
  1268. if (!IS_ERR_OR_NULL(n)) {
  1269. bch_btree_node_write_sync(n);
  1270. bch_btree_set_root(n);
  1271. btree_node_free(b);
  1272. rw_unlock(true, n);
  1273. return -EINTR;
  1274. }
  1275. }
  1276. __bch_btree_mark_key(b->c, b->level + 1, &b->key);
  1277. if (b->level) {
  1278. ret = btree_gc_recurse(b, op, writes, gc);
  1279. if (ret)
  1280. return ret;
  1281. }
  1282. bkey_copy_key(&b->c->gc_done, &b->key);
  1283. return ret;
  1284. }
  1285. static void btree_gc_start(struct cache_set *c)
  1286. {
  1287. struct cache *ca;
  1288. struct bucket *b;
  1289. unsigned i;
  1290. if (!c->gc_mark_valid)
  1291. return;
  1292. mutex_lock(&c->bucket_lock);
  1293. c->gc_mark_valid = 0;
  1294. c->gc_done = ZERO_KEY;
  1295. for_each_cache(ca, c, i)
  1296. for_each_bucket(b, ca) {
  1297. b->last_gc = b->gen;
  1298. if (!atomic_read(&b->pin)) {
  1299. SET_GC_MARK(b, 0);
  1300. SET_GC_SECTORS_USED(b, 0);
  1301. }
  1302. }
  1303. mutex_unlock(&c->bucket_lock);
  1304. }
  1305. static size_t bch_btree_gc_finish(struct cache_set *c)
  1306. {
  1307. size_t available = 0;
  1308. struct bucket *b;
  1309. struct cache *ca;
  1310. unsigned i;
  1311. mutex_lock(&c->bucket_lock);
  1312. set_gc_sectors(c);
  1313. c->gc_mark_valid = 1;
  1314. c->need_gc = 0;
  1315. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1316. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1317. GC_MARK_METADATA);
  1318. /* don't reclaim buckets to which writeback keys point */
  1319. rcu_read_lock();
  1320. for (i = 0; i < c->nr_uuids; i++) {
  1321. struct bcache_device *d = c->devices[i];
  1322. struct cached_dev *dc;
  1323. struct keybuf_key *w, *n;
  1324. unsigned j;
  1325. if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
  1326. continue;
  1327. dc = container_of(d, struct cached_dev, disk);
  1328. spin_lock(&dc->writeback_keys.lock);
  1329. rbtree_postorder_for_each_entry_safe(w, n,
  1330. &dc->writeback_keys.keys, node)
  1331. for (j = 0; j < KEY_PTRS(&w->key); j++)
  1332. SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
  1333. GC_MARK_DIRTY);
  1334. spin_unlock(&dc->writeback_keys.lock);
  1335. }
  1336. rcu_read_unlock();
  1337. for_each_cache(ca, c, i) {
  1338. uint64_t *i;
  1339. ca->invalidate_needs_gc = 0;
  1340. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1341. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1342. for (i = ca->prio_buckets;
  1343. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1344. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1345. for_each_bucket(b, ca) {
  1346. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1347. if (atomic_read(&b->pin))
  1348. continue;
  1349. BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
  1350. if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
  1351. available++;
  1352. }
  1353. }
  1354. mutex_unlock(&c->bucket_lock);
  1355. return available;
  1356. }
  1357. static void bch_btree_gc(struct cache_set *c)
  1358. {
  1359. int ret;
  1360. unsigned long available;
  1361. struct gc_stat stats;
  1362. struct closure writes;
  1363. struct btree_op op;
  1364. uint64_t start_time = local_clock();
  1365. trace_bcache_gc_start(c);
  1366. memset(&stats, 0, sizeof(struct gc_stat));
  1367. closure_init_stack(&writes);
  1368. bch_btree_op_init(&op, SHRT_MAX);
  1369. btree_gc_start(c);
  1370. do {
  1371. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1372. closure_sync(&writes);
  1373. cond_resched();
  1374. if (ret && ret != -EAGAIN)
  1375. pr_warn("gc failed!");
  1376. } while (ret);
  1377. available = bch_btree_gc_finish(c);
  1378. wake_up_allocators(c);
  1379. bch_time_stats_update(&c->btree_gc_time, start_time);
  1380. stats.key_bytes *= sizeof(uint64_t);
  1381. stats.data <<= 9;
  1382. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1383. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1384. trace_bcache_gc_end(c);
  1385. bch_moving_gc(c);
  1386. }
  1387. static bool gc_should_run(struct cache_set *c)
  1388. {
  1389. struct cache *ca;
  1390. unsigned i;
  1391. for_each_cache(ca, c, i)
  1392. if (ca->invalidate_needs_gc)
  1393. return true;
  1394. if (atomic_read(&c->sectors_to_gc) < 0)
  1395. return true;
  1396. return false;
  1397. }
  1398. static int bch_gc_thread(void *arg)
  1399. {
  1400. struct cache_set *c = arg;
  1401. while (1) {
  1402. wait_event_interruptible(c->gc_wait,
  1403. kthread_should_stop() || gc_should_run(c));
  1404. if (kthread_should_stop())
  1405. break;
  1406. set_gc_sectors(c);
  1407. bch_btree_gc(c);
  1408. }
  1409. return 0;
  1410. }
  1411. int bch_gc_thread_start(struct cache_set *c)
  1412. {
  1413. c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
  1414. if (IS_ERR(c->gc_thread))
  1415. return PTR_ERR(c->gc_thread);
  1416. return 0;
  1417. }
  1418. /* Initial partial gc */
  1419. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
  1420. {
  1421. int ret = 0;
  1422. struct bkey *k, *p = NULL;
  1423. struct btree_iter iter;
  1424. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
  1425. bch_initial_mark_key(b->c, b->level, k);
  1426. bch_initial_mark_key(b->c, b->level + 1, &b->key);
  1427. if (b->level) {
  1428. bch_btree_iter_init(&b->keys, &iter, NULL);
  1429. do {
  1430. k = bch_btree_iter_next_filter(&iter, &b->keys,
  1431. bch_ptr_bad);
  1432. if (k)
  1433. btree_node_prefetch(b, k);
  1434. if (p)
  1435. ret = btree(check_recurse, p, b, op);
  1436. p = k;
  1437. } while (p && !ret);
  1438. }
  1439. return ret;
  1440. }
  1441. int bch_btree_check(struct cache_set *c)
  1442. {
  1443. struct btree_op op;
  1444. bch_btree_op_init(&op, SHRT_MAX);
  1445. return btree_root(check_recurse, c, &op);
  1446. }
  1447. void bch_initial_gc_finish(struct cache_set *c)
  1448. {
  1449. struct cache *ca;
  1450. struct bucket *b;
  1451. unsigned i;
  1452. bch_btree_gc_finish(c);
  1453. mutex_lock(&c->bucket_lock);
  1454. /*
  1455. * We need to put some unused buckets directly on the prio freelist in
  1456. * order to get the allocator thread started - it needs freed buckets in
  1457. * order to rewrite the prios and gens, and it needs to rewrite prios
  1458. * and gens in order to free buckets.
  1459. *
  1460. * This is only safe for buckets that have no live data in them, which
  1461. * there should always be some of.
  1462. */
  1463. for_each_cache(ca, c, i) {
  1464. for_each_bucket(b, ca) {
  1465. if (fifo_full(&ca->free[RESERVE_PRIO]))
  1466. break;
  1467. if (bch_can_invalidate_bucket(ca, b) &&
  1468. !GC_MARK(b)) {
  1469. __bch_invalidate_one_bucket(ca, b);
  1470. fifo_push(&ca->free[RESERVE_PRIO],
  1471. b - ca->buckets);
  1472. }
  1473. }
  1474. }
  1475. mutex_unlock(&c->bucket_lock);
  1476. }
  1477. /* Btree insertion */
  1478. static bool btree_insert_key(struct btree *b, struct bkey *k,
  1479. struct bkey *replace_key)
  1480. {
  1481. unsigned status;
  1482. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1483. status = bch_btree_insert_key(&b->keys, k, replace_key);
  1484. if (status != BTREE_INSERT_STATUS_NO_INSERT) {
  1485. bch_check_keys(&b->keys, "%u for %s", status,
  1486. replace_key ? "replace" : "insert");
  1487. trace_bcache_btree_insert_key(b, k, replace_key != NULL,
  1488. status);
  1489. return true;
  1490. } else
  1491. return false;
  1492. }
  1493. static size_t insert_u64s_remaining(struct btree *b)
  1494. {
  1495. long ret = bch_btree_keys_u64s_remaining(&b->keys);
  1496. /*
  1497. * Might land in the middle of an existing extent and have to split it
  1498. */
  1499. if (b->keys.ops->is_extents)
  1500. ret -= KEY_MAX_U64S;
  1501. return max(ret, 0L);
  1502. }
  1503. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1504. struct keylist *insert_keys,
  1505. struct bkey *replace_key)
  1506. {
  1507. bool ret = false;
  1508. int oldsize = bch_count_data(&b->keys);
  1509. while (!bch_keylist_empty(insert_keys)) {
  1510. struct bkey *k = insert_keys->keys;
  1511. if (bkey_u64s(k) > insert_u64s_remaining(b))
  1512. break;
  1513. if (bkey_cmp(k, &b->key) <= 0) {
  1514. if (!b->level)
  1515. bkey_put(b->c, k);
  1516. ret |= btree_insert_key(b, k, replace_key);
  1517. bch_keylist_pop_front(insert_keys);
  1518. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1519. BKEY_PADDED(key) temp;
  1520. bkey_copy(&temp.key, insert_keys->keys);
  1521. bch_cut_back(&b->key, &temp.key);
  1522. bch_cut_front(&b->key, insert_keys->keys);
  1523. ret |= btree_insert_key(b, &temp.key, replace_key);
  1524. break;
  1525. } else {
  1526. break;
  1527. }
  1528. }
  1529. if (!ret)
  1530. op->insert_collision = true;
  1531. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1532. BUG_ON(bch_count_data(&b->keys) < oldsize);
  1533. return ret;
  1534. }
  1535. static int btree_split(struct btree *b, struct btree_op *op,
  1536. struct keylist *insert_keys,
  1537. struct bkey *replace_key)
  1538. {
  1539. bool split;
  1540. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1541. uint64_t start_time = local_clock();
  1542. struct closure cl;
  1543. struct keylist parent_keys;
  1544. closure_init_stack(&cl);
  1545. bch_keylist_init(&parent_keys);
  1546. if (btree_check_reserve(b, op)) {
  1547. if (!b->level)
  1548. return -EINTR;
  1549. else
  1550. WARN(1, "insufficient reserve for split\n");
  1551. }
  1552. n1 = btree_node_alloc_replacement(b, op);
  1553. if (IS_ERR(n1))
  1554. goto err;
  1555. split = set_blocks(btree_bset_first(n1),
  1556. block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
  1557. if (split) {
  1558. unsigned keys = 0;
  1559. trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
  1560. n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  1561. if (IS_ERR(n2))
  1562. goto err_free1;
  1563. if (!b->parent) {
  1564. n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
  1565. if (IS_ERR(n3))
  1566. goto err_free2;
  1567. }
  1568. mutex_lock(&n1->write_lock);
  1569. mutex_lock(&n2->write_lock);
  1570. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1571. /*
  1572. * Has to be a linear search because we don't have an auxiliary
  1573. * search tree yet
  1574. */
  1575. while (keys < (btree_bset_first(n1)->keys * 3) / 5)
  1576. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
  1577. keys));
  1578. bkey_copy_key(&n1->key,
  1579. bset_bkey_idx(btree_bset_first(n1), keys));
  1580. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
  1581. btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
  1582. btree_bset_first(n1)->keys = keys;
  1583. memcpy(btree_bset_first(n2)->start,
  1584. bset_bkey_last(btree_bset_first(n1)),
  1585. btree_bset_first(n2)->keys * sizeof(uint64_t));
  1586. bkey_copy_key(&n2->key, &b->key);
  1587. bch_keylist_add(&parent_keys, &n2->key);
  1588. bch_btree_node_write(n2, &cl);
  1589. mutex_unlock(&n2->write_lock);
  1590. rw_unlock(true, n2);
  1591. } else {
  1592. trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
  1593. mutex_lock(&n1->write_lock);
  1594. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1595. }
  1596. bch_keylist_add(&parent_keys, &n1->key);
  1597. bch_btree_node_write(n1, &cl);
  1598. mutex_unlock(&n1->write_lock);
  1599. if (n3) {
  1600. /* Depth increases, make a new root */
  1601. mutex_lock(&n3->write_lock);
  1602. bkey_copy_key(&n3->key, &MAX_KEY);
  1603. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1604. bch_btree_node_write(n3, &cl);
  1605. mutex_unlock(&n3->write_lock);
  1606. closure_sync(&cl);
  1607. bch_btree_set_root(n3);
  1608. rw_unlock(true, n3);
  1609. } else if (!b->parent) {
  1610. /* Root filled up but didn't need to be split */
  1611. closure_sync(&cl);
  1612. bch_btree_set_root(n1);
  1613. } else {
  1614. /* Split a non root node */
  1615. closure_sync(&cl);
  1616. make_btree_freeing_key(b, parent_keys.top);
  1617. bch_keylist_push(&parent_keys);
  1618. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1619. BUG_ON(!bch_keylist_empty(&parent_keys));
  1620. }
  1621. btree_node_free(b);
  1622. rw_unlock(true, n1);
  1623. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1624. return 0;
  1625. err_free2:
  1626. bkey_put(b->c, &n2->key);
  1627. btree_node_free(n2);
  1628. rw_unlock(true, n2);
  1629. err_free1:
  1630. bkey_put(b->c, &n1->key);
  1631. btree_node_free(n1);
  1632. rw_unlock(true, n1);
  1633. err:
  1634. WARN(1, "bcache: btree split failed (level %u)", b->level);
  1635. if (n3 == ERR_PTR(-EAGAIN) ||
  1636. n2 == ERR_PTR(-EAGAIN) ||
  1637. n1 == ERR_PTR(-EAGAIN))
  1638. return -EAGAIN;
  1639. return -ENOMEM;
  1640. }
  1641. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1642. struct keylist *insert_keys,
  1643. atomic_t *journal_ref,
  1644. struct bkey *replace_key)
  1645. {
  1646. struct closure cl;
  1647. BUG_ON(b->level && replace_key);
  1648. closure_init_stack(&cl);
  1649. mutex_lock(&b->write_lock);
  1650. if (write_block(b) != btree_bset_last(b) &&
  1651. b->keys.last_set_unwritten)
  1652. bch_btree_init_next(b); /* just wrote a set */
  1653. if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
  1654. mutex_unlock(&b->write_lock);
  1655. goto split;
  1656. }
  1657. BUG_ON(write_block(b) != btree_bset_last(b));
  1658. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1659. if (!b->level)
  1660. bch_btree_leaf_dirty(b, journal_ref);
  1661. else
  1662. bch_btree_node_write(b, &cl);
  1663. }
  1664. mutex_unlock(&b->write_lock);
  1665. /* wait for btree node write if necessary, after unlock */
  1666. closure_sync(&cl);
  1667. return 0;
  1668. split:
  1669. if (current->bio_list) {
  1670. op->lock = b->c->root->level + 1;
  1671. return -EAGAIN;
  1672. } else if (op->lock <= b->c->root->level) {
  1673. op->lock = b->c->root->level + 1;
  1674. return -EINTR;
  1675. } else {
  1676. /* Invalidated all iterators */
  1677. int ret = btree_split(b, op, insert_keys, replace_key);
  1678. if (bch_keylist_empty(insert_keys))
  1679. return 0;
  1680. else if (!ret)
  1681. return -EINTR;
  1682. return ret;
  1683. }
  1684. }
  1685. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1686. struct bkey *check_key)
  1687. {
  1688. int ret = -EINTR;
  1689. uint64_t btree_ptr = b->key.ptr[0];
  1690. unsigned long seq = b->seq;
  1691. struct keylist insert;
  1692. bool upgrade = op->lock == -1;
  1693. bch_keylist_init(&insert);
  1694. if (upgrade) {
  1695. rw_unlock(false, b);
  1696. rw_lock(true, b, b->level);
  1697. if (b->key.ptr[0] != btree_ptr ||
  1698. b->seq != seq + 1) {
  1699. op->lock = b->level;
  1700. goto out;
  1701. }
  1702. }
  1703. SET_KEY_PTRS(check_key, 1);
  1704. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1705. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1706. bch_keylist_add(&insert, check_key);
  1707. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1708. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1709. out:
  1710. if (upgrade)
  1711. downgrade_write(&b->lock);
  1712. return ret;
  1713. }
  1714. struct btree_insert_op {
  1715. struct btree_op op;
  1716. struct keylist *keys;
  1717. atomic_t *journal_ref;
  1718. struct bkey *replace_key;
  1719. };
  1720. static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1721. {
  1722. struct btree_insert_op *op = container_of(b_op,
  1723. struct btree_insert_op, op);
  1724. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1725. op->journal_ref, op->replace_key);
  1726. if (ret && !bch_keylist_empty(op->keys))
  1727. return ret;
  1728. else
  1729. return MAP_DONE;
  1730. }
  1731. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1732. atomic_t *journal_ref, struct bkey *replace_key)
  1733. {
  1734. struct btree_insert_op op;
  1735. int ret = 0;
  1736. BUG_ON(current->bio_list);
  1737. BUG_ON(bch_keylist_empty(keys));
  1738. bch_btree_op_init(&op.op, 0);
  1739. op.keys = keys;
  1740. op.journal_ref = journal_ref;
  1741. op.replace_key = replace_key;
  1742. while (!ret && !bch_keylist_empty(keys)) {
  1743. op.op.lock = 0;
  1744. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1745. &START_KEY(keys->keys),
  1746. btree_insert_fn);
  1747. }
  1748. if (ret) {
  1749. struct bkey *k;
  1750. pr_err("error %i", ret);
  1751. while ((k = bch_keylist_pop(keys)))
  1752. bkey_put(c, k);
  1753. } else if (op.op.insert_collision)
  1754. ret = -ESRCH;
  1755. return ret;
  1756. }
  1757. void bch_btree_set_root(struct btree *b)
  1758. {
  1759. unsigned i;
  1760. struct closure cl;
  1761. closure_init_stack(&cl);
  1762. trace_bcache_btree_set_root(b);
  1763. BUG_ON(!b->written);
  1764. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1765. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1766. mutex_lock(&b->c->bucket_lock);
  1767. list_del_init(&b->list);
  1768. mutex_unlock(&b->c->bucket_lock);
  1769. b->c->root = b;
  1770. bch_journal_meta(b->c, &cl);
  1771. closure_sync(&cl);
  1772. }
  1773. /* Map across nodes or keys */
  1774. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1775. struct bkey *from,
  1776. btree_map_nodes_fn *fn, int flags)
  1777. {
  1778. int ret = MAP_CONTINUE;
  1779. if (b->level) {
  1780. struct bkey *k;
  1781. struct btree_iter iter;
  1782. bch_btree_iter_init(&b->keys, &iter, from);
  1783. while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
  1784. bch_ptr_bad))) {
  1785. ret = btree(map_nodes_recurse, k, b,
  1786. op, from, fn, flags);
  1787. from = NULL;
  1788. if (ret != MAP_CONTINUE)
  1789. return ret;
  1790. }
  1791. }
  1792. if (!b->level || flags == MAP_ALL_NODES)
  1793. ret = fn(op, b);
  1794. return ret;
  1795. }
  1796. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1797. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1798. {
  1799. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1800. }
  1801. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1802. struct bkey *from, btree_map_keys_fn *fn,
  1803. int flags)
  1804. {
  1805. int ret = MAP_CONTINUE;
  1806. struct bkey *k;
  1807. struct btree_iter iter;
  1808. bch_btree_iter_init(&b->keys, &iter, from);
  1809. while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
  1810. ret = !b->level
  1811. ? fn(op, b, k)
  1812. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1813. from = NULL;
  1814. if (ret != MAP_CONTINUE)
  1815. return ret;
  1816. }
  1817. if (!b->level && (flags & MAP_END_KEY))
  1818. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1819. KEY_OFFSET(&b->key), 0));
  1820. return ret;
  1821. }
  1822. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1823. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1824. {
  1825. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1826. }
  1827. /* Keybuf code */
  1828. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1829. {
  1830. /* Overlapping keys compare equal */
  1831. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1832. return -1;
  1833. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1834. return 1;
  1835. return 0;
  1836. }
  1837. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1838. struct keybuf_key *r)
  1839. {
  1840. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1841. }
  1842. struct refill {
  1843. struct btree_op op;
  1844. unsigned nr_found;
  1845. struct keybuf *buf;
  1846. struct bkey *end;
  1847. keybuf_pred_fn *pred;
  1848. };
  1849. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1850. struct bkey *k)
  1851. {
  1852. struct refill *refill = container_of(op, struct refill, op);
  1853. struct keybuf *buf = refill->buf;
  1854. int ret = MAP_CONTINUE;
  1855. if (bkey_cmp(k, refill->end) >= 0) {
  1856. ret = MAP_DONE;
  1857. goto out;
  1858. }
  1859. if (!KEY_SIZE(k)) /* end key */
  1860. goto out;
  1861. if (refill->pred(buf, k)) {
  1862. struct keybuf_key *w;
  1863. spin_lock(&buf->lock);
  1864. w = array_alloc(&buf->freelist);
  1865. if (!w) {
  1866. spin_unlock(&buf->lock);
  1867. return MAP_DONE;
  1868. }
  1869. w->private = NULL;
  1870. bkey_copy(&w->key, k);
  1871. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1872. array_free(&buf->freelist, w);
  1873. else
  1874. refill->nr_found++;
  1875. if (array_freelist_empty(&buf->freelist))
  1876. ret = MAP_DONE;
  1877. spin_unlock(&buf->lock);
  1878. }
  1879. out:
  1880. buf->last_scanned = *k;
  1881. return ret;
  1882. }
  1883. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1884. struct bkey *end, keybuf_pred_fn *pred)
  1885. {
  1886. struct bkey start = buf->last_scanned;
  1887. struct refill refill;
  1888. cond_resched();
  1889. bch_btree_op_init(&refill.op, -1);
  1890. refill.nr_found = 0;
  1891. refill.buf = buf;
  1892. refill.end = end;
  1893. refill.pred = pred;
  1894. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1895. refill_keybuf_fn, MAP_END_KEY);
  1896. trace_bcache_keyscan(refill.nr_found,
  1897. KEY_INODE(&start), KEY_OFFSET(&start),
  1898. KEY_INODE(&buf->last_scanned),
  1899. KEY_OFFSET(&buf->last_scanned));
  1900. spin_lock(&buf->lock);
  1901. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1902. struct keybuf_key *w;
  1903. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1904. buf->start = START_KEY(&w->key);
  1905. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1906. buf->end = w->key;
  1907. } else {
  1908. buf->start = MAX_KEY;
  1909. buf->end = MAX_KEY;
  1910. }
  1911. spin_unlock(&buf->lock);
  1912. }
  1913. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1914. {
  1915. rb_erase(&w->node, &buf->keys);
  1916. array_free(&buf->freelist, w);
  1917. }
  1918. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1919. {
  1920. spin_lock(&buf->lock);
  1921. __bch_keybuf_del(buf, w);
  1922. spin_unlock(&buf->lock);
  1923. }
  1924. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1925. struct bkey *end)
  1926. {
  1927. bool ret = false;
  1928. struct keybuf_key *p, *w, s;
  1929. s.key = *start;
  1930. if (bkey_cmp(end, &buf->start) <= 0 ||
  1931. bkey_cmp(start, &buf->end) >= 0)
  1932. return false;
  1933. spin_lock(&buf->lock);
  1934. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1935. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1936. p = w;
  1937. w = RB_NEXT(w, node);
  1938. if (p->private)
  1939. ret = true;
  1940. else
  1941. __bch_keybuf_del(buf, p);
  1942. }
  1943. spin_unlock(&buf->lock);
  1944. return ret;
  1945. }
  1946. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1947. {
  1948. struct keybuf_key *w;
  1949. spin_lock(&buf->lock);
  1950. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1951. while (w && w->private)
  1952. w = RB_NEXT(w, node);
  1953. if (w)
  1954. w->private = ERR_PTR(-EINTR);
  1955. spin_unlock(&buf->lock);
  1956. return w;
  1957. }
  1958. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1959. struct keybuf *buf,
  1960. struct bkey *end,
  1961. keybuf_pred_fn *pred)
  1962. {
  1963. struct keybuf_key *ret;
  1964. while (1) {
  1965. ret = bch_keybuf_next(buf);
  1966. if (ret)
  1967. break;
  1968. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1969. pr_debug("scan finished");
  1970. break;
  1971. }
  1972. bch_refill_keybuf(c, buf, end, pred);
  1973. }
  1974. return ret;
  1975. }
  1976. void bch_keybuf_init(struct keybuf *buf)
  1977. {
  1978. buf->last_scanned = MAX_KEY;
  1979. buf->keys = RB_ROOT;
  1980. spin_lock_init(&buf->lock);
  1981. array_allocator_init(&buf->freelist);
  1982. }