bcm-flexrm-mailbox.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595
  1. /* Broadcom FlexRM Mailbox Driver
  2. *
  3. * Copyright (C) 2017 Broadcom
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * Each Broadcom FlexSparx4 offload engine is implemented as an
  10. * extension to Broadcom FlexRM ring manager. The FlexRM ring
  11. * manager provides a set of rings which can be used to submit
  12. * work to a FlexSparx4 offload engine.
  13. *
  14. * This driver creates a mailbox controller using a set of FlexRM
  15. * rings where each mailbox channel represents a separate FlexRM ring.
  16. */
  17. #include <asm/barrier.h>
  18. #include <asm/byteorder.h>
  19. #include <linux/delay.h>
  20. #include <linux/device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmapool.h>
  23. #include <linux/err.h>
  24. #include <linux/idr.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mailbox_controller.h>
  28. #include <linux/mailbox_client.h>
  29. #include <linux/mailbox/brcm-message.h>
  30. #include <linux/module.h>
  31. #include <linux/msi.h>
  32. #include <linux/of_address.h>
  33. #include <linux/of_irq.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/spinlock.h>
  36. /* ====== FlexRM register defines ===== */
  37. /* FlexRM configuration */
  38. #define RING_REGS_SIZE 0x10000
  39. #define RING_DESC_SIZE 8
  40. #define RING_DESC_INDEX(offset) \
  41. ((offset) / RING_DESC_SIZE)
  42. #define RING_DESC_OFFSET(index) \
  43. ((index) * RING_DESC_SIZE)
  44. #define RING_MAX_REQ_COUNT 1024
  45. #define RING_BD_ALIGN_ORDER 12
  46. #define RING_BD_ALIGN_CHECK(addr) \
  47. (!((addr) & ((0x1 << RING_BD_ALIGN_ORDER) - 1)))
  48. #define RING_BD_TOGGLE_INVALID(offset) \
  49. (((offset) >> RING_BD_ALIGN_ORDER) & 0x1)
  50. #define RING_BD_TOGGLE_VALID(offset) \
  51. (!RING_BD_TOGGLE_INVALID(offset))
  52. #define RING_BD_DESC_PER_REQ 32
  53. #define RING_BD_DESC_COUNT \
  54. (RING_MAX_REQ_COUNT * RING_BD_DESC_PER_REQ)
  55. #define RING_BD_SIZE \
  56. (RING_BD_DESC_COUNT * RING_DESC_SIZE)
  57. #define RING_CMPL_ALIGN_ORDER 13
  58. #define RING_CMPL_DESC_COUNT RING_MAX_REQ_COUNT
  59. #define RING_CMPL_SIZE \
  60. (RING_CMPL_DESC_COUNT * RING_DESC_SIZE)
  61. #define RING_VER_MAGIC 0x76303031
  62. /* Per-Ring register offsets */
  63. #define RING_VER 0x000
  64. #define RING_BD_START_ADDR 0x004
  65. #define RING_BD_READ_PTR 0x008
  66. #define RING_BD_WRITE_PTR 0x00c
  67. #define RING_BD_READ_PTR_DDR_LS 0x010
  68. #define RING_BD_READ_PTR_DDR_MS 0x014
  69. #define RING_CMPL_START_ADDR 0x018
  70. #define RING_CMPL_WRITE_PTR 0x01c
  71. #define RING_NUM_REQ_RECV_LS 0x020
  72. #define RING_NUM_REQ_RECV_MS 0x024
  73. #define RING_NUM_REQ_TRANS_LS 0x028
  74. #define RING_NUM_REQ_TRANS_MS 0x02c
  75. #define RING_NUM_REQ_OUTSTAND 0x030
  76. #define RING_CONTROL 0x034
  77. #define RING_FLUSH_DONE 0x038
  78. #define RING_MSI_ADDR_LS 0x03c
  79. #define RING_MSI_ADDR_MS 0x040
  80. #define RING_MSI_CONTROL 0x048
  81. #define RING_BD_READ_PTR_DDR_CONTROL 0x04c
  82. #define RING_MSI_DATA_VALUE 0x064
  83. /* Register RING_BD_START_ADDR fields */
  84. #define BD_LAST_UPDATE_HW_SHIFT 28
  85. #define BD_LAST_UPDATE_HW_MASK 0x1
  86. #define BD_START_ADDR_VALUE(pa) \
  87. ((u32)((((dma_addr_t)(pa)) >> RING_BD_ALIGN_ORDER) & 0x0fffffff))
  88. #define BD_START_ADDR_DECODE(val) \
  89. ((dma_addr_t)((val) & 0x0fffffff) << RING_BD_ALIGN_ORDER)
  90. /* Register RING_CMPL_START_ADDR fields */
  91. #define CMPL_START_ADDR_VALUE(pa) \
  92. ((u32)((((u64)(pa)) >> RING_CMPL_ALIGN_ORDER) & 0x03ffffff))
  93. /* Register RING_CONTROL fields */
  94. #define CONTROL_MASK_DISABLE_CONTROL 12
  95. #define CONTROL_FLUSH_SHIFT 5
  96. #define CONTROL_ACTIVE_SHIFT 4
  97. #define CONTROL_RATE_ADAPT_MASK 0xf
  98. #define CONTROL_RATE_DYNAMIC 0x0
  99. #define CONTROL_RATE_FAST 0x8
  100. #define CONTROL_RATE_MEDIUM 0x9
  101. #define CONTROL_RATE_SLOW 0xa
  102. #define CONTROL_RATE_IDLE 0xb
  103. /* Register RING_FLUSH_DONE fields */
  104. #define FLUSH_DONE_MASK 0x1
  105. /* Register RING_MSI_CONTROL fields */
  106. #define MSI_TIMER_VAL_SHIFT 16
  107. #define MSI_TIMER_VAL_MASK 0xffff
  108. #define MSI_ENABLE_SHIFT 15
  109. #define MSI_ENABLE_MASK 0x1
  110. #define MSI_COUNT_SHIFT 0
  111. #define MSI_COUNT_MASK 0x3ff
  112. /* Register RING_BD_READ_PTR_DDR_CONTROL fields */
  113. #define BD_READ_PTR_DDR_TIMER_VAL_SHIFT 16
  114. #define BD_READ_PTR_DDR_TIMER_VAL_MASK 0xffff
  115. #define BD_READ_PTR_DDR_ENABLE_SHIFT 15
  116. #define BD_READ_PTR_DDR_ENABLE_MASK 0x1
  117. /* ====== FlexRM ring descriptor defines ===== */
  118. /* Completion descriptor format */
  119. #define CMPL_OPAQUE_SHIFT 0
  120. #define CMPL_OPAQUE_MASK 0xffff
  121. #define CMPL_ENGINE_STATUS_SHIFT 16
  122. #define CMPL_ENGINE_STATUS_MASK 0xffff
  123. #define CMPL_DME_STATUS_SHIFT 32
  124. #define CMPL_DME_STATUS_MASK 0xffff
  125. #define CMPL_RM_STATUS_SHIFT 48
  126. #define CMPL_RM_STATUS_MASK 0xffff
  127. /* Completion DME status code */
  128. #define DME_STATUS_MEM_COR_ERR BIT(0)
  129. #define DME_STATUS_MEM_UCOR_ERR BIT(1)
  130. #define DME_STATUS_FIFO_UNDERFLOW BIT(2)
  131. #define DME_STATUS_FIFO_OVERFLOW BIT(3)
  132. #define DME_STATUS_RRESP_ERR BIT(4)
  133. #define DME_STATUS_BRESP_ERR BIT(5)
  134. #define DME_STATUS_ERROR_MASK (DME_STATUS_MEM_COR_ERR | \
  135. DME_STATUS_MEM_UCOR_ERR | \
  136. DME_STATUS_FIFO_UNDERFLOW | \
  137. DME_STATUS_FIFO_OVERFLOW | \
  138. DME_STATUS_RRESP_ERR | \
  139. DME_STATUS_BRESP_ERR)
  140. /* Completion RM status code */
  141. #define RM_STATUS_CODE_SHIFT 0
  142. #define RM_STATUS_CODE_MASK 0x3ff
  143. #define RM_STATUS_CODE_GOOD 0x0
  144. #define RM_STATUS_CODE_AE_TIMEOUT 0x3ff
  145. /* General descriptor format */
  146. #define DESC_TYPE_SHIFT 60
  147. #define DESC_TYPE_MASK 0xf
  148. #define DESC_PAYLOAD_SHIFT 0
  149. #define DESC_PAYLOAD_MASK 0x0fffffffffffffff
  150. /* Null descriptor format */
  151. #define NULL_TYPE 0
  152. #define NULL_TOGGLE_SHIFT 58
  153. #define NULL_TOGGLE_MASK 0x1
  154. /* Header descriptor format */
  155. #define HEADER_TYPE 1
  156. #define HEADER_TOGGLE_SHIFT 58
  157. #define HEADER_TOGGLE_MASK 0x1
  158. #define HEADER_ENDPKT_SHIFT 57
  159. #define HEADER_ENDPKT_MASK 0x1
  160. #define HEADER_STARTPKT_SHIFT 56
  161. #define HEADER_STARTPKT_MASK 0x1
  162. #define HEADER_BDCOUNT_SHIFT 36
  163. #define HEADER_BDCOUNT_MASK 0x1f
  164. #define HEADER_BDCOUNT_MAX HEADER_BDCOUNT_MASK
  165. #define HEADER_FLAGS_SHIFT 16
  166. #define HEADER_FLAGS_MASK 0xffff
  167. #define HEADER_OPAQUE_SHIFT 0
  168. #define HEADER_OPAQUE_MASK 0xffff
  169. /* Source (SRC) descriptor format */
  170. #define SRC_TYPE 2
  171. #define SRC_LENGTH_SHIFT 44
  172. #define SRC_LENGTH_MASK 0xffff
  173. #define SRC_ADDR_SHIFT 0
  174. #define SRC_ADDR_MASK 0x00000fffffffffff
  175. /* Destination (DST) descriptor format */
  176. #define DST_TYPE 3
  177. #define DST_LENGTH_SHIFT 44
  178. #define DST_LENGTH_MASK 0xffff
  179. #define DST_ADDR_SHIFT 0
  180. #define DST_ADDR_MASK 0x00000fffffffffff
  181. /* Immediate (IMM) descriptor format */
  182. #define IMM_TYPE 4
  183. #define IMM_DATA_SHIFT 0
  184. #define IMM_DATA_MASK 0x0fffffffffffffff
  185. /* Next pointer (NPTR) descriptor format */
  186. #define NPTR_TYPE 5
  187. #define NPTR_TOGGLE_SHIFT 58
  188. #define NPTR_TOGGLE_MASK 0x1
  189. #define NPTR_ADDR_SHIFT 0
  190. #define NPTR_ADDR_MASK 0x00000fffffffffff
  191. /* Mega source (MSRC) descriptor format */
  192. #define MSRC_TYPE 6
  193. #define MSRC_LENGTH_SHIFT 44
  194. #define MSRC_LENGTH_MASK 0xffff
  195. #define MSRC_ADDR_SHIFT 0
  196. #define MSRC_ADDR_MASK 0x00000fffffffffff
  197. /* Mega destination (MDST) descriptor format */
  198. #define MDST_TYPE 7
  199. #define MDST_LENGTH_SHIFT 44
  200. #define MDST_LENGTH_MASK 0xffff
  201. #define MDST_ADDR_SHIFT 0
  202. #define MDST_ADDR_MASK 0x00000fffffffffff
  203. /* Source with tlast (SRCT) descriptor format */
  204. #define SRCT_TYPE 8
  205. #define SRCT_LENGTH_SHIFT 44
  206. #define SRCT_LENGTH_MASK 0xffff
  207. #define SRCT_ADDR_SHIFT 0
  208. #define SRCT_ADDR_MASK 0x00000fffffffffff
  209. /* Destination with tlast (DSTT) descriptor format */
  210. #define DSTT_TYPE 9
  211. #define DSTT_LENGTH_SHIFT 44
  212. #define DSTT_LENGTH_MASK 0xffff
  213. #define DSTT_ADDR_SHIFT 0
  214. #define DSTT_ADDR_MASK 0x00000fffffffffff
  215. /* Immediate with tlast (IMMT) descriptor format */
  216. #define IMMT_TYPE 10
  217. #define IMMT_DATA_SHIFT 0
  218. #define IMMT_DATA_MASK 0x0fffffffffffffff
  219. /* Descriptor helper macros */
  220. #define DESC_DEC(_d, _s, _m) (((_d) >> (_s)) & (_m))
  221. #define DESC_ENC(_d, _v, _s, _m) \
  222. do { \
  223. (_d) &= ~((u64)(_m) << (_s)); \
  224. (_d) |= (((u64)(_v) & (_m)) << (_s)); \
  225. } while (0)
  226. /* ====== FlexRM data structures ===== */
  227. struct flexrm_ring {
  228. /* Unprotected members */
  229. int num;
  230. struct flexrm_mbox *mbox;
  231. void __iomem *regs;
  232. bool irq_requested;
  233. unsigned int irq;
  234. unsigned int msi_timer_val;
  235. unsigned int msi_count_threshold;
  236. struct ida requests_ida;
  237. struct brcm_message *requests[RING_MAX_REQ_COUNT];
  238. void *bd_base;
  239. dma_addr_t bd_dma_base;
  240. u32 bd_write_offset;
  241. void *cmpl_base;
  242. dma_addr_t cmpl_dma_base;
  243. /* Protected members */
  244. spinlock_t lock;
  245. struct brcm_message *last_pending_msg;
  246. u32 cmpl_read_offset;
  247. };
  248. struct flexrm_mbox {
  249. struct device *dev;
  250. void __iomem *regs;
  251. u32 num_rings;
  252. struct flexrm_ring *rings;
  253. struct dma_pool *bd_pool;
  254. struct dma_pool *cmpl_pool;
  255. struct mbox_controller controller;
  256. };
  257. /* ====== FlexRM ring descriptor helper routines ===== */
  258. static u64 flexrm_read_desc(void *desc_ptr)
  259. {
  260. return le64_to_cpu(*((u64 *)desc_ptr));
  261. }
  262. static void flexrm_write_desc(void *desc_ptr, u64 desc)
  263. {
  264. *((u64 *)desc_ptr) = cpu_to_le64(desc);
  265. }
  266. static u32 flexrm_cmpl_desc_to_reqid(u64 cmpl_desc)
  267. {
  268. return (u32)(cmpl_desc & CMPL_OPAQUE_MASK);
  269. }
  270. static int flexrm_cmpl_desc_to_error(u64 cmpl_desc)
  271. {
  272. u32 status;
  273. status = DESC_DEC(cmpl_desc, CMPL_DME_STATUS_SHIFT,
  274. CMPL_DME_STATUS_MASK);
  275. if (status & DME_STATUS_ERROR_MASK)
  276. return -EIO;
  277. status = DESC_DEC(cmpl_desc, CMPL_RM_STATUS_SHIFT,
  278. CMPL_RM_STATUS_MASK);
  279. status &= RM_STATUS_CODE_MASK;
  280. if (status == RM_STATUS_CODE_AE_TIMEOUT)
  281. return -ETIMEDOUT;
  282. return 0;
  283. }
  284. static bool flexrm_is_next_table_desc(void *desc_ptr)
  285. {
  286. u64 desc = flexrm_read_desc(desc_ptr);
  287. u32 type = DESC_DEC(desc, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  288. return (type == NPTR_TYPE) ? true : false;
  289. }
  290. static u64 flexrm_next_table_desc(u32 toggle, dma_addr_t next_addr)
  291. {
  292. u64 desc = 0;
  293. DESC_ENC(desc, NPTR_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  294. DESC_ENC(desc, toggle, NPTR_TOGGLE_SHIFT, NPTR_TOGGLE_MASK);
  295. DESC_ENC(desc, next_addr, NPTR_ADDR_SHIFT, NPTR_ADDR_MASK);
  296. return desc;
  297. }
  298. static u64 flexrm_null_desc(u32 toggle)
  299. {
  300. u64 desc = 0;
  301. DESC_ENC(desc, NULL_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  302. DESC_ENC(desc, toggle, NULL_TOGGLE_SHIFT, NULL_TOGGLE_MASK);
  303. return desc;
  304. }
  305. static u32 flexrm_estimate_header_desc_count(u32 nhcnt)
  306. {
  307. u32 hcnt = nhcnt / HEADER_BDCOUNT_MAX;
  308. if (!(nhcnt % HEADER_BDCOUNT_MAX))
  309. hcnt += 1;
  310. return hcnt;
  311. }
  312. static void flexrm_flip_header_toogle(void *desc_ptr)
  313. {
  314. u64 desc = flexrm_read_desc(desc_ptr);
  315. if (desc & ((u64)0x1 << HEADER_TOGGLE_SHIFT))
  316. desc &= ~((u64)0x1 << HEADER_TOGGLE_SHIFT);
  317. else
  318. desc |= ((u64)0x1 << HEADER_TOGGLE_SHIFT);
  319. flexrm_write_desc(desc_ptr, desc);
  320. }
  321. static u64 flexrm_header_desc(u32 toggle, u32 startpkt, u32 endpkt,
  322. u32 bdcount, u32 flags, u32 opaque)
  323. {
  324. u64 desc = 0;
  325. DESC_ENC(desc, HEADER_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  326. DESC_ENC(desc, toggle, HEADER_TOGGLE_SHIFT, HEADER_TOGGLE_MASK);
  327. DESC_ENC(desc, startpkt, HEADER_STARTPKT_SHIFT, HEADER_STARTPKT_MASK);
  328. DESC_ENC(desc, endpkt, HEADER_ENDPKT_SHIFT, HEADER_ENDPKT_MASK);
  329. DESC_ENC(desc, bdcount, HEADER_BDCOUNT_SHIFT, HEADER_BDCOUNT_MASK);
  330. DESC_ENC(desc, flags, HEADER_FLAGS_SHIFT, HEADER_FLAGS_MASK);
  331. DESC_ENC(desc, opaque, HEADER_OPAQUE_SHIFT, HEADER_OPAQUE_MASK);
  332. return desc;
  333. }
  334. static void flexrm_enqueue_desc(u32 nhpos, u32 nhcnt, u32 reqid,
  335. u64 desc, void **desc_ptr, u32 *toggle,
  336. void *start_desc, void *end_desc)
  337. {
  338. u64 d;
  339. u32 nhavail, _toggle, _startpkt, _endpkt, _bdcount;
  340. /* Sanity check */
  341. if (nhcnt <= nhpos)
  342. return;
  343. /*
  344. * Each request or packet start with a HEADER descriptor followed
  345. * by one or more non-HEADER descriptors (SRC, SRCT, MSRC, DST,
  346. * DSTT, MDST, IMM, and IMMT). The number of non-HEADER descriptors
  347. * following a HEADER descriptor is represented by BDCOUNT field
  348. * of HEADER descriptor. The max value of BDCOUNT field is 31 which
  349. * means we can only have 31 non-HEADER descriptors following one
  350. * HEADER descriptor.
  351. *
  352. * In general use, number of non-HEADER descriptors can easily go
  353. * beyond 31. To tackle this situation, we have packet (or request)
  354. * extenstion bits (STARTPKT and ENDPKT) in the HEADER descriptor.
  355. *
  356. * To use packet extension, the first HEADER descriptor of request
  357. * (or packet) will have STARTPKT=1 and ENDPKT=0. The intermediate
  358. * HEADER descriptors will have STARTPKT=0 and ENDPKT=0. The last
  359. * HEADER descriptor will have STARTPKT=0 and ENDPKT=1. Also, the
  360. * TOGGLE bit of the first HEADER will be set to invalid state to
  361. * ensure that FlexRM does not start fetching descriptors till all
  362. * descriptors are enqueued. The user of this function will flip
  363. * the TOGGLE bit of first HEADER after all descriptors are
  364. * enqueued.
  365. */
  366. if ((nhpos % HEADER_BDCOUNT_MAX == 0) && (nhcnt - nhpos)) {
  367. /* Prepare the header descriptor */
  368. nhavail = (nhcnt - nhpos);
  369. _toggle = (nhpos == 0) ? !(*toggle) : (*toggle);
  370. _startpkt = (nhpos == 0) ? 0x1 : 0x0;
  371. _endpkt = (nhavail <= HEADER_BDCOUNT_MAX) ? 0x1 : 0x0;
  372. _bdcount = (nhavail <= HEADER_BDCOUNT_MAX) ?
  373. nhavail : HEADER_BDCOUNT_MAX;
  374. if (nhavail <= HEADER_BDCOUNT_MAX)
  375. _bdcount = nhavail;
  376. else
  377. _bdcount = HEADER_BDCOUNT_MAX;
  378. d = flexrm_header_desc(_toggle, _startpkt, _endpkt,
  379. _bdcount, 0x0, reqid);
  380. /* Write header descriptor */
  381. flexrm_write_desc(*desc_ptr, d);
  382. /* Point to next descriptor */
  383. *desc_ptr += sizeof(desc);
  384. if (*desc_ptr == end_desc)
  385. *desc_ptr = start_desc;
  386. /* Skip next pointer descriptors */
  387. while (flexrm_is_next_table_desc(*desc_ptr)) {
  388. *toggle = (*toggle) ? 0 : 1;
  389. *desc_ptr += sizeof(desc);
  390. if (*desc_ptr == end_desc)
  391. *desc_ptr = start_desc;
  392. }
  393. }
  394. /* Write desired descriptor */
  395. flexrm_write_desc(*desc_ptr, desc);
  396. /* Point to next descriptor */
  397. *desc_ptr += sizeof(desc);
  398. if (*desc_ptr == end_desc)
  399. *desc_ptr = start_desc;
  400. /* Skip next pointer descriptors */
  401. while (flexrm_is_next_table_desc(*desc_ptr)) {
  402. *toggle = (*toggle) ? 0 : 1;
  403. *desc_ptr += sizeof(desc);
  404. if (*desc_ptr == end_desc)
  405. *desc_ptr = start_desc;
  406. }
  407. }
  408. static u64 flexrm_src_desc(dma_addr_t addr, unsigned int length)
  409. {
  410. u64 desc = 0;
  411. DESC_ENC(desc, SRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  412. DESC_ENC(desc, length, SRC_LENGTH_SHIFT, SRC_LENGTH_MASK);
  413. DESC_ENC(desc, addr, SRC_ADDR_SHIFT, SRC_ADDR_MASK);
  414. return desc;
  415. }
  416. static u64 flexrm_msrc_desc(dma_addr_t addr, unsigned int length_div_16)
  417. {
  418. u64 desc = 0;
  419. DESC_ENC(desc, MSRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  420. DESC_ENC(desc, length_div_16, MSRC_LENGTH_SHIFT, MSRC_LENGTH_MASK);
  421. DESC_ENC(desc, addr, MSRC_ADDR_SHIFT, MSRC_ADDR_MASK);
  422. return desc;
  423. }
  424. static u64 flexrm_dst_desc(dma_addr_t addr, unsigned int length)
  425. {
  426. u64 desc = 0;
  427. DESC_ENC(desc, DST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  428. DESC_ENC(desc, length, DST_LENGTH_SHIFT, DST_LENGTH_MASK);
  429. DESC_ENC(desc, addr, DST_ADDR_SHIFT, DST_ADDR_MASK);
  430. return desc;
  431. }
  432. static u64 flexrm_mdst_desc(dma_addr_t addr, unsigned int length_div_16)
  433. {
  434. u64 desc = 0;
  435. DESC_ENC(desc, MDST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  436. DESC_ENC(desc, length_div_16, MDST_LENGTH_SHIFT, MDST_LENGTH_MASK);
  437. DESC_ENC(desc, addr, MDST_ADDR_SHIFT, MDST_ADDR_MASK);
  438. return desc;
  439. }
  440. static u64 flexrm_imm_desc(u64 data)
  441. {
  442. u64 desc = 0;
  443. DESC_ENC(desc, IMM_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  444. DESC_ENC(desc, data, IMM_DATA_SHIFT, IMM_DATA_MASK);
  445. return desc;
  446. }
  447. static u64 flexrm_srct_desc(dma_addr_t addr, unsigned int length)
  448. {
  449. u64 desc = 0;
  450. DESC_ENC(desc, SRCT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  451. DESC_ENC(desc, length, SRCT_LENGTH_SHIFT, SRCT_LENGTH_MASK);
  452. DESC_ENC(desc, addr, SRCT_ADDR_SHIFT, SRCT_ADDR_MASK);
  453. return desc;
  454. }
  455. static u64 flexrm_dstt_desc(dma_addr_t addr, unsigned int length)
  456. {
  457. u64 desc = 0;
  458. DESC_ENC(desc, DSTT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  459. DESC_ENC(desc, length, DSTT_LENGTH_SHIFT, DSTT_LENGTH_MASK);
  460. DESC_ENC(desc, addr, DSTT_ADDR_SHIFT, DSTT_ADDR_MASK);
  461. return desc;
  462. }
  463. static u64 flexrm_immt_desc(u64 data)
  464. {
  465. u64 desc = 0;
  466. DESC_ENC(desc, IMMT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
  467. DESC_ENC(desc, data, IMMT_DATA_SHIFT, IMMT_DATA_MASK);
  468. return desc;
  469. }
  470. static bool flexrm_spu_sanity_check(struct brcm_message *msg)
  471. {
  472. struct scatterlist *sg;
  473. if (!msg->spu.src || !msg->spu.dst)
  474. return false;
  475. for (sg = msg->spu.src; sg; sg = sg_next(sg)) {
  476. if (sg->length & 0xf) {
  477. if (sg->length > SRC_LENGTH_MASK)
  478. return false;
  479. } else {
  480. if (sg->length > (MSRC_LENGTH_MASK * 16))
  481. return false;
  482. }
  483. }
  484. for (sg = msg->spu.dst; sg; sg = sg_next(sg)) {
  485. if (sg->length & 0xf) {
  486. if (sg->length > DST_LENGTH_MASK)
  487. return false;
  488. } else {
  489. if (sg->length > (MDST_LENGTH_MASK * 16))
  490. return false;
  491. }
  492. }
  493. return true;
  494. }
  495. static u32 flexrm_spu_estimate_nonheader_desc_count(struct brcm_message *msg)
  496. {
  497. u32 cnt = 0;
  498. unsigned int dst_target = 0;
  499. struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
  500. while (src_sg || dst_sg) {
  501. if (src_sg) {
  502. cnt++;
  503. dst_target = src_sg->length;
  504. src_sg = sg_next(src_sg);
  505. } else
  506. dst_target = UINT_MAX;
  507. while (dst_target && dst_sg) {
  508. cnt++;
  509. if (dst_sg->length < dst_target)
  510. dst_target -= dst_sg->length;
  511. else
  512. dst_target = 0;
  513. dst_sg = sg_next(dst_sg);
  514. }
  515. }
  516. return cnt;
  517. }
  518. static int flexrm_spu_dma_map(struct device *dev, struct brcm_message *msg)
  519. {
  520. int rc;
  521. rc = dma_map_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  522. DMA_TO_DEVICE);
  523. if (rc < 0)
  524. return rc;
  525. rc = dma_map_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
  526. DMA_FROM_DEVICE);
  527. if (rc < 0) {
  528. dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  529. DMA_TO_DEVICE);
  530. return rc;
  531. }
  532. return 0;
  533. }
  534. static void flexrm_spu_dma_unmap(struct device *dev, struct brcm_message *msg)
  535. {
  536. dma_unmap_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
  537. DMA_FROM_DEVICE);
  538. dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
  539. DMA_TO_DEVICE);
  540. }
  541. static void *flexrm_spu_write_descs(struct brcm_message *msg, u32 nhcnt,
  542. u32 reqid, void *desc_ptr, u32 toggle,
  543. void *start_desc, void *end_desc)
  544. {
  545. u64 d;
  546. u32 nhpos = 0;
  547. void *orig_desc_ptr = desc_ptr;
  548. unsigned int dst_target = 0;
  549. struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
  550. while (src_sg || dst_sg) {
  551. if (src_sg) {
  552. if (sg_dma_len(src_sg) & 0xf)
  553. d = flexrm_src_desc(sg_dma_address(src_sg),
  554. sg_dma_len(src_sg));
  555. else
  556. d = flexrm_msrc_desc(sg_dma_address(src_sg),
  557. sg_dma_len(src_sg)/16);
  558. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  559. d, &desc_ptr, &toggle,
  560. start_desc, end_desc);
  561. nhpos++;
  562. dst_target = sg_dma_len(src_sg);
  563. src_sg = sg_next(src_sg);
  564. } else
  565. dst_target = UINT_MAX;
  566. while (dst_target && dst_sg) {
  567. if (sg_dma_len(dst_sg) & 0xf)
  568. d = flexrm_dst_desc(sg_dma_address(dst_sg),
  569. sg_dma_len(dst_sg));
  570. else
  571. d = flexrm_mdst_desc(sg_dma_address(dst_sg),
  572. sg_dma_len(dst_sg)/16);
  573. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  574. d, &desc_ptr, &toggle,
  575. start_desc, end_desc);
  576. nhpos++;
  577. if (sg_dma_len(dst_sg) < dst_target)
  578. dst_target -= sg_dma_len(dst_sg);
  579. else
  580. dst_target = 0;
  581. dst_sg = sg_next(dst_sg);
  582. }
  583. }
  584. /* Null descriptor with invalid toggle bit */
  585. flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
  586. /* Ensure that descriptors have been written to memory */
  587. wmb();
  588. /* Flip toggle bit in header */
  589. flexrm_flip_header_toogle(orig_desc_ptr);
  590. return desc_ptr;
  591. }
  592. static bool flexrm_sba_sanity_check(struct brcm_message *msg)
  593. {
  594. u32 i;
  595. if (!msg->sba.cmds || !msg->sba.cmds_count)
  596. return false;
  597. for (i = 0; i < msg->sba.cmds_count; i++) {
  598. if (((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
  599. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) &&
  600. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT))
  601. return false;
  602. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) &&
  603. (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
  604. return false;
  605. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C) &&
  606. (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
  607. return false;
  608. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) &&
  609. (msg->sba.cmds[i].resp_len > DSTT_LENGTH_MASK))
  610. return false;
  611. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) &&
  612. (msg->sba.cmds[i].data_len > DSTT_LENGTH_MASK))
  613. return false;
  614. }
  615. return true;
  616. }
  617. static u32 flexrm_sba_estimate_nonheader_desc_count(struct brcm_message *msg)
  618. {
  619. u32 i, cnt;
  620. cnt = 0;
  621. for (i = 0; i < msg->sba.cmds_count; i++) {
  622. cnt++;
  623. if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
  624. (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C))
  625. cnt++;
  626. if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP)
  627. cnt++;
  628. if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT)
  629. cnt++;
  630. }
  631. return cnt;
  632. }
  633. static void *flexrm_sba_write_descs(struct brcm_message *msg, u32 nhcnt,
  634. u32 reqid, void *desc_ptr, u32 toggle,
  635. void *start_desc, void *end_desc)
  636. {
  637. u64 d;
  638. u32 i, nhpos = 0;
  639. struct brcm_sba_command *c;
  640. void *orig_desc_ptr = desc_ptr;
  641. /* Convert SBA commands into descriptors */
  642. for (i = 0; i < msg->sba.cmds_count; i++) {
  643. c = &msg->sba.cmds[i];
  644. if ((c->flags & BRCM_SBA_CMD_HAS_RESP) &&
  645. (c->flags & BRCM_SBA_CMD_HAS_OUTPUT)) {
  646. /* Destination response descriptor */
  647. d = flexrm_dst_desc(c->resp, c->resp_len);
  648. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  649. d, &desc_ptr, &toggle,
  650. start_desc, end_desc);
  651. nhpos++;
  652. } else if (c->flags & BRCM_SBA_CMD_HAS_RESP) {
  653. /* Destination response with tlast descriptor */
  654. d = flexrm_dstt_desc(c->resp, c->resp_len);
  655. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  656. d, &desc_ptr, &toggle,
  657. start_desc, end_desc);
  658. nhpos++;
  659. }
  660. if (c->flags & BRCM_SBA_CMD_HAS_OUTPUT) {
  661. /* Destination with tlast descriptor */
  662. d = flexrm_dstt_desc(c->data, c->data_len);
  663. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  664. d, &desc_ptr, &toggle,
  665. start_desc, end_desc);
  666. nhpos++;
  667. }
  668. if (c->flags & BRCM_SBA_CMD_TYPE_B) {
  669. /* Command as immediate descriptor */
  670. d = flexrm_imm_desc(c->cmd);
  671. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  672. d, &desc_ptr, &toggle,
  673. start_desc, end_desc);
  674. nhpos++;
  675. } else {
  676. /* Command as immediate descriptor with tlast */
  677. d = flexrm_immt_desc(c->cmd);
  678. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  679. d, &desc_ptr, &toggle,
  680. start_desc, end_desc);
  681. nhpos++;
  682. }
  683. if ((c->flags & BRCM_SBA_CMD_TYPE_B) ||
  684. (c->flags & BRCM_SBA_CMD_TYPE_C)) {
  685. /* Source with tlast descriptor */
  686. d = flexrm_srct_desc(c->data, c->data_len);
  687. flexrm_enqueue_desc(nhpos, nhcnt, reqid,
  688. d, &desc_ptr, &toggle,
  689. start_desc, end_desc);
  690. nhpos++;
  691. }
  692. }
  693. /* Null descriptor with invalid toggle bit */
  694. flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
  695. /* Ensure that descriptors have been written to memory */
  696. wmb();
  697. /* Flip toggle bit in header */
  698. flexrm_flip_header_toogle(orig_desc_ptr);
  699. return desc_ptr;
  700. }
  701. static bool flexrm_sanity_check(struct brcm_message *msg)
  702. {
  703. if (!msg)
  704. return false;
  705. switch (msg->type) {
  706. case BRCM_MESSAGE_SPU:
  707. return flexrm_spu_sanity_check(msg);
  708. case BRCM_MESSAGE_SBA:
  709. return flexrm_sba_sanity_check(msg);
  710. default:
  711. return false;
  712. };
  713. }
  714. static u32 flexrm_estimate_nonheader_desc_count(struct brcm_message *msg)
  715. {
  716. if (!msg)
  717. return 0;
  718. switch (msg->type) {
  719. case BRCM_MESSAGE_SPU:
  720. return flexrm_spu_estimate_nonheader_desc_count(msg);
  721. case BRCM_MESSAGE_SBA:
  722. return flexrm_sba_estimate_nonheader_desc_count(msg);
  723. default:
  724. return 0;
  725. };
  726. }
  727. static int flexrm_dma_map(struct device *dev, struct brcm_message *msg)
  728. {
  729. if (!dev || !msg)
  730. return -EINVAL;
  731. switch (msg->type) {
  732. case BRCM_MESSAGE_SPU:
  733. return flexrm_spu_dma_map(dev, msg);
  734. default:
  735. break;
  736. }
  737. return 0;
  738. }
  739. static void flexrm_dma_unmap(struct device *dev, struct brcm_message *msg)
  740. {
  741. if (!dev || !msg)
  742. return;
  743. switch (msg->type) {
  744. case BRCM_MESSAGE_SPU:
  745. flexrm_spu_dma_unmap(dev, msg);
  746. break;
  747. default:
  748. break;
  749. }
  750. }
  751. static void *flexrm_write_descs(struct brcm_message *msg, u32 nhcnt,
  752. u32 reqid, void *desc_ptr, u32 toggle,
  753. void *start_desc, void *end_desc)
  754. {
  755. if (!msg || !desc_ptr || !start_desc || !end_desc)
  756. return ERR_PTR(-ENOTSUPP);
  757. if ((desc_ptr < start_desc) || (end_desc <= desc_ptr))
  758. return ERR_PTR(-ERANGE);
  759. switch (msg->type) {
  760. case BRCM_MESSAGE_SPU:
  761. return flexrm_spu_write_descs(msg, nhcnt, reqid,
  762. desc_ptr, toggle,
  763. start_desc, end_desc);
  764. case BRCM_MESSAGE_SBA:
  765. return flexrm_sba_write_descs(msg, nhcnt, reqid,
  766. desc_ptr, toggle,
  767. start_desc, end_desc);
  768. default:
  769. return ERR_PTR(-ENOTSUPP);
  770. };
  771. }
  772. /* ====== FlexRM driver helper routines ===== */
  773. static int flexrm_new_request(struct flexrm_ring *ring,
  774. struct brcm_message *batch_msg,
  775. struct brcm_message *msg)
  776. {
  777. void *next;
  778. unsigned long flags;
  779. u32 val, count, nhcnt;
  780. u32 read_offset, write_offset;
  781. bool exit_cleanup = false;
  782. int ret = 0, reqid;
  783. /* Do sanity check on message */
  784. if (!flexrm_sanity_check(msg))
  785. return -EIO;
  786. msg->error = 0;
  787. /* If no requests possible then save data pointer and goto done. */
  788. reqid = ida_simple_get(&ring->requests_ida, 0,
  789. RING_MAX_REQ_COUNT, GFP_KERNEL);
  790. if (reqid < 0) {
  791. spin_lock_irqsave(&ring->lock, flags);
  792. if (batch_msg)
  793. ring->last_pending_msg = batch_msg;
  794. else
  795. ring->last_pending_msg = msg;
  796. spin_unlock_irqrestore(&ring->lock, flags);
  797. return 0;
  798. }
  799. ring->requests[reqid] = msg;
  800. /* Do DMA mappings for the message */
  801. ret = flexrm_dma_map(ring->mbox->dev, msg);
  802. if (ret < 0) {
  803. ring->requests[reqid] = NULL;
  804. ida_simple_remove(&ring->requests_ida, reqid);
  805. return ret;
  806. }
  807. /* If last_pending_msg is already set then goto done with error */
  808. spin_lock_irqsave(&ring->lock, flags);
  809. if (ring->last_pending_msg)
  810. ret = -ENOSPC;
  811. spin_unlock_irqrestore(&ring->lock, flags);
  812. if (ret < 0) {
  813. dev_warn(ring->mbox->dev, "no space in ring %d\n", ring->num);
  814. exit_cleanup = true;
  815. goto exit;
  816. }
  817. /* Determine current HW BD read offset */
  818. read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
  819. val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
  820. read_offset *= RING_DESC_SIZE;
  821. read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base);
  822. /*
  823. * Number required descriptors = number of non-header descriptors +
  824. * number of header descriptors +
  825. * 1x null descriptor
  826. */
  827. nhcnt = flexrm_estimate_nonheader_desc_count(msg);
  828. count = flexrm_estimate_header_desc_count(nhcnt) + nhcnt + 1;
  829. /* Check for available descriptor space. */
  830. write_offset = ring->bd_write_offset;
  831. while (count) {
  832. if (!flexrm_is_next_table_desc(ring->bd_base + write_offset))
  833. count--;
  834. write_offset += RING_DESC_SIZE;
  835. if (write_offset == RING_BD_SIZE)
  836. write_offset = 0x0;
  837. if (write_offset == read_offset)
  838. break;
  839. }
  840. if (count) {
  841. spin_lock_irqsave(&ring->lock, flags);
  842. if (batch_msg)
  843. ring->last_pending_msg = batch_msg;
  844. else
  845. ring->last_pending_msg = msg;
  846. spin_unlock_irqrestore(&ring->lock, flags);
  847. ret = 0;
  848. exit_cleanup = true;
  849. goto exit;
  850. }
  851. /* Write descriptors to ring */
  852. next = flexrm_write_descs(msg, nhcnt, reqid,
  853. ring->bd_base + ring->bd_write_offset,
  854. RING_BD_TOGGLE_VALID(ring->bd_write_offset),
  855. ring->bd_base, ring->bd_base + RING_BD_SIZE);
  856. if (IS_ERR(next)) {
  857. ret = PTR_ERR(next);
  858. exit_cleanup = true;
  859. goto exit;
  860. }
  861. /* Save ring BD write offset */
  862. ring->bd_write_offset = (unsigned long)(next - ring->bd_base);
  863. exit:
  864. /* Update error status in message */
  865. msg->error = ret;
  866. /* Cleanup if we failed */
  867. if (exit_cleanup) {
  868. flexrm_dma_unmap(ring->mbox->dev, msg);
  869. ring->requests[reqid] = NULL;
  870. ida_simple_remove(&ring->requests_ida, reqid);
  871. }
  872. return ret;
  873. }
  874. static int flexrm_process_completions(struct flexrm_ring *ring)
  875. {
  876. u64 desc;
  877. int err, count = 0;
  878. unsigned long flags;
  879. struct brcm_message *msg = NULL;
  880. u32 reqid, cmpl_read_offset, cmpl_write_offset;
  881. struct mbox_chan *chan = &ring->mbox->controller.chans[ring->num];
  882. spin_lock_irqsave(&ring->lock, flags);
  883. /* Check last_pending_msg */
  884. if (ring->last_pending_msg) {
  885. msg = ring->last_pending_msg;
  886. ring->last_pending_msg = NULL;
  887. }
  888. /*
  889. * Get current completion read and write offset
  890. *
  891. * Note: We should read completion write pointer atleast once
  892. * after we get a MSI interrupt because HW maintains internal
  893. * MSI status which will allow next MSI interrupt only after
  894. * completion write pointer is read.
  895. */
  896. cmpl_write_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
  897. cmpl_write_offset *= RING_DESC_SIZE;
  898. cmpl_read_offset = ring->cmpl_read_offset;
  899. ring->cmpl_read_offset = cmpl_write_offset;
  900. spin_unlock_irqrestore(&ring->lock, flags);
  901. /* If last_pending_msg was set then queue it back */
  902. if (msg)
  903. mbox_send_message(chan, msg);
  904. /* For each completed request notify mailbox clients */
  905. reqid = 0;
  906. while (cmpl_read_offset != cmpl_write_offset) {
  907. /* Dequeue next completion descriptor */
  908. desc = *((u64 *)(ring->cmpl_base + cmpl_read_offset));
  909. /* Next read offset */
  910. cmpl_read_offset += RING_DESC_SIZE;
  911. if (cmpl_read_offset == RING_CMPL_SIZE)
  912. cmpl_read_offset = 0;
  913. /* Decode error from completion descriptor */
  914. err = flexrm_cmpl_desc_to_error(desc);
  915. if (err < 0) {
  916. dev_warn(ring->mbox->dev,
  917. "got completion desc=0x%lx with error %d",
  918. (unsigned long)desc, err);
  919. }
  920. /* Determine request id from completion descriptor */
  921. reqid = flexrm_cmpl_desc_to_reqid(desc);
  922. /* Determine message pointer based on reqid */
  923. msg = ring->requests[reqid];
  924. if (!msg) {
  925. dev_warn(ring->mbox->dev,
  926. "null msg pointer for completion desc=0x%lx",
  927. (unsigned long)desc);
  928. continue;
  929. }
  930. /* Release reqid for recycling */
  931. ring->requests[reqid] = NULL;
  932. ida_simple_remove(&ring->requests_ida, reqid);
  933. /* Unmap DMA mappings */
  934. flexrm_dma_unmap(ring->mbox->dev, msg);
  935. /* Give-back message to mailbox client */
  936. msg->error = err;
  937. mbox_chan_received_data(chan, msg);
  938. /* Increment number of completions processed */
  939. count++;
  940. }
  941. return count;
  942. }
  943. /* ====== FlexRM interrupt handler ===== */
  944. static irqreturn_t flexrm_irq_event(int irq, void *dev_id)
  945. {
  946. /* We only have MSI for completions so just wakeup IRQ thread */
  947. /* Ring related errors will be informed via completion descriptors */
  948. return IRQ_WAKE_THREAD;
  949. }
  950. static irqreturn_t flexrm_irq_thread(int irq, void *dev_id)
  951. {
  952. flexrm_process_completions(dev_id);
  953. return IRQ_HANDLED;
  954. }
  955. /* ====== FlexRM mailbox callbacks ===== */
  956. static int flexrm_send_data(struct mbox_chan *chan, void *data)
  957. {
  958. int i, rc;
  959. struct flexrm_ring *ring = chan->con_priv;
  960. struct brcm_message *msg = data;
  961. if (msg->type == BRCM_MESSAGE_BATCH) {
  962. for (i = msg->batch.msgs_queued;
  963. i < msg->batch.msgs_count; i++) {
  964. rc = flexrm_new_request(ring, msg,
  965. &msg->batch.msgs[i]);
  966. if (rc) {
  967. msg->error = rc;
  968. return rc;
  969. }
  970. msg->batch.msgs_queued++;
  971. }
  972. return 0;
  973. }
  974. return flexrm_new_request(ring, NULL, data);
  975. }
  976. static bool flexrm_peek_data(struct mbox_chan *chan)
  977. {
  978. int cnt = flexrm_process_completions(chan->con_priv);
  979. return (cnt > 0) ? true : false;
  980. }
  981. static int flexrm_startup(struct mbox_chan *chan)
  982. {
  983. u64 d;
  984. u32 val, off;
  985. int ret = 0;
  986. dma_addr_t next_addr;
  987. struct flexrm_ring *ring = chan->con_priv;
  988. /* Allocate BD memory */
  989. ring->bd_base = dma_pool_alloc(ring->mbox->bd_pool,
  990. GFP_KERNEL, &ring->bd_dma_base);
  991. if (!ring->bd_base) {
  992. dev_err(ring->mbox->dev, "can't allocate BD memory\n");
  993. ret = -ENOMEM;
  994. goto fail;
  995. }
  996. /* Configure next table pointer entries in BD memory */
  997. for (off = 0; off < RING_BD_SIZE; off += RING_DESC_SIZE) {
  998. next_addr = off + RING_DESC_SIZE;
  999. if (next_addr == RING_BD_SIZE)
  1000. next_addr = 0;
  1001. next_addr += ring->bd_dma_base;
  1002. if (RING_BD_ALIGN_CHECK(next_addr))
  1003. d = flexrm_next_table_desc(RING_BD_TOGGLE_VALID(off),
  1004. next_addr);
  1005. else
  1006. d = flexrm_null_desc(RING_BD_TOGGLE_INVALID(off));
  1007. flexrm_write_desc(ring->bd_base + off, d);
  1008. }
  1009. /* Allocate completion memory */
  1010. ring->cmpl_base = dma_pool_alloc(ring->mbox->cmpl_pool,
  1011. GFP_KERNEL, &ring->cmpl_dma_base);
  1012. if (!ring->cmpl_base) {
  1013. dev_err(ring->mbox->dev, "can't allocate completion memory\n");
  1014. ret = -ENOMEM;
  1015. goto fail_free_bd_memory;
  1016. }
  1017. memset(ring->cmpl_base, 0, RING_CMPL_SIZE);
  1018. /* Request IRQ */
  1019. if (ring->irq == UINT_MAX) {
  1020. dev_err(ring->mbox->dev, "ring IRQ not available\n");
  1021. ret = -ENODEV;
  1022. goto fail_free_cmpl_memory;
  1023. }
  1024. ret = request_threaded_irq(ring->irq,
  1025. flexrm_irq_event,
  1026. flexrm_irq_thread,
  1027. 0, dev_name(ring->mbox->dev), ring);
  1028. if (ret) {
  1029. dev_err(ring->mbox->dev, "failed to request ring IRQ\n");
  1030. goto fail_free_cmpl_memory;
  1031. }
  1032. ring->irq_requested = true;
  1033. /* Disable/inactivate ring */
  1034. writel_relaxed(0x0, ring->regs + RING_CONTROL);
  1035. /* Program BD start address */
  1036. val = BD_START_ADDR_VALUE(ring->bd_dma_base);
  1037. writel_relaxed(val, ring->regs + RING_BD_START_ADDR);
  1038. /* BD write pointer will be same as HW write pointer */
  1039. ring->bd_write_offset =
  1040. readl_relaxed(ring->regs + RING_BD_WRITE_PTR);
  1041. ring->bd_write_offset *= RING_DESC_SIZE;
  1042. /* Program completion start address */
  1043. val = CMPL_START_ADDR_VALUE(ring->cmpl_dma_base);
  1044. writel_relaxed(val, ring->regs + RING_CMPL_START_ADDR);
  1045. /* Ensure last pending message is cleared */
  1046. ring->last_pending_msg = NULL;
  1047. /* Completion read pointer will be same as HW write pointer */
  1048. ring->cmpl_read_offset =
  1049. readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
  1050. ring->cmpl_read_offset *= RING_DESC_SIZE;
  1051. /* Read ring Tx, Rx, and Outstanding counts to clear */
  1052. readl_relaxed(ring->regs + RING_NUM_REQ_RECV_LS);
  1053. readl_relaxed(ring->regs + RING_NUM_REQ_RECV_MS);
  1054. readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_LS);
  1055. readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_MS);
  1056. readl_relaxed(ring->regs + RING_NUM_REQ_OUTSTAND);
  1057. /* Configure RING_MSI_CONTROL */
  1058. val = 0;
  1059. val |= (ring->msi_timer_val << MSI_TIMER_VAL_SHIFT);
  1060. val |= BIT(MSI_ENABLE_SHIFT);
  1061. val |= (ring->msi_count_threshold & MSI_COUNT_MASK) << MSI_COUNT_SHIFT;
  1062. writel_relaxed(val, ring->regs + RING_MSI_CONTROL);
  1063. /* Enable/activate ring */
  1064. val = BIT(CONTROL_ACTIVE_SHIFT);
  1065. writel_relaxed(val, ring->regs + RING_CONTROL);
  1066. return 0;
  1067. fail_free_cmpl_memory:
  1068. dma_pool_free(ring->mbox->cmpl_pool,
  1069. ring->cmpl_base, ring->cmpl_dma_base);
  1070. ring->cmpl_base = NULL;
  1071. fail_free_bd_memory:
  1072. dma_pool_free(ring->mbox->bd_pool,
  1073. ring->bd_base, ring->bd_dma_base);
  1074. ring->bd_base = NULL;
  1075. fail:
  1076. return ret;
  1077. }
  1078. static void flexrm_shutdown(struct mbox_chan *chan)
  1079. {
  1080. u32 reqid;
  1081. unsigned int timeout;
  1082. struct brcm_message *msg;
  1083. struct flexrm_ring *ring = chan->con_priv;
  1084. /* Disable/inactivate ring */
  1085. writel_relaxed(0x0, ring->regs + RING_CONTROL);
  1086. /* Flush ring with timeout of 1s */
  1087. timeout = 1000;
  1088. writel_relaxed(BIT(CONTROL_FLUSH_SHIFT),
  1089. ring->regs + RING_CONTROL);
  1090. do {
  1091. if (readl_relaxed(ring->regs + RING_FLUSH_DONE) &
  1092. FLUSH_DONE_MASK)
  1093. break;
  1094. mdelay(1);
  1095. } while (timeout--);
  1096. /* Abort all in-flight requests */
  1097. for (reqid = 0; reqid < RING_MAX_REQ_COUNT; reqid++) {
  1098. msg = ring->requests[reqid];
  1099. if (!msg)
  1100. continue;
  1101. /* Release reqid for recycling */
  1102. ring->requests[reqid] = NULL;
  1103. ida_simple_remove(&ring->requests_ida, reqid);
  1104. /* Unmap DMA mappings */
  1105. flexrm_dma_unmap(ring->mbox->dev, msg);
  1106. /* Give-back message to mailbox client */
  1107. msg->error = -EIO;
  1108. mbox_chan_received_data(chan, msg);
  1109. }
  1110. /* Release IRQ */
  1111. if (ring->irq_requested) {
  1112. free_irq(ring->irq, ring);
  1113. ring->irq_requested = false;
  1114. }
  1115. /* Free-up completion descriptor ring */
  1116. if (ring->cmpl_base) {
  1117. dma_pool_free(ring->mbox->cmpl_pool,
  1118. ring->cmpl_base, ring->cmpl_dma_base);
  1119. ring->cmpl_base = NULL;
  1120. }
  1121. /* Free-up BD descriptor ring */
  1122. if (ring->bd_base) {
  1123. dma_pool_free(ring->mbox->bd_pool,
  1124. ring->bd_base, ring->bd_dma_base);
  1125. ring->bd_base = NULL;
  1126. }
  1127. }
  1128. static bool flexrm_last_tx_done(struct mbox_chan *chan)
  1129. {
  1130. bool ret;
  1131. unsigned long flags;
  1132. struct flexrm_ring *ring = chan->con_priv;
  1133. spin_lock_irqsave(&ring->lock, flags);
  1134. ret = (ring->last_pending_msg) ? false : true;
  1135. spin_unlock_irqrestore(&ring->lock, flags);
  1136. return ret;
  1137. }
  1138. static const struct mbox_chan_ops flexrm_mbox_chan_ops = {
  1139. .send_data = flexrm_send_data,
  1140. .startup = flexrm_startup,
  1141. .shutdown = flexrm_shutdown,
  1142. .last_tx_done = flexrm_last_tx_done,
  1143. .peek_data = flexrm_peek_data,
  1144. };
  1145. static struct mbox_chan *flexrm_mbox_of_xlate(struct mbox_controller *cntlr,
  1146. const struct of_phandle_args *pa)
  1147. {
  1148. struct mbox_chan *chan;
  1149. struct flexrm_ring *ring;
  1150. if (pa->args_count < 3)
  1151. return ERR_PTR(-EINVAL);
  1152. if (pa->args[0] >= cntlr->num_chans)
  1153. return ERR_PTR(-ENOENT);
  1154. if (pa->args[1] > MSI_COUNT_MASK)
  1155. return ERR_PTR(-EINVAL);
  1156. if (pa->args[2] > MSI_TIMER_VAL_MASK)
  1157. return ERR_PTR(-EINVAL);
  1158. chan = &cntlr->chans[pa->args[0]];
  1159. ring = chan->con_priv;
  1160. ring->msi_count_threshold = pa->args[1];
  1161. ring->msi_timer_val = pa->args[2];
  1162. return chan;
  1163. }
  1164. /* ====== FlexRM platform driver ===== */
  1165. static void flexrm_mbox_msi_write(struct msi_desc *desc, struct msi_msg *msg)
  1166. {
  1167. struct device *dev = msi_desc_to_dev(desc);
  1168. struct flexrm_mbox *mbox = dev_get_drvdata(dev);
  1169. struct flexrm_ring *ring = &mbox->rings[desc->platform.msi_index];
  1170. /* Configure per-Ring MSI registers */
  1171. writel_relaxed(msg->address_lo, ring->regs + RING_MSI_ADDR_LS);
  1172. writel_relaxed(msg->address_hi, ring->regs + RING_MSI_ADDR_MS);
  1173. writel_relaxed(msg->data, ring->regs + RING_MSI_DATA_VALUE);
  1174. }
  1175. static int flexrm_mbox_probe(struct platform_device *pdev)
  1176. {
  1177. int index, ret = 0;
  1178. void __iomem *regs;
  1179. void __iomem *regs_end;
  1180. struct msi_desc *desc;
  1181. struct resource *iomem;
  1182. struct flexrm_ring *ring;
  1183. struct flexrm_mbox *mbox;
  1184. struct device *dev = &pdev->dev;
  1185. /* Allocate driver mailbox struct */
  1186. mbox = devm_kzalloc(dev, sizeof(*mbox), GFP_KERNEL);
  1187. if (!mbox) {
  1188. ret = -ENOMEM;
  1189. goto fail;
  1190. }
  1191. mbox->dev = dev;
  1192. platform_set_drvdata(pdev, mbox);
  1193. /* Get resource for registers */
  1194. iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1195. if (!iomem || (resource_size(iomem) < RING_REGS_SIZE)) {
  1196. ret = -ENODEV;
  1197. goto fail;
  1198. }
  1199. /* Map registers of all rings */
  1200. mbox->regs = devm_ioremap_resource(&pdev->dev, iomem);
  1201. if (IS_ERR(mbox->regs)) {
  1202. ret = PTR_ERR(mbox->regs);
  1203. dev_err(&pdev->dev, "Failed to remap mailbox regs: %d\n", ret);
  1204. goto fail;
  1205. }
  1206. regs_end = mbox->regs + resource_size(iomem);
  1207. /* Scan and count available rings */
  1208. mbox->num_rings = 0;
  1209. for (regs = mbox->regs; regs < regs_end; regs += RING_REGS_SIZE) {
  1210. if (readl_relaxed(regs + RING_VER) == RING_VER_MAGIC)
  1211. mbox->num_rings++;
  1212. }
  1213. if (!mbox->num_rings) {
  1214. ret = -ENODEV;
  1215. goto fail;
  1216. }
  1217. /* Allocate driver ring structs */
  1218. ring = devm_kcalloc(dev, mbox->num_rings, sizeof(*ring), GFP_KERNEL);
  1219. if (!ring) {
  1220. ret = -ENOMEM;
  1221. goto fail;
  1222. }
  1223. mbox->rings = ring;
  1224. /* Initialize members of driver ring structs */
  1225. regs = mbox->regs;
  1226. for (index = 0; index < mbox->num_rings; index++) {
  1227. ring = &mbox->rings[index];
  1228. ring->num = index;
  1229. ring->mbox = mbox;
  1230. while ((regs < regs_end) &&
  1231. (readl_relaxed(regs + RING_VER) != RING_VER_MAGIC))
  1232. regs += RING_REGS_SIZE;
  1233. if (regs_end <= regs) {
  1234. ret = -ENODEV;
  1235. goto fail;
  1236. }
  1237. ring->regs = regs;
  1238. regs += RING_REGS_SIZE;
  1239. ring->irq = UINT_MAX;
  1240. ring->irq_requested = false;
  1241. ring->msi_timer_val = MSI_TIMER_VAL_MASK;
  1242. ring->msi_count_threshold = 0x1;
  1243. ida_init(&ring->requests_ida);
  1244. memset(ring->requests, 0, sizeof(ring->requests));
  1245. ring->bd_base = NULL;
  1246. ring->bd_dma_base = 0;
  1247. ring->cmpl_base = NULL;
  1248. ring->cmpl_dma_base = 0;
  1249. spin_lock_init(&ring->lock);
  1250. ring->last_pending_msg = NULL;
  1251. ring->cmpl_read_offset = 0;
  1252. }
  1253. /* FlexRM is capable of 40-bit physical addresses only */
  1254. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
  1255. if (ret) {
  1256. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
  1257. if (ret)
  1258. goto fail;
  1259. }
  1260. /* Create DMA pool for ring BD memory */
  1261. mbox->bd_pool = dma_pool_create("bd", dev, RING_BD_SIZE,
  1262. 1 << RING_BD_ALIGN_ORDER, 0);
  1263. if (!mbox->bd_pool) {
  1264. ret = -ENOMEM;
  1265. goto fail;
  1266. }
  1267. /* Create DMA pool for ring completion memory */
  1268. mbox->cmpl_pool = dma_pool_create("cmpl", dev, RING_CMPL_SIZE,
  1269. 1 << RING_CMPL_ALIGN_ORDER, 0);
  1270. if (!mbox->cmpl_pool) {
  1271. ret = -ENOMEM;
  1272. goto fail_destroy_bd_pool;
  1273. }
  1274. /* Allocate platform MSIs for each ring */
  1275. ret = platform_msi_domain_alloc_irqs(dev, mbox->num_rings,
  1276. flexrm_mbox_msi_write);
  1277. if (ret)
  1278. goto fail_destroy_cmpl_pool;
  1279. /* Save alloced IRQ numbers for each ring */
  1280. for_each_msi_entry(desc, dev) {
  1281. ring = &mbox->rings[desc->platform.msi_index];
  1282. ring->irq = desc->irq;
  1283. }
  1284. /* Initialize mailbox controller */
  1285. mbox->controller.txdone_irq = false;
  1286. mbox->controller.txdone_poll = true;
  1287. mbox->controller.txpoll_period = 1;
  1288. mbox->controller.ops = &flexrm_mbox_chan_ops;
  1289. mbox->controller.dev = dev;
  1290. mbox->controller.num_chans = mbox->num_rings;
  1291. mbox->controller.of_xlate = flexrm_mbox_of_xlate;
  1292. mbox->controller.chans = devm_kcalloc(dev, mbox->num_rings,
  1293. sizeof(*mbox->controller.chans), GFP_KERNEL);
  1294. if (!mbox->controller.chans) {
  1295. ret = -ENOMEM;
  1296. goto fail_free_msis;
  1297. }
  1298. for (index = 0; index < mbox->num_rings; index++)
  1299. mbox->controller.chans[index].con_priv = &mbox->rings[index];
  1300. /* Register mailbox controller */
  1301. ret = mbox_controller_register(&mbox->controller);
  1302. if (ret)
  1303. goto fail_free_msis;
  1304. dev_info(dev, "registered flexrm mailbox with %d channels\n",
  1305. mbox->controller.num_chans);
  1306. return 0;
  1307. fail_free_msis:
  1308. platform_msi_domain_free_irqs(dev);
  1309. fail_destroy_cmpl_pool:
  1310. dma_pool_destroy(mbox->cmpl_pool);
  1311. fail_destroy_bd_pool:
  1312. dma_pool_destroy(mbox->bd_pool);
  1313. fail:
  1314. return ret;
  1315. }
  1316. static int flexrm_mbox_remove(struct platform_device *pdev)
  1317. {
  1318. int index;
  1319. struct device *dev = &pdev->dev;
  1320. struct flexrm_ring *ring;
  1321. struct flexrm_mbox *mbox = platform_get_drvdata(pdev);
  1322. mbox_controller_unregister(&mbox->controller);
  1323. platform_msi_domain_free_irqs(dev);
  1324. dma_pool_destroy(mbox->cmpl_pool);
  1325. dma_pool_destroy(mbox->bd_pool);
  1326. for (index = 0; index < mbox->num_rings; index++) {
  1327. ring = &mbox->rings[index];
  1328. ida_destroy(&ring->requests_ida);
  1329. }
  1330. return 0;
  1331. }
  1332. static const struct of_device_id flexrm_mbox_of_match[] = {
  1333. { .compatible = "brcm,iproc-flexrm-mbox", },
  1334. {},
  1335. };
  1336. MODULE_DEVICE_TABLE(of, flexrm_mbox_of_match);
  1337. static struct platform_driver flexrm_mbox_driver = {
  1338. .driver = {
  1339. .name = "brcm-flexrm-mbox",
  1340. .of_match_table = flexrm_mbox_of_match,
  1341. },
  1342. .probe = flexrm_mbox_probe,
  1343. .remove = flexrm_mbox_remove,
  1344. };
  1345. module_platform_driver(flexrm_mbox_driver);
  1346. MODULE_AUTHOR("Anup Patel <anup.patel@broadcom.com>");
  1347. MODULE_DESCRIPTION("Broadcom FlexRM mailbox driver");
  1348. MODULE_LICENSE("GPL v2");